WO2017164432A1 - Lens driving device - Google Patents

Lens driving device Download PDF

Info

Publication number
WO2017164432A1
WO2017164432A1 PCT/KR2016/002890 KR2016002890W WO2017164432A1 WO 2017164432 A1 WO2017164432 A1 WO 2017164432A1 KR 2016002890 W KR2016002890 W KR 2016002890W WO 2017164432 A1 WO2017164432 A1 WO 2017164432A1
Authority
WO
WIPO (PCT)
Prior art keywords
autofocus
carrier
magnet
optical axis
coupled
Prior art date
Application number
PCT/KR2016/002890
Other languages
French (fr)
Korean (ko)
Inventor
윤금영
정해남
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2017164432A1 publication Critical patent/WO2017164432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to a lens driving device mounted on a camera module to move the lens barrel in at least one direction.
  • camera modules mounted in mobile electronic devices such as smart phones, tablet computers, and laptop computers are being advanced.
  • the advancement of the camera module is realized by the auto focus function, the high pixel function, and the zoom function.
  • optical image stabilizing device capable of compensating for hand shake.
  • the optical image stabilizer is a device for compensating for vibration by moving a lens barrel relative to a sensor.
  • Korean Patent Registration No. 10-1518825 registered on May 4, 2015
  • Japanese Patent Application Laid-Open Publication No. 2013-024944 published February 4, 2013 and the like.
  • the mobile electronic device in which the camera module is mounted has been miniaturized.
  • the pixels of the camera module tend to rise. Therefore, there is a demand for a lens driving device that can be miniaturized more precisely and capable of accurate vibration correction.
  • An object of the present invention is to provide a lens driving apparatus that can be miniaturized.
  • Another object of the present invention is to provide a lens driving apparatus capable of correcting the shake of a precise lens barrel.
  • Another object of the present invention is to provide a lens driving apparatus having a structure in which the overall assembly process can be simplified by separating the assembly process of the autofocus carrier and the autofocus driving unit and the assembly process of the shake compensation carrier and the shake correction driving unit. It is.
  • the lens drive device of the present invention for solving the above problems, the lens drive device comprising a lens barrel containing a lens, the base, the autofocus carrier disposed on the base, the autofocus carrier for moving in the optical axis direction
  • At least one spring and at least one ball bearing positioned between the autofocus carrier and the shake compensation carrier.
  • the spring may include an upper spring and a lower spring located below the upper spring.
  • the spring may be formed of a leaf spring.
  • the spring extends inward from the outer peripheral portion and the outer peripheral portion, and includes an inner peripheral portion that can be elastically deformed in the optical axis direction with respect to the outer peripheral portion, the outer peripheral portion is coupled to the base, An inner circumference may be coupled to the autofocus carrier.
  • the autofocus driving unit at least one autofocus magnet coupled to the autofocus carrier and the base, and at least one opposing at least a portion of the autofocus magnet It may include a coil for autofocus.
  • the autofocus coil may be wound around an optical axis.
  • the autofocus coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board.
  • the flexible circuit board may further include a position sensing sensor coupled to face the autofocus magnet so as to sense a movement in the optical axis direction of the autofocus carrier.
  • the vibration correction drive unit at least one vibration correction coupled to the base and at least one vibration correction magnet coupled to the vibration correction carrier, at least a portion of the vibration correction magnet is opposed to the vibration correction magnet It may include a coil.
  • the shake compensation coil may be wound around an axis in a direction orthogonal to the optical axis.
  • the vibration correction coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board.
  • the flexible circuit board may further include a position sensing sensor coupled to the vibration correction magnet so as to sense a movement in an optical axis direction or a direction orthogonal to the optical axis of the vibration correction carrier. have.
  • the autofocus driving unit at least one autofocus magnet coupled to the autofocus carrier and the base, and at least one opposing at least a portion of the autofocus magnet
  • an autofocus coil wherein the shake compensation driving unit is coupled to at least one shake correction magnet and the base coupled to the shake correction carrier, and at least one shake correction coil coupled to the base and at least partially opposed to the shake correction magnet.
  • the autofocus magnet and the shake compensation magnet may be disposed so that at least a portion of the magnets for opposing.
  • the attraction force may act between the autofocus magnet and the shake compensation magnet opposing each other.
  • the opposing autofocus magnet and the shake compensation magnet may have different polarities in opposing parts.
  • the autofocus magnet and the shake compensation magnet may be formed in the same number.
  • the autofocus coil and the shake correction coil are respectively disposed to face the sides of the autofocus magnet and the shake correction magnet, the upper surface of the autofocus magnet and the shake correction
  • the lower surfaces of the magnets may be disposed to face each other.
  • the shake compensation carrier may be located in close contact with the autofocus carrier with the ball bearing therebetween.
  • the shake compensation carrier may move in a direction orthogonal to the optical axis relative to the autofocus carrier.
  • the shake compensation carrier when the autofocus carrier is moved in the optical axis direction, the shake compensation carrier may be moved in the optical axis direction together with the autofocus carrier.
  • the lens barrel is moved in the optical axis direction in accordance with the movement of the optical axis direction of the autofocus carrier, the direction orthogonal to the optical axis in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier Can be moved.
  • the autofocus carrier may be located spaced apart from the lower surface of the base.
  • the lens driving apparatus according to the embodiment of the present invention can be miniaturized, and the shake compensation of the lens barrel can be precisely performed.
  • the lens driving apparatus may simplify the overall assembly process by separating the assembly process of the autofocus carrier and the autofocus driver and the assembly process of the shake compensation carrier and the shake compensation driver.
  • FIG. 1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
  • FIG. 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
  • FIG. 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • FIG. 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • FIG. 7 is a perspective view showing a part corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing and the magnet of the lens driving device of the present invention.
  • FIG. 8 is an exploded perspective view illustrating parts corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing, and the magnet of the lens driving apparatus of the present invention.
  • FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
  • FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
  • FIG. 11 is a perspective view illustrating a lens barrel, an autofocus carrier, a stabilizer carrier, a ball bearing, and a magnet coupled to a coil holder for autofocus among bases through a spring of the lens driving apparatus of the present invention.
  • FIG. 12 is an exploded perspective view illustrating a lens barrel, an autofocus carrier, a stabilizer carrier, a ball bearing, and a magnet coupled to a coil holder for autofocus through a spring.
  • FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11.
  • FIG. 14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
  • FIG. 15 is a perspective view showing a lens barrel, an autofocus carrier, a shake compensation carrier, a ball bearing, and a magnet disposed opposite to a shake compensation coil of the lens driving device of the present invention.
  • FIG. 16 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line GG ′ of FIG. 15.
  • FIG. 17 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line HH ′ of FIG. 15.
  • FIGS. 1 to 17 a lens driving apparatus according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • FIG. 1 is a perspective view illustrating an external appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
  • FIG. 1 illustrates a three-axis coordinate system composed of an x-axis, a y-axis, and a z-axis.
  • the lens is disposed with the z-axis as the optical axis.
  • the optical axis of the lens means a direction in which light passing through the center of the lens travels.
  • the positive direction of the z-axis is defined upward, and the negative direction of the z-axis is defined downward.
  • the x- and y-axis directions will be defined laterally to be described.
  • the lens driving device is shielded by the shield case 210 so that only a part of the internal structure thereof is visible.
  • the shield case 210 may typically be formed in a polyhedron shape. Specifically, the shield case 210 may be formed in a hexahedron shape.
  • the shield case 210 may form a part of the base 200 of the lens driving apparatus to be described later, and accommodate various components of the lens driving apparatus therein.
  • the shield case 210 may be formed of a hard material to protect various components accommodated therein.
  • the shield case 210 may be formed of a metal material to perform a function of shielding electromagnetic noise (EMI) noise flowing in from the outside or generated inside the outflow.
  • EMI shielding electromagnetic noise
  • the shield case 210 has an opening 211 through which an upper surface of the lens barrel 100 may be exposed. And although not shown, the lower surface of the shield case 210 is also formed in an open form. The open path of the light traveling along the optical axis is secured by the open portions of the upper surface opening 211 and the lower surface of the shield case 210.
  • the top surface of the lens barrel 100 is exposed through the top opening 211 of the shield case 210.
  • the lens accommodated by the lens barrel 100 is positioned to be exposed through the opening 211.
  • 100 may be moved by the autofocus driver 600 and the shake compensation driver 700, which will be described later, and the opening 211 of the shield case 210 may be configured in consideration of the movement of the lens barrel 100. It may be formed larger than the upper surface of 100).
  • FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
  • 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
  • 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
  • the lens driving apparatus of the present invention includes a base 200, an autofocus carrier 300, an autofocus driving unit 600, an oscillation correction carrier 400, an oscillation correction driving unit 700, and a spring. 800, a ball bearing 500, a flexible circuit board 240, and a position detection sensor 900.
  • the image sensor unit may be coupled to the lower portion of the lens driving apparatus of the present invention.
  • the image sensor unit may include an image sensor, a circuit board on which the image sensor is mounted, an optical filter covering the image sensor, and the like.
  • the image sensor unit is coupled to cover the lower surface of the shield case 210 is positioned below the lens barrel 100.
  • Light traveling in the optical axis direction passes through the lens barrel 100 and forms an image in the image sensor.
  • the image sensor converts the irradiated optical signal into an electrical signal and outputs the electrical signal.
  • FIGS. 5 to 17 illustrate an exploded view of part or all of the lens driving apparatus of the present invention.
  • each part of the lens driving apparatus of the present invention will be described in detail with reference to FIGS. 5 to 17 along with FIGS. 2 to 4.
  • 5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
  • the base 200 is positioned relatively fixed to the lens barrel 100 in the lens driving apparatus.
  • the lens barrel 100 is accommodated in the base 200 to move in the optical axis direction together with the autofocus carrier 300 and moves in the direction orthogonal to the optical axis together with the shake compensation carrier 400.
  • the movement in the optical axis direction may be the movement in the z-axis direction
  • the movement in the direction orthogonal to the optical axis may be the movement in the x-axis or y-axis direction.
  • the movement of the lens barrel 100 corresponds to the relative movement with respect to the base 200.
  • the base 200 may include a shield case 210 and coil holders 220 and 230.
  • the coil holders 220 and 230 may include an autofocus coil holder 220 and a shake compensation coil holder 230.
  • the autofocus coil holder 220 and the shake compensation coil holder 230 may be used.
  • the autofocus coil holder 220 may be located below the vibration compensation coil holder 230.
  • Coupling holders 220 and 230 may be formed with coupling portions so that the autofocus coil 620 and the vibration compensation coil 720 may be coupled, respectively.
  • the coupling portion may have a shape of an opening 231 into which the coil is inserted and coupled.
  • the coil may be formed in the form of a bobbin 221 which can be wound and wound.
  • the flexible printed circuit board 240 may be coupled to the base 200.
  • the flexible printed circuit board 240 has an external connection terminal 241 formed at one side thereof, and the external connection terminal 241 is external to the base 200. It can be formed to be exposed.
  • a plurality of coil connection terminals 242 may be formed on the flexible circuit board 240 so that the autofocus coil 620 and the shake compensation coil 720 may be electrically connected to each other.
  • the flexible circuit board 240 may be coupled to the coil holders 220 and 230.
  • the flexible circuit board 240 may be positioned between the shield case 210 and the coil holders 220 and 230.
  • the coil holders 220 and 230 may have protrusions 233 for fixing and coupling the flexible circuit board 240, and the holes 243 into which the protrusions 233 may be inserted into the flexible circuit board 240. It may be formed.
  • FIG. 7 is a perspective view showing a part corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing and the magnet of the lens driving device of the present invention.
  • 8 is an exploded perspective view illustrating parts corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing, and the magnet of the lens driving apparatus of the present invention.
  • FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
  • FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
  • the lens barrel 100 may be formed in a cylindrical shape.
  • the lens barrel 100 is formed to have an open top and bottom surfaces so that light may pass through the top and bottom surfaces. At least one lens is accommodated in the lens barrel 100. The lens moves with the lens barrel 100 as it moves.
  • the shake compensation carrier 400 may be formed to have a hollow portion 401 therein.
  • the hollow part 401 is open in the optical axis direction.
  • the lens barrel 100 may be coupled to the hollow portion 401.
  • the lens barrel 100 is fixedly coupled to the hollow portion 401 of the shake compensation carrier 400, such that the lens barrel 100 and the shake compensation carrier 400 are integrally moved.
  • the outer surface of the lens barrel 100 may be combined with the inner circumferential surface of the hollow portion 401 of the shake compensation carrier 400.
  • the upper portion of the outer surface of the lens barrel 100 is coupled to the inner circumferential surface of the hollow portion 401 of the shake compensation carrier 400, the lower portion of the lens barrel 100 to the lower portion of the shake compensation carrier 400 It may protrude.
  • the shake compensation carrier 400 may be formed in a polygonal pillar shape having an outer surface with a plurality of surfaces.
  • the shake compensation carrier 400 may be formed in the shape of a square pillar or an octagonal pillar having four sides or eight sides.
  • the shake compensation carrier 400 is preferably formed to be symmetrical about the optical axis for accuracy of control while moving for shake compensation.
  • the shake compensation carrier 400 may function as a holder for the shake compensation magnet 710.
  • the vibration compensation carrier 400 is preferably formed of a resin material such as plastic so that the magnetic force of the magnet can pass therethrough.
  • the shaking compensation carrier 400 may include a coupling part 402 to which the shaking compensation magnet 710 may be coupled.
  • the vibration compensation magnet coupling part 402 may be formed in the shape of a groove so that the vibration compensation magnet 710 may be inserted into and coupled to the groove.
  • the shaking compensation magnet 710 is integrally coupled to the shaking compensation carrier 400 to move together.
  • One or more tremor correction magnets 710 may be formed. Accordingly, the tremor correction magnet coupling portion 402 may be formed in the same number.
  • the shake compensation magnet coupling part 402 is formed on a plurality of side surfaces of the shake compensation carrier 400, and is preferably formed at a position symmetrical to the optical axis.
  • the autofocus carrier 300 is positioned below the shake compensation carrier 400.
  • Autofocus carrier 300 may also be formed to have a hollow portion 301 in the central portion.
  • the hollow part 301 is open in the optical axis direction.
  • a part of the lens barrel 100 may be inserted into the hollow part 301 of the autofocus carrier 300.
  • the lower portion of the lens barrel 100 may be inserted into the hollow portion 301 of the autofocus carrier 300.
