WO2016136885A1 - 医療用材料の製造方法、医療用材料、及び癒着防止材 - Google Patents

医療用材料の製造方法、医療用材料、及び癒着防止材 Download PDF

Info

Publication number
WO2016136885A1
WO2016136885A1 PCT/JP2016/055655 JP2016055655W WO2016136885A1 WO 2016136885 A1 WO2016136885 A1 WO 2016136885A1 JP 2016055655 W JP2016055655 W JP 2016055655W WO 2016136885 A1 WO2016136885 A1 WO 2016136885A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
medical material
polyanionic polysaccharide
acid
anhydride
Prior art date
Application number
PCT/JP2016/055655
Other languages
English (en)
French (fr)
Inventor
康幸 礒野
泰晴 野一色
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to JP2017502470A priority Critical patent/JP6298576B2/ja
Priority to CN201680011184.9A priority patent/CN107249657A/zh
Priority to US15/548,711 priority patent/US20180000994A1/en
Priority to EP16755629.9A priority patent/EP3263146A4/en
Publication of WO2016136885A1 publication Critical patent/WO2016136885A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/041Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/23Carbohydrates
    • A61L2300/236Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/424Anti-adhesion agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a method for producing a medical material, a medical material, and an adhesion preventing material.
  • Polyanionic polysaccharides such as hyaluronic acid and alginic acid are known to exhibit moderate viscosity, tackiness, moisture retention, and biocompatibility. For this reason, these polyanionic polysaccharides and salts thereof are widely used as raw materials for medical materials, food materials, cosmetic materials and the like.
  • hyaluronic acid is used in various applications such as foods, cosmetics, and pharmaceuticals because of its excellent physical properties such as water retention and high safety and biocompatibility.
  • hyaluronic acid is used as a raw material for joint lubricants and anti-adhesion materials.
  • sodium hyaluronate as a raw material has high water solubility, it is necessary to perform some insolubilization treatment depending on the application.
  • Patent Document 1 describes a method for producing a water-insoluble derivative of a polyanionic polysaccharide such as hyaluronic acid or carboxymethylcellulose by a crosslinking reaction using carbodiimide.
  • Patent Documents 2 and 3 describe a method for water insolubilizing polyanionic polysaccharides such as hyaluronic acid and carboxyalkyl cellulose by ionic bonding using a polyvalent cation. Furthermore, Patent Document 4 describes a method for obtaining a water-insolubilized film by ion-exchanging carboxymethyl cellulose using a metal salt.
  • Patent Document 5 describes a method in which an aqueous sodium hyaluronate solution is cooled to ⁇ 20 ° C. under acidic conditions to form intramolecular crosslinks and thereby insolubilize in water.
  • Patent Document 6 describes that acetylation is performed by reacting powdered hyaluronic acid and acetic anhydride in the presence of concentrated sulfuric acid.
  • Patent Document 7 describes a method for producing a hyaluronic acid gel using an acidic liquid containing alcohol.
  • Patent Document 1 uses a cross-linking agent, it is often difficult to apply when considering the safety of uses such as pharmaceuticals given to the human body.
  • Patent Documents 2 to 4 do not describe any degree of water insolubility of the obtained film or the like.
  • Patent Document 5 Furthermore, in the method described in Patent Document 5, it is necessary to adjust the pH of the sodium hyaluronate aqueous solution to about 1.2, and the viscosity increases remarkably, so that handling such as molding is difficult. In addition, since freeze-drying over a long period of time, there is a problem in terms of power cost required for cooling. Furthermore, when the sodium hyaluronate aqueous solution is placed under acidic conditions, the viscosity increases rapidly, so that molding becomes difficult and uses may be limited. In Patent Document 5, the intramolecular cross-linked structure is confirmed, but the degree of insolubilization is not mentioned.
  • Patent Document 6 does not describe any degree of water insolubility of the obtained acetylated product of hyaluronic acid. Furthermore, since the hyaluronic acid gel obtained by the method described in Patent Document 7 contains a large amount of moisture, it is difficult to lift. For this reason, it is difficult to insolubilize while maintaining the shape of the molded body.
  • the present invention has been made in view of such problems of the prior art, and the problem is that the original characteristics of the polyanionic polysaccharide as a raw material are maintained, and a chemical crosslinking agent is used.
  • An object of the present invention is to provide a method for producing a medical material having high safety and moderate strength and flexibility because it does not need to be used.
  • the place made into the subject of this invention is providing the medical material manufactured by said method, and an adhesion prevention material.
  • the manufacturing method of the medical material shown below is provided.
  • the first polyanionic polysaccharide powder or granular material that has been insolubilized with the treatment liquid containing the first acid anhydride is dispersed in an aqueous solution of a water-soluble salt of the second polyanionic polysaccharide.
  • a step of obtaining the material is provided.
  • adhesion prevention material shown below is provided.
  • An adhesion preventing material comprising a polyhydric alcohol or a polyhydric alcohol aqueous solution retained in the medical material according to [4].
  • the original characteristics of the polyanionic polysaccharide as a raw material are maintained, and since there is no need to use a chemical crosslinking agent, the safety is high, and an appropriate strength and A medical material having flexibility can be easily produced.
  • the first polyanionic polysaccharide powder or granular material that has been water-insolubilized with the treatment liquid containing the first acid anhydride is used as the second polyanionic polysaccharide in water.
  • a step of obtaining a dispersion by dispersing in an aqueous solution of a salt (dispersion step), a step of obtaining a dry film by drying the obtained dispersion (drying step), and a step of obtaining the resulting dry membrane with a second acid.
  • a process for obtaining a medical material by water insolubilization with a treatment liquid containing an anhydride water insolubilization process). The details will be described below.
  • the first polyanionic polysaccharide powder or granule used in the dispersion step is, for example, a water-insoluble treatment of a water-soluble salt powder of the first polyanionic polysaccharide with a treatment liquid containing the first acid anhydride. You can get it.
