WO2016136819A1 - 繊維ガイド - Google Patents

繊維ガイド Download PDF

Info

Publication number
WO2016136819A1
WO2016136819A1 PCT/JP2016/055464 JP2016055464W WO2016136819A1 WO 2016136819 A1 WO2016136819 A1 WO 2016136819A1 JP 2016055464 W JP2016055464 W JP 2016055464W WO 2016136819 A1 WO2016136819 A1 WO 2016136819A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
contact surface
arithmetic average
average roughness
traveling direction
Prior art date
Application number
PCT/JP2016/055464
Other languages
English (en)
French (fr)
Inventor
成宗 犬飼
祐大 遠矢
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP16755563.0A priority Critical patent/EP3248925B1/en
Priority to JP2016546549A priority patent/JP6027298B1/ja
Priority to CN201680011690.8A priority patent/CN107250015B/zh
Publication of WO2016136819A1 publication Critical patent/WO2016136819A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/24Guides for filamentary materials; Supports therefor with wear-resistant surfaces
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • D01D11/04Fixed guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/50Surface of the elements in contact with the forwarded or guided material
    • B65H2404/52Surface of the elements in contact with the forwarded or guided material other geometrical properties
    • B65H2404/522Surface of the elements in contact with the forwarded or guided material other geometrical properties details of surface roughness and/or surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/135Surface texture; e.g. roughness

Definitions

  • This disclosure relates to a fiber guide.
  • Patent Document 1 proposes a fiber guide having a surface roughness Ra of 0.1 ⁇ m or less on a surface in contact with a conveyed fiber bundle.
  • the ratio Ra1 / Ra2 between the arithmetic average roughness Ra1 in the traveling direction of the fiber and the arithmetic average roughness Ra2 in the orthogonal direction perpendicular to the traveling direction is 0 on the yarn contact surface with the fiber. 0.5 or more and less than 1.0.
  • FIG. 1 An example of the fiber guide of this indication is shown typically, (a) is a perspective view of a roller guide, (b) is a perspective view of an oiling nozzle, (c) is a perspective view of a rod guide, d) is a perspective view of the traverse guide. It is the enlarged view which observed the roller guide shown to Fig.1 (a) which is a fiber guide of this indication from the white arrow side.
  • the fiber guide when the arithmetic mean roughness in the direction orthogonal to the traveling direction of the fiber is large on the contact surface of the fiber guide, when the fiber guides the fiber with the fiber guide, the fiber slides on the same portion of the contact surface (hereinafter referred to as the fiber guide). , The same sliding). And if a fiber slides the same, the fiber will be easily damaged by contact with the part beaten by the friction with the fiber.
  • the fiber feed rate has been extremely increased to 3000 to 8000 m / min in order to improve production efficiency.
  • the fibers are more susceptible to damage due to oblique sliding or the same sliding.
  • the fiber guide of the present disclosure can suppress damage to the fiber.
  • the fiber guide of the present disclosure will be described in detail with reference to the drawings.
  • the roller guide 10a shown to Fig.1 (a) guides the fiber 1 by rotating by using the surface of a U-shaped groove as a contact surface.
  • the oiling nozzle 10b shown in FIG. 1 (b) attaches oil to the fiber 1 by sliding the fiber 1 to the yarn contact surface with the bottom surface of the groove as the yarn contact surface.
  • the rod guide 10c shown in FIG. 1 (c) converges or separates the fibers 1 with the outer peripheral surface as the yarn contact surface.
  • the surface of the groove is the yarn contact surface
  • the fiber 1 is wound around the outer periphery of the cylindrical package in the traveling direction of the fiber 1 passing through the yarn contact surface. It is something that changes.
  • the fiber guide will be described with the reference numeral “10”, except when describing a specific fiber guide.
  • the fiber guide 10 of the present disclosure may be described as an arithmetic average roughness Ra1 (hereinafter simply referred to as Ra1) in the traveling direction of the fiber 1 (hereinafter also simply referred to as the traveling direction) on the surface in contact with the fiber 1. ) And an arithmetic average roughness Ra2 (hereinafter sometimes simply referred to as Ra2) in an orthogonal direction (hereinafter also simply referred to as an orthogonal direction) orthogonal to the traveling direction, the ratio Ra1 / Ra2 is 0.5 or more. It is less than 1.0.
  • roller guide 10a of the fiber guide 10 is taken as an example, and the arithmetic average roughness Ra1 in the traveling direction and the arithmetic average roughness Ra2 in the orthogonal direction will be described with reference to FIG.
  • the traveling direction is the direction in which the fiber 1 slides on the surface in contact with the fiber 1.
  • Ra1 is the arithmetic average roughness in this traveling direction.
  • FIG. 2 shows an example in which the fiber 1 slides in the center of the yarn contact surface, and the traveling direction can also be referred to as the rotational direction in the roller guide 10a.
  • the orthogonal direction is a direction orthogonal to the traveling direction of the fiber 1 on the surface in contact with the fiber 1 as shown in FIG.
  • Ra2 is the arithmetic average roughness in this orthogonal direction.
  • the ratio Ra1 / Ra2 between the arithmetic average roughness Ra1 in the traveling direction and the arithmetic average roughness Ra2 in the orthogonal direction is 0.5 or more and 1.0 on the yarn contact surface with the fiber 1.
  • the damage to the fiber 1 can be suppressed.
  • the damage to the fiber 1 can be suppressed because the surface property of the yarn contact surface of the fiber guide 10 of the present disclosure is the same while the fiber 1 is slid with a small contact area. This is because the sliding position can be appropriately changed without being moved.
  • the ratio Ra1 / Ra2 is 1.0 or more, the surface properties in the traveling direction and the orthogonal direction are the same on the yarn contact surface with the fiber 1, or the surface properties in the traveling direction are higher than the orthogonal direction. It becomes rough.
  • the yarn contact surface has such a surface property, the fiber 1 is likely to jump at the time of sliding, or the surface property in the direction orthogonal to the traveling direction is flattened. Become. Therefore, the area where the fiber 1 and the yarn contact surface come into contact increases, and the fiber 1 is easily damaged by friction.
  • this ratio Ra1 / Ra2 is less than 0.5, although the oblique sliding is difficult to occur, the same sliding is likely to occur. Therefore, the fiber 1 is easily damaged when the fiber 1 comes into contact with a portion beaten by friction with the fiber 1.
  • the arithmetic average roughness Ra1 in the advancing direction and the arithmetic average roughness Ra2 in the orthogonal direction on the yarn contact surface with the fiber 1 can be measured in accordance with JIS B 0601 (2001).
  • the measurement conditions are, for example, a measurement length of 0.1 to 5.0 mm, a cutoff value of 0.01 to 0.8 mm, a stylus diameter of 1 to 10 ⁇ m, and a stylus scanning speed of 0.01 to What is necessary is just to set to 1 mm / sec. Then, measurement is performed at each of five points in the traveling direction and the orthogonal direction, and the average of the values obtained by this measurement is defined as arithmetic average roughness Ra1 and Ra2, respectively.
  • the arithmetic average roughness Ra2 in the orthogonal direction is 0.03 ⁇ m or more and 0.05 ⁇ m or less, damage to the fiber 1 can be further suppressed.
  • the fiber guide 10 of the present disclosure when the skewness Rsk1 obtained from the roughness curve in the traveling direction is larger than 0 and the skewness Rsk2 obtained from the roughness curve in the orthogonal direction is smaller than 0, the fiber 1 is hardly damaged.
  • the skewness obtained from the roughness curve is an index indicating a ratio of a mountain area to a valley area when the average roughness height is a center line. If the skewness is a value greater than 0, the valley region is larger than the mountain, whereas if the skewness is less than 0, the mountain region is larger than the valley.
  • required from the roughness curve in the advancing direction is larger than 0, the surface property in the advancing direction has many area
  • required from a roughness curve can be calculated
  • the fiber guide 10 of the present disclosure has a yarn contact surface having a feeding portion and a feeding portion, and the arithmetic average roughness Ra3 in the traveling direction of the feeding portion is the arithmetic average roughness Ra4 in the traveling direction of the feeding portion.
  • the fiber 1 becomes less susceptible to damage.
  • the fiber guide 10 in which the yarn contact surface has an infeed portion and an outfeed portion is limited to a fiber guide in which the fiber 1 can be clearly distinguished from the infeed side and the outfeed side.
  • the oiling nozzle 10b in FIG. Such a thread contact surface of the oiling nozzle 10 b has a pair of first and second ends in the traveling direction of the fiber 1.
  • the first end is a portion that first contacts the yarn contact surface on the feeding side.
  • the second end is a portion that has been in contact with the yarn contact surface to the end on the delivery side.
  • a sending-in part points out from the near side in the advancing direction of the fiber 1 to the part equivalent to 1/5 of a full length, when letting the 1st end in a yarn contact surface to the 2nd end side as a full length.
  • the delivery part refers to the part from the back in the traveling direction of the fiber 1 to the part corresponding to 1/5 of the total length.
  • the arithmetic average roughness Ra3 and Ra4 can be measured according to JIS B 0601 (2001). First, the measurement is performed in the traveling direction at each of the three portions of the sending portion and the feeding portion on the contact surface. And the average of the value obtained by this measurement is set as arithmetic mean roughness Ra3 and Ra4, respectively.
  • the measurement conditions may be the same as those obtained when the arithmetic average roughness Ra1 and Ra2 described above are obtained.
  • damage to the fiber 1 is further suppressed when the arithmetic average roughness Ra1 in the traveling direction increases stepwise from the feeding portion toward the sending portion.
  • the arithmetic average roughness Ra1 in the traveling direction of the yarn contact surface changes stepwise and the fiber 1 slides more smoothly, so that damage to the fiber 1 is further suppressed.
  • the arithmetic average roughness Ra1 in the advancing direction gradually increases from the feeding portion toward the sending portion is referred to as a region between the feeding portion and the sending portion on the yarn contact surface (hereinafter referred to as an intermediate portion).
  • the feeding part (Ra4) ⁇ the intermediate part (Ra7) ⁇ the sending part (Ra3) is satisfied.
  • the arithmetic average roughness Ra1 in the traveling direction may be continuously increased from the feeding portion toward the sending portion.
  • the arithmetic average roughness Ra7 in the advancing direction of the intermediate portion can be obtained by measuring in accordance with JIS B 0601 (2001) in the same manner as the arithmetic average roughness Ra3 and Ra4.
  • the fiber guide 10 of the present disclosure suppresses damage to the fiber 1 when the arithmetic average roughness Ra5 in the orthogonal direction of the delivery portion is larger than the arithmetic average roughness Ra6 in the orthogonal direction of the delivery portion. be able to.
  • the fiber 1 is more difficult to jump at the feeding portion, and the fiber 1 is smoothly fed. Even when the fiber 1 is swung sideways when the fiber 1 is fed, the feeding is performed. Since the contact area with the fiber in the orthogonal direction of the part is small, it is possible to suppress damage to the fiber 1.
  • the arithmetic average roughness Ra5 and Ra6 can be measured according to JIS B 0601 (2001). First, on the yarn contact surface, measurement is performed in the orthogonal direction at each of the three portions of the sending portion and the feeding portion. And the average of the value obtained by this measurement is set as arithmetic mean roughness Ra5 and Ra6, respectively.
  • the measurement conditions may be the same as those obtained when the arithmetic average roughness Ra1 and Ra2 described above are obtained.
  • damage to the fiber 1 is further suppressed when the arithmetic average roughness Ra2 in the orthogonal direction increases stepwise from the feeding portion toward the sending portion.
  • the arithmetic average roughness Ra2 in the orthogonal direction of the contact surface changes stepwise, and the fiber 1 slides more smoothly, so that damage to the fiber 1 is further suppressed.
  • the arithmetic average roughness Ra2 in the orthogonal direction increases stepwise from the feeding part toward the sending part in terms of the arithmetic average roughness in the orthogonal direction of each part of the yarn contact surface.
  • Ra6 ⁇ intermediate part (Ra8) ⁇ sending part (Ra5).
  • the arithmetic average roughness Ra2 in the orthogonal direction may be continuously increased from the sending section toward the sending section.
  • the arithmetic average roughness Ra8 in the orthogonal direction of the intermediate part can be obtained by measuring in accordance with JIS B 0601 (2001), similarly to the case of obtaining the arithmetic average roughness Ra5 and Ra6.
  • the yarn contact surface may be made of ceramics.
  • ceramics for example, alumina, zirconia, titania, silicon carbide, silicon nitride, or a composite thereof can be used.
  • the member having the contact surface or the fiber guide 10 itself may be manufactured from ceramics, or the base body of the fiber guide 10 is manufactured from metal, resin, etc. May be coated with ceramics.
  • a member having a yarn contact surface may be manufactured from ceramics and bonded to a substrate such as metal or resin.
  • the material of the yarn contact surface can be identified using a JCPDS card from the value of 2 ⁇ (2 ⁇ is the diffraction angle) obtained by measuring with an X-ray diffractometer (XRD).
  • alumina (aluminum oxide) powder is put in a mill together with a solvent and a ball and pulverized to a predetermined particle size to prepare a slurry.
  • granules are produced by spray drying using a spray dryer.
  • this granule is put into a mechanical press, and pressure is applied to produce a molded body having a predetermined shape. And it cuts into this molded object and it is set as the shape of an oiling nozzle. It should be noted that the surface property in the orthogonal direction is rougher than the traveling direction on the yarn contact surface of the oiling nozzle-shaped molded body obtained by performing this cutting process. Moreover, you may produce a molded object by the injection molding method using the pellet produced from the same raw material.
  • the maximum temperature is set to 1450 to 1750 ° C. in the air atmosphere, and the holding time at the maximum temperature is set to 1 to 8 What is necessary is just to bake as time.
  • the firing conditions such as the maximum temperature and holding time vary depending on the shape and size of the product, and may be adjusted as necessary.
  • the obtained oiling nozzle-shaped sintered body is fixed, the string is brought into sliding contact with the yarn contact surface of the sintered body, and the string is fed while supplying the dispersed oil to the yarn contact surface.
  • the contact surface of the sintered body is polished by sliding in the traveling direction at 300 m / min.
  • a nylon string having a diameter of 0.5 to 10 mm and an abrasive of diamond abrasive grains having an average particle diameter of 2 to 6 ⁇ m are used.
  • the roller guide-shaped sintered body may be rotated and the string may be slidably contacted with the yarn contact surface.
  • the yarn contact surface is polished by sliding the string in the traveling direction of the fiber 1, the surface roughness in the orthogonal direction is smaller than the traveling direction on the contact surface.
  • the ratio Ra1 / Ra2 between the arithmetic average roughness Ra1 in the advancing direction and the arithmetic average roughness Ra2 in the orthogonal direction is 0.5 on the yarn contact surface by polishing the above-described contact surface for 3 to 20 minutes.
  • the oiling nozzle 10b of the present disclosure that is less than 1.0 can be obtained.
  • the time for polishing the above-mentioned yarn contact surface may be set to 5 to 10 minutes.
  • the average particle diameter is used for polishing the above-mentioned yarn contact surface.
  • An abrasive of 2 to 4 ⁇ m may be used. In this way, by using an abrasive having a small particle size, polishing is performed so that the yarn contact surface is scratched along the traveling direction, so that only the skewness Rsk2 is made smaller than 0 while keeping the skewness Rsk1 larger than 0. be able to.
  • an oiling nozzle-shaped sintered body is fixed so that the string is in sliding contact with only the feeding portion, the intermediate portion, and the sending portion of the yarn contact surface, and the average particle size of the abrasive and
  • the manufacturing method of the oiling nozzle 10b has been described as an example. However, when the roller guide 10a, the rod guide 10c, and the traverse guide 10d are manufactured, each guide shape is used. Other than the above, a manufacturing method similar to that of the oiling nozzle 10b described above may be used.
  • Roller guides having different ratios Ra1 / Ra2 between the arithmetic average roughness Ra1 in the traveling direction of the yarn contact surface and the arithmetic average roughness Ra2 in the orthogonal direction of the yarn contact surface were produced. And when the fiber was guided with these roller guides, the time until the fiber was damaged was compared.
  • an alumina powder with a purity of 99.6% was put in a mill together with water and balls as solvents and pulverized to prepare a slurry.
  • roller guide-shaped compact was fired in an air atmosphere at a maximum temperature of 1600 ° C. and a holding time at the maximum temperature of 1 hour to obtain a roller guide-shaped sintered body.
  • roller guide-shaped sintered bodies were fixed so as to be rotatable.
  • the string is slidably contacted with the yarn contact surface of the sintered body, and the string is slid at the feed rate of 300 m / min while supplying oil dispersed with the abrasive to the yarn contact surface for the polishing time shown in Table 1.
  • the contact surface was polished.
  • a nylon string having a diameter of 6 mm and a diamond abrasive having an average particle diameter of 5 ⁇ m were used.
  • the arithmetic average roughness Ra1 in the advancing direction of the contact surface of each sample and the arithmetic average roughness Ra2 in the orthogonal direction of the contact surface were measured according to JIS B 0601 (2001).
  • the measurement conditions were a measurement length of 1.5 mm, a cutoff value of 0.25 mm, a stylus diameter of 2 ⁇ m, and a stylus scanning speed of 0.5 mm / second. And it measured in each of five places of the advancing direction and an orthogonal direction, and let the average of the value obtained by this measurement be arithmetic mean roughness Ra1 and Ra2, respectively.
  • Sample Nos. 3 to 8 have a long service life of 700 hours or more. This is because the ratio Ra1 / Ra2 of sample Nos. 3 to 8 is 0.5 or more and less than 1.0, so that the contact area with the fiber is small, and the fiber slides appropriately without causing the fiber to slide the same. This is because the position could be changed. Therefore, it was found that by attaching such a roller guide to a textile machine, damage to the fiber can be suppressed, so that the fiber can be guided for a long time.
  • Samples Nos. 4 to 6 have a longer endurance of 850 hours or longer. From this, it was found that when the arithmetic average roughness Ra2 is 0.03 ⁇ m or more and 0.05 ⁇ m or less, damage to the fiber can be further suppressed and the fiber can be guided for a longer period of time.
  • roller guides having different positive / negative relationships between the skewness Rsk1 obtained from the roughness curve in the traveling direction of the yarn contact surface and the skewness Rsk2 obtained from the roughness curve in the orthogonal direction of the yarn contact surface were produced. And when the fiber was guided with these roller guides, the time until the fiber was damaged was compared.
  • the production method is the same as the production method of Sample No. 5 in Example 1 except that the abrasive is diamond abrasive grains having an average particle diameter shown in Table 2, and Sample No. 11 is an example. This is the same sample as Sample No. 1 of No. 1.
  • the skewness Rsk1 and the skewness Rsk2 of each sample were measured by the same method as in Example 1. Then, a fiber feeding test was performed in the same manner as in Example 1. The results are shown in Table 2. In Table 2, the skewness value is expressed as “positive” if the value is greater than 0, and “negative” if the value is less than 0.
  • oiling nozzles having different arithmetic average roughnesses Ra4, Ra7, and Ra3 in the traveling direction of the feeding portion, the intermediate portion, and the feeding portion of the contact surface were produced. And when the fiber was guided with these oiling nozzles, the time until the fiber was damaged was compared.
  • an oiling nozzle-shaped sintered body was produced under the same conditions as the method for producing the roller-guide-shaped sintered body of Example 1 except that the oiling nozzle shape was used.
  • the oiling nozzle-shaped sintered body was fixed so that the string slidably contacted only with the feeding portion, the intermediate portion, and the feeding portion of the yarn contact surface.
  • the string is slid during the polishing time shown in Table 3 at a feed rate of 300 m / min while supplying oil in which abrasives of diamond abrasive grains having an average particle diameter shown in Table 3 are dispersed to the yarn contact surface.
  • each part of the yarn contact surface was polished.
  • a nylon string having a diameter of 0.5 mm was used for this polishing.
  • arithmetic average roughness Ra4, Ra7 and Ra3 in the advancing direction of the feeding part, the middle part and the sending part of the yarn contact surface of each sample were measured in accordance with JIS B0601 (2001).
  • the measurement conditions were a measurement length of 0.24 mm, a cut-off value of 0.08 mm, a stylus diameter of 2 ⁇ m, a stylus scanning speed of 0.05 mm / second, a sending part, an intermediate part, and a sending part. Measurements were made in the direction of travel at each of the three locations in the entrance. And the average of the value obtained by this measurement was set as arithmetic mean roughness Ra4, Ra7, and Ra3, respectively.
  • Sample No. 14 had a longer endurance time of 1050 hours. From this, it has been found that it is more preferable that the arithmetic average roughness in the traveling direction increases stepwise from the feeding section toward the sending section.
  • the production method is the same as the production method of Sample No. 14 in Example 3 except that the average particle diameter and polishing time of diamond abrasive grains of the abrasive are shown in Table 4, and Sample No. 15 is This is the same sample as Sample No. 14 in Example 3.
  • arithmetic average roughness Ra6, Ra8 and Ra5 in the orthogonal direction of the feeding part, the middle part and the sending part of the contact surface of each sample were measured in accordance with JIS B0601 (2001).
  • the measurement was performed in the orthogonal direction at each of the three parts of the sending part, the intermediate part, and the sending part.
  • the average of the value obtained by this measurement was set as arithmetic mean roughness Ra6, Ra8, and Ra5, respectively.
  • the measurement table was the same as when the arithmetic average roughness Ra4, Ra7 and Ra3 of Example 3 were obtained.
  • the sample No. 17 obtained a very long result of 1200 hours. From this, it was found that it is more preferable that the arithmetic average roughness in the orthogonal direction increases stepwise from the sending section toward the sending section.
  • Fiber 10a Roller guide 10b: Oiling nozzle 10c: Rod guide 10d: Traverse guide 10: Fiber guide

Abstract

 本開示の繊維ガイドは、繊維との接糸面において、繊維の進行方向における算術平均粗さRa1と、進行方向に直交する直交方向における算術平均粗さRa2との比率Ra1/Ra2が0.5以上1.0未満である。

Description

繊維ガイド
 本開示は、繊維ガイドに関する。
 繊維の案内においては、ローラーガイド、オイリングノズル、ロッドガイドおよびトラバースガイドと呼ばれる様々な形状の繊維ガイドが繊維機械に取り付けられ使用されている。そして、繊維と接触する繊維ガイドの表面(以下、接糸面という。)には、繊維に傷やほつれ等のダメージを発生させにくいことが求められている。例えば、特許文献1には、搬送される繊維束と接触する面の表面粗さRaが0.1μm以下の繊維ガイドが提案されている。
特開2000-73225号公報
 本開示の繊維ガイドは、繊維との接糸面において、前記繊維の進行方向における算術平均粗さRa1と、前記進行方向に直交する直交方向における算術平均粗さRa2との比率Ra1/Ra2が0.5以上1.0未満である。
本開示の繊維ガイドの一例を模式的に示す、(a)はローラーガイドの斜視図であり、(b)はオイリングノズルの斜視図であり、(c)はロッドガイドの斜視図であり、(d)はトラバースガイドの斜視図である。 本開示の繊維ガイドである図1(a)に示すローラーガイドを白抜き矢印側から観察した拡大図である。
 繊維に傷やほつれ等のダメージを発生させにくくさせるにあたり、単に繊維ガイドの接糸面における算術平均粗さを小さくしただけでは、繊維ガイドにより繊維を案内する際に、繊維が斜めに摺動(以下、斜め摺動という。)しやすくなる。そして、繊維が斜め摺動すると、繊維と接糸面とが接触する面積が大きくなって、摩擦により繊維がダメージを受けやすくなる。
 一方、繊維ガイドの接糸面において、繊維の進行方向に直交する方向の算術平均粗さが大きいときには、繊維ガイドにより繊維を案内する際に、接糸面の同じ箇所を繊維が摺動(以下、同一摺動という。)しやすくなる。そして、繊維が同一摺動すると、繊維との摩擦によって抉られた部分と繊維が接することにより繊維がダメージを受けやすくなる。
 また、今般においては、生産効率の向上のために、繊維の送り速度が3000~8000m/分と極めて高速化してきている。このように、繊維の送り速度の高速化により、斜め摺動や同一摺動によって繊維がダメージをさらに受けやすくなってきている。以上のことから、繊維の送り速度の高速化によっても繊維にダメージを与えることの少ない繊維ガイドが求められている。
 本開示の繊維ガイドは、繊維へのダメージを抑制することができるものである。以下に本開示の繊維ガイドについて、図面を参照しながら詳細に説明する。
 最初に、繊維ガイドの代表的な種類について、図1を参照しながら説明する。まず、図1(a)に示すローラーガイド10aは、U字溝の表面を接糸面として、回転することで繊維1を案内するものである。次に、図1(b)に示すオイリングノズル10bは、溝の底面を接糸面として、繊維1を接糸面に摺接させることで、繊維1にオイルを付着させるものである。また、図1(c)に示すロッドガイド10cは、外周面を接糸面として、繊維1を収束したり分離したりするものである。さらに、図1(d)に示すトラバースガイド10dは、溝の表面を接糸面として、この接糸面を通過する繊維1の進行方向を繊維1が円筒状のパッケージの外周に巻き取られるように変えるものである。なお、以降の記載において、特定の繊維ガイドについて記載する場合を除き、繊維ガイドには「10」の符号を付して説明する。
 本開示の繊維ガイド10は、繊維1との接糸面において、繊維1の進行方向(以下、単に進行方向ともいう。)における算術平均粗さRa1(以下、単にRa1と記載する場合がある。)と、進行方向に直交する直交方向(以下、単に直交方向ともいう。)における算術平均粗さRa2(以下、単にRa2と記載する場合がある。)との比率Ra1/Ra2が0.5以上1.0未満である。
 ここで、繊維ガイド10のうちローラーガイド10aを例に挙げ、図2を参照しながら、進行方向における算術平均粗さRa1および直交方向における算術平均粗さRa2について説明する。
 図2に示すように、進行方向とは、繊維1との接糸面において、繊維1が摺動する方向のことである。また、Ra1とは、この進行方向における算術平均粗さのことである。なお、図2においては、接糸面の中央を繊維1が摺動している例を示しており、進行方向とは、ローラーガイド10aにおける回転方向ということもできる。一方、直交方向とは、図2に示すように、繊維1との接糸面において、繊維1の進行方向に対して直交する方向のことである。また、Ra2とは、この直交方向における算術平均粗さのことである。
 そして、本開示の繊維ガイド10は、繊維1との接糸面において、進行方向における算術平均粗さRa1と直交方向における算術平均粗さRa2との比率Ra1/Ra2が0.5以上1.0未満であることにより、繊維1へのダメージを抑制することができる。このように、繊維1へのダメージを抑制することができるのは、本開示の繊維ガイド10の接糸面の表面性状が、繊維1を接触面積の少ない状態で摺動させながらも、同一摺動させることなく、適度に摺動位置を変えることができるものとなるためである。
 これに対し、この比率Ra1/Ra2が1.0以上であるときには、繊維1との接糸面において、進行方向と直交方向との表面性状が同じ、または直交方向よりも進行方向の表面性状が粗くなる。接糸面がこのような表面性状であるときには、摺動時に繊維1が跳ねやすくなったり、進行方向よりも直交方向の表面性状が平坦となったりするために、繊維1が斜め摺動しやすくなる。よって、繊維1と接糸面とが接触する面積が大きくなり、摩擦によって繊維1がダメージを受けやすくなる。
 また、この比率Ra1/Ra2が0.5未満であるときには、斜め摺動は起こりにくくなるものの、同一摺動が起こりやすくなる。よって、繊維1との摩擦によって抉られた部分に繊維1が接触することにより繊維1がダメージを受けやすくなる。
 ここで、繊維1との接糸面において、進行方向における算術平均粗さRa1および直交方向における算術平均粗さRa2とは、JIS B 0601(2001)に準拠して測定することができる。測定条件としては、例えば、測定長さを0.1~5.0mm、カットオフ値を0.01~0.8mmとし、触針径を1~10μmとして触針の走査速度を0.01~1mm/秒に設定すればよい。そして、進行方向および直交方向の各5箇所において測定を行ない、この測定で得られた値の平均をそれぞれ算術平均粗さRa1およびRa2とする。
 また、本開示の繊維ガイド10において、直交方向の算術平均粗さRa2が、0.03μm以上0.05μm以下であるときには、繊維1へのダメージをさらに抑制することができる。
 また、本開示の繊維ガイド10は、進行方向における粗さ曲線から求められるスキューネスRsk1が0より大きく、直交方向における粗さ曲線から求められるスキューネスRsk2が0より小さいときには、繊維1がダメージを受けにくくなる。ここで、粗さ曲線から求められるスキューネスとは、粗さの平均高さを中心線とした際に、これに対する山となる領域と谷となる領域との比率を示す指標である。スキューネスが0より大きい値ならば山よりも谷となる領域の方が大きいのに対し、スキューネスが0よりも小さい値ならば谷よりも山となる領域の方が大きいことを示している。
 そして、進行方向における粗さ曲線から求められるスキューネスRsk1が0より大きければ、進行方向における表面性状は谷となる領域が多く、繊維1が摺動する際に接糸面と接触する山となる領域が少ないということであり、繊維1と接糸面とが接触する面積が減ることから、繊維1がダメージを受けにくくなる。また、直交方向における粗さ曲線から求められるスキューネスRsk2が0より小さければ、直交方向における接糸面は谷となる領域が少なく、同一摺動を抑制することができるので、繊維1がダメージを受けにくくなる。
 なお、粗さ曲線から求められるスキューネスは、算術平均粗さを求めたときと同様に、JIS B 0601(2001)に準拠して測定することで求めることができる。
 また、本開示の繊維ガイド10は、接糸面が送入部と送出部とを有し、送出部の進行方向における算術平均粗さRa3が、送入部の進行方向における算術平均粗さRa4よりも大きいときには、繊維1がよりダメージを受けにくくなる。
 ここで、接糸面が送入部と送出部とを有する繊維ガイド10とは、接糸面において繊維1の送入側と送出側とが明確に区別できるものに限られる。例えば、図1におけるオイリングノズル10bである。このようなオイリングノズル10bの接糸面は、繊維1の進行方向に一対の第1端および第2端を有する。ここで、第1端とは、送入側において接糸面に最初に接する部分のことである。また、第2端とは、送出側において最後まで接糸面に接していた部分のことである。そして、送入部とは、接糸面における第1端から第2端側までを全長としたとき、繊維1の進行方向における手前から、全長の1/5にあたる部分までのことを指す。一方、送出部とは、繊維1の進行方向における奥から、全長の1/5にあたる部分までのことを指す。
 そして、算術平均粗さRa3およびRa4が上記関係を満足するときには、送入部において繊維1が跳ねにくいことで繊維1が円滑に送入され、送出部において繊維1との接触面積が少ないことで繊維1が円滑に送出されることから、繊維1がよりダメージを受けにくくなる。
 ここで、算術平均粗さRa3およびRa4は、JIS B 0601(2001)に準拠して測定することができる。まず、接糸面の送出部および送入部の各3箇所において、進行方向に測定を行なう。そして、この測定で得られた値の平均をそれぞれ算術平均粗さRa3およびRa4とする。なお、測定条件は、上述した算術平均粗さRa1およびRa2を求めたときと同じでよい。
 本開示の繊維ガイド10において、進行方向の算術平均粗さRa1が、送入部から送出部に向かって段階的に大きくなっているときには、繊維1へのダメージがさらに抑制される。このような構成を満たすときには、接糸面の進行方向の算術平均粗さRa1が段階的に変化し、繊維1がより円滑に摺動するため、繊維1へのダメージがさらに抑制される。
 ここで、進行方向の算術平均粗さRa1が送入部から送出部に向かって段階的に大きくなるとは、接糸面の送入部と送出部との間の領域(以下、中間部という。)の進行方向における算術平均粗さRa7が、送入部の進行方向における算術平均粗さRa4よりも大きく、送出部の進行方向における算術平均粗さRa3よりも小さいということである。すなわち、接糸面の各箇所の進行方向における算術平均粗さの関係において、送入部(Ra4)<中間部(Ra7)<送出部(Ra3)を満たすということである。なお、進行方向の算術平均粗さRa1が、送入部から送出部に向かって連続的に大きくなっていてもよいことは言うまでもない。
 ここで、中間部の進行方向における算術平均粗さRa7は、算術平均粗さRa3およびRa4を求めたときと同様に、JIS B 0601(2001)に準拠して測定することで求めることができる。
 また、本開示の繊維ガイド10は、送出部の直交方向における算術平均粗さRa5が、送入部の直交方向における算術平均粗さRa6よりも大きいときには、繊維1にダメージを与えることを抑制することができる。このような構成を満たすときには、送入部において繊維1が一層跳ねにくくなり、繊維1が円滑に送入されるとともに、繊維1を送出する際に、繊維1が横に振れたとしても、送出部の直交方向における繊維との接触面積が少ないことで、繊維1にダメージを与えることを抑制することができる。
 ここで、算術平均粗さRa5およびRa6は、JIS B 0601(2001)に準拠して測定することができる。まず、接糸面において、送出部および送入部の各3箇所において、直交方向に測定を行なう。そして、この測定で得られた値の平均を、それぞれ算術平均粗さRa5およびRa6とする。なお、測定条件は、上述した算術平均粗さRa1およびRa2を求めたときと同じでよい。
 さらに、本開示の繊維ガイド10は、直交方向の算術平均粗さRa2が、送入部から送出部に向かって段階的に大きくなっているときには、繊維1へのダメージがより抑制される。このような構成を満たすときには、接糸面の直交方向の算術平均粗さRa2が段階的に変化し、繊維1がより円滑に摺動するため、繊維1へのダメージがより抑制される。
 ここで、直交方向の算術平均粗さRa2が送入部から送出部に向かって段階的に大きくなるとは、接糸面の各箇所の直交方向における算術平均粗さの関係において、送入部(Ra6)<中間部(Ra8)<送出部(Ra5)を満たすということである。なお、直交方向の算術平均粗さRa2が、送入部から送出部に向かって連続的に大きくなっていてもよいことは言うまでもない。
 また、中間部の直交方向における算術平均粗さRa8は、算術平均粗さRa5およびRa6を求めたときと同様に、JIS B 0601(2001)に準拠して測定することで求めることができる。
 また、本開示の繊維ガイド10は、接糸面が、セラミックスからなっていてもよい。このように、接糸面がセラミックスからなるときには、接糸面が金属や樹脂等からなる場合と比較して耐磨耗性および耐熱性に優れていることから、繊維1へのダメージをより一層抑制することができる。ここで、セラミックスとしては、例えば、アルミナ、ジルコニア、チタニア、炭化珪素、窒化珪素、またはこれらの複合物を用いることができる。
 なお、接糸面をセラミックスとする方法としては、接糸面を備える部材若しくは繊維ガイド10自体をセラミックスで製造してもよいし、繊維ガイド10の基体を金属や樹脂等で製造し、その表面をセラミックスでコーティングしてもよい。または、接糸面を有する部材をセラミックスで製造し、金属や樹脂等の基体に接合しても良い。そして、接糸面の材質は、X線回折装置(XRD)により測定し、得られた2θ(2θは、回折角度である。)の値よりJCPDSカードを用いて同定することができる。
 次に、本開示の繊維ガイド10の製造方法の一例について説明する。なお、ここでは繊維ガイド10のうち、オイリングノズル10bを例に挙げて説明する。
 まず、アルミナ(酸化アルミニウム)粉末を溶媒およびボールとともにミルに入れて、所定の粒度となるまで粉砕し、スラリーを作製する。
 次に、得られたスリラーにバインダーを添加した後、スプレードライヤーを用いて、噴霧乾燥を行なうことで顆粒を作製する。
 次に、この顆粒をメカプレスに投入して、圧力を加えて所定の形状の成形体を作製する。そして、この成形体に切削加工を行ない、オイリングノズルの形状とする。なお、この切削加工を行なうことで得られるオイリングノズル形状の成形体の接糸面においては、進行方向よりも直行方向の表面性状が粗くなっている。また、同じ原料から作製したペレットを用いてインジェクション成形法で成形体を作製しても構わない。
 次に、得られたオイリングノズル形状の成形体を、例えば、アルミナが主原料である場合には、大気雰囲気中で最高温度を1450~1750℃とし、この最高温度での保持時間を1~8時間として焼成すればよい。なお、最高温度や保持時間等の焼成条件は、製品の形状や大きさにより変化するため、必要に応じて調整すればよい。
 次に、得られたオイリングノズル形状の焼結体を固定し、焼結体の接糸面に紐を摺接させ、研磨材を分散させた油を接糸面に供給しながら紐を送り速度300m/分で進行方向に摺動させることで、焼結体の接糸面を研磨する。ここで、この研磨には、直径が0.5~10mmのナイロン製の紐と、平均粒径が2~6μmのダイヤモンド砥粒の研磨材とを用いる。なお、ローラーガイド10aなどの回転可能な繊維ガイドであれば、ローラーガイド形状の焼結体を回転させて、接糸面に紐を摺接させればよい。そして、この研磨方法では、繊維1の進行方向に紐を摺接させることで接糸面の研磨を行なうため、接糸面における進行方向よりも直交方向の表面粗さが小さくなるように研磨される。
 そして、上述の接糸面の研磨を3~20分間行なうことで、接糸面において、進行方向における算術平均粗さRa1と直交方向における算術平均粗さRa2との比率Ra1/Ra2が0.5以上1.0未満である本開示のオイリングノズル10bを得ることができる。
 また、直交方向の算術平均粗さRa2を、0.03μm以上0.05μm以下にするには、上述の接糸面を研磨する時間を5~10分に設定すればよい。
 さらに、進行方向の粗さ曲線から求められるスキューネスRsk1を0より大きく、直交方向の粗さ曲線から求められるスキューネスRsk2を0より小さくするには、上述の接糸面の研磨に、平均粒径が2~4μmの研磨材を用いればよい。このように、粒径が小さい研磨材を用いることで、進行方向に沿って接糸面を引掻くような研磨となるため、スキューネスRsk1を0より大きく保ちながら、スキューネスRsk2のみを0より小さくすることができる。
 また、上述の接糸面の研磨において、接糸面の送入部、中間部および送出部のみに紐が摺接するようにオイリングノズル形状の焼結体を固定し、研磨材の平均粒径および研磨時間を調整して研磨することで、各箇所の進行方向および直交方向における算術平均粗さを任意の大きさにすることができる。
 なお、本開示の繊維ガイド10の製造方法として、オイリングノズル10bの製造方法を例に挙げ説明したが、ローラーガイド10a、ロッドガイド10c、トラバースガイド10dを作製する場合も、各ガイド形状とすること以外については、上述したオイリングノズル10bと同様の製造方法を用いればよい。
 また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
 接糸面の進行方向における算術平均粗さRa1と、接糸面の直交方向における算術平均粗さRa2との比率Ra1/Ra2が異なるローラーガイドを作製した。そして、これらのローラーガイドで繊維を案内した際に、繊維にダメージが発生するまでの時間の比較を行なった。
 まず、純度99.6%のアルミナ粉末を溶媒である水およびボールとともにミルに入れて粉砕することで、スラリーを作製した。
 次に、このスラリーにバインダーを添加した後、スプレードライヤーを用いて、噴霧乾燥を行なうことで顆粒を作製した。そして、得られた顆粒を用いて、メカプレスにより成形体を作製した後、切削加工を行なうことでローラーガイド形状の成形体を得た。
 次に、このローラーガイド形状の成形体を、大気雰囲気中で最高温度を1600℃とし、この最高温度での保持時間を1時間として焼成を行ない、ローラーガイド形状の焼結体を得た。
 次に、これらのローラーガイド形状の焼結体を回転可能なように固定した。そして、焼結体の接糸面に紐を摺接させ、研磨材を分散させた油を接糸面に供給しながら送り速度300m/分で、表1に示す研磨時間において紐を摺接させることで、接糸面の研磨を行なった。なお、この研磨には、直径が6mmのナイロン製の紐と、平均粒径が5μmのダイヤモンド砥粒の研磨材を用いた。
 そして、各試料の接糸面の進行方向における算術平均粗さRa1と、接糸面の直交方向における算術平均粗さRa2とを、JIS B 0601(2001)に準拠して測定した。測定条件としては、測定長さを1.5mm、カットオフ値を0.25mmとし、触針径を2μmとして触針の走査速度を0.5mm/秒に設定した。そして、進行方向および直交方向の各5箇所において測定を行ない、この測定で得られた値の平均をそれぞれ算術平均粗さRa1およびRa2とした。
 次に、各試料で繊維を案内した際に、繊維にダメージが発生するまでの時間を測定した。まず、この試験には、75デニールの断面形状が四角形状であり、平均結晶粒径が1.2μmの酸化チタンを、繊維100質量部に対して1.2質量部含有するポリエステルからなる繊維を用いた。また、各試料の接糸面には、繊維100質量部に対して、2~4質量部となる水エマルジョン油剤を供給した。
 そして、各試料において繊維を送り速度5000m/分で案内し、案内後の繊維において、ほつれや傷等のダメージの確認を行ない、案内開始からダメージが確認されるまでの耐久時間を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、比率Ra1/Ra2が1.0以上である試料No.1,2および比率Ra1/Ra2が0.5未満である試料No.9は、耐久時間が680時間以下と短かった。
 これに対して、試料No.3~8は、耐久時間が700時間以上と長寿命である結果が得られている。これは、試料No.3~8の比率Ra1/Ra2が0.5以上1.0未満であることにより、繊維との接触面積が少なく、また繊維を同一摺動させることなく、適度に摺動位置を変えることができたためである。よって、このようなローラーガイドを繊維機械に取り付けることで、繊維へのダメージを抑制することができるため、繊維を長期間案内することができることがわかった。
 また、試料No.4~6は、耐久時間が850時間以上とより長い結果が得られている。このことから、算術平均粗さRa2が、0.03μm以上0.05μm以下であるときには、さらに繊維へのダメージを抑制することができ、繊維をより長期間にわたって案内できることがわかった。
 次に、接糸面の進行方向の粗さ曲線から求められるスキューネスRsk1と、接糸面の直交方向の粗さ曲線から求められるスキューネスRsk2との正負の関係が異なるローラーガイドを作製した。そして、これらのローラーガイドで繊維を案内した際に、繊維にダメージが発生するまでの時間の比較を行なった。なお、作製方法としては、研磨材を表2に示す平均粒径のダイヤモンド砥粒としたこと以外は実施例1の試料No.5の作製方法と同様であり、試料No.11は、実施例1の試料No.5と同じ試料である。
 次に、実施例1と同様の方法により、各試料のスキューネスRsk1およびスキューネスRsk2を測定した。そして、実施例1と同様の方法により繊維の送り試験を行なった。結果を表2に示す。なお、表2においては、スキューネスの値が0より大きい値ならば「正」、0より小さい値ならば「負」として表記している。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、試料No.10は、耐久時間が1000時間であり、長寿命である結果が得られた。このことから、接糸面においては、進行方向の粗さ曲線から求められるスキューネスRsk1が正であり(0より大きく)、直交方向の粗さ曲線から求められるスキューネスRsk2が負である(0より小さい)ことが好適であることがわかった。
 次に、接糸面の送入部、中間部、送出部の進行方向における算術平均粗さRa4、Ra7、Ra3が異なるオイリングノズルを作製した。そして、これらのオイリングノズルで繊維を案内した際に、繊維にダメージが発生するまでの時間の比較を行なった。まず、オイリングノズル形状とする以外は、実施例1のローラーガイド形状の焼結体の作製方法と同じ条件で、オイリングノズル形状の焼結体を作製した。
 そして、オイリングノズル形状の焼結体を、接糸面の送入部、中間部および送出部のみに紐が摺接するように固定した。次に、表3に示す平均粒径のダイヤモンド砥粒の研磨材を分散させた油を接糸面に供給しながら送り速度300m/分で、紐を表3に示す研磨時間の間摺動させることで、接糸面の各箇所の研磨を行なった。なお、この研磨には直径が0.5mmのナイロン製の紐を用いた。
 そして、実施例1と同様の方法により、各試料の算術平均粗さRa1およびRa2を測定した。その結果、すべての試料の比率Ra1/Ra2は0.5以上1.0未満を満たすことがわかった。
 次に、各試料の接糸面の送入部、中間部および送出部の進行方向における算術平均粗さRa4、Ra7およびRa3を、JIS B 0601(2001)に準拠して測定した。測定条件としては、測定長さを0.24mm、カットオフ値を0.08mmとし、触針径を2μmとして触針の走査速度を0.05mm/秒に設定し、送出部、中間部および送入部の各3箇所において、進行方向に測定を行なった。そして、この測定で得られた値の平均を、それぞれ算術平均粗さRa4、Ra7およびRa3とした。
 そして、実施例1と同様の方法により繊維の送り試験を行なった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、試料No.13の耐久時間が1000時間と長寿命である結果が得られた。このことから、送出部の進行方向における算術平均粗さRa3が、送入部の進行方向における算術平均粗さRa4よりも大きいオイリングノズルであれば、繊維を傷付けずに、長期間案内することができることがわかった。
 さらに、試料No.14は、耐久時間が1050時間とより長い結果が得られた。このことから、進行方向の算術平均粗さが、送入部から送出部に向かって段階的に大きくなっていることが更に好適であるとわかった。
 次に、接糸面の送入部、中間部、送出部における直交方向の算術平均粗さRa6、Ra8、Ra5が異なるオイリングノズルを作製し、これらのオイリングノズルで繊維を案内した際に、繊維にダメージが発生するまでの時間の比較を行なった。なお、作製方法としては、研磨材のダイヤモンド砥粒の平均粒径および研磨時間を表4に示すようした以外は実施例3の試料No.14の作製方法と同様であり、試料No.15は、実施例3の試料No.14と同じ試料である。
 次に、各試料の接糸面の送入部、中間部および送出部の直交方向における算術平均粗さRa6、Ra8およびRa5を、JIS B 0601(2001)に準拠して測定した。まず、送出部、中間部および送入部の各3箇所において、直交方向に測定を行なった。そして、この測定で得られた値の平均を、それぞれ算術平均粗さRa6、Ra8およびRa5とした。なお、測定表件は、実施例3の算術平均粗さRa4、Ra7およびRa3を求めたときと同じとした。
 そして、実施例1と同様の方法により繊維の送り試験を行なった。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、試料No.16の耐久時間が1150時間とより一層長寿命である結果が得られた。このことから、送出部の直交方向における算術平均粗さRa5が、送入部の直交方向における算術平均粗さRa6よりも大きいオイリングノズルであれば、繊維を傷付けずに、更に長期間案内することができることがわかった。
 さらに、試料No.17は、耐久時間が1200時間と非常に長い結果が得られた。このことから、直交方向の算術平均粗さが、送入部から送出部に向かって段階的に大きくなっていることが更に好適であることがわかった。
 1:繊維
 10a:ローラーガイド
 10b:オイリングノズル
 10c:ロッドガイド
 10d:トラバースガイド
 10:繊維ガイド

Claims (8)

  1.  繊維との接糸面において、前記繊維の進行方向における算術平均粗さRa1と、前記進行方向に直交する直交方向における算術平均粗さRa2との比率Ra1/Ra2が0.5以上1.0未満である繊維ガイド。
  2.  前記直交方向の算術平均粗さRa2が、0.03μm以上0.05μm以下である請求項1に記載の繊維ガイド。
  3.  前記進行方向における粗さ曲線から求められるスキューネスRsk1が0より大きく、前記直交方向における粗さ曲線から求められるスキューネスRsk2が0より小さい請求項1または請求項2に記載の繊維ガイド。
  4.  前記接糸面は送入部と送出部とを有し、該送出部の前記進行方向における算術平均粗さRa3が、前記送入部の前記進行方向における算術平均粗さRa4よりも大きい請求項1乃至請求項3のいずれかに記載の繊維ガイド。
  5.  前記進行方向の算術平均粗さRa1が、前記送入部から前記送出部に向かって段階的に大きくなっている請求項4に記載の繊維ガイド。
  6.  前記接糸面は送入部と送出部とを有し、該送出部の前記直交方向における算術平均粗さRa5が、前記送入部の前記直交方向における算術平均粗さRa6よりも大きい請求項1乃至請求項5のいずれかに記載の繊維ガイド。
  7.  前記直交方向の算術平均粗さRa2が、前記送入部から前記送出部に向かって段階的に大きくなっている請求項6に記載の繊維ガイド。
  8.  前記接糸面が、セラミックスからなる請求項1乃至請求項7のいずれかに記載の繊維ガイド。
PCT/JP2016/055464 2015-02-25 2016-02-24 繊維ガイド WO2016136819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16755563.0A EP3248925B1 (en) 2015-02-25 2016-02-24 Fiber guide
JP2016546549A JP6027298B1 (ja) 2015-02-25 2016-02-24 繊維ガイド
CN201680011690.8A CN107250015B (zh) 2015-02-25 2016-02-24 纤维引导器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035431 2015-02-25
JP2015-035431 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136819A1 true WO2016136819A1 (ja) 2016-09-01

Family

ID=56788765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055464 WO2016136819A1 (ja) 2015-02-25 2016-02-24 繊維ガイド

Country Status (4)

Country Link
EP (1) EP3248925B1 (ja)
JP (1) JP6027298B1 (ja)
CN (1) CN107250015B (ja)
WO (1) WO2016136819A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181148A1 (ja) * 2017-03-29 2018-10-04 京セラ株式会社 繊維ガイド
JP2020019651A (ja) * 2018-08-03 2020-02-06 株式会社大阪クリップ コードリール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023176628A (ja) * 2022-05-31 2023-12-13 村田機械株式会社 糸継装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867420A (ja) * 1994-08-31 1996-03-12 Kyocera Corp 繊維ガイド及びその製造方法
JPH10262515A (ja) * 1997-01-27 1998-10-06 Daido Steel Co Ltd ガイド用部材の製造方法
JP2008013276A (ja) * 2006-07-03 2008-01-24 Murata Mach Ltd 撚糸機の糸送りローラ及び撚糸機
JP2010229570A (ja) * 2009-03-26 2010-10-14 Kyocera Corp 繊維ガイド

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269257B2 (ja) * 2011-06-20 2013-08-21 京セラ株式会社 繊維ガイド
KR101462822B1 (ko) * 2012-03-02 2014-11-20 신닛테츠스미킨 카부시키카이샤 가이드 롤 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867420A (ja) * 1994-08-31 1996-03-12 Kyocera Corp 繊維ガイド及びその製造方法
JPH10262515A (ja) * 1997-01-27 1998-10-06 Daido Steel Co Ltd ガイド用部材の製造方法
JP2008013276A (ja) * 2006-07-03 2008-01-24 Murata Mach Ltd 撚糸機の糸送りローラ及び撚糸機
JP2010229570A (ja) * 2009-03-26 2010-10-14 Kyocera Corp 繊維ガイド

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181148A1 (ja) * 2017-03-29 2018-10-04 京セラ株式会社 繊維ガイド
JPWO2018181148A1 (ja) * 2017-03-29 2020-02-27 京セラ株式会社 繊維ガイド
JP2020019651A (ja) * 2018-08-03 2020-02-06 株式会社大阪クリップ コードリール
JP7136441B2 (ja) 2018-08-03 2022-09-13 株式会社大阪クリップ コードリール

Also Published As

Publication number Publication date
EP3248925B1 (en) 2019-03-27
EP3248925A4 (en) 2018-03-07
CN107250015B (zh) 2019-09-24
CN107250015A (zh) 2017-10-13
EP3248925A1 (en) 2017-11-29
JP6027298B1 (ja) 2016-11-16
JPWO2016136819A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6027298B1 (ja) 繊維ガイド
JP5269257B2 (ja) 繊維ガイド
JP5831974B2 (ja) 端縁部を研磨テープにより研磨仕上げした板ガラス並びに板ガラス端縁部の研磨方法及び研磨装置
TWI491352B (zh) A guide for fishing line and a guide for fishing line and a fishing rod
TWI535535B (zh) 用於低速研磨操作之磨料物品
WO2018003800A1 (ja) 繊維ガイド
KR101311346B1 (ko) 소우 와이어
CN204912936U (zh) 具有非对称褶皱的锯线
WO2020158730A1 (ja) セラミックノズルおよび巻線機
EP3326948B1 (en) Fiber guide
JP6878191B2 (ja) 伸線加工用キャプスタンロール
WO2018003801A1 (ja) オイリングノズル
TWI695095B (zh) 注油噴嘴
JP6526220B2 (ja) 繊維ガイド
WO2018181148A1 (ja) 繊維ガイド
KR102644660B1 (ko) 와이어소 장치의 제조방법 및 와이어소 장치
JP7027086B2 (ja) 仮撚機用ディスクおよび仮撚機用ディスクの製造方法
WO2020045433A1 (ja) 仮撚機用ディスクおよび仮撚機用ディスクの製造方法
WO2018155638A1 (ja) 釣糸用ガイド部材およびこれを備える釣竿

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546549

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755563

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016755563

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE