WO2017164435A1 - Lens driving device - Google Patents

Lens driving device Download PDF

Info

Publication number
WO2017164435A1
WO2017164435A1 PCT/KR2016/002893 KR2016002893W WO2017164435A1 WO 2017164435 A1 WO2017164435 A1 WO 2017164435A1 KR 2016002893 W KR2016002893 W KR 2016002893W WO 2017164435 A1 WO2017164435 A1 WO 2017164435A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
optical axis
autofocus
shake compensation
spring
Prior art date
Application number
PCT/KR2016/002893
Other languages
French (fr)
Korean (ko)
Inventor
정해남
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2017164435A1 publication Critical patent/WO2017164435A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the present invention relates to a lens driving device mounted on a camera module to move the lens barrel in at least one direction.
  • camera modules mounted in mobile electronic devices such as smart phones, tablet computers, and laptop computers are being advanced.
  • the advancement of the camera module is realized by the auto focus function, the high pixel function, and the zoom function.
  • an optical image stabilizing device (OIS, Optical Image Stabilizer) capable of compensating for hand shake has recently been installed.
  • An optical image stabilizer is a device for compensating for vibration by moving a lens barrel relative to a sensor.
  • Such an optical image stabilization apparatus is disclosed in Korean Patent No. 10-1518825 (registered May 4, 2015) and Japanese Patent Application Laid-Open No. 2013-024944 (published February 4, 2013).
  • the mobile electronic device in which the camera module is mounted has been miniaturized.
  • the pixels of the camera module tend to rise. Therefore, there is a demand for a lens driving device that can be miniaturized more precisely and capable of accurate vibration correction.
  • An object of the present invention is to provide a lens driving apparatus that can contribute to miniaturization and thinning of an electronic device mounted by minimizing the height in the optical axis direction.
  • Another object of the present invention is to provide a lens driving apparatus capable of correcting the shake of a precise lens barrel.
  • the lens drive device of the present invention for solving the above problems is a lens drive device comprising a lens barrel in which a lens is accommodated, the direction of the base, the shake correction carrier located on the base, the shake correction carrier orthogonal to the optical axis
  • An oscillation correction drive unit for moving the light source; an autofocus carrier positioned inside the oscillation correction carrier; an autofocus drive unit for moving the autofocus carrier in an optical axis direction; and the oscillation correction carrier in a direction perpendicular to the optical axis with respect to the base
  • the autofocus carrier may further include at least one spring for autofocus to support to move in the optical axis direction with respect to the shake compensation carrier.
  • the spring may include an upper spring and a lower spring located below the upper spring.
  • the autofocus spring may be formed as a leaf spring.
  • the autofocus spring includes an inner circumferential portion extending inwardly from the outer circumferential portion and the outer circumferential portion and elastically deformable in the optical axis direction with respect to the outer circumferential portion, and the outer circumferential portion is the shake compensation carrier.
  • the inner circumference may be coupled to the autofocus carrier.
  • it may further include at least one ball bearing for supporting the shake compensation carrier to be movable in a direction orthogonal to the optical axis with respect to the base.
  • the shake compensation carrier may be located in close contact with the base with the ball bearing therebetween.
  • the vibration correction drive unit at least one magnet coupled to the vibration correction carrier and at least one vibration correction coupled to the base, at least a portion of the magnet to the vibration correction includes Can be.
  • the shake compensation coil may be wound around an axis in a direction orthogonal to the optical axis.
  • the shake compensation coil may include two or more shake compensation coils oriented in two different directions perpendicular to the optical axis.
  • the two or more shake compensation coils oriented in two different directions may be oriented to be orthogonal to each other.
  • the vibration correction coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board.
  • the flexible circuit board may further include a position sensing sensor coupled to face the magnet and detecting a movement in a direction orthogonal to the optical axis of the shake compensation carrier.
  • the autofocus driving unit at least one magnet coupled to the autofocus coil and the shake compensation carrier wound on the autofocus carrier, the at least a portion of the autofocus coil facing It may include.
  • the autofocus coil may be wound around an optical axis.
  • the autofocus carrier may further include a position sensing sensor coupled to face the magnet to detect movement of the autofocus carrier in the optical axis direction.
  • the shake compensation driving unit may include at least one shake compensation coil coupled to the magnet and the base, the at least one opposing to the magnet.
  • the autofocus carrier can move in the optical axis direction relative to the shake compensation carrier.
  • the autofocus carrier when the shake compensation carrier moves in a direction orthogonal to the optical axis, the autofocus carrier may move in a direction orthogonal to the optical axis together with the shake compensation carrier.
  • the lens barrel is moved in the optical axis direction in accordance with the movement of the optical axis direction of the autofocus carrier, the direction orthogonal to the optical axis in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier Can be moved.
  • one end of the shake compensation spring is coupled to the shake compensation carrier, the other end may be coupled to the base.
  • the shake compensation spring is not elastically deformed in the optical axis direction, but elastically deformed in the direction orthogonal to the optical axis can elastically support the movement of the shake compensation carrier.
  • the shake compensation spring may be formed in a plate shape standing in the vertical direction.
  • the shake compensation spring extends in a direction perpendicular to the optical axis and may be bent at least once.
  • the shake compensation spring may transmit an electrical signal applied to the coil of the autofocus drive unit.
  • the lens driving apparatus may contribute to miniaturization and thinning of the mounted electronic device by minimizing the height in the optical axis direction.
  • the lens driving apparatus is capable of accurately correcting the shake of the lens barrel.
  • FIG. 1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
  • FIG. 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
  • FIG. 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • FIG. 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • FIG. 7 is a perspective view illustrating portions corresponding to a lens barrel, a lower plate, a shake compensation carrier, a shake compensation driver, an autofocus carrier, an autofocus driver, a ball bearing, and a spring of the lens driving apparatus of the present invention.
  • FIG. 8 is an exploded perspective view illustrating each component of FIG. 7.
  • FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
  • FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
  • FIG. 11 is a perspective view showing a part corresponding to a lens barrel, an autofocus carrier, an autofocus driving unit, and a shake compensation carrier of the lens driving apparatus of the present invention.
  • FIG. 12 is an exploded perspective view illustrating each component of FIG. 11.
  • FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11.
  • FIG. 14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
  • FIGS. 1 to 5 a lens driving apparatus according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • 1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
  • 1 shows a three-axis coordinate system composed of x, y, and z axes.
  • the lens is disposed with the z-axis as the optical axis.
  • the optical axis of the lens means a direction in which light passing through the center of the lens travels.
  • the positive direction of the z-axis is defined upward, and the negative direction of the z-axis is defined downward.
  • the x- and y-axis directions will be defined laterally to be described.
  • the lens driving device is shielded by the shield case 210 so that only a part of the internal structure thereof is visible.
  • the shield case 210 may typically be formed in a polyhedron shape. Specifically, the shield case 210 may be formed in a hexahedron shape.
  • the shield case 210 may form a part of the base 200 of the lens driving apparatus to be described later, and accommodate various components of the lens driving apparatus therein.
  • the shield case 210 may be formed of a hard material to protect various components accommodated therein.
  • the shield case 210 may be formed of a metal material to perform a function of shielding electromagnetic noise (EMI) noise flowing in from the outside or generated inside the outflow.
  • EMI shielding electromagnetic noise
  • the shield case 210 has an opening 211 through which an upper surface of the lens barrel 100 may be exposed. And although not shown, the lower surface of the shield case 210 is also formed in an open form. The open path of the light traveling along the optical axis is secured by the open portions of the upper surface opening 211 and the lower surface of the shield case 210.
  • the upper surface of the lens barrel 100 is exposed through the upper opening 211 of the shield case 210. Specifically, the lens accommodated by the lens barrel 100 is positioned to be exposed through the opening 211.
  • the lens barrel 100 may be moved by the autofocus driver 600 and the shake compensation driver 400 and 700 which will be described later, and the opening 211 of the shield case 210 may move the lens barrel 100.
  • the lens barrel 100 may be formed larger than the upper surface of the lens barrel 100.
  • FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
  • 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
  • 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
  • the lens driving apparatus of the present invention includes the lens barrel 100, the base 200, the shake compensation carrier 300, the shake compensation driver 400, the autofocus carrier 500, and the autofocus.
  • the driving unit 600, the ball bearing 700, the autofocus spring 800, the flexible circuit board 240, and a position sensing sensor are included.
  • the image sensor unit may be coupled to the lower portion of the lens driving apparatus of the present invention.
  • the image sensor unit may include an image sensor, a circuit board on which the image sensor is mounted, an optical filter covering the image sensor, and the like.
  • the image sensor unit is coupled to cover the bottom surface of the base 200 is positioned below the lens barrel 100.
  • Light traveling in the optical axis direction passes through the lens barrel 100 and forms an image in the image sensor.
  • the image sensor converts the irradiated optical signal into an electrical signal and outputs the electrical signal.
  • FIGS. 5 to 17 illustrate an exploded view of part or all of the lens driving apparatus of the present invention.
  • each part of the lens driving apparatus of the present invention will be described in detail with reference to FIGS. 5 to 17 along with FIGS. 2 to 4.
  • 5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • the base 200 is positioned relatively fixed to the lens barrel 100 in the lens driving apparatus.
  • the lens barrel 100 is accommodated in the base 200 to move in the optical axis direction together with the autofocus carrier 500 and moves in the direction orthogonal to the optical axis together with the shake compensation carrier 300.
  • the movement in the optical axis direction may be the movement in the z-axis direction
  • the movement in the direction orthogonal to the optical axis may be the movement in the x-axis or y-axis direction.
  • the movement of the lens barrel 100 corresponds to the relative movement with respect to the base 200.
  • the base 200 may include a shield case 210, a cover housing 220, and a lower plate 230.
  • the cover housing 220 is located inside the shield case 210.
  • the cover housing 220 has an opening through which an upper surface of the lens barrel 100 may be exposed, and a lower surface thereof may be open.
  • the cover housing 220 is formed to have a plurality of side surfaces.
  • the cover housing 220 may be formed to have four side surfaces, for example, as shown in the accompanying drawings.
  • the cover housing 220 may be coupled to the flexible circuit board 240 and the vibration compensation coil 420.
  • the cover housing 220 may be formed with a coupling portion to which the flexible circuit board 240 may be coupled.
  • the coupling part may be formed of a protrusion or the like, and may be coupled to be inserted into a hole of the flexible circuit board 240.
  • the vibration compensation coil 420 may be coupled to the side of the cover housing 220.
  • One end of the flexible circuit board 240 may be formed to be exposed to the outside of the base 200.
  • An input / output terminal 241 is formed in the exposed portion of the flexible circuit board 240 to transmit a signal and supply power.
  • the lower plate 230 is coupled to the open lower surface of the shield case 210 and the cover housing 220.
  • An opening is formed in the center of the lower plate 230.
  • the opening of the lower plate 230 is formed at a position opposite to the opening of the upper surface of the shield case 210 and the cover housing 220 to secure a path of light traveling along the optical axis.
  • the lens barrel 100 is positioned between the opening of the upper surface of the shield case 210 and the cover housing 220 and the opening of the lower plate 230.