  • the hollow portion 301 of the autofocus carrier 300 and the lens barrel 100 are not fixedly coupled and remain separated from each other.
  • the lens barrel 100 is hollow of the autofocus carrier 300. It can be moved in the direction orthogonal to the optical axis alone in the state inserted into the portion 301.
  • the hollow portion 301 of the autofocus carrier 300 is larger than the lens barrel 100 to provide a displacement in which the lens barrel 100 can move in a direction orthogonal to the optical axis.
  • the outer circumferential surface of the lens barrel 100 is an autofocus carrier ( Maintaining a state spaced apart from the inner peripheral surface of the hollow portion 301 of 300.
  • the hollow portion of the autofocus carrier 300 than the hollow portion 401 of the shake compensation carrier 400 301 becomes larger.
  • the autofocus carrier 300 may be formed in the shape of a polygonal column having an outer surface with a plurality of surfaces.
  • the autofocus carrier 300 may be formed in the shape of a square pillar or an octagonal pillar having four sides or eight sides.
  • the autofocus carrier 300 is preferably formed to be symmetrical about the optical axis for accuracy of control while moving for autofocus.
  • the autofocus carrier 300 may function as a holder for the magnet 610 for autofocus.
  • the autofocus carrier 300 is preferably formed of a resin material such as plastic so that the magnetic force of the magnet can pass therethrough.
  • the autofocus carrier 300 may include a coupling part 302 to which the autofocus magnet 610 may be coupled.
  • the autofocus magnet coupling portion 302 may be formed in the shape of a groove so that the autofocus magnet 610 may be inserted into and coupled to the groove.
  • the autofocus magnet 610 is integrally coupled to the autofocus carrier 300 to move together.
  • One or more autofocus magnets 610 may be formed, and accordingly, the same number of autofocus magnet coupling portions 302 may be formed.
  • a plurality of autofocus magnet coupling portions 302 are formed.
  • the autofocus magnet coupling portion 302 is formed on a plurality of side surfaces of the autofocus carrier 300, but is preferably formed at a position symmetrical to the optical axis.
  • the autofocus carrier 300 and the shake compensation carrier 400 may be arranged to be stacked up and down.
  • the shake compensation carrier 400 may be positioned above the autofocus carrier 300.
  • the ball bearing 500 may be positioned between the autofocus carrier 300 and the shake compensation carrier 400.
  • the ball bearing 500 may have the shake compensation carrier 400 orthogonal to the optical axis on the autofocus carrier 300. In moving in the direction, it performs a function of reducing friction.
  • At least three ball bearings 500 may be formed to evenly support the lower surface of the shake compensation carrier 400.
  • the ball bearing 500 may include a plate 510 and a ball 520.
  • the plate 510 may be located between the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400. Plate 510 may also be formed to have a hollow portion 501 in the central portion. The hollow part 501 is open in the optical axis direction. A part of the lens barrel 100 may be inserted into the hollow part of the plate 510.
  • the plate 510 may be fixedly coupled to one of the top surface of the autofocus carrier 300 or the bottom surface of the shake compensation carrier 400.
  • the plate 510 is fixedly coupled to the top surface of the autofocus carrier 300, but may be fixedly coupled to the bottom surface of the vibration compensation carrier 400.
  • grooves and protrusions may be formed.
  • the projection 303 is formed on the upper surface of the autofocus carrier 300, the projection 303 may be inserted into the groove 513 formed in the plate 510 may be coupled.
  • At least one hole 511 into which the ball 520 is inserted may be formed in the plate 510.
  • the hole 511 is formed to penetrate the upper and lower surfaces of the plate 510.
  • the ball 520 is accommodated in the hole 511, and the ball 520 rolls inside the hole 511 to function as a bearing. Therefore, the diameter of the hole 511 is larger than the diameter of the ball 520, the ball 520 is formed to be able to move or roll inside.
  • a plurality of holes 511 are formed in a position symmetrical to the optical axis As a result, the ball 520 can stably support the shake compensation carrier 400.
  • the plate 510 is formed to have a thickness smaller than the height of the ball 520. Therefore, the plate 510 is positioned between the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400, and the upper and lower ends of the ball 520 in the state where the ball 520 is accommodated in the hole of the plate 510.
  • the lower surface of each of the shake compensation carriers 400 is in contact with the upper surface of the autofocus carrier 300.
  • only one surface of the upper surface and the lower surface of the plate 510 is in contact with the lower surface of the shake compensation carrier 400 and the upper surface of the autofocus carrier 300.
  • the ball 520 may be formed in a spherical shape to support movement in a direction orthogonal to the optical axis in a state in which the position in the optical axis direction of the shake compensation carrier 400 is not changed. Friction can be suppressed around the ball 520. Grease may be applied.
  • the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400 are preferably formed in a planar shape. However, in some cases, a groove is formed in a portion where the ball 520 is in contact with the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400, so that a portion of the ball 520 may be formed in a shape in which the groove is accommodated. have.
  • the autofocus magnet 610 and the shake compensation magnet 710 may be coupled to the autofocus magnet coupling part 302 and the shake compensation magnet coupling part 402, respectively.
  • the autofocus magnet 610 is part of the autofocus driver 600.
  • the shake compensation magnet 710 is a part of the shake compensation driver 700.
  • the autofocus magnet 610 and the shake compensation magnet 710 may be formed of a hexahedron.
  • the hexahedral shape autofocus magnet 610 and the shake compensation magnet 710 have one side and a side opposite thereto. It may be formed in a plate shape larger than the other surface.
  • a surface corresponding to a large side surface may be coupled to face the outer side of the carrier for autofocus and the shake compensation carrier 400.
  • the autofocus magnet 610 and the shake compensation magnet 710 are formed in the same number, and when the autofocus carrier 300 and the shake compensation carrier 400 are arranged in a stacked form, they are positioned to overlap each other. Can be.
  • the shake compensation magnet 710 may be positioned on the autofocus magnet 610. Accordingly, the upper surface of the autofocus magnet 610 and the lower surface of the shake compensation magnet 710 are opposed to each other.
  • the attraction force is applied between the autofocus magnet 610 and the vibration compensation magnet 710 facing each other.
  • the top surface of the autofocus magnet 610 and the bottom surface of the shake compensation magnet 710 may be formed to have different polarities, thereby causing attraction by a magnetic field.
  • the shake compensation carrier 400 may be automatically It may be in close contact with the focus carrier 300 side.
  • the lower surface of the shake compensation carrier 400 is in close contact with the upper surface of the autofocus carrier 300 with the ball bearing 500 therebetween.
  • the shake compensation carrier 400 moves in the direction orthogonal to the optical axis by the shake compensation driver 700, when the external force is removed, the attraction force between the autofocus magnet 610 and the shake compensation magnet 710 is reduced. It will return to the initial position.
  • FIG. 11 is a perspective view illustrating that a lens barrel, an autofocus carrier, an anti-shake carrier, a ball bearing, and a magnet are coupled to an autofocus coil holder of a base through a spring of the lens driving apparatus of the present invention.
  • 11 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, which is cut away.
  • the autofocus driver 600 is coupled to the at least one autofocus magnet 610 and the base 200 coupled to the autofocus carrier 300 and at least one of which faces at least a portion of the autofocus magnet 610.
  • Autofocus coil 620 is included.
  • the autofocus coil 620 is coupled to the autofocus coil holder 220.
  • the autofocus coil 620 is formed to be wound around an optical axis. Specifically, the autofocus coil 620 is wound in a spiral or concentric shape around the optical axis using the autofocus coil holder 220 as a bobbin. Therefore, the inner circumferential surface of the autofocus coil 620 is for autofocus. It may be disposed to face the outer surface of the magnet 610. Here, a part of the autofocus carrier 300 may be located between the inner circumferential surface of the autofocus coil 620 and the outer surface of the autofocus magnet 610.
  • Both ends of the autofocus coil 620 may be connected to the coil connection terminal 242 of the flexible circuit board 240 to receive an electric signal from the outside.
  • the autofocus driver 600 drives the autofocus carrier 300 by an interaction between the autofocus magnet 610 and the autofocus coil 620. Specifically, a force in the optical axis direction is applied to the autofocus carrier 300 according to the magnetized polarity of the autofocus magnet 610 and the direction of the current applied to the autofocus coil 620.
  • the autofocus carrier 300 is moved in the optical axis direction by the autofocus driver 600.
  • moving in the optical axis direction means moving in the optical axis direction with respect to the base 200.
  • 8 and 9 illustrate only the autofocus coil holder 220 which is a part of the base 200, and the autofocus carrier 300 may move in the optical axis direction with respect to the autofocus coil holder 220.
  • the shake compensation carrier 400 positioned above the autofocus carrier 300 also moves in the optical axis direction.
  • the lens barrel 100 fixedly coupled to the shake compensation carrier 400 also moves in the optical axis direction.
  • the spring 800 supports the autofocus carrier 300 to be movable in the optical axis direction with respect to the base 200. Specifically, one end of the spring 800 is coupled to the base 200 portion and the other end is the autofocus carrier. It is coupled to the portion 300, and elastically deformed in the optical axis direction to support the movement of the autofocus carrier 300 in the optical axis direction.
  • the spring 800 may be formed in the form of a leaf spring.
  • the leaf spring 800 may include an outer circumferential portion 801 and an inner circumferential portion 802.
  • the inner circumference 802 may include a moving part 803 coupled to the autofocus carrier 300, and a connecting part 804 connecting the outer circumference part 801 and the moving part 803.
  • the leaf spring 800 may have an opening formed inside the inner circumference 802.
  • the moving part 803 of the leaf spring 800 may move in the optical axis direction with respect to the outer circumferential part 801. In this process, the connection part 804 may be elastically deformed.
  • the outer circumference 801 of the leaf spring 800 is a portion fixedly coupled to the moving part 803.
  • the outer circumference 801 of the leaf spring 800 is coupled to the base 200.
  • the outer circumferential portion 801 of the leaf spring 800 may be coupled to the autofocus coil holder 220 of the base 200.
  • the moving part 803 of the inner circumferential part 802 of the leaf spring 800 may be coupled to the autofocus carrier 300.
  • One or more springs 800 may be formed.
  • the spring 800 may be composed of an upper spring 810 and a lower spring 820.
  • the upper spring 810 may be coupled to an upper portion of the autofocus carrier 300 than the lower spring 820.
  • the upper spring 810 may be coupled to the vicinity of the upper surface of the autofocus carrier 300
  • the lower spring 820 may be coupled to the vicinity of the lower surface of the autofocus carrier 300.
  • the spring 800 is elastically deformed to support the movement.
  • the autofocus carrier 300 returns to the initial position by the restoring force of the spring 800.
  • FIG. 15 is a perspective view showing a lens barrel, an autofocus carrier, a shake compensation carrier, a ball bearing, and a magnet disposed opposite to a shake compensation coil of the lens driving device of the present invention.
  • FIG. 16 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line GG ′ of FIG. 15.
  • FIG. 17 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line HH ′ of FIG. 15.
  • the vibration correction driver 700 is coupled to the at least one vibration correction magnet 710 and the base 200 coupled to the vibration correction carrier 400, and at least one vibration that at least partially faces the vibration correction magnet 710.
  • the correction coil 720 is included.
  • the vibration correction coil 720 is coupled to the vibration correction coil holder 230.
  • the vibration compensation coil 720 is formed in a wound form about an axis in a direction orthogonal to the optical axis.
  • the vibration compensation coil 720 may be oriented in a direction orthogonal to each other with the autofocus coil 620.
  • the wound surface of the shake compensation coil 720 is disposed to face the side of the shake compensation magnet 710.
  • a plurality of vibration correction coils 720 may be formed to face the plurality of vibration correction magnets 710.
  • Both ends of the vibration correction coil 720 may be connected to the coil connection terminal 242 of the flexible circuit board 240 to receive an electric signal from the outside.
  • the shake compensation driver 700 drives the shake compensation carrier 400 by an interaction between the shake compensation magnet 710 and the shake compensation coil 720.
  • the shake compensation driving unit 700 may include a first shake correction driving unit and a second shake correction driving unit.
  • the first shake correction driving unit may be orthogonal to the second shake correction driving unit in a direction perpendicular to each other.
  • the first shake compensation driving unit may move the shake compensation carrier 400 in the x-axis direction
  • the second shake compensation driving unit may move the shake compensation carrier 400 in the y-axis direction.
  • the first and second shake compensation driver 700 may include a shake correction magnet 710 and a shake correction coil 720, respectively.
  • the magnet, the coil, and the magnet and the coil of the second shake compensation driver of the first shake compensation driver may be oriented to be orthogonal to each other.
  • Movement of the shake compensation carrier 400 in the direction orthogonal to the optical axis by the shake compensation driver 700 is performed in a state in which the shake compensation carrier 400 is supported by the ball bearing 500 on the autofocus carrier 300. It means to move.
  • the movement of the vibration correction carrier 400 by the vibration compensation driver 700 may be to compensate for the shaking of the camera module itself on which the lens driving apparatus is mounted due to hand shaking. Therefore, even if the camera module itself is shaken, a clear image can be obtained.
  • the position sensor 900 is coupled to the flexible circuit board 240.
  • the position sensor 900 is coupled to face the autofocus magnet 610 and / or the shake compensation magnet 710.
  • the position detection sensor 900 When the position detection sensor 900 is coupled to face the autofocus magnet 610, the position detection sensor 900 may detect a movement in the optical axis direction of the autofocus carrier 300.
  • the position sensor 900 may be a hall sensor that detects a change in magnetic force. As the distance between the position sensor 900 and the autofocus magnet 610 changes, the movement of the autofocus carrier 300 in the optical axis direction is detected.
  • the position detecting sensor 900 may detect a movement in the optical axis direction or a direction orthogonal to the optical axis of the shake compensation carrier 400.
  • the position sensor 900 may be a hall sensor.
  • the position detection sensor 900 may detect the movement of the optical axis direction of the shake compensation carrier 400. Can be.
  • the position detection sensor 900 when the position detection sensor 900 is arranged to detect a change in the magnetic force in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier 400, the position detection sensor 900 to the optical axis of the shake compensation carrier 400 The movement in the orthogonal direction can be detected.
  • the autofocus carrier 300 since the autofocus carrier 300 is supported by the spring 800, the autofocus carrier 300 may be stably driven.
  • the carrier is driven for the shake compensation, since the shake compensation carrier 400 is driven independently of the autofocus carrier 300, precise driving is possible.
  • the shake compensation carrier 400 and the shake compensation driver 700 after assembling the autofocus carrier 300 and the autofocus driver 600, it is possible to assemble the shake compensation carrier 400 and the shake compensation driver 700, so that the two processes may be separated. This can simplify the process and increase the efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)

Abstract

Disclosed is a lens driving device. A lens driving device, which has a lens barrel accommodating a lens, comprises: a base; an autofocus carrier disposed on the base; an autofocus driving unit for moving the autofocus carrier in the optical axis direction; a stabilizing carrier positioned on the upper part of the autofocus carrier; a stabilizing driving unit for moving the stabilizing carrier in the direction meeting the optical axis at a right angle; one or more springs supporting so as to enable the autofocus carrier to move with respect to the base in the optical axis direction; and one or more ball bearings positioned between the autofocus carrier and the stabilizing carrier.

Description

렌즈 구동 장치Lens drive
본 발명은 카메라 모듈에 장착되어 렌즈 배럴을 적어도 하나 이상의 방향으로 이동시키는 렌즈 구동 장치에 관한 것이다.The present invention relates to a lens driving device mounted on a camera module to move the lens barrel in at least one direction.
전자통신 기술이 발전함에 따라 스마트폰, 태블릿 컴퓨터, 랩톱 컴퓨터 등의 모바일 전자장치에 장착되는 카메라 모듈의 고급화가 이뤄지고 있다. 카메라 모듈의 고급화는 자동 초점 기능, 고화소 기능의 탑재, 줌 기능 등의 탑재 등으로 실현되고 있다.With the development of electronic communication technology, camera modules mounted in mobile electronic devices such as smart phones, tablet computers, and laptop computers are being advanced. The advancement of the camera module is realized by the auto focus function, the high pixel function, and the zoom function.
이에 더불어 최근에는 손떨림을 보정할 수 있는 광학식 떨림보정 장치(OIS, Optical Image Stabilizer)도 탑재되고 있다. 광학식 떨림보정 장치는 렌즈 배럴을 센서에 상대적으로 이동시켜 떨림을 보정하는 장치이다.이러한 광학식 떨림보정 장치에 대해서는 대한민국 등록특허 제10-1518825호(2015년 5월 4일 등록) 및 일본국 공개특허공보 제2013-024944호(2013년 2월 4일 공개) 등에 개시되어 있다.In addition, an optical image stabilizing device (OIS, Optical Image Stabilizer) capable of compensating for hand shake has recently been installed. The optical image stabilizer is a device for compensating for vibration by moving a lens barrel relative to a sensor. For such optical image stabilizer, Korean Patent Registration No. 10-1518825 (registered on May 4, 2015) and Japanese Patent Application Laid-Open Publication No. 2013-024944 (published February 4, 2013) and the like.
최근에 카메라 모듈이 탑재되는 모바일 전자장치가 소형화되는 추세에 있다. 또한, 카메라 모듈의 화소가 상승하는 경향에 있다. 따라서 종전보다 소형화가 가능하면서 정밀한 떨림보정이 가능한 렌즈 구동 장치가 요구되고 있다.Recently, the mobile electronic device in which the camera module is mounted has been miniaturized. In addition, the pixels of the camera module tend to rise. Therefore, there is a demand for a lens driving device that can be miniaturized more precisely and capable of accurate vibration correction.
본 발명이 해결하려는 과제는, 소형화가 가능한 렌즈 구동 장치를 제공하는 것이다. An object of the present invention is to provide a lens driving apparatus that can be miniaturized.
본 발명이 해결하려는 다른 과제는, 정밀한 렌즈 배럴의 떨림보정이 가능한 렌즈 구동 장치를 제공하는 것이다. Another object of the present invention is to provide a lens driving apparatus capable of correcting the shake of a precise lens barrel.
본 발명이 해결하려는 또 다른 과제는, 오토포커스 캐리어 및 오토포커스 구동부의 조립 공정과 떨림보정 캐리어 및 떨림보정 구동부의 조립 공정을 분리하여 전체적인 조립 공정이 간소화될 수 있는 구조를 가지는 렌즈 구동 장치를 제공하는 것이다.Another object of the present invention is to provide a lens driving apparatus having a structure in which the overall assembly process can be simplified by separating the assembly process of the autofocus carrier and the autofocus driving unit and the assembly process of the shake compensation carrier and the shake correction driving unit. It is.
상기과제를 해결하기 위한 본 발명의 렌즈 구동 장치는, 렌즈가 수용된 렌즈 배럴을 포함하는 렌즈 구동 장치에 있어서, 베이스, 상기 베이스 상에 배치되는 오토포커스 캐리어, 상기 오토포커스 캐리어를 광축 방향으로 이동시키는 오토포커스 구동부, 상기 오토포커스 캐리어의 상부에 위치하는 떨림보정 캐리어, 상기 떨림보정 캐리어를 광축에 직교하는 방향으로 이동시키는 떨림보정 구동부, 상기 오토포커스 캐리어가 상기 베이스에 대해 광축 방향으로 이동가능하도록 지지하는 적어도 하나의 스프링 및 상기 오토포커스 캐리어와 상기 떨림보정 캐리어 사이에 위치하는 적어도 하나의 볼 베어링을 포함한다.The lens drive device of the present invention for solving the above problems, the lens drive device comprising a lens barrel containing a lens, the base, the autofocus carrier disposed on the base, the autofocus carrier for moving in the optical axis direction An autofocus driving unit, a shake compensation carrier positioned above the autofocus carrier, a shake compensation driving unit for moving the shake compensation carrier in a direction orthogonal to the optical axis, and supporting the autofocus carrier to be movable in the optical axis direction with respect to the base At least one spring and at least one ball bearing positioned between the autofocus carrier and the shake compensation carrier.
본 발명의 일 실시예에 있어서, 상기 스프링은 상부 스프링 및 상기 상부 스프링보다 하부에 위치하는 하부 스프링을 포함할 수 있다.In one embodiment of the present invention, the spring may include an upper spring and a lower spring located below the upper spring.
본 발명의 일 실시예에 있어서, 상기 스프링은 판 스프링으로 형성될 수 있다.In one embodiment of the present invention, the spring may be formed of a leaf spring.
본 발명의 일 실시예에 있어서, 상기 스프링은 외주부 및 상기 외주부에서 내측으로 연장되고, 상기 외주부에 대해서 광축 방향으로 탄성 변형될 수 있는 내주부를 포함하고, 상기 외주부는 상기 베이스에 결합되고, 상기 내주부는 상기 오토포커스 캐리어에 결합될 수 있다.In one embodiment of the present invention, the spring extends inward from the outer peripheral portion and the outer peripheral portion, and includes an inner peripheral portion that can be elastically deformed in the optical axis direction with respect to the outer peripheral portion, the outer peripheral portion is coupled to the base, An inner circumference may be coupled to the autofocus carrier.
본 발명의 일 실시예에 있어서, 상기 오토포커스 구동부는, 상기 오토포커스 캐리어에 결합된 적어도 하나의 오토포커스용 자석 및 상기 베이스에 결합되고, 상기 오토포커스용 자석과 적어도 일부가 대향되는 적어도 하나의 오토포커스용 코일을 포함할 수 있다.In one embodiment of the present invention, the autofocus driving unit, at least one autofocus magnet coupled to the autofocus carrier and the base, and at least one opposing at least a portion of the autofocus magnet It may include a coil for autofocus.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 코일은 광축을 중심으로 하여 권선된 형태일 수 있다.In one embodiment of the present invention, the autofocus coil may be wound around an optical axis.
본 발명의 일 실시예에 있어서, 상기 베이스에 결합된 연성회로기판을 더 포함하고, 상기 오토포커스용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기신호를 전달받을 수 있다.In one embodiment of the present invention, further comprising a flexible circuit board coupled to the base, the autofocus coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board. .
본 발명의 일 실시예에 있어서, 상기 연성회로기판에 상기 오토포커스용 자석과 대향되도록 결합되어, 상기 오토포커스 캐리어의 광축 방향의 이동을 감지하는 위치 감지 센서를 더 포함할 수 있다.In an embodiment of the present invention, the flexible circuit board may further include a position sensing sensor coupled to face the autofocus magnet so as to sense a movement in the optical axis direction of the autofocus carrier.
본 발명의 일 실시예에 있어서, 상기 떨림보정 구동부는, 상기 떨림보정 캐리어에 결합된 적어도 하나의 떨림보정용 자석 및 상기 베이스에 결합되고, 상기 떨림보정용 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함할 수 있다.In one embodiment of the present invention, the vibration correction drive unit, at least one vibration correction coupled to the base and at least one vibration correction magnet coupled to the vibration correction carrier, at least a portion of the vibration correction magnet is opposed to the vibration correction magnet It may include a coil.
본 발명의 일 실시예에 있어서, 상기 떨림보정용 코일은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태일 수 있다.In one embodiment of the present invention, the shake compensation coil may be wound around an axis in a direction orthogonal to the optical axis.
본 발명의 일 실시예에 있어서, 상기 베이스에 결합된 연성회로기판을 더 포함하고, 상기 떨림보정용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기신호를 전달받을 수 있다.In one embodiment of the present invention, further comprising a flexible circuit board coupled to the base, the vibration correction coil is coupled to the flexible circuit board can receive an electrical signal from a circuit formed on the flexible circuit board.
본 발명의 일 실시예에 있어서, 상기 연성회로기판에 상기 떨림보정용 자석과 대향되도록 결합되어, 상기 떨림보정용 캐리어의 광축 방향 또는 광축에 직교하는 방향의 이동을 감지하는 위치 감지 센서를 더 포함할 수 있다.In an exemplary embodiment of the present invention, the flexible circuit board may further include a position sensing sensor coupled to the vibration correction magnet so as to sense a movement in an optical axis direction or a direction orthogonal to the optical axis of the vibration correction carrier. have.
본 발명의 일 실시예에 있어서, 상기 오토포커스 구동부는, 상기 오토포커스 캐리어에 결합된 적어도 하나의 오토포커스용 자석 및 상기 베이스에 결합되고, 상기 오토포커스용 자석과 적어도 일부가 대향되는 적어도 하나의 오토포커스용 코일을 포함하고, 상기 떨림보정 구동부는, 상기 떨림보정 캐리어에 결합된 적어도 하나의 떨림보정용 자석 및 상기 베이스에 결합되고, 상기 떨림보정용 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함하고, 상기 오토포커스용 자석과 상기 떨림보정용 자석은 적어도 일부가 서로 대향되도록 배치될 수 있다.In one embodiment of the present invention, the autofocus driving unit, at least one autofocus magnet coupled to the autofocus carrier and the base, and at least one opposing at least a portion of the autofocus magnet And an autofocus coil, wherein the shake compensation driving unit is coupled to at least one shake correction magnet and the base coupled to the shake correction carrier, and at least one shake correction coil coupled to the base and at least partially opposed to the shake correction magnet. Includes, the autofocus magnet and the shake compensation magnet may be disposed so that at least a portion of the magnets for opposing.
본 발명의 일 실시예에 있어서, 상기 서로 대향하는 오토포커스용 자석과 떨림보정용 자석 사이에는 인력이 작용할 수 있다.In one embodiment of the present invention, the attraction force may act between the autofocus magnet and the shake compensation magnet opposing each other.
본 발명의 일 실시예에 있어서, 상기 서로 대향하는 오토포커스용 자석과 떨림보정용 자석은 서로 대향되는 부분이 서로 다른 극성을 가질 수 있다.In one embodiment of the present invention, the opposing autofocus magnet and the shake compensation magnet may have different polarities in opposing parts.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 자석과 상기 떨림보정용 자석은 서로 동일한 개수로 형성될 수 있다.In one embodiment of the present invention, the autofocus magnet and the shake compensation magnet may be formed in the same number.
본 발명의 일 실시예에 있어서, 상기 오토포커스용 코일 및 상기 떨림보정용 코일은 각각 상기 오토포커스용 자석 및 상기 떨림보정용 자석의 측면에 대향되도록 배치되고, 상기 오토포커스용 자석의 상면과 상기 떨림보정용 자석의 하면이 서로 대향되도록 배치될 수 있다.In one embodiment of the present invention, the autofocus coil and the shake correction coil are respectively disposed to face the sides of the autofocus magnet and the shake correction magnet, the upper surface of the autofocus magnet and the shake correction The lower surfaces of the magnets may be disposed to face each other.
본 발명의 일 실시예에 있어서, 상기 떨림보정 캐리어는 상기 볼 베어링을 사이에 두고 상기 오토포커스 캐리어에 밀착되게 위치할 수 있다.In one embodiment of the present invention, the shake compensation carrier may be located in close contact with the autofocus carrier with the ball bearing therebetween.
본 발명의 일 실시예에 있어서, 상기 떨림보정 캐리어는 상기 오토포커스 캐리어에 상대적으로 광축에 직교하는 방향으로 이동할 수 있다.In one embodiment of the present invention, the shake compensation carrier may move in a direction orthogonal to the optical axis relative to the autofocus carrier.
본 발명의 일 실시예에 있어서, 상기 오토포커스 캐리어가 광축 방향으로 이동하는 경우, 상기 떨림보정 캐리어는 상기 오토포커스 캐리어와 함께 광축 방향으로 이동하게 될 수 있다.In one embodiment of the present invention, when the autofocus carrier is moved in the optical axis direction, the shake compensation carrier may be moved in the optical axis direction together with the autofocus carrier.
본 발명의 일 실시예에 있어서, 상기 렌즈 배럴은 상기 오토포커스용 캐리어의 광축 방향의 이동에 따라 광축 방향으로 이동하고, 상기 떨림보정 캐리어의 광축에 직교하는 방향의 이동에 따라 광축에 직교하는 방향으로 이동할 수 있다.In one embodiment of the present invention, the lens barrel is moved in the optical axis direction in accordance with the movement of the optical axis direction of the autofocus carrier, the direction orthogonal to the optical axis in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier Can be moved.
본 발명의 일 실시예에 있어서, 상기 오토포커스 캐리어는 상기 베이스의 하면과 이격되어 위치할 수 있다.In one embodiment of the present invention, the autofocus carrier may be located spaced apart from the lower surface of the base.
본 발명의 일 실시예에 따른 렌즈 구동 장치는 소형화가 가능하고, 정밀한 렌즈 배럴의 떨림보정이 가능하다.The lens driving apparatus according to the embodiment of the present invention can be miniaturized, and the shake compensation of the lens barrel can be precisely performed.
또한, 본 발명의 일 실시예에 따른 렌즈 구동 장치는 오토포커스 캐리어 및 오토포커스 구동부의 조립 공정과 떨림보정 캐리어 및 떨림보정 구동부의 조립 공정을 분리하여 전체적인 조립 공정이 간소화될 수 있다.In addition, the lens driving apparatus according to an embodiment of the present invention may simplify the overall assembly process by separating the assembly process of the autofocus carrier and the autofocus driver and the assembly process of the shake compensation carrier and the shake compensation driver.
도 1은 본 발명의 일 실시예에 따른 렌즈 구동 장치의 외관을 도시한 사시도이다.1 is a perspective view illustrating an appearance of a lens driving apparatus according to an exemplary embodiment of the present invention.
도 2는 도 1의 AA'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다.FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1.
도 3은 도 1의 BB'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다.3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1.
도 4는 본 발명의 일 실시예에 따른 렌즈 구동 장치의 분해 사시도이다.4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
도 5는 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분을 분해하여 도시한 사시도이다.5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention.
도 6은 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분의 단면도이다.6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
도 7은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링 및 자석에 해당하는 부분을 도시한 사시도이다.7 is a perspective view showing a part corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing and the magnet of the lens driving device of the present invention.
도 8은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링 및 자석에 해당하는 부분을 분해하여 도시한 사시도이다.8 is an exploded perspective view illustrating parts corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing, and the magnet of the lens driving apparatus of the present invention.
도 9는 도 7의 CC'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7.
도 10은 도 7의 DD'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
도 11은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 베이스 중 오토포커스용 코일 홀더에 스프링을 통해 결합된 것을 도시한 사시도이다.FIG. 11 is a perspective view illustrating a lens barrel, an autofocus carrier, a stabilizer carrier, a ball bearing, and a magnet coupled to a coil holder for autofocus among bases through a spring of the lens driving apparatus of the present invention.
도 12 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 베이스 중 오토포커스용 코일 홀더에 스프링을 통해 결합된 것을 분해하여 도시한 사시도이다.12 is an exploded perspective view illustrating a lens barrel, an autofocus carrier, a stabilizer carrier, a ball bearing, and a magnet coupled to a coil holder for autofocus through a spring.
도 13은 도 11의 EE'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 13 is a cross-sectional view of a part of a lens driving apparatus according to an exemplary embodiment of the present invention, cut along the line EE ′ of FIG. 11.
도 14는 도 11의 FF'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.14 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line FF ′ of FIG. 11.
도 15는 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 떨림보정용 코일에 대향되어 배치된 것을 도시한 사시도이다.FIG. 15 is a perspective view showing a lens barrel, an autofocus carrier, a shake compensation carrier, a ball bearing, and a magnet disposed opposite to a shake compensation coil of the lens driving device of the present invention.
도 16은 도 15의 GG'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 16 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line GG ′ of FIG. 15.