  • a sponge-like raw material molded body made of a raw material containing a water-soluble salt of the first polyanionic polysaccharide is subjected to water insolubilization treatment with a treatment liquid containing the first acid anhydride, and then a cutter mill or the like is used.
  • the powder or granular material of the first polyanionic polysaccharide can also be obtained by pulverizing and the like.
  • the sponge-like raw material molded body can be produced, for example, by pouring an aqueous solution of a water-soluble salt of the first polyanionic polysaccharide into a suitable container, followed by drying or freeze-drying.
  • the first polyanionic polysaccharide is a polysaccharide having one or more negatively charged anionic groups such as a carboxy group and a sulfonic acid group in its molecular structure.
  • the water-soluble salt of the first polyanionic polysaccharide is a salt in which at least a part of the anionic group in the first polyanionic polysaccharide forms a salt.
  • the anionic group in the first polyanionic polysaccharide may be introduced into the polysaccharide molecule.
  • the first polyanionic polysaccharide examples include carboxyalkyl cellulose such as carboxymethyl cellulose and carboxyethyl cellulose, carboxymethyl starch, carboxymethyl amylose, chondroitin sulfate (including chondroitin-4-sulfate and chondroitin-6-sulfate), Examples include hyaluronic acid, heparin, heparin sulfate, heparan sulfate, alginic acid, pectin, carrageenan, dermatan sulfate, and dermatan-6-sulfate. These 1st polyanionic polysaccharides can be used individually by 1 type or in combination of 2 or more types.
  • water-soluble salt of the first polyanionic polysaccharide examples include inorganic salts, ammonium salts, and organic amine salts.
  • inorganic salt examples include alkali metal salts such as sodium and potassium; alkaline earth metal salts such as calcium salts; metal salts such as zinc and iron.
  • the treatment liquid used for water-insolubilizing the powder of the water-soluble salt of the first polyanionic polysaccharide contains the first acid anhydride.
  • the acid anhydride include acetic anhydride, propionic anhydride, succinic anhydride, butyric anhydride, phthalic anhydride, and maleic anhydride. Of these, acetic anhydride and propionic anhydride are preferable. These acid anhydrides can be used singly or in combination of two or more.
  • the treatment liquid preferably further contains at least one medium of water and a water-soluble organic solvent, and the first acid anhydride is preferably dissolved or dispersed in this medium.
  • the water-soluble salt powder of the first polyanionic polysaccharide can be sufficiently and insoluble in water.
  • water-soluble organic solvent examples include methanol, ethanol, propanol, dimethyl sulfoxide (DMSO), acetonitrile, and tetrahydrofuran. Of these, methanol, ethanol, and dimethyl sulfoxide are preferable. These water-soluble organic solvents can be used alone or in combination of two or more.
  • the concentration of the first acid anhydride in the treatment liquid is usually 0.1 to 50% by mass, and preferably 5 to 30% by mass.
  • concentration of the first acid anhydride is less than 0.1% by mass, the degree of water insolubilization tends to be insufficient, or it takes a long time for water insolubilization.
  • concentration of the first acid anhydride exceeds 50% by mass, the effect tends to reach a peak.
  • the treatment liquid preferably contains water as a medium.
  • the content of water in the treatment liquid is preferably 0.01 to 50% by mass, more preferably 5 to 20% by mass. If the content of water in the treatment liquid is less than 0.01% by mass, water insolubilization may be insufficient with a solvent other than methanol. Further, when the content of water in the treatment liquid is more than 50% by mass, the water-soluble salt powder of the first polyanionic polysaccharide may be easily dissolved.
  • the powder or granular material of the first polyanionic polysaccharide and the aqueous solution of the water-soluble salt of the second polyanionic polysaccharide are mixed and stirred appropriately, the powder of the first polyanionic polysaccharide is added to the aqueous solution.
  • a dispersion in which etc. are dispersed can be obtained.
  • As a 2nd polyanionic polysaccharide the thing similar to the above-mentioned 1st polyanionic polysaccharide can be used.
  • the first polyanionic polysaccharide and the second polyanionic polysaccharide may be the same or different.
  • the dispersion may further contain a radiopaque agent such as a contrast agent such as barium sulfate.
  • the obtained dispersion is dried to obtain a dry film.
  • the dried film obtained in the drying step is water insolubilized with a treatment liquid containing the second acid anhydride to obtain a medical material.
  • a 2nd acid anhydride the thing similar to the above-mentioned 1st acid anhydride can be used.
  • the first acid anhydride and the second acid anhydride may be the same or different.
  • the dry film is treated with a treatment liquid containing the second acid anhydride, so that the dry film is insolubilized while maintaining its shape.
  • the method of treating the dry film with the treatment liquid is not particularly limited, but it is preferable to treat the treatment liquid so that the treatment liquid contacts the entire dry film and penetrates into the dry film.
  • Specific treatment methods include a method of immersing the dry film in the treatment liquid, and applying or spraying (spraying) the treatment liquid onto the dry film.
  • the temperature during the water insolubilization treatment is not particularly limited as long as it does not exceed the boiling point of the treatment liquid. From the viewpoint of suppressing the degradation and modification of the polyanionic polysaccharide and suppressing the volatilization of the medium and by-products, the temperature during the water insolubilization treatment is preferably 0 to 80 ° C, and preferably 0 to 70 ° C. It is more preferable that the temperature is room temperature (25 ° C.) to 60 ° C. However, if the treatment liquid is not volatilized during the water insolubilization treatment, for example, heat treatment or a heat roller, the medical material can be obtained in a shorter time without causing degradation and modification.
  • the temperature during the water insolubilization treatment is preferably 50 to 90 ° C., and the treatment time is preferably 30 minutes or less.
  • the medical material of the present invention can be obtained by washing with water or a water-soluble organic solvent as necessary.
  • reaction assumed when a molded body formed using a sodium salt of a polyanionic polysaccharide is treated with an alcohol solution of acetic anhydride is shown below.
  • the assumed reaction can be one factor of water insolubilization, there is a possibility that water insolubilization is caused by a combination with other water insolubilization factors or completely different factors. That is, this invention is not limited at all by the following reaction assumed.
  • R 1 represents the main chain of the polyanionic polysaccharide
  • R 2 represents the main chain of the alcohol.
  • the medical material of the present invention does not require the use of a chemical cross-linking agent during production, structures such as functional groups derived from the chemical cross-linking agent are not incorporated into the molecule. For this reason, the medical material of the present invention retains the original characteristics of the polyanionic polysaccharide as a raw material and has high safety. Further, the medical material of the present invention produced as described above has appropriate strength and flexibility. Therefore, the medical material of the present invention is suitable as an adhesion preventing material. In the case where the medical material of the present invention is used as a constituent material of the adhesion preventing material, the thickness of the medical material is not particularly limited, but is preferably 20 to 200 ⁇ m, more preferably 60 to 120 ⁇ m.
  • the molecules of the polyanionic polysaccharide constituting the medical material of the present invention are not substantially crosslinked. Furthermore, a new covalent bond is not substantially formed in the polyanionic polysaccharide. However, it is presumed that physical bonds such as hydrogen bonds, hydrophobic bonds, and van der Waals forces are formed between the molecules of the polyanionic polysaccharide. The fact that such a physical bond is formed between molecules of the polyanionic polysaccharide can be confirmed by measuring an infrared absorption spectrum.
  • the medical material of the present invention is stable and water-insoluble in a wide pH range from acidic to alkaline. However, when the medical material of the present invention is brought into contact with or immersed in an aqueous medium having a pH of 12 or more, the physical bond between molecules is dissociated and can be easily dissolved.
  • the anti-adhesion material of the present invention is obtained by holding a polyhydric alcohol or a polyhydric alcohol aqueous solution on the aforementioned medical material.
  • the polyhydric alcohol include ethylene glycol, diethylene glycol, polyethylene glycol, methylglycerol, polyoxyelene glycoside, maltitol, mannitol, xylitol, sorbitol, reduced starch syrup, dipropylene glycol, butylene glycol, valine, propylene glycol, Examples thereof include glycerin (glycerol), polyglycerin, and glycerin fatty acid ester.
  • polyhydric alcohols used in the medical field and food field such as glycerin, xylitol, sorbitol, and low molecular weight polyethylene glycol are preferably used. These suitably used polyhydric alcohols can be obtained from the market and used as they are. As for glycerin, sorbitol, etc., it is desirable to use those suitable for the Japanese Pharmacopoeia. Glycerin is particularly preferable because it is a material that is safe enough to be used as an intravenous injection.
  • Examples of the method for retaining the polyhydric alcohol or the polyhydric alcohol aqueous solution in the medical material include a method of immersing the medical material in the polyhydric alcohol or a polyhydric alcohol aqueous solution having a predetermined concentration. That is, the medical material is immersed in a polyhydric alcohol aqueous solution, and the inside of the medical material is replaced with the polyhydric alcohol aqueous solution, so that the polyhydric alcohol aqueous solution having a desired concentration is retained, and the desired An anti-adhesion material can be obtained.
  • the thickness of the adhesion preventing material of the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m, and more preferably 60 to 120 ⁇ m.
  • Example 1 1.0 g of sodium hyaluronate powder (molecular weight: 800,000 Da) was dispersed in 100 mL of 80% aqueous ethanol. After heating to 50 ° C. with stirring, 20 mL of acetic acid-free acetic acid was added and the mixture was further heated and stirred for 1 hour. The precipitate collected by centrifugation was washed with ethanol and water, dried and pulverized to obtain a hyaluronic acid powder.
  • hyaluronic acid powder-hyaluronic acid composite film had moderate strength and flexibility.
  • Example 2 50 mL of a 1% aqueous solution of sodium hyaluronate (molecular weight: 800,000 Da) was poured into a stainless tray having a length of 12 cm and a width of 10 cm and frozen in a ⁇ 80 ° C. freezer. The frozen product was vacuum freeze-dried (vacuum degree-20 Pa, shelf temperature 25 ° C.) to obtain a sponge composed of sodium hyaluronate. The obtained sponge was immersed in a treatment solution (20% acetic anhydride / 80% ethanol solution) and left at 50 ° C. for 1 hour for water insolubilization treatment to obtain a sponge composed of hyaluronic acid.
  • a treatment solution (20% acetic anhydride / 80% ethanol solution
  • the sponge obtained using the cutter mill was pulverized to obtain a crushed product (granular material) of hyaluronic acid.
  • 0.5 g of the obtained crushed material was dispersed in 50 mL of a 1% sodium hyaluronate (molecular weight 800,000 Da) aqueous solution, poured into a stainless steel tray having a length of 12 cm and a width of 10 cm, and then dried in a constant temperature bath at 20 ° C.
  • a dry film was obtained.
  • the obtained dried film is immersed in a treatment solution (20% acetic anhydride / 80% ethanol solution), left to stand at 50 ° C.
  • hyaluronic acid crushed material granular material
  • hyaluronic acid composite film had appropriate strength and flexibility.
  • Example 3 The composite membrane produced in Example 1 was immersed in a 10% by volume glycerin aqueous solution, then air-dried and sealed in a sterilization bag. By irradiating 25 kGy of radiation and sterilizing the entire sterilization bag, an adhesion prevention film having a thickness of about 50 ⁇ m was obtained.
  • An adult dog (beagle dog, female, 1.5 years old, weight about 10 kg) was opened after general anesthesia treatment, and the epidermis epidermis was peeled into 3 cm square. The abdomen was closed by placing an anti-adhesion membrane over the peeled portion. Two weeks later, the dog was opened after general anesthesia, and no adhesions occurred.
  • the anti-adhesion membrane placed (implanted) in the dog's body disappeared two weeks after implantation.
  • the carboxy group of hyaluronic acid that constitutes the anti-adhesion membrane is gradually neutralized by sodium ions etc. in the living body, converted into soluble hyaluronate, dissolved, and absorbed into the living body.
  • adhesion occurred in the peeled portion and the intestine in dogs that were closed without placing an anti-adhesion membrane.
  • the medical material of the present invention is useful as a material for constituting an adhesion preventing material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