  • FIG. 7 illustrates a lens barrel 100, a lower plate 230, a shake compensation carrier 300, a shake compensation driver 400, an autofocus carrier 500, an autofocus driver 600, and a lens barrel 100 of the present invention. It is a perspective view which shows the part corresponding to the ball bearing 700 and the spring for autofocus. 8 is an exploded perspective view illustrating each component of FIG. 7.
  • FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
  • FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
  • the shake compensation driving unit 400 will be described for driving the shake compensation carrier 300.
  • the shake compensation carrier 300 has an upper surface and a lower surface and is formed to have a plurality of side surfaces.
  • the side of the shake compensation carrier 300 is preferably formed to face the side of the base 200.
  • the shake compensation carrier 300 may be formed to have four sides facing the side of the base 200 of four sides.
  • the shake compensation carrier 300 may include a magnet holder 310 and a lower surface 320.
  • the magnet holder 310 may be formed to surround the side of the shake compensation carrier 300.
  • the side of the magnet holder 310 is opposite to the side of the cover housing 220, a magnet coupling portion 311 to which the magnet 410 is coupled is formed.
  • the magnet 410 is coupled to the magnet coupling portion 311, and at least a portion of the magnet 410 is disposed to face the vibration compensation coil 420 coupled to the cover housing 220.
  • the lower surface 320 of the stabilizer carrier may be coupled to a lower portion of the magnet holder 310.
  • the lower surface 320 of the stabilizer carrier may be positioned to face the lower plate 230 of the base 200.
  • the shake compensation carrier 300 may be supported by the shake compensation spring 350.
  • the shake compensation spring 350 may support the shake compensation carrier 300 to be supported on the lower plate 230 of the base 200.
  • the vibration compensation spring 350 may be coupled between the vibration compensation carrier 300 and the side of the base 200.
  • one end of the shake compensation spring 350 may be coupled to the bottom surface 320 of the shake compensation carrier, and the other end of the shake compensation spring 350 may be coupled to the side of the cover housing 220 of the base 200. .
  • the vibration compensation spring 350 may be formed in a plate shape extending in a direction perpendicular to the optical axis. Vibration correction spring 350 in the form of a plate may be arranged in a vertically erect form. That is, the thin part corresponding to the thickness of a board is oriented upwards and downwards, and the wide part corresponding to the front and back surface of a board is oriented laterally. The vibration compensation spring 350 may be bent at least once while extending in a direction perpendicular to the optical axis.
  • the vibration compensation spring 350 is formed to be hardly elastically deformed in the optical axis direction to limit the movement of the vibration compensation carrier 300 in the optical axis direction.
  • the vibration compensation spring 350 may be elastically deformed in a direction perpendicular to the optical axis. Accordingly, the shake compensation spring 350 restricts the movement of the shake compensation carrier 300 in the optical axis direction, and allows the movement by elastically deforming in the direction orthogonal to the optical axis.
  • the vibration compensation spring 350 may be coupled to a plurality of sides of the vibration compensation carrier 300.
  • a plurality of vibration correction springs 350 may be formed at positions symmetrical with respect to the optical axis to stably support the vibration correction carrier 300.
  • the electrical signal may be transmitted through the shake compensation spring 350.
  • the vibration compensation spring 350 may be formed of a conductive material.
  • the electrical signal may be a signal applied from the outside to the autofocus coil 620.
  • the other end of the vibration compensation spring 350 may be formed with a terminal extension 351 that can receive an electrical signal.
  • the terminal extension 351 is extended to be exposed to the outside of the base 200 so that an external signal can be applied.
  • At least one ball bearing 700 may be located between the vibration compensation carrier 300 and the lower plate 230.
  • the ball bearing 700 supports the shake compensation carrier 300 to be movable in a direction perpendicular to the optical axis with respect to the base 200.
  • the movement of the vibration compensation carrier 300 in the optical axis direction due to the slight deformation of the optical axis direction of the vibration compensation spring 350 may be limited as much as possible.
  • the stabilizer carrier 300 is positioned in close contact with the lower plate 230 with the ball bearing 700 therebetween.
  • the shake compensation carrier 300 and the lower plate 230 may be in close contact by magnetic force.
  • the yoke 231 or the magnet 231 may be disposed on the lower plate 230.
  • the yoke 231 or the magnet 231 of the lower plate 230 is disposed at a position opposite to the magnet 410 coupled to the shake compensation carrier 300, so that attraction between each other may occur. By this attraction, the shake compensation carrier 300 may be in close contact with the ball bearing 700 interposed between the lower plate 230.
  • the shake compensation carrier 300 after the shake compensation carrier 300 is moved in a direction orthogonal to the optical axis by the attraction force, when the external force is removed, it may return to the initial position by the attraction force.
  • the ball bearing 700 may include a ball 710 and a cavity 721 that provides a limited space in which the ball can be housed and moved.
  • the cavity 721 may be formed in a groove shape on the lower surface 320 and the lower plate 230 of the shake compensation carrier.
  • the cavity 721 may also be formed by an opening formed in the bearing plate 720 positioned between the lower surface 320 of the shake compensation carrier and the upper surface of the lower plate 230.
  • the bearing plate 720 may be fixedly coupled to one of the lower surface 320 of the shake compensation carrier or the upper surface of the lower plate 230. In the accompanying drawings, the bearing plate 720 is fixedly coupled to the lower surface 320 of the shake compensation carrier, but may be fixedly coupled to the upper surface of the lower plate 230.
  • grooves and protrusions may be formed.
  • a protrusion may be formed on the lower surface 320 or the upper surface of the lower plate 230 of the shake compensation carrier, and the protrusion may be inserted into and coupled to the groove formed in the bearing plate 720.
  • the cavity 721 is formed larger than the diameter of the ball 710 so that when the shake compensation carrier 300 is moved in a direction perpendicular to the optical axis by an external force, the ball 710 rolls inside the cavity 721 to function as a bearing. do. Lubricant is applied around the ball 710 to minimize friction.
  • a plurality of balls 710 are formed to stably support the shake compensation carrier 300.
  • a plurality of balls 710 may be formed at positions symmetrical to the optical axis to stably support the shake compensation carrier 300.
  • the shake compensation carrier 300 accommodates the lens barrel 100 and the autofocus carrier 500 therein. As the shake compensation carrier 300 moves in a direction orthogonal to the optical axis, the lens barrel 100 and the autofocus carrier 500 also move with the shake compensation carrier 300.
  • the vibration correction driver 400 includes a magnet 410 and a vibration correction coil 420.
  • the magnet 410 is coupled to the shake compensation carrier 300.
  • the magnet 410 may be coupled to the magnet holder 310 of the shake compensation carrier 300.
  • the vibration compensation coil 420 is coupled to the base 200.
  • the vibration compensation coil 420 may be coupled to the cover housing 220.
  • the magnet 410 and the vibration compensation coil 420 may be disposed to at least partially face each other.
  • the magnet 410 and the vibration compensation coil 420 may be formed in plural numbers.
  • the plurality of magnets 410 and the shake compensation coil 420 are oriented in different directions perpendicular to the optical axis.
  • the magnet 410 and the vibration compensation coil 420 may be disposed to be opposed to each other coupled to each of the four sides.
  • the magnet 410 and the shake compensation coil 420 may be orthogonal to the neighboring magnet 410 and the shake compensation coil 420.
  • the vibration compensation coil 420 is formed in a shape wound around an axis in a direction orthogonal to the optical axis.
  • the vibration compensation coil 420 may be coupled to the flexible circuit board 240 coupled to the base 200.
  • the vibration compensation coil 420 may receive an electrical signal from a circuit formed on the flexible circuit board 240.
  • the circuit formed on the flexible circuit board 240 may be connected to the input / output terminal 241 to receive electric signals and power from the outside.
  • the shake compensation carrier 300 When current is applied to the shake compensation coil 420, the shake compensation carrier 300 is moved in a direction orthogonal to the optical axis by interaction with the magnet 410. The movement direction of the shake compensation carrier 300 may be adjusted by the direction of the current applied to the shake compensation coil 420.
  • the position sensing sensor may be coupled to the flexible circuit board 240 coupled to the base 200.
  • the position detection sensor may be coupled to face the magnet 410 to sense that the shake compensation carrier 300 moves in a direction perpendicular to the optical axis.
  • the position sensing sensor may be formed of, for example, a hall element.
  • FIG. 11 is a perspective view illustrating portions corresponding to the lens barrel 100, the autofocus carrier 500, the autofocus driver 600, and the shake compensation carrier 300 of the lens driving apparatus of the present invention.
  • 12 is an exploded perspective view illustrating each component of FIG. 11.
  • FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11.
  • 14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
  • the autofocus driving unit 600 drives the autofocus carrier 500.
  • the lens barrel 100 may be formed in a cylindrical shape.
  • the lens barrel 100 is formed to have an open top and bottom surfaces so that light may pass through the top and bottom surfaces. At least one lens is accommodated in the lens barrel 100. The lens moves with the lens barrel 100 as it moves.
  • the autofocus carrier 500 is coupled to accommodate the lens barrel 100.
  • the autofocus carrier 500 and the lens barrel 100 are integrally moved.
  • the autofocus carrier 500 and the lens barrel 100 are located inside the shake compensation carrier 300.
  • the autofocus driver 600 includes a magnet 610 and an autofocus coil 620.
  • the magnet 610 of the autofocus driver 600 is coupled to the shake compensation carrier 300.
  • the magnet 610 of the autofocus driver 600 may be the same as the magnet 410 of the shake compensation driver 400. That is, one magnet 410 or 610 may be used as the magnet 610 of the autofocus driver 600 and the magnet 410 of the shake compensation driver 400.
  • the autofocus coil 620 is coupled to the autofocus carrier 500.
  • the autofocus coil 620 is at least partially opposed to the magnet 610.
  • the autofocus coil 620 is wound around the optical axis.
  • the autofocus carrier 500 When current is applied to the autofocus coil 620, the autofocus carrier 500 is moved in the optical axis direction by interaction.
  • the moving direction of the autofocus carrier 500 may be adjusted by the direction of the current applied to the autofocus coil 620.
  • Position detection sensor may be coupled to the autofocus carrier 500.
  • the position detection sensor may be coupled to face the magnet 610 to detect that the autofocus carrier 500 moves in the optical axis direction.
  • the position sensing sensor may be formed of, for example, a hall element.
  • the autofocus carrier 500 may be supported to move in the optical axis direction by the autofocus spring 800.
  • the autofocus spring 800 may include an upper spring 810 coupled to an upper portion of the autofocus carrier 500 and a lower spring 820 coupled to a lower portion of the autofocus carrier 500.
  • the autofocus spring 800 may elastically support movement of the autofocus carrier 500 in the optical axis direction.
  • the autofocus spring 800 may be formed in the form of a leaf spring, and may include an inner circumference portion, an outer circumference portion, and an extension portion extending the inner circumference portion and the outer circumference portion.
  • the inner circumference of the autofocus spring 800 may be coupled to the autofocus carrier 500.
  • the outer circumferential portion of the autofocus spring 800 may be coupled to the shake compensation carrier 300.
  • An extension of the autofocus spring 800 is elastically deformed to support movement of the autofocus carrier 500 in the optical axis direction with respect to the shake compensation carrier 300.
  • the autofocus spring 800 may be integrally formed with the vibration compensating spring 350 described above. Specifically, the outer circumferential portion of the autofocus spring 800 is coupled to the shake compensation carrier 300, and a portion extending from the outer circumferential portion corresponds to one end of the shake correction spring 350 and extends to the other end connected to the base 200. Can be.
  • the electrical signal may be transmitted through the autofocus spring 800.
  • the electrical signal may be a signal applied from the outside to the autofocus coil 620.
  • the autofocus spring 800 may be formed of a conductive material.
  • an electrical signal may be transmitted through the integral spring structure.
  • the lens barrel 100 may move in the optical axis direction with respect to the base 200, and may move in the direction orthogonal to the optical axis.
  • the autofocus carrier 500 may move the lens barrel 100 by moving in the optical axis direction relative to the shake compensation carrier 300.
  • the shake compensation carrier 300 may move in a direction orthogonal to the optical axis relative to the base 200 to move the lens barrel 100 in a direction orthogonal to the optical axis.

Abstract

A lens driving device is disclosed. The lens driving device comprises: a base; an image stabilization carrier positioned on the base; an image stabilization drive unit which moves the image stabilization carrier in a direction orthogonal to an optical axis; an auto-focus carrier positioned inside the image stabilization carrier; an auto-focus drive unit which moves the auto-focus carrier in the direction of the optical axis; and at least one spring for image stabilization which provides support so that the image stabilization carrier may be moved in the direction orthogonal to the optical axis with respect to the base.

Description

렌즈 구동 장치Lens drive
본 발명은 카메라 모듈에 장착되어 렌즈 배럴을 적어도 하나 이상의 방향으로 이동시키는 렌즈 구동 장치에 관한 것이다.The present invention relates to a lens driving device mounted on a camera module to move the lens barrel in at least one direction.
전자통신 기술이 발전함에 따라 스마트폰, 태블릿 컴퓨터, 랩톱 컴퓨터 등의 모바일 전자장치에 장착되는 카메라 모듈의 고급화가 이뤄지고 있다. 카메라 모듈의 고급화는 자동 초점 기능, 고화소 기능의 탑재, 줌 기능 등의 탑재 등으로 실현되고 있다.With the development of electronic communication technology, camera modules mounted in mobile electronic devices such as smart phones, tablet computers, and laptop computers are being advanced. The advancement of the camera module is realized by the auto focus function, the high pixel function, and the zoom function.
이에 더불어 최근에는 손떨림을 보정할 수 있는 광학식 떨림보정 장치(OIS, Optical Image Stabilizer)도 탑재되고 있다. 광학식 떨림보정 장치는 렌즈 배럴을 센서에 상대적으로 이동시켜 떨림을 보정하는 장치이다. 이러한 광학식 떨림보정 장치에 대해서는 대한민국 등록특허 제10-1518825호(2015년 5월 4일 등록) 및 일본국 공개특허공보 제2013-024944호(2013년 2월 4일 공개) 등에 개시되어 있다.In addition, an optical image stabilizing device (OIS, Optical Image Stabilizer) capable of compensating for hand shake has recently been installed. An optical image stabilizer is a device for compensating for vibration by moving a lens barrel relative to a sensor. Such an optical image stabilization apparatus is disclosed in Korean Patent No. 10-1518825 (registered May 4, 2015) and Japanese Patent Application Laid-Open No. 2013-024944 (published February 4, 2013).
최근에 카메라 모듈이 탑재되는 모바일 전자장치가 소형화되는 추세에 있다. 또한, 카메라 모듈의 화소가 상승하는 경향에 있다. 따라서 종전보다 소형화가 가능하면서 정밀한 떨림보정이 가능한 렌즈 구동 장치가 요구되고 있다.Recently, the mobile electronic device in which the camera module is mounted has been miniaturized. In addition, the pixels of the camera module tend to rise. Therefore, there is a demand for a lens driving device that can be miniaturized more precisely and capable of accurate vibration correction.
본 발명이 해결하려는 과제는, 광축 방향의 높이를 최소화하여 탑재되는 전자 장치의 소형화 및 박형화에 기여할 수 있는 렌즈 구동 장치를 제공하는 것이다.An object of the present invention is to provide a lens driving apparatus that can contribute to miniaturization and thinning of an electronic device mounted by minimizing the height in the optical axis direction.
본 발명이 해결하려는 다른 과제는, 정밀한 렌즈 배럴의 떨림보정이 가능한 렌즈 구동 장치를 제공하는 것이다.Another object of the present invention is to provide a lens driving apparatus capable of correcting the shake of a precise lens barrel.
상기 과제를 해결하기 위한 본 발명의 렌즈 구동 장치는, 렌즈가 수용된 렌즈 배럴을 포함하는 렌즈 구동 장치에 있어서, 베이스, 상기 베이스 상에 위치하는 떨림보정 캐리어, 상기 떨림보정 캐리어를 광축에 직교하는 방향으로 이동시키는 떨림보정 구동부, 상기 떨림보정 캐리어의 내부에 위치하는 오토포커스 캐리어, 상기 오토포커스 캐리어를 광축 방향으로 이동시키는 오토포커스 구동부 및 상기 떨림보정 캐리어를 상기 베이스에 대해 광축에 직교하는 방향으로 이동가능하도록 지지하는 적어도 하나의 떨림보정용 스프링을 포함한다.The lens drive device of the present invention for solving the above problems is a lens drive device comprising a lens barrel in which a lens is accommodated, the direction of the base, the shake correction carrier located on the base, the shake correction carrier orthogonal to the optical axis An oscillation correction drive unit for moving the light source; an autofocus carrier positioned inside the oscillation correction carrier; an autofocus drive unit for moving the autofocus carrier in an optical axis direction; and the oscillation correction carrier in a direction perpendicular to the optical axis with respect to the base At least one anti-shake spring for supporting.
본 발명의 일 실시예에 있어서, 상기 오토포커스 캐리어를 상기 떨림보정 캐리어에 대해 광축 방향으로 이동가능하도록 지지하는 적어도 하나의 오토포커스용 스프링을 더 포함할 수 있다.In one embodiment of the present invention, the autofocus carrier may further include at least one spring for autofocus to support to move in the optical axis direction with respect to the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 스프링은 상부 스프링 및 상기 상부 스프링보다 하부에 위치하는 하부 스프링을 포함할 수 있다.In one embodiment of the present invention, the spring may include an upper spring and a lower spring located below the upper spring.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 스프링은 판 스프링으로 형성될 수 있다.In one embodiment of the present invention, the autofocus spring may be formed as a leaf spring.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 스프링은 외주부 및 상기 외주부에서 내측으로 연장되고, 상기 외주부에 대해서 광축 방향으로 탄성 변형될 수 있는 내주부를 포함하고, 상기 외주부는 상기 떨림보정 캐리어에 결합되고, 상기 내주부는 상기 오토포커스 캐리어에 결합될 수 있다.In one embodiment of the present invention, the autofocus spring includes an inner circumferential portion extending inwardly from the outer circumferential portion and the outer circumferential portion and elastically deformable in the optical axis direction with respect to the outer circumferential portion, and the outer circumferential portion is the shake compensation carrier. The inner circumference may be coupled to the autofocus carrier.
본 발명의 일 실시예에 있어서, 상기 떨림보정 캐리어를 상기 베이스에 대해 광축에 직교하는 방향으로 이동가능하도록 지지하는 적어도 하나의 볼 베어링을 더 포함할 수 있다.In one embodiment of the present invention, it may further include at least one ball bearing for supporting the shake compensation carrier to be movable in a direction orthogonal to the optical axis with respect to the base.
본 발명의 일 실시예에 있어서, 상기 떨림보정 캐리어는 상기 볼 베어링은 사이에 두고 상기 베이스에 밀착되게 위치할 수 있다.In one embodiment of the present invention, the shake compensation carrier may be located in close contact with the base with the ball bearing therebetween.
본 발명의 일 실시예에 있어서, 상기 떨림보정 구동부는, 상기 떨림보정 캐리어에 결합된 적어도 하나의 자석 및 상기 베이스에 결합되고, 상기 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함할 수 있다.In one embodiment of the present invention, the vibration correction drive unit, at least one magnet coupled to the vibration correction carrier and at least one vibration correction coupled to the base, at least a portion of the magnet to the vibration correction includes Can be.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 코일은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태일 수 있다.In one embodiment of the present invention, the shake compensation coil may be wound around an axis in a direction orthogonal to the optical axis.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 코일은 광축에 직교하는 서로 다른 두 방향으로 배향된 둘 이상의 떨림보정용 코일을 포함할 수 있다.In one embodiment of the present invention, the shake compensation coil may include two or more shake compensation coils oriented in two different directions perpendicular to the optical axis.
본 발명의 일 실시예에 있어서, 상기 서로 다른 두 방향으로 배향된 둘 이상의 떨림보정용 코일은 서로 직교하도록 배향될 수 있다.In one embodiment of the present invention, the two or more shake compensation coils oriented in two different directions may be oriented to be orthogonal to each other.
본 발명의 일 실시예에 있어서, 상기 베이스에 결합된 연성회로기판을 더 포함하고, 상기 떨림보정용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기 신호를 전달받을 수 있다.In one embodiment of the present invention, further comprising a flexible circuit board coupled to the base, the vibration correction coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board.
본 발명의 일 실시예에 있어서, 상기 연성회로기판에 상기 자석과 대향되도록 결합되어, 상기 떨림보정용 캐리어의 광축에 직교하는 방향의 이동을 감지하는 위치 감지 센서를 더 포함할 수 있다.In an embodiment of the present invention, the flexible circuit board may further include a position sensing sensor coupled to face the magnet and detecting a movement in a direction orthogonal to the optical axis of the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 오토포커스 구동부는, 상기 오토포커스 캐리어에 권선되는 오토포커스용 코일 및 상기 떨림보정 캐리어에 결합되고, 상기 오토포커스용 코일과 적어도 일부가 대향되는 적어도 하나의 자석을 포함할 수 있다.In one embodiment of the present invention, the autofocus driving unit, at least one magnet coupled to the autofocus coil and the shake compensation carrier wound on the autofocus carrier, the at least a portion of the autofocus coil facing It may include.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 코일은 광축을 중심으로 하여 권선된 형태일 수 있다.In one embodiment of the present invention, the autofocus coil may be wound around an optical axis.
본 발명의 일 실시예에 있어서, 상기 오토포커스 캐리어에 자석과 대향되도록 결합되어, 상기 오토포커스 캐리어의 광축 방향의 이동을 감지하는 위치 감지 센서를 더 포함할 수 있다.In an embodiment of the present invention, the autofocus carrier may further include a position sensing sensor coupled to face the magnet to detect movement of the autofocus carrier in the optical axis direction.
본 발명의 일 실시예에 있어서, 상기 떨림보정 구동부는, 상기 자석 및 상기 베이스에 결합되고, 상기 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함할 수 있다.In one embodiment of the present invention, the shake compensation driving unit may include at least one shake compensation coil coupled to the magnet and the base, the at least one opposing to the magnet.
본 발명의 일 실시예에 있어서, 상기 오토포커스 캐리어는 상기 떨림보정 캐리어에 상대적으로 광축 방향으로 이동할 수 있다.In one embodiment of the present invention, the autofocus carrier can move in the optical axis direction relative to the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 떨림보정 캐리어가 광축에 직교하는 방향으로 이동하는 경우, 상기 오토포커스 캐리어는 상기 떨림보정 캐리어와 함께 광축에 직교하는 방향으로 이동하게 될 수 있다.In one embodiment of the present invention, when the shake compensation carrier moves in a direction orthogonal to the optical axis, the autofocus carrier may move in a direction orthogonal to the optical axis together with the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 렌즈 배럴은 상기 오토포커스용 캐리어의 광축 방향의 이동에 따라 광축 방향으로 이동하고, 상기 떨림보정 캐리어의 광축에 직교하는 방향의 이동에 따라 광축에 직교하는 방향으로 이동할 수 있다.In one embodiment of the present invention, the lens barrel is moved in the optical axis direction in accordance with the movement of the optical axis direction of the autofocus carrier, the direction orthogonal to the optical axis in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier Can be moved.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 스프링의 일단은 상기 떨림보정 캐리어에 결합되고, 타단은 상기 베이스에 결합될 수 있다.In one embodiment of the present invention, one end of the shake compensation spring is coupled to the shake compensation carrier, the other end may be coupled to the base.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 스프링은 광축 방향으로는 탄성 변형되지 않고, 광축에 직교하는 방향으로는 탄성 변형되어 상기 떨림보정 캐리어의 이동을 탄성 지지할 수 있다.In one embodiment of the present invention, the shake compensation spring is not elastically deformed in the optical axis direction, but elastically deformed in the direction orthogonal to the optical axis can elastically support the movement of the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 스프링은 수직 방향으로 세워진 판형으로 형성될 수 있다.In one embodiment of the present invention, the shake compensation spring may be formed in a plate shape standing in the vertical direction.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 스프링은 광축에 직교하는 방향으로 연장되며 적어도 1회 절곡될 수 있다.In one embodiment of the present invention, the shake compensation spring extends in a direction perpendicular to the optical axis and may be bent at least once.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 스프링은 상기 오토포커스 구동부의 코일에 인가되는 전기 신호를 전달할 수 있다.In one embodiment of the present invention, the shake compensation spring may transmit an electrical signal applied to the coil of the autofocus drive unit.
본 발명의 일 실시예에 따른 렌즈 구동 장치는 광축 방향의 높이를 최소화하여 탑재되는 전자 장치의 소형화 및 박형화에 기여할 수 있다.The lens driving apparatus according to the exemplary embodiment of the present invention may contribute to miniaturization and thinning of the mounted electronic device by minimizing the height in the optical axis direction.
또한, 본 발명의 일 실시예에 따른 렌즈 구동 장치는 정밀한 렌즈 배럴의 떨림보정이 가능하다.In addition, the lens driving apparatus according to the embodiment of the present invention is capable of accurately correcting the shake of the lens barrel.
도 1은 본 발명의 일 실시예에 따른 렌즈 구동 장치의 외관을 도시한 사시도이다.1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
도 2는 도 1의 AA'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다.FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
도 3은 도 1의 BB'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다.3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
도 4는 본 발명의 일 실시예에 따른 렌즈 구동 장치의 분해 사시도이다.4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
도 5는 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분을 분해하여 도시한 사시도이다.5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
도 6은 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분의 단면도이다.6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
도 7은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 하부 플레이트, 떨림보정 캐리어, 떨림보정 구동부, 오토포커스 캐리어, 오토포커스 구동부, 볼 베어링 및 스프링에 해당하는 부분을 도시한 사시도이다.FIG. 7 is a perspective view illustrating portions corresponding to a lens barrel, a lower plate, a shake compensation carrier, a shake compensation driver, an autofocus carrier, an autofocus driver, a ball bearing, and a spring of the lens driving apparatus of the present invention.
도 8은 도 7의 각 구성요소를 분해하여 도시한 사시도이다.8 is an exploded perspective view illustrating each component of FIG. 7.
도 9는 도 7의 CC'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
도 10은 도 7의 DD'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
도 11은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 오토포커스 구동부 및 떨림보정 캐리어에 해당하는 부분을 도시한 사시도이다.FIG. 11 is a perspective view showing a part corresponding to a lens barrel, an autofocus carrier, an autofocus driving unit, and a shake compensation carrier of the lens driving apparatus of the present invention. FIG.
도 12는 도 11의 각 구성요소를 분해하여 도시한 사시도이다.12 is an exploded perspective view illustrating each component of FIG. 11.
도 13은 도 11의 EE'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11.
도 14는 도 11의 FF'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 1 내지 도 5를 참조하여, 본 발명의 일 실시예에 따른 렌즈 구동 장치에 대해 설명한다.Hereinafter, a lens driving apparatus according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 5.
도 1은 본 발명의 일 실시예에 따른 렌즈 구동 장치의 외관을 도시한 사시도이다. 도 1에는 x축, y축, z축으로 구성된 3축 좌표계가 도시되어 있다. 본 발명의 렌즈 구동 장치에서 렌즈는 z축을 광축으로 하여 배치된다. 렌즈의 광축이란 렌즈의 중심을 통과하는 광이 진행하는 방향을 의미한다. 1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention. 1 shows a three-axis coordinate system composed of x, y, and z axes. In the lens driving apparatus of the present invention, the lens is disposed with the z-axis as the optical axis. The optical axis of the lens means a direction in which light passing through the center of the lens travels.
본 발명에서 z축의 양(+)의 방향을 상방으로 정의하고, z축의 음(-)의 방향을 하방으로 정의하여 설명하도록 한다. 또한, x축, y축 방향을 측방으로 정의하여 설명하도록 한다.In the present invention, the positive direction of the z-axis is defined upward, and the negative direction of the z-axis is defined downward. In addition, the x- and y-axis directions will be defined laterally to be described.
도 1을 참조하면, 렌즈 구동 장치는 외부가 쉴드 케이스(210)에 의해 차폐되어 있어 내부의 구조는 일부만 보여지게 된다. 쉴드 케이스(210)는 통상적으로 다면체 형상으로 형성될 수 있다. 구체적으로, 쉴드 케이스(210)는 육면체 형상으로 형성될 수 있다. 쉴드 케이스(210)는 후술할 렌즈 구동 장치의 베이스(200)의 일부를 이루면서 내부에 렌즈 구동 장치의 여러 구성을 수용할 수 있다. 쉴드 케이스(210)는 단단한 재질로 형성되어 내부에 수용한 여러 구성들을 보호할 수 있다. 또한, 쉴드 케이스(210)는 금속 재질 등으로 형성되어 외부에서 유입되거나 내부에서 발생하여 외부로 유출되는 전자기파(EMI) 노이즈를 차폐하는 기능을 수행할 수 있다.Referring to FIG. 1, the lens driving device is shielded by the shield case 210 so that only a part of the internal structure thereof is visible. The shield case 210 may typically be formed in a polyhedron shape. Specifically, the shield case 210 may be formed in a hexahedron shape. The shield case 210 may form a part of the base 200 of the lens driving apparatus to be described later, and accommodate various components of the lens driving apparatus therein. The shield case 210 may be formed of a hard material to protect various components accommodated therein. In addition, the shield case 210 may be formed of a metal material to perform a function of shielding electromagnetic noise (EMI) noise flowing in from the outside or generated inside the outflow.
쉴드 케이스(210)는 상면에 렌즈 배럴(100)의 상면이 노출될 수 있는 개구(211)가 형성되어 있다. 그리고 도시되어 있지는 않지만, 쉴드 케이스(210)의 하면도 개방된 형태로 형성된다. 쉴드 케이스(210)에서 상면 개구(211)와 하면의 개방된 부분에 의해 광축을 따라 진행하는 광의 개방 경로가 확보된다.The shield case 210 has an opening 211 through which an upper surface of the lens barrel 100 may be exposed. And although not shown, the lower surface of the shield case 210 is also formed in an open form. The open path of the light traveling along the optical axis is secured by the open portions of the upper surface opening 211 and the lower surface of the shield case 210.
렌즈 배럴(100)의 상면은 쉴드 케이스(210)의 상면 개구(211)를 통해 노출되게 되는데, 구체적으로 렌즈 배럴(100)이 수용하는 렌즈가 개구(211)를 통해 노출되게 위치한다. 렌즈 배럴(100)은 후술할 오토포커스 구동부(600) 및 떨림보정 구동부(400)(700)에 의해 이동할 수 있는데, 쉴드 케이스(210)의 개구(211)는 이러한 렌즈 배럴(100)의 이동을 고려하여 렌즈 배럴(100)의 상면보다 크게 형성될 수 있다.The upper surface of the lens barrel 100 is exposed through the upper opening 211 of the shield case 210. Specifically, the lens accommodated by the lens barrel 100 is positioned to be exposed through the opening 211. The lens barrel 100 may be moved by the autofocus driver 600 and the shake compensation driver 400 and 700 which will be described later, and the opening 211 of the shield case 210 may move the lens barrel 100. In consideration of this, the lens barrel 100 may be formed larger than the upper surface of the lens barrel 100.
도 2는 도 1의 AA'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다. 도 3은 도 1의 BB'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다. 도 4는 본 발명의 일 실시예에 따른 렌즈 구동 장치의 분해 사시도이다.FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1. 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1. 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
도 2 내지 도 4를 참조하면, 본 발명의 렌즈 구동 장치는 렌즈 배럴(100), 베이스(200), 떨림보정 캐리어(300), 떨림보정 구동부(400), 오토포커스 캐리어(500), 오토포커스 구동부(600), 볼 베어링(700), 오토포커스용 스프링(800), 연성회로기판(240) 및 위치 감지 센서를 포함한다.2 to 4, the lens driving apparatus of the present invention includes the lens barrel 100, the base 200, the shake compensation carrier 300, the shake compensation driver 400, the autofocus carrier 500, and the autofocus. The driving unit 600, the ball bearing 700, the autofocus spring 800, the flexible circuit board 240, and a position sensing sensor are included.
도면에는 도시되지 않았지만, 본 발명의 렌즈 구동 장치의 하부에는 이미지 센서부가 결합될 수 있다. 이미지 센서부는 이미지 센서, 이미지 센서가 실장되어 있는 회로 기판, 이미지 센서를 덮는 광학 필터 등을 포함할 수 있다. 이러한 이미지 센서부는 베이스(200)의 하면을 덮는 형태로 결합되어 렌즈 배럴(100)의 하부에 위치하게 된다.Although not shown in the drawings, the image sensor unit may be coupled to the lower portion of the lens driving apparatus of the present invention. The image sensor unit may include an image sensor, a circuit board on which the image sensor is mounted, an optical filter covering the image sensor, and the like. The image sensor unit is coupled to cover the bottom surface of the base 200 is positioned below the lens barrel 100.
광축 방향으로 진행하는 광은 렌즈 배럴(100)을 통과하여 이미지 센서에 결상되게 된다. 이미지 센서는 조사된 광학 신호를 전기 신호로 변환하여 출력하게 된다.Light traveling in the optical axis direction passes through the lens barrel 100 and forms an image in the image sensor. The image sensor converts the irradiated optical signal into an electrical signal and outputs the electrical signal.
도 5 내지 도 17은 본 발명의 렌즈 구동 장치의 일부 또는 전부를 분해하여 도시한 것이다. 이하, 도 2 내지 도 4와 함께 도 5 내지 도 17을 참조하여 본 발명의 렌즈 구동 장치의 각 부분에 대해서 상세하게 설명하도록 한다.5 to 17 illustrate an exploded view of part or all of the lens driving apparatus of the present invention. Hereinafter, each part of the lens driving apparatus of the present invention will be described in detail with reference to FIGS. 5 to 17 along with FIGS. 2 to 4.
도 5는 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분을 분해하여 도시한 사시도이다. 도 6은 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분의 단면도이다.5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention. 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
베이스(200)는 렌즈 구동 장치에 있어서, 렌즈 배럴(100)에 대해 상대적으로 고정되어 위치하게 된다. 구체적으로, 렌즈 배럴(100)은 베이스(200) 내부에 수용되어 오토포커스 캐리어(500)와 함께 광축 방향으로 이동하게 되고, 떨림보정 캐리어(300)와 함께 광축에 직교하는 방향으로 이동하게 된다. 구체적으로, 광축 방향의 이동은 z축 방향의 이동일 수 있고, 광축에 직교하는 방향의 이동은 x축 또는 y축 방향의 이동일 수 있다. 여기서, 렌즈 배럴(100)이 움직이는 것은 베이스(200)를 기준으로 하여 상대적으로 움직이는 것에 해당한다.The base 200 is positioned relatively fixed to the lens barrel 100 in the lens driving apparatus. In detail, the lens barrel 100 is accommodated in the base 200 to move in the optical axis direction together with the autofocus carrier 500 and moves in the direction orthogonal to the optical axis together with the shake compensation carrier 300. Specifically, the movement in the optical axis direction may be the movement in the z-axis direction, and the movement in the direction orthogonal to the optical axis may be the movement in the x-axis or y-axis direction. Here, the movement of the lens barrel 100 corresponds to the relative movement with respect to the base 200.
베이스(200)는 쉴드 케이스(210), 커버 하우징(220) 및 하부 플레이트(230)를 포함할 수 있다. 커버 하우징(220)은 쉴드 케이스(210)의 내부에 위치한다. 커버 하우징(220)은 쉴드 케이스(210)와 마찬가지로 상면에 렌즈 배럴(100)의 상면이 노출될 수 있는 개구가 형성되어 있고, 하면이 개방된 형태로 형성될 수 있다. 커버 하우징(220)은 다수의 측면을 가지도록 형성된다. 커버 하우징(220)은 예를 들어, 첨부된 도면에 도시된 것과 같이 4면의 측면을 가지도록 형성될 수 있다.The base 200 may include a shield case 210, a cover housing 220, and a lower plate 230. The cover housing 220 is located inside the shield case 210. Like the shield case 210, the cover housing 220 has an opening through which an upper surface of the lens barrel 100 may be exposed, and a lower surface thereof may be open. The cover housing 220 is formed to have a plurality of side surfaces. The cover housing 220 may be formed to have four side surfaces, for example, as shown in the accompanying drawings.
커버 하우징(220)은 연성회로기판(240) 및 떨림보정용 코일(420)이 결합될 수 있다. 구체적으로, 커버 하우징(220)에는 연성회로기판(240)이 결합될 수 있는 결합부가 형성될 수 있다. 결합부는 돌기 등으로 형성되어, 연성회로기판(240)의 홀에 삽입되는 형태로 결합될 수 있다. 떨림보정용 코일(420)은 커버 하우징(220)의 측면에 결합될 수 있다. 연성회로기판(240)의 일단은 베이스(200)의 외부로 노출되도록 형성될 수 있다. 연성회로기판(240)의 노출된 부분에는 입출력 단자(241)가 형성되어, 신호가 전달되고 전력이 공급될 수 있다.The cover housing 220 may be coupled to the flexible circuit board 240 and the vibration compensation coil 420. Specifically, the cover housing 220 may be formed with a coupling portion to which the flexible circuit board 240 may be coupled. The coupling part may be formed of a protrusion or the like, and may be coupled to be inserted into a hole of the flexible circuit board 240. The vibration compensation coil 420 may be coupled to the side of the cover housing 220. One end of the flexible circuit board 240 may be formed to be exposed to the outside of the base 200. An input / output terminal 241 is formed in the exposed portion of the flexible circuit board 240 to transmit a signal and supply power.
하부 플레이트(230)는 쉴드 케이스(210) 및 커버 하우징(220)의 개방된 하면에 결합된다. 하부 플레이트(230)의 중앙에는 개구가 형성된다. 하부 플레이트(230)의 개구는 쉴드 케이스(210) 및 커버 하우징(220) 상면의 개구와 대향되는 위치에 형성되어 광축을 따라 진행하는 광의 경로를 확보한다. 렌즈 배럴(100)은 쉴드 케이스(210) 및 커버 하우징(220) 상면의 개구와 하부 플레이트(230)의 개구 사이에 위치하게 된다.The lower plate 230 is coupled to the open lower surface of the shield case 210 and the cover housing 220. An opening is formed in the center of the lower plate 230. The opening of the lower plate 230 is formed at a position opposite to the opening of the upper surface of the shield case 210 and the cover housing 220 to secure a path of light traveling along the optical axis. The lens barrel 100 is positioned between the opening of the upper surface of the shield case 210 and the cover housing 220 and the opening of the lower plate 230.
도 7은 본 발명의 렌즈 구동 장치의 렌즈 배럴(100), 하부 플레이트(230), 떨림보정 캐리어(300), 떨림보정 구동부(400), 오토포커스 캐리어(500), 오토포커스 구동부(600), 볼 베어링(700) 및 오토포커스용 스프링(800)에 해당하는 부분을 도시한 사시도이다. 도 8은 도 7의 각 구성요소를 분해하여 도시한 사시도이다. 도 9는 도 7의 CC'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다. 도 10은 도 7의 DD'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.7 illustrates a lens barrel 100, a lower plate 230, a shake compensation carrier 300, a shake compensation driver 400, an autofocus carrier 500, an autofocus driver 600, and a lens barrel 100 of the present invention. It is a perspective view which shows the part corresponding to the ball bearing 700 and the spring for autofocus. 8 is an exploded perspective view illustrating each component of FIG. 7. FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7. FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
도 7 내지 도 10을 참조하여, 떨림보정 구동부(400)가 떨림보정 캐리어(300)를 구동하는 것에 대해 설명하도록 한다.7 to 10, the shake compensation driving unit 400 will be described for driving the shake compensation carrier 300.
떨림보정 캐리어(300)는 상면과 하면을 가지고, 다수의 측면을 가지도록 형성된다. 떨림보정 캐리어(300)의 측면은 베이스(200)의 측면과 대향되도록 형성되는 것이 바람직하다. 예를 들어, 첨부된 도면에 도시된 것과 같이, 떨림보정 캐리어(300)는 4면의 베이스(200) 측면과 대향되는 4면의 측면을 가지도록 형성될 수 있다.The shake compensation carrier 300 has an upper surface and a lower surface and is formed to have a plurality of side surfaces. The side of the shake compensation carrier 300 is preferably formed to face the side of the base 200. For example, as shown in the accompanying drawings, the shake compensation carrier 300 may be formed to have four sides facing the side of the base 200 of four sides.
떨림보정 캐리어(300)는 자석 홀더(310) 및 하면(320)을 포함할 수 있다. 자석 홀더(310)는 떨림보정 캐리어(300)의 측면을 둘러싸도록 형성될 수 있다. 자석 홀더(310)의 측면은 커버 하우징(220)의 측면과 대향되고, 자석(410)이 결합되는 자석 결합부(311)가 형성된다. 자석(410)은 자석 결합부(311)에 결합되어, 적어도 일부가 커버 하우징(220)에 결합된 떨림보정용 코일(420)과 대향되게 배치된다.The shake compensation carrier 300 may include a magnet holder 310 and a lower surface 320. The magnet holder 310 may be formed to surround the side of the shake compensation carrier 300. The side of the magnet holder 310 is opposite to the side of the cover housing 220, a magnet coupling portion 311 to which the magnet 410 is coupled is formed. The magnet 410 is coupled to the magnet coupling portion 311, and at least a portion of the magnet 410 is disposed to face the vibration compensation coil 420 coupled to the cover housing 220.
떨림보정 캐리어의 하면(320)은 자석 홀더(310)의 하부에 결합될 수 있다. 떨림보정 캐리어의 하면(320)은 베이스(200)의 하부 플레이트(230)와 대향되게 위치할 수 있다.The lower surface 320 of the stabilizer carrier may be coupled to a lower portion of the magnet holder 310. The lower surface 320 of the stabilizer carrier may be positioned to face the lower plate 230 of the base 200.
떨림보정 캐리어(300)는 떨림보정용 스프링(350)에 의해 지지될 수 있다. 구체적으로, 떨림보정용 스프링(350)은 떨림보정 캐리어(300)가 베이스(200)의 하부 플레이트(230) 상에서 부양되도록 지지할 수 있다. 떨림보정용 스프링(350)은 떨림보정 캐리어(300)와 베이스(200)의 측면 사이에 결합될 수 있다. 구체적으로, 떨림보정용 스프링(350)의 일단은 떨림보정 캐리어의 하면(320)과 결합되고, 떨림보정용 스프링(350)의 타단은 베이스(200)의 커버 하우징(220)의 측면에 결합될 수 있다.The shake compensation carrier 300 may be supported by the shake compensation spring 350. Specifically, the shake compensation spring 350 may support the shake compensation carrier 300 to be supported on the lower plate 230 of the base 200. The vibration compensation spring 350 may be coupled between the vibration compensation carrier 300 and the side of the base 200. Specifically, one end of the shake compensation spring 350 may be coupled to the bottom surface 320 of the shake compensation carrier, and the other end of the shake compensation spring 350 may be coupled to the side of the cover housing 220 of the base 200. .
떨림보정용 스프링(350)은 광축에 직교하는 방향으로 연장된 판 형태로 형성될 수 있다. 판 형태의 떨림보정용 스프링(350)은 수직으로 세워진 형태로 배치될 수 있다. 즉, 판의 두께에 해당하는 얇은 부분이 상방과 하방으로 배향되고, 판의 전후면에 해당하는 넓은 부분이 측방으로 배향된다. 떨림보정용 스프링(350)은 광축에 수직한 방향으로 연장되면서 적어도 1회 절곡될 수 있다.The vibration compensation spring 350 may be formed in a plate shape extending in a direction perpendicular to the optical axis. Vibration correction spring 350 in the form of a plate may be arranged in a vertically erect form. That is, the thin part corresponding to the thickness of a board is oriented upwards and downwards, and the wide part corresponding to the front and back surface of a board is oriented laterally. The vibration compensation spring 350 may be bent at least once while extending in a direction perpendicular to the optical axis.
떨림보정용 스프링(350)은 광축 방향으로는 거의 탄성 변형되지 않도록 형성되어 떨림보정 캐리어(300)의 광축 방향의 이동을 제한한다. 떨림보정용 스프링(350)은 광축에 직교하는 방향으로는 탄성 변형될 수 있다. 따라서 떨림보정용 스프링(350)은 떨림보정 캐리어(300)를 광축 방향으로는 이동을 제한하고, 광축에 직교하는 방향으로만 탄성 변형하여 이동을 허용한다.The vibration compensation spring 350 is formed to be hardly elastically deformed in the optical axis direction to limit the movement of the vibration compensation carrier 300 in the optical axis direction. The vibration compensation spring 350 may be elastically deformed in a direction perpendicular to the optical axis. Accordingly, the shake compensation spring 350 restricts the movement of the shake compensation carrier 300 in the optical axis direction, and allows the movement by elastically deforming in the direction orthogonal to the optical axis.
떨림보정용 스프링(350)은 떨림보정 캐리어(300)의 측면에 복수 개가 결합될 수 있다. 떨림보정용 스프링(350)은 광축을 기준으로 대칭인 위치에 복수 개가 형성되어 떨림보정 캐리어(300)를 안정적으로 지지할 수 있다.The vibration compensation spring 350 may be coupled to a plurality of sides of the vibration compensation carrier 300. A plurality of vibration correction springs 350 may be formed at positions symmetrical with respect to the optical axis to stably support the vibration correction carrier 300.
떨림보정용 스프링(350)을 통해 전기 신호가 전달될 수 있다. 떨림보정용 스프링(350)은 도전성 재질로 형성될 수 있다. 여기서, 전기 신호는 외부에서 오토포커스용 코일(620)까지 인가되는 신호일 수 있다. 떨림보정용 스프링(350)의 타단에는 전기 신호를 공급받을 수 있는 단자 연장부(351)가 형성될 수 있다. 단자 연장부(351)는 베이스(200)의 외부로 노출되도록 연장되어 외부의 신호가 인가될 수 있다.The electrical signal may be transmitted through the shake compensation spring 350. The vibration compensation spring 350 may be formed of a conductive material. Here, the electrical signal may be a signal applied from the outside to the autofocus coil 620. The other end of the vibration compensation spring 350 may be formed with a terminal extension 351 that can receive an electrical signal. The terminal extension 351 is extended to be exposed to the outside of the base 200 so that an external signal can be applied.
떨림보정 캐리어(300)와 하부 플레이트(230) 사이에는 적어도 하나의 볼 베어링(700)이 위치할 수 있다. 볼 베어링(700)은 떨림보정 캐리어(300)가 베이스(200)에 대해서 광축에 직교하는 방향으로 이동가능하도록 지지한다. 또한, 떨림보정용 스프링(350)의 약간의 광축 방향의 변형에 의한 떨림보정 캐리어(300)의 광축 방향의 이동을 최대한 제한할 수 있다.At least one ball bearing 700 may be located between the vibration compensation carrier 300 and the lower plate 230. The ball bearing 700 supports the shake compensation carrier 300 to be movable in a direction perpendicular to the optical axis with respect to the base 200. In addition, the movement of the vibration compensation carrier 300 in the optical axis direction due to the slight deformation of the optical axis direction of the vibration compensation spring 350 may be limited as much as possible.
떨림보정 캐리어(300)는 볼 베어링(700)을 사이에 두고, 하부 플레이트(230)에 밀착되게 위치한다. 떨림보정 캐리어(300)와 하부 플레이트(230)는 자력에 의해 밀착될 수 있다. 구체적으로, 하부 플레이트(230)에는 요크(231) 또는 자석(231)이 배치될 수 있다. 하부 플레이트(230)의 요크(231) 또는 자석(231)은 떨림보정 캐리어(300)에 결합된 자석(410)과 대향되는 위치에 배치되어, 상호 간에 인력이 발생할 수 있다. 이러한 인력에 의해 떨림보정 캐리어(300)는 하부 플레이트(230)에 볼 베어링(700)을 사이에 두고 밀착될 수 있다. 또한, 이러한 인력에 의해 떨림보정 캐리어(300)가 광축에 직교하는 방향으로 이동한 후, 외력이 제거되면 상기 인력에 의해 초기 위치로 복귀할 수 있다.The stabilizer carrier 300 is positioned in close contact with the lower plate 230 with the ball bearing 700 therebetween. The shake compensation carrier 300 and the lower plate 230 may be in close contact by magnetic force. In detail, the yoke 231 or the magnet 231 may be disposed on the lower plate 230. The yoke 231 or the magnet 231 of the lower plate 230 is disposed at a position opposite to the magnet 410 coupled to the shake compensation carrier 300, so that attraction between each other may occur. By this attraction, the shake compensation carrier 300 may be in close contact with the ball bearing 700 interposed between the lower plate 230. In addition, after the shake compensation carrier 300 is moved in a direction orthogonal to the optical axis by the attraction force, when the external force is removed, it may return to the initial position by the attraction force.
볼 베어링(700)은 볼(710)과 볼이 수용되어 움직일 수 있는 한정된 공간을 제공하는 캐비티(721)를 포함할 수 있다. 캐비티(721)는 떨림보정 캐리어의 하면(320) 및 하부 플레이트(230)의 상부에 홈 형태로 형성된 것일 수 있다. 캐비티(721)는 또한, 떨림보정 캐리어의 하면(320)과 하부 플레이트(230)의 상면 사이에 위치하는 베어링 플레이트(720)에 형성된 개구에 의해 형성된 것일 수도 있다. 베어링 플레이트(720)는 떨림보정 캐리어의 하면(320) 또는 하부 플레이트(230)의 상면 중 하나와 고정 결합될 수 있다. 첨부한 도면에서는 베어링 플레이트(720)가 떨림보정 캐리어의 하면(320)과 고정 결합된 것이 도시되어 있지만, 하부 플레이트(230)의 상면과 고정 결합된 것도 가능하다. 고정 결합을 위해서, 홈과 돌기가 형성될 수 있다. 구체적으로, 떨림보정 캐리어의 하면(320) 또는 하부 플레이트(230)의 상면에 돌기가 형성되고, 베어링 플레이트(720)에 형성된 홈에 돌기가 삽입되어 결합 될 수 있다.The ball bearing 700 may include a ball 710 and a cavity 721 that provides a limited space in which the ball can be housed and moved. The cavity 721 may be formed in a groove shape on the lower surface 320 and the lower plate 230 of the shake compensation carrier. The cavity 721 may also be formed by an opening formed in the bearing plate 720 positioned between the lower surface 320 of the shake compensation carrier and the upper surface of the lower plate 230. The bearing plate 720 may be fixedly coupled to one of the lower surface 320 of the shake compensation carrier or the upper surface of the lower plate 230. In the accompanying drawings, the bearing plate 720 is fixedly coupled to the lower surface 320 of the shake compensation carrier, but may be fixedly coupled to the upper surface of the lower plate 230. For fixed engagement, grooves and protrusions may be formed. Specifically, a protrusion may be formed on the lower surface 320 or the upper surface of the lower plate 230 of the shake compensation carrier, and the protrusion may be inserted into and coupled to the groove formed in the bearing plate 720.
캐비티(721)는 볼(710)의 직경보다 크게 형성되어 떨림보정 캐리어(300)가 외력에 의해 광축에 수직인 방향으로 움직이게 되면 볼(710)이 캐비티(721) 내부에서 구르면서 베어링으로 기능하게 된다. 볼(710)의 주변에는 윤활제가 도포되어 마찰을 최소화할 수 있다. 볼(710)은 복수 개가 형성되어 떨림보정 캐리어(300)를 안정적으로 지지한다. 예를 들어, 볼(710)은 광축에 대칭인 위치에 복수 개가 형성되어 떨림보정 캐리어(300)를 안정적으로 지지할 수 있다.The cavity 721 is formed larger than the diameter of the ball 710 so that when the shake compensation carrier 300 is moved in a direction perpendicular to the optical axis by an external force, the ball 710 rolls inside the cavity 721 to function as a bearing. do. Lubricant is applied around the ball 710 to minimize friction. A plurality of balls 710 are formed to stably support the shake compensation carrier 300. For example, a plurality of balls 710 may be formed at positions symmetrical to the optical axis to stably support the shake compensation carrier 300.
떨림보정 캐리어(300)는 내부에 렌즈 배럴(100)과 오토포커스 캐리어(500)를 수용한다. 떨림보정 캐리어(300)가 광축에 직교하는 방향으로 움직임에 따라 렌즈 배럴(100)과 오토포커스 캐리어(500)도 떨림보정 캐리어(300)와 함께 움직이게 된다.The shake compensation carrier 300 accommodates the lens barrel 100 and the autofocus carrier 500 therein. As the shake compensation carrier 300 moves in a direction orthogonal to the optical axis, the lens barrel 100 and the autofocus carrier 500 also move with the shake compensation carrier 300.
떨림보정 구동부(400)는 자석(410)과 떨림보정용 코일(420)을 포함한다. 자석(410)은 떨림보정 캐리어(300)에 결합된다. 구체적으로 상술한 것과 같이, 자석(410)은 떨림보정 캐리어(300)의 자석 홀더(310)에 결합될 수 있다. 떨림보정용 코일(420)은 베이스(200)에 결합된다. 구체적으로 상술한 것과 같이, 떨림보정용 코일(420)은 커버 하우징(220)에 결합될 수 있다. 자석(410)과 떨림보정용 코일(420)은 적어도 일부분이 서로 대향되도록 배치될 수 있다.The vibration correction driver 400 includes a magnet 410 and a vibration correction coil 420. The magnet 410 is coupled to the shake compensation carrier 300. In detail, as described above, the magnet 410 may be coupled to the magnet holder 310 of the shake compensation carrier 300. The vibration compensation coil 420 is coupled to the base 200. Specifically, as described above, the vibration compensation coil 420 may be coupled to the cover housing 220. The magnet 410 and the vibration compensation coil 420 may be disposed to at least partially face each other.
자석(410)과 떨림보정용 코일(420)은 복수 개가 형성될 수 있다. 복수 개의 자석(410)과 떨림보정용 코일(420)은 광축에 직교하는 서로 다른 방향으로 배향된다. 예를 들어, 첨부된 도면에 도시된 것과 같이, 자석(410)과 떨림보정용 코일(420)은 4개의 측면에 각각 결합되어 서로 대향되도록 배치될 수 있다. 여기서, 자석(410)과 떨림보정용 코일(420)은 이웃하는 자석(410)과 떨림보정용 코일(420)과 직교하게 배치될 수 있다.The magnet 410 and the vibration compensation coil 420 may be formed in plural numbers. The plurality of magnets 410 and the shake compensation coil 420 are oriented in different directions perpendicular to the optical axis. For example, as shown in the accompanying drawings, the magnet 410 and the vibration compensation coil 420 may be disposed to be opposed to each other coupled to each of the four sides. Here, the magnet 410 and the shake compensation coil 420 may be orthogonal to the neighboring magnet 410 and the shake compensation coil 420.
떨림보정용 코일(420)은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태로 형성된다. 떨림보정용 코일(420)은 베이스(200)에 결합된 연성회로기판(240)에 결합될 수 있다. 떨림보정용 코일(420)은 연성회로기판(240)에 형성된 회로로부터 전기 신호를 전달받을 수 있다. 연성회로기판(240)에 형성된 회로는 입출력 단자(241)와 연결되어 외부로부터 전기 신호 및 전원을 공급받을 수 있다.The vibration compensation coil 420 is formed in a shape wound around an axis in a direction orthogonal to the optical axis. The vibration compensation coil 420 may be coupled to the flexible circuit board 240 coupled to the base 200. The vibration compensation coil 420 may receive an electrical signal from a circuit formed on the flexible circuit board 240. The circuit formed on the flexible circuit board 240 may be connected to the input / output terminal 241 to receive electric signals and power from the outside.
떨림보정용 코일(420)에 전류가 인가되면 자석(410)과의 상호작용에 의해 떨림보정 캐리어(300)를 광축에 직교하는 방향으로 이동시킨다. 떨림보정용 코일(420)에 인가되는 전류의 방향에 의해 떨림보정 캐리어(300)의 이동 방향이 조절될 수 있다.When current is applied to the shake compensation coil 420, the shake compensation carrier 300 is moved in a direction orthogonal to the optical axis by interaction with the magnet 410. The movement direction of the shake compensation carrier 300 may be adjusted by the direction of the current applied to the shake compensation coil 420.
베이스(200)에 결합된 연성회로기판(240)에는 위치 감지 센서가 결합될 수 있다. 위치 감지 센서는 자석(410)과 대향되도록 결합되어, 떨림보정 캐리어(300)가 광축에 직교하는 방향으로 이동하는 것을 감지할 수 있다. 위치 감지 센서는 예를 들어, 홀 소자로 형성될 수 있다.The position sensing sensor may be coupled to the flexible circuit board 240 coupled to the base 200. The position detection sensor may be coupled to face the magnet 410 to sense that the shake compensation carrier 300 moves in a direction perpendicular to the optical axis. The position sensing sensor may be formed of, for example, a hall element.
도 11은 본 발명의 렌즈 구동 장치의 렌즈 배럴(100), 오토포커스 캐리어(500), 오토포커스 구동부(600) 및 떨림보정 캐리어(300)에 해당하는 부분을 도시한 사시도이다. 도 12는 도 11의 각 구성요소를 분해하여 도시한 사시도이다. 도 13은 도 11의 EE'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다. 도 14는 도 11의 FF'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 11 is a perspective view illustrating portions corresponding to the lens barrel 100, the autofocus carrier 500, the autofocus driver 600, and the shake compensation carrier 300 of the lens driving apparatus of the present invention. 12 is an exploded perspective view illustrating each component of FIG. 11. FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11. 14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
도 11 내지 도 14를 참조하여, 오토포커스 구동부(600)가 오토포커스 캐리어(500)를 구동하는 것에 대해 설명하도록 한다.11 to 14, the autofocus driving unit 600 drives the autofocus carrier 500.
렌즈 배럴(100)은 원통형 형태로 형성될 수 있다. 렌즈 배럴(100)은 상면과 하면이 개방된 형태로 형성되어, 광이 상면과 하면을 통해서 통과될 수 있다. 렌즈 배럴(100)의 내부에는 적어도 하나의 렌즈가 수용되어 있다. 렌즈는 렌즈 배럴(100)이 이동함에 따라 함께 이동하게 된다.The lens barrel 100 may be formed in a cylindrical shape. The lens barrel 100 is formed to have an open top and bottom surfaces so that light may pass through the top and bottom surfaces. At least one lens is accommodated in the lens barrel 100. The lens moves with the lens barrel 100 as it moves.
오토포커스 캐리어(500)는 렌즈 배럴(100)을 수용하는 형태로 결합된다. 오토포커스 캐리어(500)와 렌즈 배럴(100)은 일체로 움직이게 된다. 오토포커스 캐리어(500)와 렌즈 배럴(100)은 떨림보정 캐리어(300) 내부에 위치한다.The autofocus carrier 500 is coupled to accommodate the lens barrel 100. The autofocus carrier 500 and the lens barrel 100 are integrally moved. The autofocus carrier 500 and the lens barrel 100 are located inside the shake compensation carrier 300.
오토포커스 구동부(600)는 자석(610)과 오토포커스용 코일(620)을 포함한다. 오토포커스 구동부(600)의 자석(610)은 떨림보정 캐리어(300)에 결합된다. 오토포커스 구동부(600)의 자석(610)은 떨림보정 구동부(400)의 자석(410)과 동일한 것이 사용될 수 있다. 즉, 하나의 자석(410, 610)을 오토포커스 구동부(600)의 자석(610)과 떨림보정 구동부(400)의 자석(410)으로 겸용할 수 있다.The autofocus driver 600 includes a magnet 610 and an autofocus coil 620. The magnet 610 of the autofocus driver 600 is coupled to the shake compensation carrier 300. The magnet 610 of the autofocus driver 600 may be the same as the magnet 410 of the shake compensation driver 400. That is, one magnet 410 or 610 may be used as the magnet 610 of the autofocus driver 600 and the magnet 410 of the shake compensation driver 400.
오토포커스용 코일(620)은 오토포커스 캐리어(500)에 결합된다. 오토포커스용 코일(620)은 자석(610)과 적어도 일부가 대향된다. 오토포커스용 코일(620)은 광축을 중심으로 하여 권선된다.The autofocus coil 620 is coupled to the autofocus carrier 500. The autofocus coil 620 is at least partially opposed to the magnet 610. The autofocus coil 620 is wound around the optical axis.
오토포커스용 코일(620)에 전류가 인가되면 상호작용에 의해 오토포커스 캐리어(500)를 광축 방향으로 이동시킨다. 오토포커스용 코일(620)에 인가되는 전류의 방향에 의해 오토포커스 캐리어(500)의 이동 방향이 조절될 수 있다.When current is applied to the autofocus coil 620, the autofocus carrier 500 is moved in the optical axis direction by interaction. The moving direction of the autofocus carrier 500 may be adjusted by the direction of the current applied to the autofocus coil 620.
오토포커스 캐리어(500)에는 위치 감지 센서가 결합될 수 있다. 위치 감지 센서는 자석(610)과 대향되도록 결합되어, 오토포커스 캐리어(500)가 광축 방향으로 이동하는 것을 감지할 수 있다. 위치 감지 센서는 예를 들어, 홀 소자로 형성될 수 있다.Position detection sensor may be coupled to the autofocus carrier 500. The position detection sensor may be coupled to face the magnet 610 to detect that the autofocus carrier 500 moves in the optical axis direction. The position sensing sensor may be formed of, for example, a hall element.
오토포커스 캐리어(500)는 오토포커스용 스프링(800)에 의해 광축 방향으로 이동하는 것이 지지될 수 있다. 오토포커스용 스프링(800)은 오토포커스 캐리어(500)의 상부에 결합되는 상부 스프링(810) 및 오토포커스 캐리어(500)의 하부에 결합되는 하부 스프링(820)을 포함할 수 있다. 오토포커스용 스프링(800)은 오토포커스 캐리어(500)가 광축 방향으로 이동하는 것을 탄성 지지할 수 있다.The autofocus carrier 500 may be supported to move in the optical axis direction by the autofocus spring 800. The autofocus spring 800 may include an upper spring 810 coupled to an upper portion of the autofocus carrier 500 and a lower spring 820 coupled to a lower portion of the autofocus carrier 500. The autofocus spring 800 may elastically support movement of the autofocus carrier 500 in the optical axis direction.
오토포커스용 스프링(800)은 판 스프링 형태로 형성되어, 내주부, 외주부 및 내주부와 외주부를 연장하는 연장부로 구성될 수 있다. 오토포커스용 스프링(800)의 내주부는 오토포커스 캐리어(500)에 결합될 수 있다. 오토포커스용 스프링(800)의 외주부는 떨림보정 캐리어(300)에 결합될 수 있다. 오토포커스용 스프링(800)의 연장부는 탄성 변형되어 떨림보정 캐리어(300)에 대해서 오토포커스 캐리어(500)가 광축 방향으로 움직이는 것을 지지한다.The autofocus spring 800 may be formed in the form of a leaf spring, and may include an inner circumference portion, an outer circumference portion, and an extension portion extending the inner circumference portion and the outer circumference portion. The inner circumference of the autofocus spring 800 may be coupled to the autofocus carrier 500. The outer circumferential portion of the autofocus spring 800 may be coupled to the shake compensation carrier 300. An extension of the autofocus spring 800 is elastically deformed to support movement of the autofocus carrier 500 in the optical axis direction with respect to the shake compensation carrier 300.
오토포커스용 스프링(800)은 상술한 떨림보정용 스프링(350)과 일체로 형성될 수 있다. 구체적으로, 오토포커스용 스프링(800)의 외주부는 떨림보정 캐리어(300)에 결합되고, 외주부에서 연장된 부분이 떨림보정용 스프링(350)의 일단에 해당되어 베이스(200)에 연결되는 타단까지 연장될 수 있다.The autofocus spring 800 may be integrally formed with the vibration compensating spring 350 described above. Specifically, the outer circumferential portion of the autofocus spring 800 is coupled to the shake compensation carrier 300, and a portion extending from the outer circumferential portion corresponds to one end of the shake correction spring 350 and extends to the other end connected to the base 200. Can be.
오토포커스용 스프링(800)을 통해 전기 신호가 전달될 수 있다. 여기서, 전기 신호는 외부에서 오토포커스용 코일(620)까지 인가되는 신호일 수 있다. 이를 위해, 오토포커스용 스프링(800)은 도전성 재질로 형성될 수 있다. 떨림보정용 스프링(350)과 오토포커스용 스프링(800)이 일체로 형성되는 경우, 일체의 스프링 구조물을 통해 전기 신호가 전달될 수 있다.The electrical signal may be transmitted through the autofocus spring 800. Here, the electrical signal may be a signal applied from the outside to the autofocus coil 620. To this end, the autofocus spring 800 may be formed of a conductive material. When the shake compensation spring 350 and the autofocus spring 800 are integrally formed, an electrical signal may be transmitted through the integral spring structure.
상술한 것을 종합하면, 렌즈 배럴(100)은 베이스(200)에 대해서 광축 방향으로 움직일 수 있고, 광축에 직교하는 방향으로 움직일 수 있다. 오토포커스 캐리어(500)는 떨림보정 캐리어(300)에 상대적으로 광축 방향으로 이동하여 렌즈 배럴(100)을 이동시킬 수 있다. 또한, 떨림보정 캐리어(300)는 베이스(200)에 상대적으로 광축에 직교하는 방향으로 이동하여 렌즈 배럴(100)을 광축에 직교하는 방향으로 이동시킬 수 있다.In summary, the lens barrel 100 may move in the optical axis direction with respect to the base 200, and may move in the direction orthogonal to the optical axis. The autofocus carrier 500 may move the lens barrel 100 by moving in the optical axis direction relative to the shake compensation carrier 300. In addition, the shake compensation carrier 300 may move in a direction orthogonal to the optical axis relative to the base 200 to move the lens barrel 100 in a direction orthogonal to the optical axis.
이상, 본 발명의 렌즈 구동 장치의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the lens driving apparatus of the present invention have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.

Claims (25)

  1. 렌즈가 수용된 렌즈 배럴을 포함하는 렌즈 구동 장치에 있어서,A lens driving apparatus comprising a lens barrel in which a lens is accommodated,
    베이스;Base;
    상기 베이스 상에 위치하는 떨림보정 캐리어;An anti-shake carrier located on the base;
    상기 떨림보정 캐리어를 광축에 직교하는 방향으로 이동시키는 떨림보정 구동부;A shake correction driver for moving the shake correction carrier in a direction orthogonal to the optical axis;
    상기 떨림보정 캐리어의 내부에 위치하는 오토포커스 캐리어;An autofocus carrier positioned inside the shake compensation carrier;
    상기 오토포커스 캐리어를 광축 방향으로 이동시키는 오토포커스 구동부; 및An autofocus driver for moving the autofocus carrier in an optical axis direction; And
    상기 떨림보정 캐리어를 상기 베이스에 대해 광축에 직교하는 방향으로 이동가능하도록 지지하는 적어도 하나의 떨림보정용 스프링을 포함하는 렌즈 구동 장치.And at least one shake compensation spring for supporting the shake compensation carrier so as to be movable in a direction orthogonal to the optical axis with respect to the base.
  2. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 캐리어를 상기 떨림보정 캐리어에 대해 광축 방향으로 이동가능하도록 지지하는 적어도 하나의 오토포커스용 스프링을 더 포함하는 렌즈 구동 장치.And at least one autofocus spring for supporting the autofocus carrier so as to be movable in the optical axis direction with respect to the shake compensation carrier.
  3. 제2 항에 있어서,The method of claim 2,
    상기 오토포커스용 스프링은 상부 스프링 및 상기 상부 스프링보다 하부에 위치하는 하부 스프링을 포함하는 렌즈 구동 장치.The autofocus spring includes an upper spring and a lower spring positioned below the upper spring.
  4. 제2 항에 있어서,The method of claim 2,
    상기 오토포커스용 스프링은 판 스프링으로 형성되는 렌즈 구동 장치.The lens for autofocus spring is formed of a leaf spring.
  5. 제2 항에 있어서,The method of claim 2,
    상기 오토포커스용 스프링은 외주부 및 상기 외주부에서 내측으로 연장되고, 상기 외주부에 대해서 광축 방향으로 탄성 변형될 수 있는 내주부를 포함하고,The autofocus spring includes an outer circumference portion and an inner circumference portion extending inwardly from the outer circumference portion and elastically deformable in the optical axis direction with respect to the outer circumference portion.
    상기 외주부는 상기 떨림보정 캐리어에 결합되고, 상기 내주부는 상기 오토포커스 캐리어에 결합되는 렌즈 구동 장치.The outer circumference portion is coupled to the shake compensation carrier, and the inner circumference portion is coupled to the autofocus carrier.
  6. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 캐리어를 상기 베이스에 대해 광축에 직교하는 방향으로 이동가능하도록 지지하는 적어도 하나의 볼 베어링을 더 포함하는 렌즈 구동 장치.And at least one ball bearing supporting the stabilization carrier to be movable in a direction orthogonal to the optical axis with respect to the base.
  7. 제6 항에 있어서,The method of claim 6,
    상기 떨림보정 캐리어는 상기 볼 베어링은 사이에 두고 상기 베이스에 밀착되게 위치하는 렌즈 구동 장치.And the shake compensation carrier is positioned in close contact with the base with the ball bearing therebetween.
  8. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 구동부는,The shake compensation driving unit,
    상기 떨림보정 캐리어에 결합된 적어도 하나의 자석; 및At least one magnet coupled to the stabilization carrier; And
    상기 베이스에 결합되고, 상기 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함하는 렌즈 구동 장치.And at least one shake compensation coil coupled to the base and facing at least a portion of the magnet.
  9. 제8 항에 있어서,The method of claim 8,
    상기 떨림보정용 코일은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태인 렌즈 구동 장치.The vibration correction coil is a lens driving apparatus having a shape wound around an axis in a direction perpendicular to the optical axis.
  10. 제8 항에 있어서,The method of claim 8,
    상기 떨림보정용 코일은 광축에 직교하는 서로 다른 두 방향으로 배향된 둘 이상의 떨림보정용 코일을 포함하는 렌즈 구동 장치.The vibration correction coil includes two or more vibration correction coils oriented in two different directions perpendicular to the optical axis.
  11. 제10 항에 있어서,The method of claim 10,
    상기 서로 다른 두 방향으로 배향된 둘 이상의 떨림보정용 코일은 서로 직교하도록 배향되는 렌즈 구동 장치.The two or more shake compensation coils oriented in two different directions are orthogonal to each other.
  12. 제8 항에 있어서,The method of claim 8,
    상기 베이스에 결합된 연성회로기판을 더 포함하고,Further comprising a flexible circuit board coupled to the base,
    상기 떨림보정용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기 신호를 전달받는 렌즈 구동 장치.The vibration compensating coil is coupled to the flexible circuit board to receive an electrical signal from a circuit formed on the flexible circuit board.
  13. 제12 항에 있어서,The method of claim 12,
    상기 연성회로기판에 상기 자석과 대향되도록 결합되어,Coupled to the flexible circuit board so as to face the magnet,
    상기 떨림보정용 캐리어의 광축에 직교하는 방향의 이동을 감지하는 위치 감지 센서를 더 포함하는 렌즈 구동 장치.And a position detecting sensor for detecting a movement in a direction orthogonal to the optical axis of the shake compensation carrier.
  14. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 구동부는,The autofocus drive unit,
    상기 오토포커스 캐리어에 권선되는 오토포커스용 코일; 및An autofocus coil wound around the autofocus carrier; And
    상기 떨림보정 캐리어에 결합되고, 상기 오토포커스용 코일과 적어도 일부가 대향되는 적어도 하나의 자석을 포함하는 렌즈 구동 장치.And at least one magnet coupled to the shake compensation carrier, the magnet being at least partially opposed to the autofocus coil.
  15. 제14 항에 있어서,The method of claim 14,
    상기 오토포커스용 코일은 광축을 중심으로 하여 권선된 형태인 렌즈 구동 장치.The autofocus coil is a lens driving device that is wound around the optical axis.
  16. 제14 항에 있어서,The method of claim 14,
    상기 오토포커스 캐리어에 자석과 대향되도록 결합되어,It is coupled to face the magnet to the autofocus carrier,
    상기 오토포커스 캐리어의 광축 방향의 이동을 감지하는 위치 감지 센서를 더 포함하는 렌즈 구동 장치.The lens driving device further comprises a position sensor for detecting the movement of the autofocus carrier in the optical axis direction.
  17. 제14 항에 있어서,The method of claim 14,
    상기 떨림보정 구동부는,The shake compensation driving unit,
    상기 자석; 및The magnet; And
    상기 베이스에 결합되고, 상기 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함하는 렌즈 구동 장치.And at least one shake compensation coil coupled to the base and facing at least a portion of the magnet.
  18. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 캐리어는 상기 떨림보정 캐리어에 상대적으로 광축 방향으로 이동하는 렌즈 구동 장치.And the autofocus carrier moves in an optical axis direction relative to the shake compensation carrier.
  19. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 캐리어가 광축에 직교하는 방향으로 이동하는 경우, 상기 오토포커스 캐리어는 상기 떨림보정 캐리어와 함께 광축에 직교하는 방향으로 이동하게 되는 렌즈 구동 장치.And the autofocus carrier moves in a direction orthogonal to the optical axis when the shake compensation carrier moves in a direction perpendicular to the optical axis.
  20. 제1 항에 있어서,According to claim 1,
    상기 렌즈 배럴은 상기 오토포커스용 캐리어의 광축 방향의 이동에 따라 광축 방향으로 이동하고, 상기 떨림보정 캐리어의 광축에 직교하는 방향의 이동에 따라 광축에 직교하는 방향으로 이동하는 렌즈 구동 장치.And the lens barrel moves in the optical axis direction according to the movement of the optical axis direction of the autofocus carrier, and moves in the direction orthogonal to the optical axis in accordance with the movement of the direction orthogonal to the optical axis of the shake compensation carrier.
  21. 제1 항에 있어서,According to claim 1,
    상기 떨림보정용 스프링의 일단은 상기 떨림보정 캐리어에 결합되고, 타단은 상기 베이스에 결합되는 렌즈 구동 장치.One end of the shake compensation spring is coupled to the shake compensation carrier, the other end is coupled to the base lens driving device.
  22. 제1 항에 있어서,According to claim 1,
    상기 떨림보정용 스프링은 광축 방향으로는 탄성 변형되지 않고, 광축에 직교하는 방향으로는 탄성 변형되어 상기 떨림보정 캐리어의 이동을 탄성 지지하는 렌즈 구동 장치.The shake correction spring is elastically deformed in a direction perpendicular to the optical axis, but not elastically deformed in the optical axis direction, so that the movement of the shake correction carrier is elastically supported.
  23. 제1 항에 있어서,According to claim 1,
    상기 떨림보정용 스프링은 수직 방향으로 세워진 판형으로 형성된 렌즈 구동 장치.The vibration correction spring is formed in a plate shape erected in the vertical direction.
  24. 제1 항에 있어서,According to claim 1,
    상기 떨림보정용 스프링은 광축에 직교하는 방향으로 연장되며 적어도 1회 절곡되는 렌즈 구동 장치.The shake compensation spring extends in a direction orthogonal to the optical axis and is bent at least once.
  25. 제1 항에 있어서,According to claim 1,
    상기 떨림보정용 스프링은 상기 오토포커스 구동부의 코일에 인가되는 전기 신호를 전달하는 렌즈 구동 장치.The shake compensation spring is a lens driving device for transmitting an electrical signal applied to the coil of the autofocus drive unit.
PCT/KR2016/002893 2016-03-22 2016-03-23 Lens driving device WO2017164435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0033751 2016-03-22
KR1020160033751A KR20170109767A (en) 2016-03-22 2016-03-22 Lens driving device

Publications (1)

Publication Number Publication Date
WO2017164435A1 true WO2017164435A1 (en) 2017-09-28

Family

ID=59900498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002893 WO2017164435A1 (en) 2016-03-22 2016-03-23 Lens driving device

Country Status (2)

Country Link
KR (1) KR20170109767A (en)
WO (1) WO2017164435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215775A1 (en) * 2020-04-20 2021-10-28 엘지이노텍 주식회사 Camera module
CN114415442A (en) * 2020-10-14 2022-04-29 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102503859B1 (en) * 2018-04-05 2023-02-24 엘지이노텍 주식회사 Lens driving device and camera apparatus comprising the same
US11333951B2 (en) * 2019-04-22 2022-05-17 Jahwa Electronics Co., Ltd. Actuator for camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071565A (en) * 2008-12-19 2010-06-29 삼성전기주식회사 Camera module
JP2012058555A (en) * 2010-09-10 2012-03-22 Panasonic Corp Lens actuator
US20150062421A1 (en) * 2013-08-27 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Camera module
KR101552969B1 (en) * 2014-11-21 2015-09-15 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Camera lens module with structure for optical image stabilization
KR20160006146A (en) * 2015-12-28 2016-01-18 자화전자(주) Camera lens module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071565A (en) * 2008-12-19 2010-06-29 삼성전기주식회사 Camera module
JP2012058555A (en) * 2010-09-10 2012-03-22 Panasonic Corp Lens actuator
US20150062421A1 (en) * 2013-08-27 2015-03-05 Samsung Electro-Mechanics Co., Ltd. Camera module
KR101552969B1 (en) * 2014-11-21 2015-09-15 에이에이씨 어쿠스틱 테크놀로지스 (심천) 컴퍼니 리미티드 Camera lens module with structure for optical image stabilization
KR20160006146A (en) * 2015-12-28 2016-01-18 자화전자(주) Camera lens module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215775A1 (en) * 2020-04-20 2021-10-28 엘지이노텍 주식회사 Camera module
CN114415442A (en) * 2020-10-14 2022-04-29 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428436A (en) * 2020-10-14 2022-05-03 宁波舜宇光电信息有限公司 Optical anti-shake camera module
CN114428435A (en) * 2020-10-14 2022-05-03 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428432A (en) * 2020-10-14 2022-05-03 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428433A (en) * 2020-10-14 2022-05-03 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428431A (en) * 2020-10-14 2022-05-03 宁波舜宇光电信息有限公司 Optical anti-shake camera module and assembling method thereof
CN114428435B (en) * 2020-10-14 2023-12-19 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428432B (en) * 2020-10-14 2023-12-19 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428431B (en) * 2020-10-14 2023-12-19 宁波舜宇光电信息有限公司 Optical anti-shake camera module and assembly method thereof
CN114428433B (en) * 2020-10-14 2023-12-19 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114415442B (en) * 2020-10-14 2023-12-19 宁波舜宇光电信息有限公司 Driving structure for optical actuator and corresponding camera module
CN114428436B (en) * 2020-10-14 2023-12-22 宁波舜宇光电信息有限公司 Optical anti-shake camera module

Also Published As

Publication number Publication date
KR20170109767A (en) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2012074224A1 (en) Camera module
WO2014157998A1 (en) Camera lens module
WO2015160155A1 (en) Camera module and optical instrument
WO2015060637A1 (en) Camera lens module
WO2016013708A1 (en) Camera module
WO2014003281A1 (en) Camera module
WO2016006780A1 (en) Camera lens module
WO2015026064A1 (en) Camera module, and position detector and position detection method used in the camera module
WO2013065961A1 (en) Camera module
WO2014092363A1 (en) Lens driving actuator
WO2019004643A1 (en) Camera module
WO2014142622A1 (en) Lens actuator
WO2014003492A1 (en) Camera module
WO2017217659A1 (en) Ois actuator having integrated yoke
WO2017164435A1 (en) Lens driving device
WO2016137081A1 (en) Stabilizing device for shaking of camera and camera lens module comprising same
EP2870507A1 (en) Camera module
WO2016137083A1 (en) Stabilizing device for shaking of camera
WO2014092250A1 (en) Camera module
WO2017164432A1 (en) Lens driving device
WO2020045960A1 (en) Sensor driving device and camera module
CN110662999B (en) Lens driving unit, and image pickup device module and optical device including the same
WO2018147670A1 (en) Camera module including liquid lens, and optical device
WO2017164434A1 (en) Lens driving device
WO2022092557A1 (en) Camera actuator and camera module including same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895563

Country of ref document: EP

Kind code of ref document: A1