도 17은 도 15의 HH'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 17 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line HH ′ of FIG. 15.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 1 내지 도 17을 참조하여, 본 발명의 일 실시예에 따른 렌즈 구동 장치에 대해 설명한다.Hereinafter, a lens driving apparatus according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 to 17.
도 1은 본 발명의 일 실시예에 따른 렌즈 구동 장치의 외관을 도시한 사시도이다.도 1에는 x축,y축,z축으로 구성된 3축 좌표계가 도시되어 있다. 본 발명의 렌즈 구동 장치에서 렌즈는 z축을 광축으로 하여 배치된다. 렌즈의 광축이란 렌즈의 중심을 통과하는 광이 진행하는 방향을 의미한다. 1 is a perspective view illustrating an external appearance of a lens driving apparatus according to an exemplary embodiment of the present invention. FIG. 1 illustrates a three-axis coordinate system composed of an x-axis, a y-axis, and a z-axis. In the lens driving apparatus of the present invention, the lens is disposed with the z-axis as the optical axis. The optical axis of the lens means a direction in which light passing through the center of the lens travels.
본 발명에서 z축의 양(+)의 방향을 상방으로 정의하고, z축의 음(-)의 방향을 하방으로 정의하여 설명하도록 한다. 또한, x축, y축 방향을 측방으로 정의하여 설명하도록 한다.In the present invention, the positive direction of the z-axis is defined upward, and the negative direction of the z-axis is defined downward. In addition, the x- and y-axis directions will be defined laterally to be described.
도 1을 참조하면, 렌즈 구동 장치는 외부가 쉴드 케이스(210)에 의해 차폐되어 있어 내부의 구조는 일부만 보여지게 된다. 쉴드 케이스(210)는 통상적으로 다면체 형상으로 형성될 수 있다. 구체적으로, 쉴드 케이스(210)는 육면체 형상으로 형성될 수 있다. 쉴드 케이스(210)는 후술할 렌즈 구동 장치의 베이스(200)의 일부를 이루면서 내부에 렌즈 구동 장치의 여러 구성을 수용할 수 있다. 쉴드 케이스(210)는 단단한 재질로 형성되어 내부에 수용한 여러 구성들을 보호할 수 있다. 또한, 쉴드 케이스(210)는 금속 재질 등으로 형성되어 외부에서 유입되거나 내부에서 발생하여 외부로 유출되는 전자기파(EMI) 노이즈를 차폐하는 기능을 수행할 수 있다.Referring to FIG. 1, the lens driving device is shielded by the shield case 210 so that only a part of the internal structure thereof is visible. The shield case 210 may typically be formed in a polyhedron shape. Specifically, the shield case 210 may be formed in a hexahedron shape. The shield case 210 may form a part of the base 200 of the lens driving apparatus to be described later, and accommodate various components of the lens driving apparatus therein. The shield case 210 may be formed of a hard material to protect various components accommodated therein. In addition, the shield case 210 may be formed of a metal material to perform a function of shielding electromagnetic noise (EMI) noise flowing in from the outside or generated inside the outflow.
쉴드 케이스(210)는 상면에 렌즈 배럴(100)의 상면이 노출될 수 있는 개구(211)가 형성되어 있다. 그리고 도시되어 있지는 않지만, 쉴드 케이스(210)의 하면도 개방된 형태로 형성된다. 쉴드 케이스(210)에서 상면 개구(211)와 하면의 개방된 부분에 의해 광축을 따라 진행하는 광의 개방 경로가 확보된다.The shield case 210 has an opening 211 through which an upper surface of the lens barrel 100 may be exposed. And although not shown, the lower surface of the shield case 210 is also formed in an open form. The open path of the light traveling along the optical axis is secured by the open portions of the upper surface opening 211 and the lower surface of the shield case 210.
렌즈 배럴(100)의 상면은 쉴드 케이스(210)의 상면 개구(211)를 통해 노출되게 되는데, 구체적으로 렌즈 배럴(100)이 수용하는 렌즈가 개구(211)를 통해 노출되게 위치한다.렌즈 배럴(100)은 후술할 오토포커스 구동부(600) 및 떨림보정 구동부(700)에 의해 이동할 수 있는데, 쉴드 케이스(210)의 개구(211)는 이러한 렌즈 배럴(100)의 이동을 고려하여 렌즈 배럴(100)의 상면보다 크게 형성될 수 있다.The top surface of the lens barrel 100 is exposed through the top opening 211 of the shield case 210. Specifically, the lens accommodated by the lens barrel 100 is positioned to be exposed through the opening 211. 100 may be moved by the autofocus driver 600 and the shake compensation driver 700, which will be described later, and the opening 211 of the shield case 210 may be configured in consideration of the movement of the lens barrel 100. It may be formed larger than the upper surface of 100).
도 2는 도 1의 AA'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다. 도 3은 도 1의 BB'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치의 단면도이다. 도 4는 본 발명의 일 실시예에 따른 렌즈 구동 장치의 분해 사시도이다.FIG. 2 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along line AA ′ of FIG. 1. 3 is a cross-sectional view of the lens driving apparatus according to the exemplary embodiment of the present invention, taken along the line BB ′ of FIG. 1. 4 is an exploded perspective view of a lens driving apparatus according to an embodiment of the present invention.
도 2 내지 도 4를 참조하면, 본 발명의 렌즈 구동 장치는 베이스(200), 오토포커스 캐리어(300), 오토포커스 구동부(600), 떨림보정 캐리어(400), 떨림보정 구동부(700), 스프링(800), 볼 베어링(500), 연성회로기판(240) 및 위치 감지 센서(900)를 포함한다.2 to 4, the lens driving apparatus of the present invention includes a base 200, an autofocus carrier 300, an autofocus driving unit 600, an oscillation correction carrier 400, an oscillation correction driving unit 700, and a spring. 800, a ball bearing 500, a flexible circuit board 240, and a position detection sensor 900.
도면에는 도시되지 않았지만, 본 발명의 렌즈 구동 장치의 하부에는 이미지 센서부가 결합될 수 있다. 이미지 센서부는 이미지 센서, 이미지 센서가 실장되어 있는 회로 기판, 이미지 센서를 덮는 광학 필터 등을 포함할 수 있다. 이러한 이미지 센서부는 쉴드 케이스(210)의 하면을 덮는 형태로 결합되어 렌즈 배럴(100)의 하부에 위치하게 된다.Although not shown in the drawings, the image sensor unit may be coupled to the lower portion of the lens driving apparatus of the present invention. The image sensor unit may include an image sensor, a circuit board on which the image sensor is mounted, an optical filter covering the image sensor, and the like. The image sensor unit is coupled to cover the lower surface of the shield case 210 is positioned below the lens barrel 100.
광축 방향으로 진행하는 광은 렌즈 배럴(100)을 통과하여 이미지 센서에 결상되게 된다. 이미지 센서는 조사된 광학 신호를 전기 신호로 변환하여 출력하게 된다.Light traveling in the optical axis direction passes through the lens barrel 100 and forms an image in the image sensor. The image sensor converts the irradiated optical signal into an electrical signal and outputs the electrical signal.
도 5 내지 도 17은 본 발명의 렌즈 구동 장치의 일부 또는 전부를 분해하여 도시한 것이다. 이하, 도 2 내지 도 4와 함께 도 5 내지 도 17을 참조하여 본 발명의 렌즈 구동 장치의 각 부분에 대해서 상세하게 설명하도록 한다.5 to 17 illustrate an exploded view of part or all of the lens driving apparatus of the present invention. Hereinafter, each part of the lens driving apparatus of the present invention will be described in detail with reference to FIGS. 5 to 17 along with FIGS. 2 to 4.
도 5는 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분을 분해하여 도시한 사시도이다. 도 6은 본 발명의 렌즈 구동 장치의 베이스 부분에 해당하는 부분의 단면도이다.5 is an exploded perspective view illustrating a portion corresponding to the base portion of the lens driving apparatus of the present invention. 6 is a cross-sectional view of a portion corresponding to the base portion of the lens driving apparatus of the present invention.
베이스(200)는 렌즈 구동 장치에 있어서, 렌즈 배럴(100)에 대해 상대적으로 고정되어 위치하게 된다. 구체적으로, 렌즈 배럴(100)은 베이스(200) 내부에 수용되어 오토포커스 캐리어(300)와 함께 광축 방향으로 이동하게 되고, 떨림보정 캐리어(400)와 함께 광축에 직교하는 방향으로 이동하게 된다. 구체적으로, 광축 방향의 이동은 z축 방향의 이동일 수 있고, 광축에 직교하는 방향의 이동은 x축 또는 y축 방향의 이동일 수 있다. 여기서, 렌즈 배럴(100)이 움직이는 것은 베이스(200)를 기준으로 하여 상대적으로 움직이는 것에 해당한다.The base 200 is positioned relatively fixed to the lens barrel 100 in the lens driving apparatus. In detail, the lens barrel 100 is accommodated in the base 200 to move in the optical axis direction together with the autofocus carrier 300 and moves in the direction orthogonal to the optical axis together with the shake compensation carrier 400. Specifically, the movement in the optical axis direction may be the movement in the z-axis direction, and the movement in the direction orthogonal to the optical axis may be the movement in the x-axis or y-axis direction. Here, the movement of the lens barrel 100 corresponds to the relative movement with respect to the base 200.
베이스(200)는 쉴드 케이스(210) 및 코일 홀더(220, 230)를 포함할 수 있다. 여기서, 코일 홀더(220, 230)는 오토포커스용 코일 홀더(220) 및 떨림보정용 코일 홀더(230)를 포함할 수 있다.구체적으로, 오토포커스용 코일 홀더(220) 및 떨림보정용 코일 홀더(230)는 쉴드 케이스(210)의 내부에 결합될 수 있다. 오토포커스용 코일 홀더(220)는 떨림보정용 코일 홀더(230)보다 아래 부분에 위치할 수 있다.The base 200 may include a shield case 210 and coil holders 220 and 230. Here, the coil holders 220 and 230 may include an autofocus coil holder 220 and a shake compensation coil holder 230. Specifically, the autofocus coil holder 220 and the shake compensation coil holder 230 may be used. ) May be coupled to the inside of the shield case 210. The autofocus coil holder 220 may be located below the vibration compensation coil holder 230.
코일 홀더(220, 230)에는 각각 오토포커스용 코일(620)과 떨림보정용 코일(720)이 결합될 수 있도록 결합부가 형성될 수 있다.결합부는 코일이 삽입되어 결합되는 개구부(231)의 형태 또는 코일이 권선되어 감길 수 있는 보빈(221)의 형태로 형성될 수 있다.Coupling holders 220 and 230 may be formed with coupling portions so that the autofocus coil 620 and the vibration compensation coil 720 may be coupled, respectively. The coupling portion may have a shape of an opening 231 into which the coil is inserted and coupled. The coil may be formed in the form of a bobbin 221 which can be wound and wound.
베이스(200)에는 연성회로기판(240)이 결합될 수 있다.연성회로기판(240)은 일측에 외부 연결 단자(241)가 형성되고, 외부 연결 단자(241)가 베이스(200)의 외부로 노출되도록 형성될 수 있다. 그리고 연성회로기판(240)에는 복수의 코일 연결 단자(242)가 형성되어, 오토포커스용 코일(620) 및 떨림보정용 코일(720)이 전기적으로 연결될 수 있다.The flexible printed circuit board 240 may be coupled to the base 200. The flexible printed circuit board 240 has an external connection terminal 241 formed at one side thereof, and the external connection terminal 241 is external to the base 200. It can be formed to be exposed. In addition, a plurality of coil connection terminals 242 may be formed on the flexible circuit board 240 so that the autofocus coil 620 and the shake compensation coil 720 may be electrically connected to each other.
연성회로기판(240)은 코일 홀더(220, 230)에 결합될 수 있다. 구체적으로, 연성회로기판(240)은 쉴드 케이스(210)와 코일 홀더(220, 230) 사이에 위치할 수 있다. 코일 홀더(220, 230)에는 연성회로기판(240)을 고정 결합하기 위한 돌기부(233)가 형성되어 있을 수 있고, 연성회로기판(240)에는 돌기부(233)가 삽입될 수 있는 홀(243)이 형성되어 있을 수 있다.The flexible circuit board 240 may be coupled to the coil holders 220 and 230. In detail, the flexible circuit board 240 may be positioned between the shield case 210 and the coil holders 220 and 230. The coil holders 220 and 230 may have protrusions 233 for fixing and coupling the flexible circuit board 240, and the holes 243 into which the protrusions 233 may be inserted into the flexible circuit board 240. It may be formed.
도 7은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링 및 자석에 해당하는 부분을 도시한 사시도이다. 도 8은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링 및 자석에 해당하는 부분을 분해하여 도시한 사시도이다. 도 9는 도 7의 CC'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다. 도 10은 도 7의 DD'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.7 is a perspective view showing a part corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing and the magnet of the lens driving device of the present invention. 8 is an exploded perspective view illustrating parts corresponding to the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing, and the magnet of the lens driving apparatus of the present invention. FIG. 9 is a cross-sectional view of a portion of a lens driving apparatus according to an exemplary embodiment of the present invention, taken along line CC ′ of FIG. 7. FIG. 10 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line DD ′ of FIG. 7.
렌즈 배럴(100)은 원통형 형태로 형성될 수 있다. 렌즈 배럴(100)은 상면과 하면이 개방된 형태로 형성되어, 광이 상면과 하면을 통해서 통과될 수 있다. 렌즈 배럴(100)의 내부에는 적어도 하나의 렌즈가 수용되어 있다. 렌즈는 렌즈 배럴(100)이 이동함에 따라 함께 이동하게 된다.The lens barrel 100 may be formed in a cylindrical shape. The lens barrel 100 is formed to have an open top and bottom surfaces so that light may pass through the top and bottom surfaces. At least one lens is accommodated in the lens barrel 100. The lens moves with the lens barrel 100 as it moves.
떨림보정 캐리어(400)는 내부에 중공부(401)를 가지도록 형성될 수 있다. 중공부(401)는 광축 방향으로 개방된 형태이다. 중공부(401)에는 렌즈 배럴(100)이 결합될 수 있다. 렌즈 배럴(100)은 떨림보정 캐리어(400)의 중공부(401)에 고정 결합되어, 렌즈 배럴(100)과 떨림보정 캐리어(400)는 일체로 이동하게 형성된다.The shake compensation carrier 400 may be formed to have a hollow portion 401 therein. The hollow part 401 is open in the optical axis direction. The lens barrel 100 may be coupled to the hollow portion 401. The lens barrel 100 is fixedly coupled to the hollow portion 401 of the shake compensation carrier 400, such that the lens barrel 100 and the shake compensation carrier 400 are integrally moved.
구체적으로, 렌즈 배럴(100)의 외측면이 떨림보정 캐리어(400)의 중공부(401)의 내주면과 결합될 수 있다. 여기서, 렌즈 배럴(100)의 외측면 중 상부 부분이 떨림보정 캐리어(400)의 중공부(401)의 내주면에 결합되고, 렌즈 배럴(100)의 하부 부분은 떨림보정 캐리어(400)의 하부로 돌출될 수 있다.Specifically, the outer surface of the lens barrel 100 may be combined with the inner circumferential surface of the hollow portion 401 of the shake compensation carrier 400. Here, the upper portion of the outer surface of the lens barrel 100 is coupled to the inner circumferential surface of the hollow portion 401 of the shake compensation carrier 400, the lower portion of the lens barrel 100 to the lower portion of the shake compensation carrier 400 It may protrude.
떨림보정 캐리어(400)는 외측면이 복수의 면을 가지는 다각기둥 형태로 형성될 수 있다. 예를 들어, 떨림보정 캐리어(400)는 4개의 측면 또는 8개의 측면을 가지는 사각기둥 또는 팔각기둥 형태로 형성될 수 있다. 떨림보정 캐리어(400)는 떨림보정을 위해 이동하면서 제어의 정확도를 위해 광축을 중심으로 대칭인 형태로 형성되는 것이 바람직하다.The shake compensation carrier 400 may be formed in a polygonal pillar shape having an outer surface with a plurality of surfaces. For example, the shake compensation carrier 400 may be formed in the shape of a square pillar or an octagonal pillar having four sides or eight sides. The shake compensation carrier 400 is preferably formed to be symmetrical about the optical axis for accuracy of control while moving for shake compensation.
떨림보정 캐리어(400)는 떨림보정용 자석(710) 홀더로 기능할 수 있다. 떨림보정 캐리어(400)는 자석의 자력이 관통될 수 있도록 플라스틱 등의 수지재로 형성되는 것이 바람직하다. 구체적으로, 떨림보정 캐리어(400)는 떨림보정용 자석(710)이 결합될 수 있는 결합부(402)를 포함할 수 있다. 떨림보정용 자석 결합부(402)는 홈의 형태로 형성되어 떨림보정용 자석(710)이 홈에 삽입되어 결합될 수 있다. 떨림보정용 자석(710)은 떨림보정 캐리어(400)에 일체로 결합되어 함께 이동하게 된다.The shake compensation carrier 400 may function as a holder for the shake compensation magnet 710. The vibration compensation carrier 400 is preferably formed of a resin material such as plastic so that the magnetic force of the magnet can pass therethrough. Specifically, the shaking compensation carrier 400 may include a coupling part 402 to which the shaking compensation magnet 710 may be coupled. The vibration compensation magnet coupling part 402 may be formed in the shape of a groove so that the vibration compensation magnet 710 may be inserted into and coupled to the groove. The shaking compensation magnet 710 is integrally coupled to the shaking compensation carrier 400 to move together.
떨림보정용 자석(710)은 하나 또는 복수 개가 형성될 수 있는데, 이에 따라 떨림보정용 자석 결합부(402)도 동일한 개수로 형성될 수 있다.떨림보정용 자석 결합부(402)가 복수 개가 형성되는 경우, 떨림보정용 자석 결합부(402)는 떨림보정 캐리어(400)의 복수의 측면에 형성되는데, 광축에 대칭인 위치에 형성되는 것이 바람직하다.One or more tremor correction magnets 710 may be formed. Accordingly, the tremor correction magnet coupling portion 402 may be formed in the same number. When the tremor correction magnet coupling portion 402 is formed, The shake compensation magnet coupling part 402 is formed on a plurality of side surfaces of the shake compensation carrier 400, and is preferably formed at a position symmetrical to the optical axis.
오토포커스 캐리어(300)는 떨림보정 캐리어(400)의 하부에 위치하게 된다. 오토포커스 캐리어(300)도 중앙 부분에 중공부(301)를 가지도록 형성될 수 있다. 중공부(301)는 광축 방향으로 개방된 형태이다.오토포커스 캐리어(300)의 중공부(301)에는 렌즈 배럴(100)의 일부가 삽입될 수 있다. 구체적으로, 오토포커스 캐리어(300)의 중공부(301)에는 렌즈 배럴(100)의 하부 부분이 삽입될 수 있다. 다만, 오토포커스 캐리어(300)의 중공부(301)와 렌즈 배럴(100)은 고정 결합되지 않고 서로 분리된 상태를 유지한다.구체적으로, 렌즈 배럴(100)은 오토포커스 캐리어(300)의 중공부(301)에 삽입된 상태로 단독으로 광축에 직교하는 방향으로 이동할 수 있다. 따라서 오토포커스 캐리어(300)의 중공부(301)는 렌즈 배럴(100)보다 크게 형성되어, 그 내부에서 렌즈 배럴(100)이 광축에 직교하는 방향으로 이동할 수 있는 변위를 제공한다. 렌즈 배럴(100)이 광축에 직교하는 방향의 외력이 가해지지 않은 상태로 오토포커스 캐리어(300)의 중공부(301)의 중앙에 위치하는 경우, 렌즈 배럴(100)의 외주면은 오토포커스 캐리어(300)의 중공부(301)의 내주면과 이격된 상태를 유지하게 된다.The autofocus carrier 300 is positioned below the shake compensation carrier 400. Autofocus carrier 300 may also be formed to have a hollow portion 301 in the central portion. The hollow part 301 is open in the optical axis direction. A part of the lens barrel 100 may be inserted into the hollow part 301 of the autofocus carrier 300. In detail, the lower portion of the lens barrel 100 may be inserted into the hollow portion 301 of the autofocus carrier 300. However, the hollow portion 301 of the autofocus carrier 300 and the lens barrel 100 are not fixedly coupled and remain separated from each other. Specifically, the lens barrel 100 is hollow of the autofocus carrier 300. It can be moved in the direction orthogonal to the optical axis alone in the state inserted into the portion 301. Therefore, the hollow portion 301 of the autofocus carrier 300 is larger than the lens barrel 100 to provide a displacement in which the lens barrel 100 can move in a direction orthogonal to the optical axis. When the lens barrel 100 is positioned at the center of the hollow portion 301 of the autofocus carrier 300 without an external force applied in a direction perpendicular to the optical axis, the outer circumferential surface of the lens barrel 100 is an autofocus carrier ( Maintaining a state spaced apart from the inner peripheral surface of the hollow portion 301 of 300.
렌즈 배럴(100)의 상부 부분과 하부 부분의 외측면이 동일한 단면 크기를 가지고 연장되는 원통형으로 형성되는 경우, 떨림보정 캐리어(400)의 중공부(401)보다 오토포커스 캐리어(300)의 중공부(301)가 더 크게 형성되게 된다.When the outer surface of the upper portion and the lower portion of the lens barrel 100 is formed in a cylindrical shape extending with the same cross-sectional size, the hollow portion of the autofocus carrier 300 than the hollow portion 401 of the shake compensation carrier 400 301 becomes larger.
오토포커스 캐리어(300)는 외측면이 복수의 면을 가지는 다각기둥 형태로 형성될 수 있다. 예를 들어, 오토포커스 캐리어(300)는 4개의 측면 또는 8개의 측면을 가지는 사각기둥 또는 팔각기둥 형태로 형성될 수 있다. 오토포커스 캐리어(300)는 오토포커스를 위해 이동하면서 제어의 정확도를 위해 광축을 중심으로 대칭인 형태로 형성되는 것이 바람직하다.The autofocus carrier 300 may be formed in the shape of a polygonal column having an outer surface with a plurality of surfaces. For example, the autofocus carrier 300 may be formed in the shape of a square pillar or an octagonal pillar having four sides or eight sides. The autofocus carrier 300 is preferably formed to be symmetrical about the optical axis for accuracy of control while moving for autofocus.
오토포커스 캐리어(300)는 오토포커스용 자석(610) 홀더로 기능할 수 있다. 오토포커스 캐리어(300)는 자석의 자력이 관통될 수 있도록 플라스틱 등의 수지재로 형성되는 것이 바람직하다. 구체적으로, 오토포커스 캐리어(300)는 오토포커스용 자석(610)이 결합될 수 있는 결합부(302)를 포함할 수 있다. 오토포커스용 자석 결합부(302)는 홈의 형태로 형성되어 오토포커스용 자석(610)이 홈에 삽입되어 결합될 수 있다. 오토포커스용 자석(610)은 오토포커스 캐리어(300)에 일체로 결합되어 함께 이동하게 된다.The autofocus carrier 300 may function as a holder for the magnet 610 for autofocus. The autofocus carrier 300 is preferably formed of a resin material such as plastic so that the magnetic force of the magnet can pass therethrough. In detail, the autofocus carrier 300 may include a coupling part 302 to which the autofocus magnet 610 may be coupled. The autofocus magnet coupling portion 302 may be formed in the shape of a groove so that the autofocus magnet 610 may be inserted into and coupled to the groove. The autofocus magnet 610 is integrally coupled to the autofocus carrier 300 to move together.
오토포커스용 자석(610)은 하나 또는 복수 개가 형성될 수 있는데, 이에 따라 오토포커스용 자석 결합부(302)도 동일한 개수로 형성될 수 있다.오토포커스용 자석 결합부(302)가 복수 개가 형성되는 경우, 오토포커스용 자석 결합부(302)는 오토포커스 캐리어(300)의 복수의 측면에 형성되는데, 광축에 대칭인 위치에 형성되는 것이 바람직하다.One or more autofocus magnets 610 may be formed, and accordingly, the same number of autofocus magnet coupling portions 302 may be formed. A plurality of autofocus magnet coupling portions 302 are formed. In this case, the autofocus magnet coupling portion 302 is formed on a plurality of side surfaces of the autofocus carrier 300, but is preferably formed at a position symmetrical to the optical axis.
오토포커스 캐리어(300)와 떨림보정 캐리어(400)는 상하로 쌓아지는 형태로 배치될 수 있다. 구체적으로, 오토포커스 캐리어(300)의 상부에 떨림보정 캐리어(400)가 위치하는 형태일 수 있다.The autofocus carrier 300 and the shake compensation carrier 400 may be arranged to be stacked up and down. In detail, the shake compensation carrier 400 may be positioned above the autofocus carrier 300.
오토포커스 캐리어(300)와 떨림보정 캐리어(400) 사이에는 볼 베어링(500)이 위치할 수 있다.볼 베어링(500)은 떨림보정 캐리어(400)가 오토포커스 캐리어(300) 상에서 광축에 직교하는 방향으로 이동함에 있어서, 마찰을 줄이는 기능을 수행한다. 볼 베어링(500)은 적어도 3개 이상 형성되어 떨림보정 캐리어(400)의 하면을 고르게 지지할 수 있다.The ball bearing 500 may be positioned between the autofocus carrier 300 and the shake compensation carrier 400. The ball bearing 500 may have the shake compensation carrier 400 orthogonal to the optical axis on the autofocus carrier 300. In moving in the direction, it performs a function of reducing friction. At least three ball bearings 500 may be formed to evenly support the lower surface of the shake compensation carrier 400.
볼 베어링(500)은 플레이트(510)와 볼(520)을 포함할 수 있다.The ball bearing 500 may include a plate 510 and a ball 520.
플레이트(510)는 오토포커스 캐리어(300)의 상면과 떨림보정 캐리어(400)의 하면 사이에 위치할 수 있다. 플레이트(510)도 중앙 부분에 중공부(501)를 가지도록 형성될 수 있다. 중공부(501)는 광축 방향으로 개방된 형태이다.플레이트(510)의 중공부에는 렌즈 배럴(100)의 일부가 삽입될 수 있다.The plate 510 may be located between the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400. Plate 510 may also be formed to have a hollow portion 501 in the central portion. The hollow part 501 is open in the optical axis direction. A part of the lens barrel 100 may be inserted into the hollow part of the plate 510.
플레이트(510)는 오토포커스 캐리어(300)의 상면 또는 떨림보정 캐리어(400)의 하면 중 하나와 고정 결합될 수 있다. 첨부한 도면에서는 플레이트(510)가 오토포커스 캐리어(300)의 상면과 고정 결합된 것이 도시되어 있지만, 떨림보정 캐리어(400)의 하면과 고정 결합된 것도 가능하다. 고정 결합을 위해서, 홈과 돌기가 형성될 수 있다. 구체적으로, 도면에 도시된 것과 같이, 오토포커스 캐리어(300)의 상면에 돌기(303)가 형성되고, 플레이트(510)에 형성된 홈(513)에 돌기(303)가 삽입되어 결합될 수 있다.The plate 510 may be fixedly coupled to one of the top surface of the autofocus carrier 300 or the bottom surface of the shake compensation carrier 400. In the accompanying drawings, the plate 510 is fixedly coupled to the top surface of the autofocus carrier 300, but may be fixedly coupled to the bottom surface of the vibration compensation carrier 400. For fixed engagement, grooves and protrusions may be formed. Specifically, as shown in the figure, the projection 303 is formed on the upper surface of the autofocus carrier 300, the projection 303 may be inserted into the groove 513 formed in the plate 510 may be coupled.
플레이트(510)에는 볼(520)이 삽입될 적어도 하나의 홀(511) 형성될 수 있다. 홀(511)은 플레이트(510)의 상면과 하면을 관통하는 형태로 형성된다. 홀(511)에는 볼(520)이 수용되고, 볼(520)은 홀(511) 내부에서 구르면서 베어링으로 기능하게 된다. 따라서 홀(511)은 그 직경이 볼(520)의 직경보다 크게 형성되어, 내부에서 볼(520)이 움직이거나 구를 수 있게 형성된다.홀(511)은 광축에 대칭인 위치에 복수 개가 형성되어, 볼(520)이 떨림보정 캐리어(400)를 안정적으로 지지하게 한다.At least one hole 511 into which the ball 520 is inserted may be formed in the plate 510. The hole 511 is formed to penetrate the upper and lower surfaces of the plate 510. The ball 520 is accommodated in the hole 511, and the ball 520 rolls inside the hole 511 to function as a bearing. Therefore, the diameter of the hole 511 is larger than the diameter of the ball 520, the ball 520 is formed to be able to move or roll inside. A plurality of holes 511 are formed in a position symmetrical to the optical axis As a result, the ball 520 can stably support the shake compensation carrier 400.
플레이트(510)는 볼(520)의 높이보다 두께가 작도록 형성된다. 따라서 플레이트(510)가 오토포커스 캐리어(300)의 상면과 떨림보정 캐리어(400)의 하면 사이에 위치하고, 플레이트(510)의 홀에 볼(520)이 수용된 상태에서 볼(520)의 상단과 하단이 각각 떨림보정 캐리어(400)의 하면과 오토포커스 캐리어(300)의 상면에 접하게 된다. 그리고 플레이트(510)는 상면과 하면 중 하나의 면만이 떨림보정 캐리어(400)의 하면과 오토포커스 캐리어(300)의 상면에 접하게 된다.The plate 510 is formed to have a thickness smaller than the height of the ball 520. Therefore, the plate 510 is positioned between the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400, and the upper and lower ends of the ball 520 in the state where the ball 520 is accommodated in the hole of the plate 510. The lower surface of each of the shake compensation carriers 400 is in contact with the upper surface of the autofocus carrier 300. In addition, only one surface of the upper surface and the lower surface of the plate 510 is in contact with the lower surface of the shake compensation carrier 400 and the upper surface of the autofocus carrier 300.
볼(520)은 구형으로 형성되어 떨림보정 캐리어(400)의 광축 방향의 위치가 변화되지 않은 상태에서 광축에 직교하는 방향으로 움직임을 지지할 수 있다.볼(520) 주변에는 마찰을 억제할 수 있는 그리스(grease)가 도포되어 있을 수 있다.The ball 520 may be formed in a spherical shape to support movement in a direction orthogonal to the optical axis in a state in which the position in the optical axis direction of the shake compensation carrier 400 is not changed. Friction can be suppressed around the ball 520. Grease may be applied.
오토포커스 캐리어(300)의 상면과 떨림보정 캐리어(400)의 하면은 대체적으로 평면 형태로 형성되는 것이 바람직하다. 그러나 경우에 따라서 오토포커스 캐리어(300)의 상면과 떨림보정 캐리어(400)의 하면에서 볼(520)이 접하는 부분에 홈이 형성되어 볼(520)의 일부가 홈이 수용되는 형태로 형성될 수도 있다.The upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400 are preferably formed in a planar shape. However, in some cases, a groove is formed in a portion where the ball 520 is in contact with the upper surface of the autofocus carrier 300 and the lower surface of the shake compensation carrier 400, so that a portion of the ball 520 may be formed in a shape in which the groove is accommodated. have.
오토포커스용 자석(610)과 떨림보정용 자석(710)은 각각 오토포커스용 자석 결합부(302)와 떨림보정용 자석 결합부(402)에 결합될 수 있다. 오토포커스용 자석(610)은 오토포커스 구동부(600)의 일부이다. 떨림보정용 자석(710)은 떨림보정 구동부(700)의 일부이다.The autofocus magnet 610 and the shake compensation magnet 710 may be coupled to the autofocus magnet coupling part 302 and the shake compensation magnet coupling part 402, respectively. The autofocus magnet 610 is part of the autofocus driver 600. The shake compensation magnet 710 is a part of the shake compensation driver 700.
오토포커스용 자석(610)과 떨림보정용 자석(710)은 육면체로 형성될 수 있다.육면체 형태의 오토포커스용 자석(610)과 떨림보정용 자석(710)은 일측면과 그와 대향되는 측면이 상대적으로 다른 면보다 큰 판형 형태로 형성될 수 있다. 구체적으로, 큰 측면에 해당하는 면이 오토포커스용 캐리어와 떨림보정 캐리어(400)의 외측을 향하도록 결합될 수 있다.The autofocus magnet 610 and the shake compensation magnet 710 may be formed of a hexahedron. The hexahedral shape autofocus magnet 610 and the shake compensation magnet 710 have one side and a side opposite thereto. It may be formed in a plate shape larger than the other surface. In detail, a surface corresponding to a large side surface may be coupled to face the outer side of the carrier for autofocus and the shake compensation carrier 400.
오토포커스용 자석(610)과 떨림보정용 자석(710)은 동일한 개수로 형성되고, 오토포커스 캐리어(300)와 떨림보정 캐리어(400)가 쌓아지는 형태로 배치되었을 때, 상하로 겹치는 형태로 위치할 수 있다. 구체적으로, 오토포커스용 자석(610)의 상부에 떨림보정용 자석(710)이 위치할 수 있다. 이에 따라, 오토포커스용 자석(610)의 상면과 떨림보정용 자석(710)의 하면이 서로 대향되게 된다.The autofocus magnet 610 and the shake compensation magnet 710 are formed in the same number, and when the autofocus carrier 300 and the shake compensation carrier 400 are arranged in a stacked form, they are positioned to overlap each other. Can be. In detail, the shake compensation magnet 710 may be positioned on the autofocus magnet 610. Accordingly, the upper surface of the autofocus magnet 610 and the lower surface of the shake compensation magnet 710 are opposed to each other.
서로 대향되는 오토포커스용 자석(610)과 떨림보정용 자석(710) 사이에는 서로 당기는 인력이 작용된다. 구체적으로, 오토포커스용 자석(610)의 상면과 떨림보정용 자석(710)의 하면이 서로 다른 극성을 가지도록 형성되어 자기장에 의한 인력이 발생할 수 있다.이에 따라, 떨림보정 캐리어(400)가 오토포커스 캐리어(300) 측에 밀착될 수 있다. 구체적으로, 떨림보정 캐리어(400)의 하면이 볼 베어링(500)을 사이에 두고 오토포커스 캐리어(300)의 상면에 밀착되게 된다.The attraction force is applied between the autofocus magnet 610 and the vibration compensation magnet 710 facing each other. In detail, the top surface of the autofocus magnet 610 and the bottom surface of the shake compensation magnet 710 may be formed to have different polarities, thereby causing attraction by a magnetic field. Accordingly, the shake compensation carrier 400 may be automatically It may be in close contact with the focus carrier 300 side. Specifically, the lower surface of the shake compensation carrier 400 is in close contact with the upper surface of the autofocus carrier 300 with the ball bearing 500 therebetween.
또한, 떨림보정 캐리어(400)가 떨림보정 구동부(700)에 의해 광축에 직교하는 방향으로 이동한 후, 외력이 제거되면 오토포커스용 자석(610)과 떨림보정용 자석(710) 사이의 인력에 의해 초기 위치로 복귀하게 된다.In addition, after the shake compensation carrier 400 moves in the direction orthogonal to the optical axis by the shake compensation driver 700, when the external force is removed, the attraction force between the autofocus magnet 610 and the shake compensation magnet 710 is reduced. It will return to the initial position.
도 11은 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 베이스 중 오토포커스용 코일 홀더에 스프링을 통해 결합된 것을 도시한 사시도이다.도 12 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 베이스 중 오토포커스용 코일 홀더에 스프링을 통해 결합된 것을 분해하여 도시한 사시도이다.도 13은 도 11의 EE'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.도 14는 도 11의 FF'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 11 is a perspective view illustrating that a lens barrel, an autofocus carrier, an anti-shake carrier, a ball bearing, and a magnet are coupled to an autofocus coil holder of a base through a spring of the lens driving apparatus of the present invention. FIG. A perspective view of the lens barrel, the autofocus carrier, the stabilizer carrier, the ball bearing, and the magnet of the lens driving device, in which the base is coupled to the coil holder for autofocus through a spring. 11 is a cross-sectional view of a part of the lens driving apparatus according to the exemplary embodiment of the present invention, which is cut away.
오토포커스 구동부(600)는 오토포커스 캐리어(300)에 결합된 적어도 하나의 오토포커스용 자석(610) 및 베이스(200)에 결합되고, 오토포커스용 자석(610)과 적어도 일부가 대향되는 적어도 하나의 오토포커스용 코일(620)을 포함한다.The autofocus driver 600 is coupled to the at least one autofocus magnet 610 and the base 200 coupled to the autofocus carrier 300 and at least one of which faces at least a portion of the autofocus magnet 610. Autofocus coil 620 is included.
오토포커스용 코일 홀더(220)에는 오토포커스용 코일(620)이 결합된다. 오토포커스용 코일(620)은 광축을 중심으로 하여 권선된 형태로 형성된다. 구체적으로, 오토포커스용 코일(620)은 오토포커스용 코일 홀더(220)를 보빈으로 하여 광축을 중심으로 나선형 또는 동심원 형태로 권선된 것이다.따라서 오토포커스용 코일(620)의 내주면이 오토포커스용 자석(610)의 외측면과 대향되도록 배치될 수 있다. 여기서, 오토포커스용 코일(620)의 내주면과 오토포커스용 자석(610)의 외측면 사이에는 오토포커스 캐리어(300)의 일부가 위치할 수 있다.The autofocus coil 620 is coupled to the autofocus coil holder 220. The autofocus coil 620 is formed to be wound around an optical axis. Specifically, the autofocus coil 620 is wound in a spiral or concentric shape around the optical axis using the autofocus coil holder 220 as a bobbin. Therefore, the inner circumferential surface of the autofocus coil 620 is for autofocus. It may be disposed to face the outer surface of the magnet 610. Here, a part of the autofocus carrier 300 may be located between the inner circumferential surface of the autofocus coil 620 and the outer surface of the autofocus magnet 610.
오토포커스용 코일(620)은 양단이 연성회로기판(240)의 코일 연결 단자(242)에 연결되어 외부로부터 전기 신호를 공급받을 수 있다.Both ends of the autofocus coil 620 may be connected to the coil connection terminal 242 of the flexible circuit board 240 to receive an electric signal from the outside.
오토포커스 구동부(600)는 오토포커스용 자석(610)과 오토포커스용 코일(620) 사이의 상호 작용에 의해 오토포커스 캐리어(300)를 구동시킨다. 구체적으로, 오토포커스용 자석(610)의 착자된 극성과 오토포커스용 코일(620)에 인가되는 전류의 방향에 따라, 오토포커스 캐리어(300)에 광축 방향의 힘이 가해진다.The autofocus driver 600 drives the autofocus carrier 300 by an interaction between the autofocus magnet 610 and the autofocus coil 620. Specifically, a force in the optical axis direction is applied to the autofocus carrier 300 according to the magnetized polarity of the autofocus magnet 610 and the direction of the current applied to the autofocus coil 620.
오토포커스 캐리어(300)는 오토포커스 구동부(600)에 의해 광축 방향으로 이동하게 된다. 이 때, 광축방향으로 이동한다는 것은 베이스(200)를 기준으로 광축 방향으로 이동한다는 것을 의미한다. 도 8 및 도 9에서는 베이스(200) 중 일부인 오토포커스용 코일 홀더(220)만을 도시하였고, 오토포커스 캐리어(300)는 오토포커스용 코일 홀더(220)에 대해 광축 방향으로 이동할 수 있다.The autofocus carrier 300 is moved in the optical axis direction by the autofocus driver 600. In this case, moving in the optical axis direction means moving in the optical axis direction with respect to the base 200. 8 and 9 illustrate only the autofocus coil holder 220 which is a part of the base 200, and the autofocus carrier 300 may move in the optical axis direction with respect to the autofocus coil holder 220.
오토포커스 캐리어(300)가 광축 방향으로 이동함에 따라 오토포커스 캐리어(300)의 상부에 위치하는 떨림보정 캐리어(400)도 함께 광축 방향으로 이동하게 된다. 그리고 떨림보정 캐리어(400)와 고정 결합된 렌즈 배럴(100)도 함께 광축 방향으로 이동하게 된다.As the autofocus carrier 300 moves in the optical axis direction, the shake compensation carrier 400 positioned above the autofocus carrier 300 also moves in the optical axis direction. In addition, the lens barrel 100 fixedly coupled to the shake compensation carrier 400 also moves in the optical axis direction.
스프링(800)은 오토포커스 캐리어(300)가 베이스(200)에 대해 광축 방향으로 이동가능하도록 지지한다.구체적으로, 스프링(800)의 일단은 베이스(200) 부분에 결합되고 타단은 오토포커스 캐리어(300) 부분에 결합되고, 광축 방향으로 탄성 변형되어 오토포커스 캐리어(300)가 광축 방향으로 이동하는 것을 지지하게 된다.The spring 800 supports the autofocus carrier 300 to be movable in the optical axis direction with respect to the base 200. Specifically, one end of the spring 800 is coupled to the base 200 portion and the other end is the autofocus carrier. It is coupled to the portion 300, and elastically deformed in the optical axis direction to support the movement of the autofocus carrier 300 in the optical axis direction.
구체적으로, 스프링(800)은 판 스프링의 형태로 형성될 수 있다.판 스프링(800)은 외주부(801) 및 내주부(802)를 포함할 수 있다. 내주부(802)는 오토포커스 캐리어(300)와 결합하는 이동부(803) 및 외주부(801)와 이동부(803)를 연결하는 연결부(804)를 포함할 수 있다. 판 스프링(800)은 내주부(802) 내측에 개구가 형성될 수 있다. 판 스프링(800)의 이동부(803)는 외주부(801)에 대해서 광축 방향으로 움직일 수 있다. 이러한 과정에서 연결부(804)의 형태서 탄성 변형될 수 있다.Specifically, the spring 800 may be formed in the form of a leaf spring. The leaf spring 800 may include an outer circumferential portion 801 and an inner circumferential portion 802. The inner circumference 802 may include a moving part 803 coupled to the autofocus carrier 300, and a connecting part 804 connecting the outer circumference part 801 and the moving part 803. The leaf spring 800 may have an opening formed inside the inner circumference 802. The moving part 803 of the leaf spring 800 may move in the optical axis direction with respect to the outer circumferential part 801. In this process, the connection part 804 may be elastically deformed.
판 스프링(800)의 외주부(801)는 이동부(803)에 대해서 상대적으로 고정되어 결합된 부분이다.판 스프링(800)의 외주부(801)는 베이스(200)에 결합된다. 구체적으로 판 스프링(800)의 외주부(801)는 베이스(200) 중 오토포커스용 코일 홀더(220)에 결합될 수 있다. 또한, 판 스프링(800)의 내주부(802) 중 이동부(803)는 오토포커스 캐리어(300)에 결합될 수 있다.The outer circumference 801 of the leaf spring 800 is a portion fixedly coupled to the moving part 803. The outer circumference 801 of the leaf spring 800 is coupled to the base 200. In detail, the outer circumferential portion 801 of the leaf spring 800 may be coupled to the autofocus coil holder 220 of the base 200. In addition, the moving part 803 of the inner circumferential part 802 of the leaf spring 800 may be coupled to the autofocus carrier 300.
스프링(800)은 하나 또는 둘 이상이 형성될 수 있다. 예를 들어, 스프링(800)은 상부 스프링(810)과 하부 스프링(820)으로 구성될 수 있다. 상부 스프링(810)은 하부 스프링(820)보다 오토포커스 캐리어(300)의 상부에 결합될 수 있다. 구체적으로, 상부 스프링(810)은 오토포커스 캐리어(300)의 상면 부근에 결합되고, 하부 스프링(820)은 오토포커스 캐리어(300)의 하면 부근에 결합되는 것일 수 있다.One or more springs 800 may be formed. For example, the spring 800 may be composed of an upper spring 810 and a lower spring 820. The upper spring 810 may be coupled to an upper portion of the autofocus carrier 300 than the lower spring 820. Specifically, the upper spring 810 may be coupled to the vicinity of the upper surface of the autofocus carrier 300, the lower spring 820 may be coupled to the vicinity of the lower surface of the autofocus carrier 300.
오토포커스 구동부(600)에 의해 오토포커스 캐리어(300)가 광축 방향으로 이동하는 경우, 스프링(800)은 탄성 변형되어 이동을 지지하게 된다. 그리고 오토포커스 캐리어(300)에 오토포커스 구동부(600)에 의한 외력이 제거된 경우에는, 오토포커스 캐리어(300)는 스프링(800)의 복원력에 의해 초기 위치로 복귀하게 된다.When the autofocus carrier 300 moves in the optical axis direction by the autofocus driver 600, the spring 800 is elastically deformed to support the movement. When the external force of the autofocus driver 600 is removed from the autofocus carrier 300, the autofocus carrier 300 returns to the initial position by the restoring force of the spring 800.
도 15는 본 발명의 렌즈 구동 장치의 렌즈 배럴, 오토포커스 캐리어, 떨림보정 캐리어, 볼 베어링, 자석이 떨림보정용 코일에 대향되어 배치된 것을 도시한 사시도이다. 도 16은 도 15의 GG'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다. 도 17은 도 15의 HH'선으로 절단한 본 발명의 일 실시예에 따른 렌즈 구동 장치 일부의 단면도이다.FIG. 15 is a perspective view showing a lens barrel, an autofocus carrier, a shake compensation carrier, a ball bearing, and a magnet disposed opposite to a shake compensation coil of the lens driving device of the present invention. FIG. 16 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line GG ′ of FIG. 15. FIG. 17 is a cross-sectional view of a portion of the lens driving apparatus according to the exemplary embodiment of the present invention, cut along the line HH ′ of FIG. 15.
떨림보정 구동부(700)는 떨림보정 캐리어(400)에 결합된 적어도 하나의 떨림보정용 자석(710) 및 베이스(200)에 결합되고, 떨림보정용 자석(710)과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일(720)을 포함한다.The vibration correction driver 700 is coupled to the at least one vibration correction magnet 710 and the base 200 coupled to the vibration correction carrier 400, and at least one vibration that at least partially faces the vibration correction magnet 710. The correction coil 720 is included.
떨림보정용 코일 홀더(230)에는 떨림보정용 코일(720)이 결합된다. 떨림보정용 코일(720)은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태로 형성된다. 떨림보정용 코일(720)은 오토포커스용 코일(620)과 서로 직교하는 방향으로 배향될 수 있다. 떨림보정용 코일(720)의 권선된 면은 떨림보정용 자석(710)의 측면과 대향되도록 배치된다. 떨림보정용 코일(720)은 복수 개가 형성되어, 복수 개의 떨림보정용 자석(710)과 대향될 수 있다.The vibration correction coil 720 is coupled to the vibration correction coil holder 230. The vibration compensation coil 720 is formed in a wound form about an axis in a direction orthogonal to the optical axis. The vibration compensation coil 720 may be oriented in a direction orthogonal to each other with the autofocus coil 620. The wound surface of the shake compensation coil 720 is disposed to face the side of the shake compensation magnet 710. A plurality of vibration correction coils 720 may be formed to face the plurality of vibration correction magnets 710.
떨림보정용 코일(720)은 양단이 연성회로기판(240)의 코일 연결 단자(242)에 연결되어 외부로부터 전기 신호를 공급받을 수 있다.Both ends of the vibration correction coil 720 may be connected to the coil connection terminal 242 of the flexible circuit board 240 to receive an electric signal from the outside.
떨림보정 구동부(700)는 떨림보정용 자석(710)과 떨림보정용 코일(720) 사이의 상호 작용에 의해 떨림보정 캐리어(400)를 구동시킨다. 구체적으로, 떨림보정 구동부(700)는 제1 떨림보정 구동부와 제2 떨림보정 구동부를 포함할 수 있다.제1 떨림보정 구동부는 제2 떨림보정 구동부와 서로 직교하는 방향으로 떨림보정 캐리어(400)를 구동시킨다. 예를 들어, 제1 떨림보정 구동부는 x축 방향으로 떨림보정 캐리어(400)를 이동시키고, 제2 떨림보정 구동부는 y축 방향으로 떨림보정 캐리어(400)를 이동시키는 것일 수 있다. 제1, 제2 떨림보정 구동부(700)는 각각 떨림보정용 자석(710)과 떨림보정용 코일(720)을 포함할 수 있다. 제1 떨림보정 구동부의 자석, 코일과 제2 떨림보정 구동부의 자석, 코일은 서로 직교하도록 배향될 수 있다.The shake compensation driver 700 drives the shake compensation carrier 400 by an interaction between the shake compensation magnet 710 and the shake compensation coil 720. In detail, the shake compensation driving unit 700 may include a first shake correction driving unit and a second shake correction driving unit. The first shake correction driving unit may be orthogonal to the second shake correction driving unit in a direction perpendicular to each other. Drive. For example, the first shake compensation driving unit may move the shake compensation carrier 400 in the x-axis direction, and the second shake compensation driving unit may move the shake compensation carrier 400 in the y-axis direction. The first and second shake compensation driver 700 may include a shake correction magnet 710 and a shake correction coil 720, respectively. The magnet, the coil, and the magnet and the coil of the second shake compensation driver of the first shake compensation driver may be oriented to be orthogonal to each other.
떨림보정 구동부(700)에 의해 떨림보정 캐리어(400)가 광축에 직교하는 방향으로 이동하는 것은, 떨림보정 캐리어(400)가 오토포커스 캐리어(300) 상에서 볼 베어링(500)에 의해 지지된 상태로 이동하는 것을 의미한다.Movement of the shake compensation carrier 400 in the direction orthogonal to the optical axis by the shake compensation driver 700 is performed in a state in which the shake compensation carrier 400 is supported by the ball bearing 500 on the autofocus carrier 300. It means to move.
떨림보정 구동부(700)에 의해 떨림보정 캐리어(400)가 이동하는 것은 렌즈 구동 장치가 탑재된 카메라 모듈 자체가 손 떨림 등에 의해 흔들리는 것을 보정하는 것일 수 있다. 따라서 카메라 모듈 자체가 흔들림에도 불구하고 선명한 품질의 이미지를 얻을 수 있다.The movement of the vibration correction carrier 400 by the vibration compensation driver 700 may be to compensate for the shaking of the camera module itself on which the lens driving apparatus is mounted due to hand shaking. Therefore, even if the camera module itself is shaken, a clear image can be obtained.
다시 도 2 내지 도 4를 참조하면, 위치 감지 센서(900)는 연성회로기판(240)에 결합된다. 위치 감지 센서(900)는 오토포커스용 자석(610) 및/또는 떨림보정용 자석(710)과 대향되도록 결합된다.2 to 4, the position sensor 900 is coupled to the flexible circuit board 240. The position sensor 900 is coupled to face the autofocus magnet 610 and / or the shake compensation magnet 710.
위치 감지 센서(900)가 오토포커스용 자석(610)과 대향되게 결합되는 경우, 위치 감지 센서(900)는 오토포커스 캐리어(300)의 광축 방향의 이동을 감지할 수 있다. 위치 감지 센서(900)는 자력의 변화를 감지하는 홀 센서일 수 있다. 위치 감지 센서(900)와 오토포커스용 자석(610)의 거리가 변화됨에 따라 오토포커스 캐리어(300)의 광축 방향의 이동을 감지하는 것이다.When the position detection sensor 900 is coupled to face the autofocus magnet 610, the position detection sensor 900 may detect a movement in the optical axis direction of the autofocus carrier 300. The position sensor 900 may be a hall sensor that detects a change in magnetic force. As the distance between the position sensor 900 and the autofocus magnet 610 changes, the movement of the autofocus carrier 300 in the optical axis direction is detected.
위치 감지 센서(900)가 떨림보정용 자석(710)과 대향되게 결합되는 경우, 위치 감지 센서(900)는 떨림보정 캐리어(400)의 광축 방향 또는 광축에 직교하는 방향의 이동을 감지할 수 있다. 여기서도 위치 감지 센서(900)는 홀 센서일 수 있다. 위치 감지 센서(900)가 떨림보정 캐리어(400)의 광축 방향의 이동에 따라 자기력의 변화를 감지하도록 배치되면, 위치 감지 센서(900)는 떨림보정 캐리어(400)의 광축 방향의 이동을 감지할 수 있다. 또한, 위치 감지 센서(900)가 떨림보정 캐리어(400)의 광축에 직교하는 방향의 이동에 따라 자기력의 변화를 감지하도록 배치되면, 위치 감지 센서(900)는 떨림보정 캐리어(400)의 광축에 직교하는 방향의 이동을 감지할 수 있다.When the position detecting sensor 900 is coupled to face the anti-shake correction magnet 710, the position detecting sensor 900 may detect a movement in the optical axis direction or a direction orthogonal to the optical axis of the shake compensation carrier 400. Here too, the position sensor 900 may be a hall sensor. When the position detection sensor 900 is arranged to detect a change in the magnetic force in accordance with the movement of the optical axis direction of the shake compensation carrier 400, the position detection sensor 900 may detect the movement of the optical axis direction of the shake compensation carrier 400. Can be. In addition, when the position detection sensor 900 is arranged to detect a change in the magnetic force in accordance with the movement in the direction orthogonal to the optical axis of the shake compensation carrier 400, the position detection sensor 900 to the optical axis of the shake compensation carrier 400 The movement in the orthogonal direction can be detected.
본 발명의 렌즈 구동 장치는 오토포커스 캐리어(300)가 스프링(800)에 의해 지지되기 때문에 오토포커스 캐리어(300)가 안정적으로 구동될 수 있다. 또한, 떨림보정을 위해서 캐리어를 구동하는 경우, 오토포커스 캐리어(300)와는 별도로 떨림보정 캐리어(400)만 단독 구동되므로 정교한 구동이 가능하다. 또한, 오토포커스 캐리어(300) 및 오토포커스 구동부(600)를 조립한 이후에, 떨림보정 캐리어(400) 및 떨림보정 구동부(700)를 조립하는 것이 가능하여 두 공정이 분리될 수 있다. 이로 인해 공정의 간소화 및 효율 증가를 도모할 수 있다.In the lens driving apparatus of the present invention, since the autofocus carrier 300 is supported by the spring 800, the autofocus carrier 300 may be stably driven. In addition, when the carrier is driven for the shake compensation, since the shake compensation carrier 400 is driven independently of the autofocus carrier 300, precise driving is possible. In addition, after assembling the autofocus carrier 300 and the autofocus driver 600, it is possible to assemble the shake compensation carrier 400 and the shake compensation driver 700, so that the two processes may be separated. This can simplify the process and increase the efficiency.
이상, 본 발명의 렌즈 구동 장치의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the lens driving apparatus of the present invention have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.

Claims (22)

  1. 렌즈가 수용된 렌즈 배럴을 포함하는 렌즈 구동 장치에 있어서,A lens driving apparatus comprising a lens barrel in which a lens is accommodated,
    베이스;Base;
    상기 베이스 상에 배치되는 오토포커스 캐리어;An autofocus carrier disposed on the base;
    상기 오토포커스 캐리어를 광축 방향으로 이동시키는 오토포커스 구동부;An autofocus driver for moving the autofocus carrier in an optical axis direction;
    상기 오토포커스 캐리어의 상부에 위치하는 떨림보정 캐리어;An anti-shake carrier positioned on an upper portion of the autofocus carrier;
    상기 떨림보정 캐리어를 광축에 직교하는 방향으로 이동시키는 떨림보정 구동부;A shake correction driver for moving the shake correction carrier in a direction orthogonal to the optical axis;
    상기 오토포커스 캐리어가 상기 베이스에 대해 광축 방향으로 이동가능하도록 지지하는 적어도 하나의 스프링; 및At least one spring supporting the autofocus carrier to be movable in an optical axis direction with respect to the base; And
    상기 오토포커스 캐리어와 상기 떨림보정 캐리어 사이에 위치하는 적어도 하나의 볼 베어링을 포함하는 렌즈 구동 장치.And at least one ball bearing positioned between the autofocus carrier and the shake compensation carrier.
  2. 제1 항에 있어서,According to claim 1,
    싱기 스프링은 상부 스프링 및 상기 상부 스프링보다 하부에 위치하는 하부 스프링을 포함하는 렌즈 구동 장치.The singer spring includes a top spring and a bottom spring positioned below the top spring.
  3. 제1 항에 있어서,According to claim 1,
    상기 스프링은 판 스프링으로 형성되는 렌즈 구동 장치.The spring is a lens driving device formed of a leaf spring.
  4. 제1 항에 있어서,According to claim 1,
    상기 스프링은 외주부 및 상기 외주부에서 내측으로 연장되고, 상기 외주부에 대해서 광축 방향으로 탄성 변형될 수 있는 내주부를 포함하고,The spring includes an outer circumference portion and an inner circumference portion extending inwardly from the outer circumference portion and elastically deformable in the optical axis direction with respect to the outer circumference portion.
    상기 외주부는 상기 베이스에 결합되고, 상기 내주부는 상기 오토포커스 캐리어에 결합되는 렌즈 구동 장치.The outer circumferential portion is coupled to the base, and the inner circumference portion is coupled to the autofocus carrier.
  5. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 구동부는,The autofocus drive unit,
    상기 오토포커스 캐리어에 결합된 적어도 하나의 오토포커스용 자석; 및At least one autofocus magnet coupled to the autofocus carrier; And
    상기 베이스에 결합되고, 상기 오토포커스용 자석과 적어도 일부가 대향되는 적어도 하나의 오토포커스용 코일을 포함하는 렌즈 구동 장치.And at least one autofocus coil coupled to the base and facing at least a portion of the autofocus magnet.
  6. 제5 항에 있어서,The method of claim 5,
    상기 오토포커스용 코일은 광축을 중심으로 하여 권선된 형태인 렌즈 구동 장치.The autofocus coil is a lens driving device that is wound around the optical axis.
  7. 제5 항에 있어서,The method of claim 5,
    상기 베이스에 결합된 연성회로기판을 더 포함하고,Further comprising a flexible circuit board coupled to the base,
    상기 오토포커스용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기신호를 전달받는 렌즈 구동 장치.The autofocus coil is coupled to the flexible circuit board to receive an electric signal from a circuit formed on the flexible circuit board.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 연성회로기판에 상기 오토포커스용 자석과 대향되도록 결합되어,Coupled to the flexible circuit board so as to face the autofocus magnet,
    상기 오토포커스 캐리어의 광축 방향의 이동을 감지하는 위치 감지 센서를 더 포함하는 렌즈 구동 장치.The lens driving device further comprises a position sensor for detecting the movement of the autofocus carrier in the optical axis direction.
  9. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 구동부는,The shake compensation driving unit,
    상기 떨림보정 캐리어에 결합된 적어도 하나의 떨림보정용 자석; 및At least one shake correction magnet coupled to the shake correction carrier; And
    상기 베이스에 결합되고, 상기 떨림보정용 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함하는 렌즈 구동 장치.And at least one shake correction coil coupled to the base and facing at least a portion of the shake correction magnet.
  10. 제9 항에 있어서,The method of claim 9,
    상기 떨림보정용 코일은 광축에 직교하는 방향의 축을 중심으로 하여 권선된 형태인 렌즈 구동 장치.The vibration correction coil is a lens driving apparatus having a shape wound around an axis in a direction perpendicular to the optical axis.
  11. 제9 항에 있어서,The method of claim 9,
    상기 베이스에 결합된 연성회로기판을 더 포함하고,Further comprising a flexible circuit board coupled to the base,
    상기 떨림보정용 코일은 상기 연성회로기판에 결합되어 상기 연성회로기판에 형성된 회로로부터 전기신호를 전달받는 렌즈 구동 장치.The vibration compensating coil is coupled to the flexible circuit board to receive an electrical signal from a circuit formed on the flexible circuit board.
  12. 제11 항에 있어서,The method of claim 11, wherein
    상기 연성회로기판에 상기 떨림보정용 자석과 대향되도록 결합되어,It is coupled to the flexible circuit board so as to face the shake compensation magnet,
    상기 떨림보정용 캐리어의 광축 방향 또는 광축에 직교하는 방향의 이동을 감지하는 위치 감지 센서를 더 포함하는 렌즈 구동 장치.The lens driving device further comprises a position sensor for detecting the movement in the optical axis direction or the direction orthogonal to the optical axis of the shake compensation carrier.
  13. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 구동부는,The autofocus drive unit,
    상기 오토포커스 캐리어에 결합된 적어도 하나의 오토포커스용 자석; 및At least one autofocus magnet coupled to the autofocus carrier; And
    상기 베이스에 결합되고, 상기 오토포커스용 자석과 적어도 일부가 대향되는 적어도 하나의 오토포커스용 코일을 포함하고,At least one autofocus coil coupled to the base, the at least one opposing the autofocus magnet;
    상기 떨림보정 구동부는,The shake compensation driving unit,
    상기 떨림보정 캐리어에 결합된 적어도 하나의 떨림보정용 자석; 및At least one shake correction magnet coupled to the shake correction carrier; And
    상기 베이스에 결합되고, 상기 떨림보정용 자석과 적어도 일부가 대향되는 적어도 하나의 떨림보정용 코일을 포함하고,At least one vibration compensation coil coupled to the base and facing at least a portion of the vibration correction magnet;
    상기 오토포커스용 자석과 상기 떨림보정용 자석은 적어도 일부가 서로 대향되도록 배치되는 렌즈 구동 장치.And the autofocus magnet and the shake compensation magnet are arranged so that at least a portion thereof faces each other.
  14. 제13 항에 있어서,The method of claim 13,
    상기 서로 대향하는 오토포커스용 자석과 떨림보정용 자석 사이에는 인력이 작용하는 렌즈 구동 장치.An attraction force is applied between the opposing autofocus magnet and the shake compensation magnet.
  15. 제13 항에 있어서,The method of claim 13,
    상기 서로 대향하는 오토포커스용 자석과 떨림보정용 자석은 서로 대향되는 부분이 서로 다른 극성을 가지는 렌즈 구동 장치.The lens driving apparatus of the autofocus magnet and the vibration correction magnet, which face each other, have polarities different from each other.
  16. 제13 항에 있어서,The method of claim 13,
    상기 오토포커스용 자석과 상기 떨림보정용 자석은 서로 동일한 개수로 형성되는 렌즈 구동 장치.And the autofocus magnet and the shake compensation magnet are formed in the same number.
  17. 제13 항에 있어서,The method of claim 13,
    상기 오토포커스용 코일 및 상기 떨림보정용 코일은 각각 상기 오토포커스용 자석 및 상기 떨림보정용 자석의 측면에 대향되도록 배치되고,The autofocus coil and the shake correction coil are disposed to face the sides of the autofocus magnet and the shake correction magnet, respectively.
    상기 오토포커스용 자석의 상면과 상기 떨림보정용 자석의 하면이 서로 대향되도록 배치되는 렌즈 구동 장치.And a top surface of the autofocus magnet and a bottom surface of the shake compensation magnet to face each other.
  18. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 캐리어는 상기 볼 베어링을 사이에 두고 상기 오토포커스 캐리어에 밀착되게 위치하는 렌즈 구동 장치.And the shake compensation carrier is positioned in close contact with the autofocus carrier with the ball bearing therebetween.
  19. 제1 항에 있어서,According to claim 1,
    상기 떨림보정 캐리어는 상기 오토포커스 캐리어에 상대적으로 광축에 직교하는 방향으로 이동하는 렌즈 구동 장치.And the shake compensation carrier moves in a direction orthogonal to the optical axis relative to the autofocus carrier.
  20. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 캐리어가 광축 방향으로 이동하는 경우, 상기 떨림보정 캐리어는 상기 오토포커스 캐리어와 함께 광축 방향으로 이동하게 되는 렌즈 구동 장치.And when the autofocus carrier moves in the optical axis direction, the shake compensation carrier moves in the optical axis direction together with the autofocus carrier.
  21. 제1 항에 있어서,According to claim 1,
    상기 렌즈 배럴은 상기 오토포커스용 캐리어의 광축 방향의 이동에 따라 광축 방향으로 이동하고, 상기 떨림보정 캐리어의 광축에 직교하는 방향의 이동에 따라 광축에 직교하는 방향으로 이동하는 렌즈 구동 장치.And the lens barrel moves in the optical axis direction according to the movement of the optical axis direction of the autofocus carrier, and moves in the direction orthogonal to the optical axis in accordance with the movement of the direction orthogonal to the optical axis of the shake compensation carrier.
  22. 제1 항에 있어서,According to claim 1,
    상기 오토포커스 캐리어는 상기 베이스의 하면과 이격되어 위치하는 렌즈 구동 장치.And the autofocus carrier is spaced apart from the bottom surface of the base.
PCT/KR2016/002890 2016-03-22 2016-03-23 Lens driving device WO2017164432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160033748A KR102595275B1 (en) 2016-03-22 2016-03-22 Lens driving device
KR10-2016-0033748 2016-03-22

Publications (1)

Publication Number Publication Date
WO2017164432A1 true WO2017164432A1 (en) 2017-09-28

Family

ID=59899572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002890 WO2017164432A1 (en) 2016-03-22 2016-03-23 Lens driving device

Country Status (2)

Country Link
KR (1) KR102595275B1 (en)
WO (1) WO2017164432A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112698465A (en) * 2020-12-30 2021-04-23 维沃移动通信有限公司 Camera module and electronic equipment
WO2021159275A1 (en) * 2020-02-11 2021-08-19 Huawei Technologies Co., Ltd. Apparatus for moving a lens unit
CN113934086A (en) * 2020-06-26 2022-01-14 三星电机株式会社 Camera module and electronic device
CN114859628A (en) * 2021-02-04 2022-08-05 三星电机株式会社 Camera module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154200B1 (en) * 2018-12-07 2020-09-09 삼성전기주식회사 Camera module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024944A (en) * 2011-07-15 2013-02-04 Mitsumi Electric Co Ltd Lens driving device
KR101421223B1 (en) * 2014-03-25 2014-07-22 넥스타테크놀로지 주식회사 A camera module having the AF and the OIS function
KR101518825B1 (en) * 2013-11-08 2015-05-13 자화전자(주) camera module actuator
KR20150117237A (en) * 2015-09-25 2015-10-19 자화전자(주) Camera lens module
KR20160023386A (en) * 2014-08-22 2016-03-03 엘지이노텍 주식회사 Lens moving unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166262B1 (en) * 2013-06-10 2020-10-15 삼성전자주식회사 Camera lens assembly
KR101725442B1 (en) * 2014-03-07 2017-04-11 자화전자(주) Camera lens module
JP5760116B2 (en) * 2014-04-14 2015-08-05 シャープ株式会社 The camera module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024944A (en) * 2011-07-15 2013-02-04 Mitsumi Electric Co Ltd Lens driving device
KR101518825B1 (en) * 2013-11-08 2015-05-13 자화전자(주) camera module actuator
KR101421223B1 (en) * 2014-03-25 2014-07-22 넥스타테크놀로지 주식회사 A camera module having the AF and the OIS function
KR20160023386A (en) * 2014-08-22 2016-03-03 엘지이노텍 주식회사 Lens moving unit
KR20150117237A (en) * 2015-09-25 2015-10-19 자화전자(주) Camera lens module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159275A1 (en) * 2020-02-11 2021-08-19 Huawei Technologies Co., Ltd. Apparatus for moving a lens unit
CN115087900A (en) * 2020-02-11 2022-09-20 华为技术有限公司 Device for moving lens unit
CN115087900B (en) * 2020-02-11 2023-10-20 华为技术有限公司 Device for moving lens unit
CN113934086A (en) * 2020-06-26 2022-01-14 三星电机株式会社 Camera module and electronic device
CN113934086B (en) * 2020-06-26 2024-01-16 三星电机株式会社 Camera module and electronic device
CN112698465A (en) * 2020-12-30 2021-04-23 维沃移动通信有限公司 Camera module and electronic equipment
CN114859628A (en) * 2021-02-04 2022-08-05 三星电机株式会社 Camera module

Also Published As

Publication number Publication date
KR102595275B1 (en) 2023-10-27
KR20170109764A (en) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2017164432A1 (en) Lens driving device
WO2015046761A1 (en) Camera actuator for portable terminal having autofocusing and image stabilization functions
WO2014003281A1 (en) Camera module
WO2015060637A1 (en) Camera lens module
WO2015133725A1 (en) Camera lens module
WO2014092271A1 (en) Optical adjusting apparatus
WO2014142622A1 (en) Lens actuator
WO2014157998A1 (en) Camera lens module
WO2018155964A1 (en) Ois camera module
WO2015130051A1 (en) Lens driving motor
WO2015026064A1 (en) Camera module, and position detector and position detection method used in the camera module
WO2017105010A1 (en) Optical actuator
WO2015147385A1 (en) Camera module having autofocus and optical image stabilization functions
WO2015026078A1 (en) Camera module
EP2646874A1 (en) Camera module
WO2016137083A1 (en) Stabilizing device for shaking of camera
WO2016137081A1 (en) Stabilizing device for shaking of camera and camera lens module comprising same
WO2014003280A1 (en) Camera module
WO2016006780A1 (en) Camera lens module
WO2019031817A1 (en) Lens driving apparatus, camera module, and optical device
WO2014003492A1 (en) Camera module
EP2870507A1 (en) Camera module
WO2020045960A1 (en) Sensor driving device and camera module
WO2017164435A1 (en) Lens driving device
WO2019143116A1 (en) Lens assembly and camera module comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895560

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895560

Country of ref document: EP

Kind code of ref document: A1