 原料であるポリアニオン性多糖類本来の特性が保持されているとともに、化学架橋剤を用いる必要がないため安全性が高く、かつ、適度な強度及び柔軟性を有する医療用材料を製造する方法を提供する。第1の酸無水物を含む処理液で水不溶化処理された第1のポリアニオン性多糖類の粉末又は粒状物を、第2のポリアニオン性多糖類の水溶性塩の水溶液に分散させて分散液を得る工程と、得られた分散液を乾燥させて乾燥膜を得る工程と、得られた乾燥膜を、第2の酸無水物を含む処理液で水不溶化処理して医療用材料を得る工程と、を有する医療用材料の製造方法である。

Description

医療用材料の製造方法、医療用材料、及び癒着防止材
 本発明は、医療用材料の製造方法、医療用材料、及び癒着防止材に関する。
 ヒアルロン酸やアルギン酸等のポリアニオン性多糖類は、適度な粘性、粘着性、保湿性、及び生体適合性を示すことが知られている。このため、これらのポリアニオン性多糖類及びその塩は、医療用材料、食品用材料、及び化粧品用材料等の原材料として幅広く用いられている。
 なかでもヒアルロン酸は、保水性などの特徴的な物性に優れているとともに、安全性及び生体適合性が高いことから、食品、化粧品、及び医薬品等の様々な用途に利用されている。例えば医療分野では、ヒアルロン酸は関節潤滑剤や癒着防止材の原料などに利用されている。但し、原料となるヒアルロン酸ナトリウムは水溶性が高いため、用途によっては何らかの不溶化処理を施す必要がある。
 これまで、カルボキシ基を利用した架橋反応によりヒアルロン酸ナトリウムを水不溶化させる方法について種々検討されている。例えば、特許文献1には、カルボジイミドを用いた架橋反応により、ヒアルロン酸やカルボキシメチルセルロース等のポリアニオン性多糖類の非水溶性誘導体を製造する方法が記載されている。
 また、特許文献2及び3には、多価カチオンを用いてイオン結合させることにより、ヒアルロン酸やカルボキシアルキルセルロース等のポリアニオン性多糖類を水不溶化させる方法が記載されている。さらに、特許文献4には、金属塩を用いてカルボキシメチルセルロースをイオン交換し、水不溶化フィルムを得る方法が記載されている。
 そして、特許文献5には、ヒアルロン酸ナトリウム水溶液を酸性条件下で-20℃に冷却し、分子内架橋を形成させて水不溶化する方法が記載されている。また、特許文献6には、粉末状ヒアルロン酸と無水酢酸とを濃硫酸の存在下で反応させてアセチル化することが記載されている。さらに、特許文献7には、アルコールを含む酸性の液を用いてヒアルロン酸ゲルを製造する方法が記載されている。
特表2003-518167号公報 特開平5-124968号公報 特開2008-13510号公報 特開平6-128395号公報 特開2003-252905号公報 特開平8-53501号公報 特開平5-58881号公報
 しかしながら、特許文献1に記載の方法では架橋剤を用いるため、医薬品等の人体に付与される用途等の安全性を考慮する場合には適用が困難な場合が多い。また、特許文献2~4には、得られたフィルム等の水不溶性の程度については一切記載されていない。
 さらに、特許文献5に記載の方法では、ヒアルロン酸ナトリウム水溶液のpHを1.2程度に調整する必要があるとともに、粘度が著しく上昇するため、成形等の取扱いが困難である。また、長期間にわたって凍結乾燥するため、冷却に要する電力コストの面においても課題があった。さらに、ヒアルロン酸ナトリウム水溶液を酸性条件下におくと粘度が急激に上昇するため、成形が困難になり、用途が限定される場合がある。なお、特許文献5においては、分子内の架橋構造を確認しているが、不溶化の程度については言及していない。
 また、特許文献6には、得られたヒアルロン酸のアセチル化物の水不溶性の程度については一切記載されていない。さらに、特許文献7に記載の方法で得られるヒアルロン酸ゲルは多量の水分を含むため、持ち上げることも難しい。このため、成形体の形状を維持したまま不溶化することは困難である。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、原料であるポリアニオン性多糖類本来の特性が保持されているとともに、化学架橋剤を用いる必要がないため安全性が高く、かつ、適度な強度及び柔軟性を有する医療用材料を製造する方法を提供することにある。また、本発明の課題とするところは、上記の方法によって製造される医療用材料、及び癒着防止材を提供することにある。
 すなわち、本発明によれば、以下に示す医療用材料の製造方法が提供される。
 [1]第1の酸無水物を含む処理液で水不溶化処理された第1のポリアニオン性多糖類の粉末又は粒状物を、第2のポリアニオン性多糖類の水溶性塩の水溶液に分散させて分散液を得る工程と、得られた前記分散液を乾燥させて乾燥膜を得る工程と、得られた前記乾燥膜を、第2の酸無水物を含む処理液で水不溶化処理して医療用材料を得る工程と、を有する医療用材料の製造方法。
 [2]前記第1のポリアニオン性多糖類及び前記第2のポリアニオン性多糖類が、それぞれ、ヒアルロン酸、カルボキシメチルセルロース、及びアルギン酸からなる群より選択される少なくとも一種である前記[1]に記載の医療用材料の製造方法。
 [3]前記第1の酸無水物及び前記第2の酸無水物が、それぞれ、無水酢酸及び無水プロピオン酸の少なくともいずれかである前記[1]又は[2]に記載の医療用材料の製造方法。
 また、本発明によれば、以下に示す医療用材料が提供される。
 [4]前記[1]~[3]のいずれかに記載の製造方法によって製造された医療用材料。
 さらに、本発明によれば、以下に示す癒着防止材が提供される。
 [5]前記[4]に記載の医療用材料に多価アルコール又は多価アルコール水溶液が保持されてなる癒着防止材。
 本発明の医療用材料の製造方法によれば、原料であるポリアニオン性多糖類本来の特性が保持されているとともに、化学架橋剤を用いる必要がないため安全性が高く、かつ、適度な強度及び柔軟性を有する医療用材料を簡便に製造することができる。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。
(医療用材料及びその製造方法)
 本発明の医療用材料の製造方法は、第1の酸無水物を含む処理液で水不溶化処理された第1のポリアニオン性多糖類の粉末又は粒状物を、第2のポリアニオン性多糖類の水溶性塩の水溶液に分散させて分散液を得る工程(分散工程)と、得られた分散液を乾燥させて乾燥膜を得る工程(乾燥工程)と、得られた乾燥膜を、第2の酸無水物を含む処理液で水不溶化処理して医療用材料を得る工程(水不溶化処理工程)とを有する。以下、その詳細について説明する。
 分散工程で使用する第1のポリアニオン性多糖類の粉末又は粒状物は、例えば、第1のポリアニオン性多糖類の水溶性塩の粉末を、第1の酸無水物を含む処理液で水不溶化処理することで得ることができる。また、第1のポリアニオン性多糖類の水溶性塩を含有する原材料からなるスポンジ状の原料成形体を、第1の酸無水物を含む処理液で水不溶化処理した後、カッターミル等を使用して粉砕等することによっても、第1のポリアニオン性多糖類の粉末又は粒状物を得ることができる。なお、スポンジ状の原料成形体は、例えば、第1のポリアニオン性多糖類の水溶性塩の水溶液を適当な容器に流し入れた後、乾燥又は凍結乾燥することによって製造することができる。
 第1のポリアニオン性多糖類は、カルボキシ基やスルホン酸基等の負電荷を帯びた1以上のアニオン性基をその分子構造中に有する多糖類である。また、第1のポリアニオン性多糖類の水溶性塩は、第1のポリアニオン性多糖類中のアニオン性基の少なくとも一部が塩を形成したものである。なお、第1のポリアニオン性多糖類中のアニオン性基は、多糖類の分子中に導入されたものであってもよい。
 第1のポリアニオン性多糖類の具体例としては、カルボキシメチルセルロースやカルボキシエチルセルロース等のカルボキシアルキルセルロース、カルボキシメチルでんぷん、カルボキシメチルアミロース、コンドロイチン硫酸(コンドロイチン-4-硫酸及びコンドロイチン-6-硫酸を含む)、ヒアルロン酸、ヘパリン、ヘパリン硫酸、ヘパラン硫酸、アルギン酸、ペクチン、カラギーナン、デルマタン硫酸、及びデルマタン-6-硫酸等を挙げることができる。これらの第1のポリアニオン性多糖類は、一種単独で又は二種以上を組み合わせて用いることができる。
 第1のポリアニオン性多糖類の水溶性塩としては、無機塩、アンモニウム塩、及び有機アミン塩等を挙げることができる。無機塩の具体例としては、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩;亜鉛、鉄等の金属塩等を挙げることができる。
 第1のポリアニオン性多糖類の水溶性塩の粉末を水不溶化処理するために用いる処理液は、第1の酸無水物を含有する。酸無水物の具体例としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水酪酸、無水フタル酸、及び無水マレイン酸等を挙げることができる。なかでも、無水酢酸及び無水プロピオン酸が好ましい。これらの酸無水物は、一種単独で又は二種以上を組み合わせて用いることができる。
 処理液は、水及び水溶性有機溶媒の少なくともいずれかの媒体をさらに含むとともに、この媒体中に第1の酸無水物が溶解又は分散していることが好ましい。このような媒体中に第1の酸無水物が溶解又は分散した処理液を使用することで、第1のポリアニオン性多糖類の水溶性塩の粉末を十分かつ速やかに水不溶化させることができる。
 水溶性有機溶媒の具体例としては、メタノール、エタノール、プロパノール、ジメチルスルホキシド(DMSO)、アセトニトリル、及びテトラヒドロフラン等を挙げることができる。なかでも、メタノール、エタノール、及びジメチルスルホキシドが好ましい。これらの水溶性有機溶媒は、一種単独で又は二種以上を組み合わせて用いることができる。
 処理液中の第1の酸無水物の濃度は、通常、0.1~50質量%であり、5~30質量%であることが好ましい。第1の酸無水物の濃度が0.1質量%未満であると、水不溶化の程度が不十分になる、或いは水不溶化に長時間を要する傾向にある。一方、第1の酸無水物の濃度が50質量%を超えると、効果が頭打ちになる傾向にある。
 第1のポリアニオン性多糖類の水溶性塩の粉末をより十分かつ速やかに水不溶化させる観点から、処理液が媒体として水を含有することが好ましい。処理液中の水の含有量は、0.01~50質量%であることが好ましく、5~20質量%であることがさらに好ましい。処理液中の水の含有量が0.01質量%未満であると、メタノール以外の溶媒では水不溶化が不十分となる場合がある。また、処理液中の水の含有量が50質量%超であると、第1のポリアニオン性多糖類の水溶性塩の粉末が溶解しやすくなる場合がある。
 第1のポリアニオン性多糖類の粉末又は粒状物と、第2のポリアニオン性多糖類の水溶性塩の水溶液とを混合し、適宜撹拌等すれば、水溶液中に第1のポリアニオン性多糖類の粉末等が分散した分散液を得ることができる。第2のポリアニオン性多糖類としては、前述の第1のポリアニオン性多糖類と同様のものを用いることができる。第1のポリアニオン性多糖類と第2のポリアニオン性多糖類は、同一であっても異なっていてもよい。なお分散液には、さらに、硫酸バリウム等の造影剤をはじめとするX線不透過剤を含有させてもよい。
 乾燥工程では、得られた分散液を乾燥させて乾燥膜を得る。そして、水不溶化処理工程では、乾燥工程で得た乾燥膜を、第2の酸無水物を含む処理液で水不溶化処理して医療用材料を得る。第2の酸無水物としては、前述の第1の酸無水物と同様のものを用いることができる。第1の酸無水物と第2の酸無水物は、同一であっても異なっていてもよい。
 水不溶化処理工程において、第2の酸無水物を含む処理液で乾燥膜を処理することによって、乾燥膜がその形状を維持したまま水不溶化される。乾燥膜を処理液で処理する方法は特に限定されないが、乾燥膜の全体に処理液が接触するとともに、乾燥膜の内部にまで処理液が浸透するように処理することが好ましい。具体的な処理方法としては、乾燥膜を処理液中に浸漬する、乾燥膜に処理液を塗布又は吹き付ける(噴霧する)等の方法を挙げることができる。
 水不溶化処理の際の温度は、処理液の沸点を超えない温度であればよく、特に限定されない。ポリアニオン性多糖類の分解変性を抑制する観点、及び媒体や副生成物等の揮散を抑制する観点からは、水不溶化処理の際の温度は0~80℃とすることが好ましく、0~70℃とすることがさらに好ましく、室温(25℃)~60℃とすることが特に好ましい。但し、水不溶化処理の際に処理液が揮散しない条件、例えば、ヒートプレスや熱ローラー等により処理すれば、分解変性等が生ずることなく、より短時間で医療用材料を得ることができる。例えば、ヒートプレスや熱ローラー等により水不溶化処理する場合、水不溶化処理の際の温度は50~90℃とすることが好ましく、処理時間は30分以下とすることが好ましい。水不溶化処理後、必要に応じて水や水溶性有機溶媒等を用いて洗浄すること等によって、本発明の医療用材料を得ることができる。
 ポリアニオン性多糖類のナトリウム塩を用いて形成した成形体を、無水酢酸のアルコール溶液で処理した場合に想定される反応を以下に示す。なお、想定した反応が水不溶化の一つの要因とはなりうるが、他の水不溶化要因との組み合わせ、あるいは全く別の要因により水不溶化している可能性もある。すなわち、本発明は想定される以下の反応によって何ら限定されるものではない。
Figure JPOXMLDOC01-appb-I000001
 反応式(1)中、R1はポリアニオン性多糖類の主鎖を示し、R2はアルコールの主鎖を示す。無水酢酸はアルコール存在下で開裂する際に、ポリアニオン性多糖類のナトリウムを奪い、カルボキシ基がナトリウム塩型から酸型となる。この点については、Na含量の測定又はアルカリ溶液による滴定によって確認することができる。
 反応系に水が存在する場合には、上記反応式(1)で示される反応の他に、下記式(2)で示される反応が同時に進行し、カルボキシ基がナトリウム塩型から酸型となると予想される。
Figure JPOXMLDOC01-appb-I000002
 なお、得られる医療用材料においては、分子中のすべてのアニオン性基が酸型となっていなくてもよい。
 ポリアニオン性多糖類の水溶性塩を用いて形成した成形体等を塩酸等の無機酸や酢酸等の有機酸に浸漬しても、十分に水不溶化した成形体を得ることは極めて困難である。また、処理液中の酸無水物を、この酸無水物に対応する酸に置き換えても水不溶化した成形体を得ることはできない。このことから、ポリアニオン性多糖類のアニオン基が酸型に変化する以外の要因も加わって水不溶化すると予想される。
 本発明の医療用材料は、製造時に化学的架橋剤を用いる必要がないため、分子中に化学的架橋剤に由来する官能基等の構造が取り込まれることがない。このため、本発明の医療用材料は、原料であるポリアニオン性多糖類本来の特性が保持されているとともに、安全性が高い。また、上記のようにして製造される本発明の医療用材料は、適度な強度及び柔軟性を有している。したがって、本発明の医療用材料は癒着防止材等として好適である。なお、本発明の医療用材料を癒着防止材の構成材料として用いる場合、医療用材料の厚さは特に限定されないが、好ましくは20~200μmであり、さらに好ましくは60~120μmである。
 本発明の医療用材料を構成するポリアニオン性多糖類の分子は、実質的に架橋していない。さらに、ポリアニオン性多糖類には、新たな共有結合が実質的に形成されていない。但し、ポリアニオン性多糖類の分子間には、水素結合、疎水結合、及びファンデルワールス力などの物理的結合が形成されていると推測される。そのような物理的結合がポリアニオン性多糖類の分子間で形成されている点については、赤外吸収スペクトルを測定することによって確認することができる。
 本発明の医療用材料は、酸性からアルカリ性までの広範なpH域において安定して水不溶性なものである。但し、本発明の医療用材料は、例えばpH12以上の水性媒体に接触又は浸漬等した場合には、分子間同士の物理的結合が解離して容易に溶解しうる。
(癒着防止材)
 本発明の癒着防止材は、前述の医療用材料に多価アルコール又は多価アルコール水溶液が保持されてなるものである。多価アルコールの具体例としては、エチレングルコール、ジエチレングリコール、ポリエチレングリコール、メチルグリセロール、ポリオキシエレングリコシド、マルチトール、マンニトール、キシリトール、ソルビトール、還元水飴、ジプロピレングリコール、ブチレングリコール、バリン、プロピレングリコール、グリセリン(グリセロール)、ポリグリセリン、グリセリン脂肪酸エステル等を挙げることができる。なかでも、グリセリン、キシリトール、ソルビトール、低分子ポリエチレングリコール等、医療分野や食品分野で使用されている多価アルコールが好適に用いられる。これらの好適に用いられる多価アルコールは、市場から入手してそのまま使用できる。グリセリン、ソルビトール等については、日本薬局方に適合したものを用いることが望ましい。グリセリンは、静脈への注射剤としても使用されるほど安全性の高い素材であるために特に好ましい。
 医療用材料に多価アルコール又は多価アルコール水溶液を保持させる方法としては、例えば、医療用材料を多価アルコール又は所定濃度の多価アルコール水溶液に浸漬する方法等がある。すなわち、医療用材料を多価アルコール水溶液に浸漬し、医療用材料の内部を多価アルコール水溶液で置換することで、所望とする濃度の多価アルコール水溶液を保持させて、所望とする本発明の癒着防止材を得ることができる。なお、本発明の癒着防止材の厚さは特に限定されないが、好ましくは20~200μmであり、さらに好ましくは60~120μmである。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
(実施例1)
 ヒアルロン酸ナトリウム(分子量80万Da)の粉末1.0gを80%エタノール水溶液100mLに分散させた。撹拌下で50℃に加熱した後、無酢酢酸20mLを添加してさらに1時間加熱撹拌した。遠心分離して回収した沈殿をエタノール及び水で洗浄した後、乾燥及び粉砕して、ヒアルロン酸粉末を得た。得られたヒアルロン酸粉末0.5gを1%ヒアルロン酸ナトリウム(分子量80万Da)水溶液50mL中に分散させ、縦12cm×横10cmのステンレストレイに流し込んだ後、20℃の恒温槽内で乾燥させて乾燥膜を得た。得られた乾燥膜を処理液(20%無水酢酸/80%エタノール溶液)に浸漬し、50℃で1時間放置して水不溶化処理して、厚さ約50μmのヒアルロン酸粉末-ヒアルロン酸複合膜を得た。得られたヒアルロン酸粉末-ヒアルロン酸複合膜は、適度な強度及び柔軟性を有していた。
(実施例2)
 1%ヒアルロン酸ナトリウム(分子量80万Da)水溶液50mLを縦12cm×横10cmのステンレストレイに流し込み、-80℃冷凍庫内で凍結させた。凍結したものを真空凍結乾燥(真空度-20Pa、棚温度25℃)し、ヒアルロン酸ナトリウムからなるスポンジを得た。得られたスポンジを処理液(20%無水酢酸/80%エタノール溶液)に浸漬し、50℃で1時間放置して水不溶化処理して、ヒアルロン酸からなるスポンジを得た。カッターミルを用いて得られたスポンジを粉砕し、ヒアルロン酸の破砕物(粒状物)を得た。得られた破砕物0.5gを1%ヒアルロン酸ナトリウム(分子量80万Da)水溶液50mL中に分散させ、縦12cm×横10cmのステンレストレイに流し込んだ後、20℃の恒温槽内で乾燥させて乾燥膜を得た。得られた乾燥膜を処理液(20%無水酢酸/80%エタノール溶液)に浸漬し、50℃で1時間放置して水不溶化処理して、厚さ約60μmのヒアルロン酸破砕物(粒状物)-ヒアルロン酸複合膜を得た。得られたヒアルロン酸破砕物(粒状物)-ヒアルロン酸複合膜は、適度な強度及び柔軟性を有していた。
(評価1:溶解度試験)
 各実施例で製造した複合膜を2cm角に切断し、直径3.5cm、深さ1.5cmの容器に入れ、PBS緩衝液(pH6.8)5mLを加えた。この容器を37℃に調整した振盪機に入れ、10~20rpmで振盪し、経時的な状態変化を目視観察した。その結果、いずれの複合膜についても、72時間後であっても膜の原形が保持されており、水不溶化されていることが分かった。また、72時間後の膨潤率(膨潤膜/乾燥膜(質量比))は2.4であった。
(比較例1)
 1%ヒアルロン酸ナトリウム(分子量80万Da)水溶液50mLを縦12cm×横10cmのステンレストレイに流し込んだ後、20℃の恒温槽内で乾燥させて乾燥膜を得た。得られた乾燥膜を処理液(20%無水酢酸/80%エタノール溶液)に浸漬し、50℃で1時間放置して水不溶化処理して、厚さ約50μmの水不溶化ヒアルロン酸膜を得た。
(評価2:引張試験)
 JIS K 7311(ポリウレタン系熱可塑性エラストマーの試験方法)に準拠した引張試験を実施し、実施例1で製造した複合膜の引張強度を測定した。まず、蒸留水により十分膨潤させた複合膜をダンベルカッターにより打ち抜き、試験片を作製した。次いで、シングルコラム型の材料試験機(商品名「STA-1150」、エーアンドディ社製)を使用し、クロスヘッド速度10mm/秒で破断強度を測定し、複合膜の引張強度を算出した。実施例1で製造した複合膜の引張強度は、3N/mm2であった。また、同様の手順で測定及び算出した、比較例1で製造した水不溶化ヒアルロン酸膜の引張強度は、1.5N/mm2であった。
(実施例3)
 実施例1で製造した複合膜を、10体積%グリセリン水溶液に浸漬した後、風乾して滅菌用袋に封入した。25kGyの放射線を照射して滅菌用袋ごと滅菌して厚さ約50μmの癒着防止膜を得た。成犬(ビーグル犬、雌、1.5歳、体重約10kg)を全身麻酔処置後に開腹し、腹側壁表皮を3cm角に剥離した。剥離部分を覆うように癒着防止膜を配置して閉腹した。2週間後、同犬を全身麻酔処置後に開腹したところ、癒着は発生していなかった。また、犬の体内に配置(埋植)した癒着防止膜は、埋植後2週間で消失していた。これは、生体内のナトリウムイオン等によって癒着防止膜を構成するヒアルロン酸のカルボキシ基が徐々に中和され、可溶性のヒアルロン酸塩に変化して溶解し、生体内に吸収されたものと推測される。これに対して、癒着防止膜を配置することなく閉腹した犬については、剥離部分と腸に癒着が生じていることが観察された。
 本発明の医療用材料は、癒着防止材を構成するための素材として有用である。

Claims (5)

  1.  第1の酸無水物を含む処理液で水不溶化処理された第1のポリアニオン性多糖類の粉末又は粒状物を、第2のポリアニオン性多糖類の水溶性塩の水溶液に分散させて分散液を得る工程と、
     得られた前記分散液を乾燥させて乾燥膜を得る工程と、
     得られた前記乾燥膜を、第2の酸無水物を含む処理液で水不溶化処理して医療用材料を得る工程と、を有する医療用材料の製造方法。
  2.  前記第1のポリアニオン性多糖類及び前記第2のポリアニオン性多糖類が、それぞれ、ヒアルロン酸、カルボキシメチルセルロース、及びアルギン酸からなる群より選択される少なくとも一種である請求項1に記載の医療用材料の製造方法。
  3.  前記第1の酸無水物及び前記第2の酸無水物が、それぞれ、無水酢酸及び無水プロピオン酸の少なくともいずれかである請求項1又は2に記載の医療用材料の製造方法。
  4.  請求項1~3のいずれか一項に記載の製造方法によって製造された医療用材料。
  5.  請求項4に記載の医療用材料に多価アルコール又は多価アルコール水溶液が保持されてなる癒着防止材。
PCT/JP2016/055655 2015-02-27 2016-02-25 医療用材料の製造方法、医療用材料、及び癒着防止材 WO2016136885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017502470A JP6298576B2 (ja) 2015-02-27 2016-02-25 医療用材料の製造方法、医療用材料、及び癒着防止材
CN201680011184.9A CN107249657A (zh) 2015-02-27 2016-02-25 医疗用材料的制造方法、医疗用材料以及防粘连材料
US15/548,711 US20180000994A1 (en) 2015-02-27 2016-02-25 Method for manufacturing medical material, medical material, and anti-adhesion material
EP16755629.9A EP3263146A4 (en) 2015-02-27 2016-02-25 Method for manufacturing medical material, medical material, and anti-adhesion material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-038008 2015-02-27
JP2015038008 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136885A1 true WO2016136885A1 (ja) 2016-09-01

Family

ID=56788680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055655 WO2016136885A1 (ja) 2015-02-27 2016-02-25 医療用材料の製造方法、医療用材料、及び癒着防止材

Country Status (5)

Country Link
US (1) US20180000994A1 (ja)
EP (1) EP3263146A4 (ja)
JP (1) JP6298576B2 (ja)
CN (1) CN107249657A (ja)
WO (1) WO2016136885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044519A1 (ja) * 2017-09-04 2019-03-07 大日精化工業株式会社 医療用・美容材料の製造方法及び医療用・美容材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309902A (ja) * 1994-05-16 1995-11-28 Seikagaku Kogyo Co Ltd アシル化ヒアルロン酸の製造法
JPH08253504A (ja) * 1994-12-22 1996-10-01 Hercules Inc 架橋された酸性多糖類及びそれらの用途
WO2000049084A1 (fr) * 1999-02-19 2000-08-24 Denki Kagaku Kogyo Kabushiki Kaisha Composition gelifiee a base d'acide hyaluronique, procede de production associe et matiere medicale contenant ladite composition
WO2013018759A1 (ja) * 2011-08-02 2013-02-07 大日精化工業株式会社 癒着防止用医用材料及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959341A (en) * 1989-03-09 1990-09-25 Micro Vesicular Systems, Inc. Biodegradable superabsorbing sponge
AU742675B2 (en) * 1997-08-22 2002-01-10 Denki Kagaku Kogyo Kabushiki Kaisha Hyaluronic acid gel, method of its production and medical material containing it
CA2219399A1 (en) * 1997-10-24 1999-04-24 Bio Syntech Ltd. Bulk formation of monolithic polysaccharide-based hydrogels
JP2000044603A (ja) * 1998-08-03 2000-02-15 Denki Kagaku Kogyo Kk ヒアルロン酸ゲル及びその製造方法
US20040149599A1 (en) * 2002-04-12 2004-08-05 Cho Young Kook Cap device for mixing different kinds of substances separately kept therein within a container
JP4383035B2 (ja) * 2002-10-29 2009-12-16 電気化学工業株式会社 ヒアルロン酸ゲル及びその製造方法
JP2005239687A (ja) * 2004-02-27 2005-09-08 Nobuhiko Yui 嚢胞内投与薬
US7323425B2 (en) * 2004-08-27 2008-01-29 Stony Brook Technology And Applied Research Crosslinking of hyaluronan solutions and nanofiberous membranes made therefrom
US7993678B2 (en) * 2005-09-26 2011-08-09 Novozymes Biopolymer A/S Hyaluronic acid derivatives
WO2015029892A1 (ja) * 2013-08-29 2015-03-05 大日精化工業株式会社 水不溶性成形体の製造方法及び水不溶性成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309902A (ja) * 1994-05-16 1995-11-28 Seikagaku Kogyo Co Ltd アシル化ヒアルロン酸の製造法
JPH08253504A (ja) * 1994-12-22 1996-10-01 Hercules Inc 架橋された酸性多糖類及びそれらの用途
WO2000049084A1 (fr) * 1999-02-19 2000-08-24 Denki Kagaku Kogyo Kabushiki Kaisha Composition gelifiee a base d'acide hyaluronique, procede de production associe et matiere medicale contenant ladite composition
WO2013018759A1 (ja) * 2011-08-02 2013-02-07 大日精化工業株式会社 癒着防止用医用材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3263146A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044519A1 (ja) * 2017-09-04 2019-03-07 大日精化工業株式会社 医療用・美容材料の製造方法及び医療用・美容材料
US11491097B2 (en) 2017-09-04 2022-11-08 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Production method for medical and cosmetic material, and medical and cosmetic material

Also Published As

Publication number Publication date
JPWO2016136885A1 (ja) 2017-08-03
EP3263146A1 (en) 2018-01-03
US20180000994A1 (en) 2018-01-04
EP3263146A4 (en) 2018-06-20
CN107249657A (zh) 2017-10-13
JP6298576B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6077663B2 (ja) 水不溶性成形体の製造方法及び水不溶性成形体
Vasi et al. Chemical functionalization of hyaluronic acid for drug delivery applications
EP1137670A1 (en) Cross-linking process of carboxylated polysaccharides
JP2004323453A (ja) 分解性ゲル及びその製造法
JP6474360B2 (ja) 医療用材料の製造方法、医療用材料、及び癒着防止材
JP6077424B2 (ja) 水不溶性成形体の製造方法及び水不溶性成形体
JP6374088B2 (ja) 医療用材料及び癒着防止材
JP6374089B2 (ja) 医療用・美容材料及び癒着防止材
JP6298576B2 (ja) 医療用材料の製造方法、医療用材料、及び癒着防止材
Nguyen et al. Synthesis of cross-linking chitosan-hyaluronic acid based hydrogels for tissue engineering applications
JP2016163696A (ja) 医療用材料及び癒着防止材
WO2018043532A1 (ja) 水不溶性粉末分散液の製造方法、水不溶性粉末分散液、及び膜状成形体
WO2018043531A1 (ja) 水不溶性成形体の製造方法、水不溶性成形体、及び癒着防止材
JP2019089962A (ja) 高分子成形体の製造方法
JP2019037608A (ja) 柔軟性成形体の製造方法及び柔軟性成形体
JP2019172720A (ja) 水不溶性成形体の製造方法及び水不溶性成形体
JP2019037609A (ja) 癒着防止材
JP2019119769A (ja) 水不溶性成形体の製造方法及び水不溶性成形体
JP2019170423A (ja) 膜状成形体の製造方法及び膜状成形体
Araújo et al. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers 2022, 14, 785
López-Saucedo et al. Hydrogels Based on Natural and/or Synthetic Polymers
MXPA01004723A (en) Cross-linking process of carboxylated polysaccharides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017502470

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15548711

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016755629

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE