WO2016136549A1 - 内燃機関用プレエアフィルタ - Google Patents

内燃機関用プレエアフィルタ Download PDF

Info

Publication number
WO2016136549A1
WO2016136549A1 PCT/JP2016/054541 JP2016054541W WO2016136549A1 WO 2016136549 A1 WO2016136549 A1 WO 2016136549A1 JP 2016054541 W JP2016054541 W JP 2016054541W WO 2016136549 A1 WO2016136549 A1 WO 2016136549A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
air filter
fibers
less
dtex
Prior art date
Application number
PCT/JP2016/054541
Other languages
English (en)
French (fr)
Inventor
万充 田中
Original Assignee
呉羽テック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 呉羽テック株式会社 filed Critical 呉羽テック株式会社
Priority to US15/551,181 priority Critical patent/US10596499B2/en
Priority to CN201680011475.8A priority patent/CN107249713B/zh
Publication of WO2016136549A1 publication Critical patent/WO2016136549A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/485Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation in combination with weld-bonding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0212Multiple cleaners
    • F02M35/0216Multiple cleaners arranged in series, e.g. pre- and main filter in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/024Air cleaners using filters, e.g. moistened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/024Air cleaners using filters, e.g. moistened
    • F02M35/02441Materials or structure of filter elements, e.g. foams
    • F02M35/02458Materials or structure of filter elements, e.g. foams consisting of multiple layers, e.g. coarse and fine filters; Coatings; Impregnations; Wet or moistened filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/064The fibres being mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0659The layers being joined by needling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length

Definitions

  • the present invention relates to a useful non-woven fabric pre-air filter provided on the air inflow side of a main air filter for the purpose of improving the collection efficiency and dust collection amount of an air cleaner used in an intake line of an internal combustion engine. is there.
  • a nonwoven fabric material or a filter paper material is used for an air filter for an automobile engine, and a predetermined dust retention amount is obtained by pleating these materials and increasing a filter medium area in a unit volume.
  • a nonwoven material when used, the number of pleats is reduced, but depth filtration is possible by increasing the thickness of the filter medium, and a predetermined dust retention amount is obtained.
  • filter paper material when using filter paper material, by increasing the number of pleats, a filter material area can fully be increased and desired dust retention amount can be obtained.
  • a nonwoven fabric pre-air filter is also provided on the upstream side of such an air filter (main filter).
  • engine air filters are required to have characteristics such as low pressure loss, high dust cleaning efficiency, and high dust retention, and in recent years, the demand for high dust cleaning efficiency has increased.
  • a high dust cleaning efficiency it is effective to make the filter material finer, but on the other hand, there is a disadvantage that clogging is accelerated.
  • an auxiliary pre-air filter for obtaining a dust holding amount is used before a main engine air filter. If this pre-air filter is clogged immediately, the original purpose of reducing the replacement frequency of the filter cannot be achieved, so the pre-air filter has a coarse design.
  • the pre-air filter is designed to be thick.
  • water may enter the intake line of the engine. While holding such intrusion water and preventing water from escaping to the main filter side, pressure loss even when holding water It is also desirable that the characteristic that does not increase (resistance when entering water) is excellent.
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is to ensure rigidity even when the weight is reduced, excellent dust retention, and excellent water penetration resistance.
  • An object is to provide a pre-air filter for an internal combustion engine.
  • the present inventor has conducted heat-sealing after crimping a hollow crimped fiber having a hollow structure with a low-melting fiber and a needle punch without resin bonding to the nonwoven fabric.
  • the hollow crimped fiber When the low melting point fiber is oriented in the thickness direction, the hollow crimped fiber also cooperates to increase the degree of orientation in the thickness direction, and (ii) the plane direction because the hollow crimped fiber is used.
  • the low-melting fiber after cooling and solidification oriented in the thickness direction plays a role of a column, and the rigidity of the nonwoven fabric is increased.
  • the pre-air filter for an internal combustion engine according to the present invention has the gist in the following points.
  • a first fiber having a melting point of 80 ° C. or more and 200 ° C. or less and a second fiber having a hollow structure whose melting point is 30 ° C. or more higher than that of the first fiber and crimped are entangled by a needle punch
  • a pre-air filter for an internal combustion engine, wherein the first fiber partially or wholly melted is composed of a nonwoven fabric fused to the second fiber.
  • the pre-air filter according to [1] wherein the entanglement by the needle punch is performed by causing the needle to enter only from one side of the fiber web.
  • the first fiber having a melting point of 80 ° C. or more and 200 ° C. or less and the second fiber having a hollow structure whose melting point is 30 ° C. or more higher than that of the first fiber and crimped are entangled, and The first fiber, part or all of which is melted, is fused to the second fiber;
  • a pre-air filter for an internal combustion engine having a fiber orientation degree in the thickness direction of 20 ° or more and 50 ° or less.
  • the pre-air filter according to any one of [1] to [4], wherein the density on the air outflow side is 1.05 times or more the density on the air inflow side.
  • the fineness of the second fiber is 4 dtex or more and 40 dtex or less
  • the fineness of the first fiber is 1 dtex or more and 40 dtex or less
  • the first fiber is 20 mass with respect to the total of the first fiber and the second fiber.
  • the first fiber is a mixed fiber of a fine fiber having a fineness of 1 dtex or more and 10 dtex or less and a thick fiber having a fineness of more than 10 dtex and not more than 40 dtex, and the proportion of the fine fibers is based on the sum of the fine fibers and the thick fibers.
  • the fine fibers are hard fibers having a glass transition temperature of 10 ° C. or higher, and the thick fibers are composed of hard fibers having a glass transition temperature of 10 ° C. or higher and soft fibers having a glass transition temperature of less than 10 ° C.
  • the air filter for an internal combustion engine includes a main air filter and the pre-air filter provided on the air inflow side of the main air filter.
  • the crimped hollow crimped fiber having a hollow structure is heat-sealed after entangled with the low melting point fiber by the needle punch, the low melting point fiber cooperates with the hollow crimped fiber.
  • the degree of orientation in the thickness direction can be increased to increase the rigidity of the entire fiber.
  • hollow crimped fibers are used, the complexity of the eyes in the surface direction can be maintained and the dust retention can be improved.
  • a fiber constituting a pre-air filter such as a hollow crimped fiber by a low-melting fiber partially or wholly melted and solidified at the entanglement point between the fibers while the low-melting fiber is reduced in diameter to expand the space between the fibers. Since it becomes easy to join each other, it becomes possible to hold
  • FIG. 1 is a schematic perspective view showing an example of an air filter for an internal combustion engine using the pre-air filter of the present invention.
  • the pre-air filter for an internal combustion engine of the present invention has a first fiber having a melting point of 80 ° C. or more and 200 ° C. or less (hereinafter referred to as a low melting point fiber) and a hollow structure having a melting point 30 ° C. or more higher than that of the low melting point fiber.
  • a low melting point fiber a first fiber having a melting point of 80 ° C. or more and 200 ° C. or less
  • a hollow structure having a melting point 30 ° C. or more higher than that of the low melting point fiber.
  • the fiber web comprised from the crimped 2nd fiber (henceforth a hollow crimped fiber) is entangled with the needle punch, and the fiber orientation degree in the thickness direction is raised.
  • the low melting point fibers that are partly or wholly melted are reduced in diameter and fused with the second fibers, expanding the space between the fibers.
  • the fibers can be easily joined at the entanglement point between the fibers, so that the space shape can be kept strong.
  • Using non-woven fabric with high orientation in the thickness direction and excellent spatial shape for pre-air filters can improve rigidity, low pressure loss, high dust retention, and water penetration resistance. it can.
  • each structure is demonstrated in order.
  • Second fiber (hollow crimped fiber)
  • the hollow crimped fiber finishes the pre-air filter to be light and bulky, maintains the complexity of the eyes in the plane direction of the nonwoven fabric, and contributes to an improvement in the amount of dust collected.
  • the hollow crimped fiber has bending rigidity, a nonwoven fabric blended with the fiber is not easily deformed even when subjected to pressure such as wind, and can be used for a long period of time.
  • This hollow crimped fiber is combined with the first fiber (low-melting fiber), and is heat-sealed after needle punching, resulting in good rigidity, low pressure loss, high dust retention, and water penetration resistance it can.
  • the high rebound resilience exhibited by the hollow crimped fiber contributes to the improvement of water retention of the pre-air filter.
  • the crimp ratio of the hollow crimped fiber is, for example, preferably 10% or more, more preferably 12% or more, still more preferably 14% or more, for example, 30% or less, more preferably 28% or less. Yes, more preferably 25% or less.
  • the number of crimps of the hollow crimped fiber is preferably 3 pieces / inch or more, more preferably 5 pieces / inch or more, still more preferably 7 pieces / inch or more, for example, 25 pieces / inch.
  • the following is preferable, more preferably 20 pieces / inch or less, and further preferably 15 pieces / inch or less. With fine crimping such that the number of crimps exceeds 25 / inch, it becomes difficult to maintain the thickness of the nonwoven fabric.
  • “inch” is 25.4 mm.
  • the second fiber (hollow crimped fiber) needs to be hollow.
  • the hollow ratio of the hollow crimped fiber is, for example, preferably 5% or more, more preferably 7% or more, still more preferably 9% or more, for example, preferably 60% or less, more preferably 45% or less. Yes, more preferably 35% or less.
  • the hollow crimped fiber examples include a composite fiber (conjugate fiber) having an eccentric structure in which resins having different heat shrinkage rates are simultaneously extruded, or a side-by-side structure; a bicon fiber in which fibers having different heat shrinkage rates are combined;
  • Various types of fibers such as hollow crimped fibers in which three-dimensional crimps are expressed by varying the degree of treatment such as heat treatment on the front side and the back side can be exemplified.
  • the three-dimensional crimped fiber it is possible to form a three-dimensional crimp such as a coil shape or a spiral shape.
  • the hollow crimped fiber of the present invention may be a mechanically crimped fiber obtained by subjecting a general-purpose chemical fiber to mechanical crimping. Of these fibers, composite fibers (conjugate fibers) or bicon fibers are more preferable. Further, in the present invention, it is preferable to use a hollow crimped fiber that has already been crimped before being subjected to heat treatment at the time of thermal bonding.
  • the melting point of the hollow crimped fiber is 30 ° C. or more, preferably 50 ° C. or more, more preferably 80 ° C. or more higher than the melting point of the low melting fiber.
  • the upper limit of the melting point is not particularly limited, and the melting point may not be shown (that is, decomposition may be started before melting).
  • the melting point of the hollow crimped fiber is usually 150 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower, although it depends on the type of material constituting the hollow crimped fiber.
  • a chemical fiber is usually used, for example, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid, or polyarylate; a polyamide resin such as nylon 6 or nylon 66; polyacrylonitrile, polyacrylonitrile— Acrylic resins such as vinyl chloride copolymers; Polyolefin resins such as polyethylene resins and polypropylene resins; Polyvinyl alcohol resins such as vinylon resins and polyvinyl alcohol resins; Polyvinyl chloride resins such as polyvinyl chloride resins, vinylidene resins and polyclar resins Synthetic resins such as polyurethane resins; Polyether resins such as polyethylene oxide resins and polypropylene oxide resins; Synthetic fibers made from such materials; Regenerated fibers such as rayon and polynosic; Over preparative fibers, semi-synthetic fibers such as triacetate fibers can be preferably used.
  • the fineness of the hollow crimped fiber is, for example, preferably 4 dtex or more, more preferably 5 dtex or more, further preferably 6 dtex or more, preferably 40 dtex or less, more preferably 20 dtex or less, still more preferably 15 dtex or less. It is.
  • the fineness of the hollow crimped fibers is obtained by a weighted average considering the ratio (mass basis) of the hollow crimped fibers of each fineness.
  • the hollow crimped fiber has a fineness of 12 dtex or less, preferably 5 dtex or more and 10 dtex or less, more preferably 6 dtex or more and 10 dex or less, particularly preferably 7 dtex or more and 8 or more, as long as the average fineness is satisfied as a whole. It is preferable to include a hollow crimped fiber of 5 dtex or less (hereinafter referred to as a fine hollow crimped fiber). By including fine hollow crimped fibers, the amount of dust retained can be further improved.
  • the ratio of the fine hollow crimped fiber is, for example, 10% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 100% by mass with respect to the entire hollow crimped fiber.
  • the hollow crimped fiber may include a thick hollow crimped fiber having a fineness exceeding 12 dtex as long as the average fineness can be satisfied.
  • the fineness of hollow crimped fibers depends on the material of the resin constituting them, but generally before or after thermal bonding (ie, after thermal bonding) The same is true for pre-air filters.
  • the fiber length of the hollow crimped fiber is not particularly limited as long as it is a short fiber, and is, for example, 300 mm or less, preferably 100 mm or less, and can be appropriately selected from the range of 10 mm or more, preferably 20 mm or more.
  • the fiber length of the hollow crimped fiber is measured in a state where the fiber is stretched straight without being stretched.
  • the ratio of the hollow crimped fibers is, for example, preferably 10% by mass or more, more preferably 12% by mass or more, and still more preferably 15% by mass or more with respect to the total of the low melting point fibers and the hollow crimped fibers.
  • 80 mass% or less is preferable, More preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.
  • First fiber low melting point fiber
  • the low melting point fiber is used to firmly bond the nonwoven fabric in place of the binder resin by the conventional resin bond method.
  • the fiber-to-fiber adhesion and rigidity required for pre-air filters can be obtained, so the process of drying unnecessary moisture after applying the binder resin by impregnation and spraying as in the prior art. Can be reduced.
  • the bonding with the low melting point fibers has a high inter-fiber adhesive strength, so that there is an advantage that the yarn residue on the cut end face is reduced when punching / cutting to a required size.
  • Low melting point fibers are preferred because they are less expensive than polyacrylic acid ester resins, polyester resins, synthetic rubber resins, urethane resins, vinyl chloride resins and the like that are common as binder resins.
  • the melting point of the low melting point fiber is 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 100 ° C. or higher.
  • the upper limit of the melting point can be appropriately set according to the heat bondable temperature of the thermal bond, the heat resistance of the hollow crimped fiber, and the like, for example, 200 ° C. or less, preferably 180 ° C. or less, and more preferably 160 ° C. or less.
  • the melting point of the resin having the lower melting point is the low melting point fiber.
  • a composite fiber having a core-sheath structure, an eccentric structure, or a side-by-side structure in which a plurality of resins having different melting points are combined; a modified polyester fiber; a modified polyamide fiber; a modified polyolefin fiber such as a modified polypropylene fiber can be used.
  • the combination of resins used for the composite fiber include polyethylene-polyester, polyester-modified polyester, nylon-modified nylon, etc., in addition to polyolefin-based combinations such as polyethylene-polypropylene and polypropylene-modified polypropylene.
  • low melting point fibers made of a single resin can also be used.
  • a composite fiber having a core-sheath structure is preferable because it is highly productive and easily available, and a composite fiber having a core-sheath structure made of a polyester-modified polyester resin is particularly preferable because a melting point selection range is wide.
  • polyolefin-based low melting point fibers such as polyethylene-polypropylene and polypropylene-modified polypropylene, which tend to increase the degree of orientation in the thickness direction.
  • the fineness of the low-melting fiber is preferably 1 dtex or more, more preferably 1.5 dtex or more, still more preferably 2 dtex or more, preferably 40 dtex or less, more preferably 30 dtex or less, and further preferably 20 dtex or less.
  • the fineness of the low-melting-point fibers is obtained by a weighted average considering the ratio (mass basis) of the low-melting-point fibers of each fineness.
  • the low melting point fiber has a fineness of 1 dtex or more (preferably 1.5 dtex or more, more preferably 2 dtex or more), 10 dtex or less (preferably 8 dtex or less, more preferably 5 dtex or less), and a fineness of 10 dtex. It is preferably used as a mixed fiber of ultra low (preferably 12 dtex or more, more preferably 14 dtex or more), 40 dtex or less (preferably 30 dtex or less, more preferably 20 dtex or less) thick low melting point fiber.
  • the thick low melting point fiber is effective for increasing the degree of fiber orientation in the thickness direction by needle punching.
  • the thin low melting point fiber is combined with the thin low melting point fiber and the hollow crimped fiber and then thermally bonded, and then the thickness is increased.
  • a column structure strong in the vertical direction can be introduced.
  • the thick low melting point fiber is effective for forming a space for water retention by being reduced in diameter by heat treatment during thermal bonding.
  • the ratio of the thin low melting point fiber is, for example, preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, with respect to the total of the thin low melting point fiber and the thick low melting point fiber.
  • 100 mass% or less is preferable, More preferably, it is 70 mass% or less, More preferably, it is 50 mass% or less, Most preferably, it is 45 mass% or less.
  • the fineness of these low-melting fibers refers to the fineness before thermal bonding.
  • the weight ratio of the core to the sheath is usually 30:70 to 70:30 (more preferably 40:60 to 60:40, and still more preferably about 50:50.
  • the fineness of the low melting point fiber after thermal bonding is usually 0.3 to 1 times the fineness before thermal bonding.
  • the fineness of the low melting point fiber after thermal bonding is, for example, preferably 0.4 dtex or more, more preferably 0.6 dtex or more, still more preferably 0.8 dtex or more, preferably 36 dtex or less, more preferably 27 dtex or less. More preferably, it is 18 dtex or less.
  • the low melting point fiber is preferably a hard fiber having a glass transition temperature of 10 ° C. or higher.
  • the glass transition temperature of the hard fiber is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, for example, preferably 90 ° C. or lower, more preferably 70 ° C. or lower.
  • the hard fiber When a plurality of fibers are used in combination as the low melting point fiber, it is preferable to combine the hard fiber with a soft fiber having a glass transition temperature of less than 10 ° C.
  • the glass transition temperature of the soft fiber is preferably 8 ° C. or lower, more preferably 5 ° C. or lower, and further preferably 2 ° C. or lower.
  • the lower limit of the glass transition temperature of the soft fiber is not particularly limited, but may be, for example, ⁇ 10 ° C. or higher, or ⁇ 5 ° C. or higher.
  • the ratio is, for example, preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, based on the entire low-melting fiber, for example, 80 It is preferably at most mass%, more preferably at most 60 mass%, further preferably at most 50 mass%.
  • the low-melting fiber is composed of both a thin low-melting fiber and a thick low-melting fiber
  • a hard fiber having a glass transition temperature of 10 ° C. or higher is used as the thin low-melting fiber
  • a glass transition temperature of 10 is used as the thick low-melting fiber.
  • the ratio (mass ratio) of the hard fiber and the soft fiber as the thick low-melting fiber is, for example, preferably 10/90 to 90/10, more preferably 30/70 to 70/30, still more preferably 40/60. ⁇ 60/40.
  • the ratio of the low melting point fiber is, for example, 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, for example, 90% by mass with respect to the total of the hollow crimped fiber and the low melting point fiber.
  • it is preferably 85% by mass or less, more preferably 80% by mass or less.
  • the fiber length of the low melting point fiber is not particularly limited as long as it is a short fiber.
  • it is preferably 300 mm or less, more preferably 100 mm or less, and preferably 10 mm or more, more preferably 20 mm or more.
  • Fibers other than the hollow crimped fibers and the low melting point fibers may be used.
  • examples of other fibers include non-hollow crimped fibers and natural fibers having a melting point in the same range as hollow crimped fibers.
  • natural fibers such as cotton, hemp, hair, and silk
  • regenerated fibers such as rayon, polynosic, cupra, and reyocell
  • semi-synthetic fibers such as acetate fiber and triacetate fiber
  • polyamides such as nylon 6 and nylon 66 Fibers: Polyester fibers such as polyethylene terephthalate fibers, polybutylene terephthalate fibers, polylactic acid fibers and polyarylate fibers; Acrylic fibers such as polyacrylonitrile fibers and polyacrylonitrile-vinyl chloride copolymer fibers; Polyolefin fibers such as polyethylene fibers and polypropylene fibers
  • Polyvinyl alcohol fibers such as vinylon fibers and polyvinyl alcohol fibers
  • polyvinyl chloride fibers such as polyvinyl chloride fibers, vinylidene fibers and polyclar fibers
  • synthetic fibers such as polyurethane fibers
  • polyethylene oxide fibers Polyether fibers such as polypropylene oxide fibers can be
  • the hollow crimped fiber, the low melting point fiber, and other fibers used as necessary are preferably fibers (particularly chemical fibers) composed of a common resin.
  • the common resin includes one resin and its modified resin.
  • one resin is a polyester resin
  • the range of the common resin includes a polyester resin and a modified polyester resin.
  • the ratio of the first fibers to the second fibers is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass in the total fibers. It may be.
  • the rest is other fibers.
  • the hollow crimped fiber, the low melting point fiber, and other fibers used as necessary are made into a laminated fiber web by blending, carding, and cross-wrapping.
  • the weighted average fineness of all the fibers when the fiber web is formed is, for example, preferably 7 dtex or more, more preferably 8 dtex or more, still more preferably 9 dtex or more, for example, 20 dtex or less, more preferably 17 dtex or less. More preferably, it is 15 dtex or less.
  • the fiber basis weight when forming the fiber web (the basis weight based only on the fiber mass) and the total basis weight (the basis weight based on all resin components used) are, for example, preferably 50 g / m 2 or more, more preferably 80 g / m 2 or more, more preferably 100 g / m 2 or more, preferably 250 g / m 2 or less, more preferably 200 g / m 2 or less, and still more preferably 180 g / m 2 or less.
  • the fiber basis weight and the total basis weight in the laminated fiber web are equivalent to the fiber basis weight and the total basis weight in the nonwoven fabric or the pre-air filter. According to the present invention, excellent rigidity can be achieved even if the fiber basis weight and the total basis weight are reduced, and the nonwoven fabric or the pre-air filter can be reduced in weight.
  • a small amount of binder resin in a range satisfying the total weight per unit area may be sprayed and combined with a resin bond, but it is preferable not to spray or impregnate the binder resin.
  • Needle punch The fiber web containing hollow crimped fibers and low-melting fibers has fibers oriented in the plane direction. By needle punching such a fiber web, the degree of fiber orientation in the thickness direction can be increased. it can. When non-hollow crimped fibers are used, it is difficult to increase the degree of orientation in the thickness direction even if low-melting fibers are used.
  • the combination of hollow crimped fibers and low-melting fibers is the first in the thickness direction. The degree of orientation increases. Further, by combining a thermal bond, it is possible to realize the rigidity, dust retention, low pressure loss, and water penetration resistance of the pre-air filter.
  • the nonwoven fabric in which the fibers are oriented in the thickness direction is very excellent in maintaining thickness and rigidity when dust is loaded. Delamination and dust removal are likely to occur.
  • the nonwoven fabric in which the fibers are oriented in the plane direction is excellent in dust collection performance, but is inferior in rigidity in the thickness direction, so the thickness tends to decrease due to dust load and the amount of dust retained tends to decrease. . Therefore, by blending the hollow crimped fibers into the laminated fiber web arranged in the plane direction, the hollow crimped fibers included in the fiber web are oriented in the thickness direction even if the fiber web is formed in the plane direction.
  • the orientation degree of the fiber in the thickness direction can be evaluated by the orientation degree in the obtained pre-air filter.
  • the entanglement by the needle punch is preferably performed by allowing the needle to enter only from one side of the nonwoven fabric.
  • a density gradient structure continuous in the thickness direction can be formed while being a single layer. This density gradient can be more easily formed and is gentler than the density gradient obtained by laminating fiber webs composed of a plurality of layers.
  • the magnitude of the density gradient can be evaluated with the obtained pre-air filter.
  • the needle thickness of the needle punch is, for example, preferably 0.78 mm or less, more preferably 0.75 mm or less, still more preferably 0.70 mm or less, preferably 0.35 mm or more, more preferably 0.40 mm. It is above, More preferably, it is 0.45 mm or more.
  • Two types of needles having different thicknesses for example, a thick needle of 0.60 mm or more (preferably 0.78 mm or less) and a thin needle of less than 0.60 mm (more preferably 0.35 mm or more) may be combined. Punching with a thick needle forms a large fiber bundle and orients it in the thickness direction, while using a thin needle relaxes the degree of fiber orientation in the thickness direction and prevents punch holes from opening too much.
  • the punch surface can be densified.
  • the relationship between needle thickness and needle count is generally 28th (0.78 mm), 30th (0.75 mm), 32nd (0.70 mm), 42th (0.45 mm), 44th (0 .40 mm), 46th (0.35 mm), but is not limited thereto.
  • the number of needles driven per unit area is, for example, preferably 15 to 25 / cm 2 , more preferably 17 to 23 / cm 2 , and still more preferably 18 to 22 / cm 2 . is there.
  • the needle depth is 0 mm.
  • the fiber is not entangled over the entire nonwoven fabric, but the fibers are entangled up to a certain depth with the thickness of the nonwoven fabric, so that it becomes easy to form a fiber orientation gradient in the thickness direction.
  • the needle-punched fiber web is heated to a temperature above the melting point of the low-melting fiber and below the melting point of the hollow crimped fiber, so that the fibers can be bonded and bonded together by the molten fiber.
  • the shape of the nonwoven fabric can be fixed and the strength can be secured.
  • the low melting point fiber is reduced in diameter during the thermal bonding, and the first fiber, which is partially or wholly melted, is fused with the second fiber, thereby forming a space for water retention.
  • the strength of the space can be increased, the shape of the space can be maintained even if water is retained, and the water can be prevented from forming a film.
  • the increase in pressure loss can also be suppressed.
  • the heating temperature at the time of thermal bonding is, for example, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 140 ° C. or higher, for example, 200 ° C. or lower, more preferably 190 ° C. or lower. More preferably, it is 180 ° C. or lower.
  • the heating time is, for example, preferably 10 seconds or more, more preferably 20 seconds or more, still more preferably 30 seconds or more, for example, 5 minutes or less, more preferably 3 minutes or less, still more preferably. 2 minutes or less.
  • the non-woven fabric thermally bonded as described above can be made into a pre-air filter by cutting it into an appropriate form. If necessary, the needle punched surface may be smoothed through a heating roll or a heating plate before or after the cutting process. By performing the smoothing process, the needle punch hole can be made smaller, and further, the fuzzing of the needle punch surface can be prevented and the collection efficiency by increasing the density of the high density surface can be improved. In addition, since the nonwoven fabric has increased rigidity, handling properties and cut workability are also improved. The front and back sides of the pre-air filter can be easily distinguished.
  • FIG. 1 is a partially cutaway schematic perspective view showing an example of an air filter for an internal combustion engine composed of the pre-air filter and the main air filter.
  • the main air filter 2 in the illustrated example includes a plurality of aligned filter materials 4 obtained by pleating a nonwoven fabric or filter paper, and a frame body 3 that fixes the filter materials 4.
  • a pre-air filter 1 is disposed on the air inflow side of the main air filter 2. The air supplied to the internal combustion engine is first coarsely removed through the pre-air filter 1, and then the main air filter 2. Fine dust is also removed by the air filter 2.
  • the hollow crimped fiber is fixed with a low-melting fiber, the fiber orientation degree in the thickness direction is an appropriate value, and an excellent density gradient even though it is a single layer have. Therefore, it is excellent in rigidity and dust holding amount, has low pressure loss characteristics, and also has excellent resistance to water ingress. Therefore, the main air filter can be effectively protected for a long period of time, and the dust collection efficiency can be improved.
  • the magnitude of the density gradient can be evaluated by the ratio of the density on the air outflow side of the pre-air filter and the density on the air inflow side, and the magnitude can be appropriately set depending on the required filter performance.
  • the density on the air outflow side is, for example, preferably 1.05 times or more, more preferably 1.10 times or more, and still more preferably 1.3 times or more than the density on the air inflow side. For example, it is preferably 3.0 times or less, more preferably 2.6 times or less, and even more preferably 2.0 times or less. Within such a range, the amount of dust retained can be increased, and the filter life can be further increased.
  • the density on the air outflow side of the pre-air filter is, for example, preferably 0.012 g / cm 3 or more, more preferably 0.018 g / cm 3 or more, and further preferably 0.022 g / cm 3 or more. , preferably 0.04 g / cm 3 or less, more preferably 0.035 g / cm 3 or less, more preferably 0.030 g / cm 3 or less. Density of the air inlet side of the pre-air filter, for example, preferably 0.005 g / cm 3 or more, more preferably 0.008 g / cm 3 or more, more preferably 0.010 g / cm 3 or more, e.g.
  • the density of the entire pre-air filter for example, preferably 0.010 g / cm 3 or more, more preferably 0.012 g / cm 3 or more, more preferably 0.014 g / cm 3 or more, for example, 0. 030g / cm 3 or less, and more preferably 0.026 g / cm 3 or less, more preferably 0.023 g / cm 3 or less.
  • the degree of fiber orientation in the thickness direction of the pre-air filter is, for example, preferably 20 ° or more, more preferably 25 ° or more, still more preferably 30 ° or more, for example, 50 ° or less, more preferably. Is 45 ° or less, more preferably 40 ° or less.
  • the fiber orientation degree can be measured by the method described in Examples.
  • the apparent thickness of the pre-air filter is, for example, preferably 3 mm or more, more preferably 5 mm or more, further preferably 6 mm or more, for example, 12 mm or less, more preferably 10 mm or less, still more preferably. 8 mm or less.
  • the pressure loss when the pre-air filter of the present invention is subjected to the pressure loss test of the examples described later is, for example, 40 Pa or less, preferably 30 Pa or less, more preferably 25 Pa or less.
  • the lower limit of the pressure loss is not particularly limited. For example, it is about 15 Pa, and even if it is about 20 Pa, it can be said that it is a good pre-air filter.
  • the thickness reduction rate when the pre-air filter of the present invention is subjected to a dust load thickness reduction test of an example described later is, for example, 88% or more, preferably 90% or more, more preferably 92. % Or more.
  • the upper limit of the thickness reduction rate is not particularly limited. For example, it is 100% or less, and even if it is 97% or less, it can be said that it is a good pre-air filter.
  • the amount of dust retained when the pre-air filter is subjected to the dust retention test of Examples described later is, for example, 90 g / 0.1 m 2 or more, preferably 100 g / 0.1 m 2 or more, more preferably 120 g / 0. .1 m 2 or more.
  • the upper limit of the dust holding amount is not particularly limited, for example, it is 300 g / 0.1 m 2 or less, and even if it is 200 g / 0.1 m 2 or less, it can be said that it is a good pre-air filter.
  • the water retention amount of the pre-air filter in the drainage test is as extremely high as 5.5 to 12 g (more preferably 6.0 to 11 g).
  • the main air filter various known filters can be used.
  • the main air filter particularly suitable in combination with the pre-air filter of the present invention is an air filter using a filter material made of filter paper or non-woven fabric, particularly a filter material made of filter paper that has a high density and can exhibit high dust cleaning efficiency.
  • An air filter is preferred.
  • the air filter is a filter in which a plurality of layers having different densities are stacked, and has, for example, the following characteristics.
  • Ventilation resistance The ventilation resistance of the main air filter is, for example, 100 Pa or more, preferably 200 Pa or more, and 400 Pa or less, preferably 300 Pa or less.
  • the ventilation resistance is a value obtained by testing under the following conditions in accordance with JIS D1612 (Automobile Air Cleaner Test Method). Effective filtration area: 1760 cm 2, the projected area: 281cm 2, air volume: 5.7 m 3 / min, air velocity: 54cm / sec
  • the dust collection efficiency of the main air filter is, for example, 90% or more, preferably 95% or more, more preferably 97% or more. % Is preferred.
  • the dust collection amount is, for example, 70 g or more, preferably 100 g or more, more preferably 120 g or more, for example, 200 g or less, preferably 180 g or less.
  • the dust collection efficiency and the amount collected are in accordance with JIS D1612 (Automobile Air Cleaner Test Method), and the dust collection efficiency is in particular in accordance with the full life clean efficiency test specified in JIS D1612 9.4 (3).
  • the dust collection amount is a value obtained by carrying out according to JIS D161210. Each test condition is set as follows.
  • Effective filtration area 1760 cm 2 , air volume: 5.7 m 3 / min, air velocity: 54 cm / sec, dust: JIS Z8901 8 types, dust concentration: 1 g / m 3 , test end condition: increase resistance 300 mmAq
  • Examples of the internal combustion engine that can use the air filter of the present invention include a piston engine (reciprocating engine), a rotary engine, a gas turbine engine, a jet engine, and the like, and preferably an automobile engine.
  • Inflow side density (g / cm 3 ) Inflow side weight / Inflow side apparent thickness
  • Outflow side density (g / cm 3 ) Outflow side weight / Outflow side apparent thickness
  • Density ratio Outflow side density / Inflow Lateral density
  • Water holding amount (g) Test piece weight after test (g) ⁇ Test piece weight before test (g) Further, the water drainage is evaluated by visually and touching the surface of the test piece on the outflow side after the test for the presence or absence of water drainage.
  • Dust retention amount JIS Z8901-8 seed powder was charged at an air amount of 3.6 m 3 / min according to the full life clean efficiency test specified in JIS D1612 9.4 (3). The test was terminated when the increased resistance was 150 mmAq, and the amount of dust retained at that stage was determined.
  • Example 1 Hollow actual crimped polyester fiber as high melting point fiber (polyethylene terephthalate (PET), melting point 260 ° C., fineness 6.6 dtex, fiber length 51 mm, crimp rate 20%, crimp number 9 / inch, hollow rate 27%) 20% by weight, 15% by weight of the first low-melting polyester fiber (the core is PET and the sheath is modified polyester (L-PET), the melting point is 110 ° C., the glass transition temperature is 60 ° C., the fineness is 4.4 dtex, the fiber length is 51 mm).
  • PET polyethylene terephthalate
  • L-PET modified polyester
  • the second low melting point polyester fiber (the core is PET, the sheath is modified polyester (L-PET), the melting point is 110 ° C., the glass transition temperature is 60 ° C., the fineness is 17 dtex, the fiber length is 51 mm), and after blending, Carding and then cross-wrapping gave a laminated fiber web.
  • This laminated fiber web is needle punched from one side with a needle of needle number 40 (Organ Needle: FPD1-40, blade size: 0.50 mm) with a needle number of 20 / cm 2 and a needle depth of 0 mm. did.
  • heat treatment was performed for 1 minute in a conveyor type continuous heat treatment machine in which the temperature of hot air was maintained at 160 ° C. to obtain a short fiber nonwoven fabric for a pre-air filter having a basis weight of 150 g / m 2 and an apparent thickness of 7.2 mm.
  • Examples 2-7, Comparative Examples 1-2 The procedure was the same as Example 1 except that the types and amounts of the high-melting fiber and the low-melting fiber were changed as shown in Tables 1 and 2 below, and the needle punch conditions were changed as shown in Tables 1 and 2.
  • the fibers used in this production example are as follows. “Hollow actual crimped fiber (conjugate)” is a hollow crimped fiber having a side-by-side structure, which is made of polyethylene terephthalate (PET), melting point 260 ° C., fineness 7.7 dtex, fiber length 51 mm, crimped The rate is 16%, the number of crimps is 8 / inch, and the hollow rate is 10%.
  • PET polyethylene terephthalate
  • Non-hollow fiber is a solid crimped fiber made of polyethylene terephthalate (PET), having a melting point of 260 ° C., a fiber length of 51 mm, and a crimp rate, the number of crimps and a fineness shown in the table. is there.
  • L-PP is a low melting point fiber made of polyethylene resin and polypropylene resin having a melting point of 130 ° C., a glass transition temperature of ⁇ 20 ° C., a fineness of 20 dtex, and a fiber length of 64 mm.
  • Comparative Example 3 A short fiber nonwoven fabric for a pre-air filter was obtained in the same manner as in Example 1 except that the fibers were not entangled by needle punching.
  • Comparative Examples 4-5 100% by weight of non-hollow fibers (polyethylene terephthalate (PET), melting point 260 ° C., fineness 6.6 dtex or 17 dtex, fiber length 51 mm) were weighed and carded, and then cross-wrapped to obtain a laminated fiber web.
  • This laminated fiber web was needle punched from the one side under the conditions shown in Table 2 and then impregnated by spray application of an acrylic emulsion. Heat treatment and drying were carried out for 5 minutes in a conveyor type continuous heat treatment machine maintained at 150 ° C. to obtain a short fiber nonwoven fabric for pre-air filters.
  • the pre-air filter of the present invention can be used for an intake line of an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 軽量化した時でも剛性を確保可能であり、ダスト保持性にも優れ、かつ水浸入時耐性にも優れる内燃機関用プレエアフィルタを提供する。 内燃機関用プレエアフィルタ(1)は、融点が80℃以上200℃以下である第1繊維と、融点が前記第1繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維とがニードルパンチによって交絡し、且つ、一部または全部が溶融した前記第1繊維が第2繊維と融着した不織布から構成されることを特徴とする。このプレエアフィルタ(1)は、メインエアフィルタ(2)の空気流入側に設けられる。

Description

内燃機関用プレエアフィルタ
 本発明は、内燃機関の吸気ラインに用いられるエアクリーナーの捕集効率及びダスト捕集量を向上させる目的で、メインエアフィルタの空気流入側に設けられる有用な不織布製のプレエアフィルタに関するものである。
 従来、自動車エンジン用エアフィルタには不織布材料または濾紙材料が用いられており、これら材料をプリーツ加工し、単位容積中の濾材面積を増やすことで、所定のダスト保持量を得ている。例えば、不織布材料を用いる場合、プリーツ数は少なくなるが、濾材厚さを大きくすることによって深層濾過が可能であり、所定のダスト保持量が得られる。また濾紙材料を用いる場合は、プリーツ数を増やす事によって、濾材面積を十分に増やして所望のダスト保持量を得られる。そしてさらにダスト保持量を増やす場合には、こうしたエアフィルタ(メインフィルタ)の上流側に不織布製のプレエアフィルタを設けることも行われている。
 より詳細に説明すると、エンジン用エアフィルタには、低圧力損失、高ダスト清浄化効率、高ダスト保持量などの特性が求められおり、特に近年は、高ダスト清浄効率の要求が高まっている。高ダスト清浄効率を達成するには、フィルタ材料の目を細かくすることが有効であるが、その反面、目詰まりが早くなるという欠点が生じる。こうした目詰まりを低減してフィルタの交換頻度を減らす目的で、従来、メインとなるエンジン用エアフィルタの前にダスト保持量を得るための補助的なプレエアフィルタが用いられている。このプレエアフィルタが直ぐに目詰まりしたのでは、フィルタの交換頻度を低減するという本来の目的を達成できないため、プレエアフィルタの目は粗く設計されている。またダスト保持量を多くするため、プレエアフィルタは厚く設計されている。更にこうしたプレエアフィルタは、ダスト負荷時に厚み方向に潰れて薄くならない様に、また圧力損失が生じにくい様に材料設計する必要がある。こうしたプレエアフィルタとして、従来、霧状に塗布した樹脂バインダーで繊維ウェブを結合したレジンボンドタイプの短繊維不織布が厚さを確保しやすい為に用いられている(特許文献1など)。
特開平10-85526号公報
 しかし、レジンボンドタイプの不織布の場合は、所定の剛性を確保するため、多くの樹脂を不織布に付着させる必要があり軽量化が難しい。また付着レジンが多くなると、ダスト保持量も低下し、圧力損失も大きくなる。
 更には、自動車の走行環境によってはエンジンの吸気ラインに水が浸入してくることがあり、こうした浸入水を保持し、水がメインフィルタ側に抜けるのを抑制しつつ、水保持時でも圧力損失が大きくならない特性(水浸入時耐性)が優れていることも望ましい。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、軽量化した時でも剛性を確保可能であり、ダスト保持性にも優れ、かつ水浸入時耐性にも優れる内燃機関用プレエアフィルタを提供することにある。
 本発明者は鋭意検討を重ねた結果、不織布にレジンボンド加工せずとも、中空構造を有する捲縮した中空捲縮繊維を、低融点繊維とニードルパンチで交絡した後で熱融着することにより、(i)低融点繊維が厚さ方向に配向する際に、中空捲縮繊維も協力して厚さ方向の配向度が高まること、(ii)中空捲縮繊維を用いているために平面方向の絡み合いの複雑さは維持されてダスト清浄化効率が維持されること、(iii)厚さ方向に配向した冷却固化後の低融点繊維が柱の役割を果たし不織布の剛性が高められること、(iv)熱処理により一部または全部の低融点繊維が溶融する際に、低融点繊維が細径化して繊維間の空間を拡大しながら、繊維同士の交絡点では繊維同士が接合しやすくなるため、空間強度が維持され、意外なことに、水を不織布内に保持することが可能となり、この構成により水浸入時耐性が良好なものとなること、(v)及びレジンボンドと同重量で比較しても、剛性は維持され、ダスト保持性や水保持特性は大きく改善され、プレエアフィルタ性能が大きく向上すること、等を見出し、本発明を完成した。
 すなわち、本発明に係る内燃機関用プレエアフィルタは、以下の点に要旨を有する。
[1]融点が80℃以上200℃以下である第1繊維と、融点が前記第1繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維とがニードルパンチによって交絡し、且つ、一部または全部が溶融した前記第1繊維が第2繊維と融着した不織布から構成されることを特徴とする内燃機関用プレエアフィルタ。
[2]前記ニードルパンチによる交絡が、繊維ウェブの片側のみからニードルを侵入させることによって行われる[1]に記載のプレエアフィルタ。
[3]厚さ方向への繊維配向度が20°以上50°以下である[1]または[2]に記載のプレエアフィルタ。
[4]融点が80℃以上200℃以下である第1繊維と、融点が前記第1繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維とが交絡し、且つ、一部または全部が溶融した前記第1繊維が第2繊維と融着しており、
厚さ方向への繊維配向度が20°以上50°以下である内燃機関用プレエアフィルタ。
[5]空気流出側の密度が、空気流入側の密度の1.05倍以上である[1]~[4]のいずれかに記載のプレエアフィルタ。
[6]前記第2繊維の繊度が4dtex以上40dtex以下であり、前記第1繊維の繊度が1dtex以上40dtex以下であり、第1繊維及び第2繊維の合計に対して、第1繊維を20質量%以上90質量%以下含む[1]~[5]のいずれかに記載のプレエアフィルタ。
[7]前記第2繊維として、12dtex以下の中空捲縮繊維を、第2繊維全体に対して10質量%以上の割合で含む[6]に記載のプレエアフィルタ。
[8]前記第1繊維が、繊度1dtex以上10dtex以下の細繊維と、繊度10dtex超40dtex以下の太繊維の混合繊維であり、細繊維の割合が、細繊維と太繊維の合計に対して、10質量%以上である[1]~[7]のいずれかに記載のプレエアフィルタ。
[9]前記第1繊維が、ガラス転移温度が10℃以上の硬質繊維と、ガラス転移温度が10℃未満の軟質繊維とから構成される[1]~[8]のいずれかに記載のプレエアフィルタ。
[10]前記細繊維はガラス転移温度が10℃以上の硬質繊維であり、前記太繊維はガラス転移温度が10℃以上の硬質繊維と、ガラス転移温度が10℃未満の軟質繊維とから構成される[8]に記載のプレエアフィルタ。
[11]前記第1繊維及び第2繊維が、共通の樹脂から構成されている[1]~[10]のいずれかに記載のプレエアフィルタ。
[12]不織布全体の平均繊度が7dtex以上20dtex以下であり、不織布全体の目付量が50g/m2以上250g/m2以下である[1]~[11]のいずれかに記載のプレエアフィルタ。
[13]メインエアフィルタと、このメインエアフィルタの空気流入側に設けられた[1]~[12]のいずれかに記載のプレエアフィルタとから構成される内燃機関用エアフィルタ。
 本発明の内燃機関用エアフィルタは、メインエアフィルタと、このメインエアフィルタの空気流入側に設けられた前記プレエアフィルタとから構成される。
 本発明によれば、中空構造を有する捲縮した中空捲縮繊維を、低融点繊維とニードルパンチで交絡した後で熱融着しているため、低融点繊維が中空捲縮繊維と協力して厚さ方向の配向度を高めて繊維全体の剛性を高めることができる。また中空捲縮繊維を用いているために面方向の目の複雑さは維持されてダスト保持性も高める事ができる。さらには低融点繊維が細径化して繊維間の空間を拡大しながら、繊維同士の交絡点では一部または全部が溶融固化した低融点繊維により中空捲縮繊維等のプレエアフィルタを構成する繊維同士が接合されやすくなるため、水を不織布内に保持することが可能となり、良好な水浸入時耐性が発揮される。
図1は本発明のプレエアフィルタを用いた内燃機関用エアフィルタの一例を示す概略斜視図である。
 本発明の内燃機関用プレエアフィルタは、融点が80℃以上200℃以下である第1繊維(以下、低融点繊維という)と、融点が前記低融点繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維(以下、中空捲縮繊維という)とから構成される繊維ウェブをニードルパンチで交絡しており、厚さ方向への繊維配向度が高められている。そしてこれらの繊維に熱をかけてサーマルボンドによって接合(融着)することで、一部または全部が溶融した低融点繊維が細径化して第2繊維と融着し、繊維間の空間を拡大しながら、繊維同士の交絡点では繊維同士が接合しやすくなるため、空間形状を強固に保つことができる様になる。こうした厚さ方向への配向性が高く、かつ空間形状にも優れた不織布をプレエアフィルタに用いると、剛性、低圧力損失性、高ダスト保持性、及び水浸入時耐性を良好にすることができる。以下、各構成について順に説明する。
 1.第2繊維(中空捲縮繊維)
 前記中空捲縮繊維は、プレエアフィルタを軽量且つ嵩高に仕上げ、不織布の平面方向の目の複雑さを維持して、ダスト捕集量向上に寄与する。また中空捲縮繊維は曲げ剛性を有するため、これを配合した不織布は、風等の圧力を受けても変形し難く、長期間の使用が可能となる。この中空捲縮繊維を第1繊維(低融点繊維)と組み合わせ、ニードルパンチをした上で熱融着することで、剛性、低圧力損失性、高ダスト保持性、及び水浸入時耐性を良好にできる。中空捲縮繊維が示す高い反発弾性は、プレエアフィルタの水保持性の向上に寄与する。
 前記中空捲縮繊維の捲縮率は、例えば、10%以上が好ましく、より好ましくは12%以上、更に好ましくは14%以上であり、例えば、30%以下が好ましく、より好ましくは28%以下であり、更に好ましくは25%以下である。適度な捲縮率の繊維を使用することで、不織布を軽量化しつつ厚さ形状を維持することが可能となる。
 また前記中空捲縮繊維の捲縮数は、例えば、3個/インチ以上が好ましく、より好ましくは5個/インチ以上であり、更に好ましくは7個/インチ以上であり、例えば、25個/インチ以下が好ましく、より好ましくは20個/インチ以下であり、更に好ましくは15個/インチ以下である。捲縮数が25個/インチを超える様な微細捲縮では、不織布の厚さを保持するのが難しくなってくる。なお本発明において、「インチ」は25.4mmである。
 また本発明では、第2繊維(中空捲縮繊維)は中空である必要がある。中空構造にすることで、嵩高さを維持しつつ軽量化が可能になる。中空捲縮繊維の中空率は、例えば、5%以上が好ましく、より好ましくは7%以上であり、更に好ましくは9%以上であり、例えば、60%以下が好ましく、より好ましくは45%以下であり、更に好ましくは35%以下である。適度な中空率にすることで、反発弾性を維持でき、また風圧によるへたりを抑制でき、さらには水浸入時耐性をさらに向上するのにも有効である。
 前記中空捲縮繊維としては、熱収縮率の異なる樹脂を同時に押し出した偏心構造、又はサイドバイドサイド構造を有する複合繊維(コンジュゲート繊維);熱収縮率の異なる繊維を組み合わせたバイコン繊維;繊維の表側と裏側とで熱処理等の処理の程度を異ならせて立体捲縮を発現させた中空捲縮繊維等の各種繊維が例示できる。立体捲縮繊維では、コイル形状、スパイラル形状等の三次元的捲縮を形成することが可能である。また本発明の中空捲縮繊維は、汎用の化学繊維に機械的な捲縮加工を施した機械的捲縮繊維であってもよい。これらの繊維のうちより好ましくは、複合繊維(コンジュゲート繊維)またはバイコン繊維である。また本発明では、サーマルボンド時において加熱処理に供する前に既に捲縮している中空捲縮繊維の使用が好ましい。
 中空捲縮繊維の融点は、低融点繊維の融点よりも30℃以上、好ましくは50℃以上、より好ましくは80℃以上高い。低融点繊維よりも十分に高い融点を示すことで、低融点繊維の溶融温度以上で中空捲縮繊維及び低融点繊維からなる繊維ウェブをサーマルボンドすることが可能となる。なお融点の上限は特に限定されず、融点を示さなくても(すなわち溶融前に分解が開始しても)よい。中空捲縮繊維の融点は、中空捲縮繊維を構成する素材の種類にも依るが、通常、150℃以上350℃以下であり、より好ましくは200℃以上300℃以下である。
 中空捲縮繊維としては、通常、化学繊維が使用され、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリアリレート等のポリエステル樹脂;ナイロン6、ナイロン66等のポリアミド樹脂;ポリアクリロニトリル、ポリアクリロニトリル-塩化ビニル共重合体等のアクリル樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ビニロン樹脂、ポリビニルアルコール樹脂等のポリビニルアルコール系樹脂;ポリ塩化ビニル樹脂、ビニリデン樹脂、ポリクラール樹脂等のポリ塩化ビニル系樹脂;ポリウレタン樹脂等の合成樹脂;ポリエチレンオキサイド樹脂、ポリプロピレンオキサイド樹脂等のポリエーテル系樹脂;等を原料とする合成繊維;レーヨン、ポリノジック等の再生繊維;アセテート繊維、トリアセテート繊維等の半合成繊維等を好ましく使用できる。本発明では、中空捲縮繊維が熱や湿気等で劣化しにくく、適度な剛性を有し、入手が容易であることからポリエステル樹脂を原料に含む繊維が好ましい。
 前記中空捲縮繊維の繊度は、例えば、4dtex以上が好ましく、より好ましくは5dtex以上であり、更に好ましくは6dtex以上であり、40dtex以下が好ましく、より好ましくは20dtex以下であり、更に好ましくは15dtex以下である。なお繊度の異なる複数の中空捲縮繊維を含む時には、各繊度の中空捲縮繊維の割合(質量基準)を考慮した加重平均によって、中空捲縮繊維の繊度を求める。
 前記中空捲縮繊維は、全体として前記平均の繊度を満足する限り、その一部又は全部に繊度が12dtex以下、好ましくは5dtex以上10dtex以下、より好ましくは6dtex以上10dex以下、特に好ましくは7dtex以上8.5dtex以下の中空捲縮繊維(以下、細中空捲縮繊維という)を含むのが好ましい。細中空捲縮繊維を含むことで、ダスト保持量をより向上できる。細中空捲縮繊維の割合は、中空捲縮繊維全体に対して、例えば、10質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上、特に好ましくは100質量%である。
 なお前記中空捲縮繊維は、前記平均の繊度を満足することが可能な限り、繊度12dtex超の太中空捲縮繊維を含んでいてもよい。
 なお中空捲縮繊維(細捲縮繊維、太捲縮繊維を含む)の繊度は、これらを構成する樹脂の素材にもよるが、一般的には、サーマルボンド前でも、サーマルボンド後でも(すなわちプレエアフィルタ中でも)同じである。
 中空捲縮繊維の繊維長は、短繊維であれば特に限定されず、例えば、300mm以下、好ましくは100mm以下であり、また10mm以上、好ましくは20mm以上の範囲から適宜選択できる。なお中空捲縮繊維の繊維長は、繊維を伸長せずまっすぐに伸ばした状態で測定されることとする。
 中空捲縮繊維の割合は、低融点繊維と中空捲縮繊維の合計に対して、例えば、10質量%以上が好ましく、より好ましくは12質量%以上であり、更に好ましくは15質量%以上であり、例えば、80質量%以下が好ましく、より好ましくは70質量%以下であり、更に好ましくは60質量%以下である。
 2.第1繊維(低融点繊維)
 低融点繊維は、従来のレジンボンド法によるバインダー樹脂に代わって、不織布を強固に接合する為に使用される。低融点繊維を使用することでプレエアフィルタに必要な繊維間接着や剛性を得られるため、従来技術のようにバインダー樹脂を含浸・スプレーなどにより塗布した後、不要な水分を乾燥させるという工程を減らすことができる。さらに低融点繊維による接合によれば、繊維間接着強度が高いため、必要なサイズに打抜き・カットする際にカット端面での糸残りが少なくなるというメリットもある。また低融点繊維は、バインダー樹脂として一般的なポリアクリル酸エステル系樹脂、ポリエステル系樹脂、合成ゴム系樹脂、ウレタン系樹脂、塩化ビニル系樹脂などと比較して安価なため好ましい。こうした低融点繊維を中空捲縮繊維と組み合わせ、ニードルパンチしてサーマルボンドで接合することによって厚さ方向の配向度が高まり、不織布の剛性、ダスト保持性、低圧力損失、及び水浸入時耐性を実現できる。
 低融点繊維の融点は、80℃以上、好ましくは90℃以上であり、より好ましくは100℃以上である。融点の上限は、サーマルボンドの処理可能温度や中空捲縮繊維の耐熱性などに応じて適宜設定でき、例えば、200℃以下、好ましくは180℃以下であり、より好ましくは160℃以下である。なお融点の異なる複数の樹脂を組み合わせて低融点繊維が形成されている場合(例えば、芯鞘構造、偏心構造、またはサイドバイサイド構造などの場合)、融点の低い側の樹脂の融点が、低融点繊維の融点であるとみなす。
 低融点繊維としては、融点の異なる複数の樹脂を組み合わせた芯鞘構造、偏心構造、あるいはサイドバイサイド構造を有する複合繊維;変性ポリエステル繊維;変性ポリアミド繊維;変性ポリプロピレン繊維等の変性ポリオレフィン繊維等が使用できる。前記複合繊維に使用される樹脂の組み合わせには、ポリエチレン-ポリプロピレン、ポリプロピレン-変性ポリプロピレン等のポリオレフィン系の組み合わせの他、ポリエチレン-ポリエステル、ポリエステル-変性ポリエステル、ナイロン-変性ナイロン等が挙げられる。また融点によっては、単一の樹脂からなる低融点繊維も使用できる。中でも、生産性がよく入手が容易であることから、芯鞘構造を有する複合繊維が好ましく、融点の選択範囲が広いことから、ポリエステル-変性ポリエステル樹脂からなる芯鞘構造を有する複合繊維が特に好ましい。一方、ダスト保持量を高めるには、厚さ方向の配向度が高くなる傾向にあるポリエチレン-ポリプロピレン、ポリプロピレン-変性ポリプロピレン等のポリオレフィン系低融点繊維の使用が推奨される。
 低融点繊維の繊度は、1dtex以上が好ましく、より好ましくは1.5dtex以上であり、更に好ましくは2dtex以上であり、40dtex以下が好ましく、より好ましくは30dtex以下であり、更に好ましくは20dtex以下である。なお繊度の異なる複数の低融点繊維を含む時には、各繊度の低融点繊維の割合(質量基準)を考慮した加重平均によって、低融点繊維の繊度を求める。
 前記低融点繊維は、繊度が1dtex以上(好ましくは1.5dtex以上、より好ましくは2dtex以上)、10dtex以下(好ましくは8dtex以下、より好ましくは5dtex以下)である細低融点繊維と、繊度が10dtex超(好ましくは12dtex以上、より好ましくは14dtex以上)、40dtex以下(好ましくは30dtex以下、より好ましくは20dtex以下)の太低融点繊維の混合繊維として使用することが好ましい。太低融点繊維は、ニードルパンチによって厚さ方向の繊維配向度を高めるのに有効であり、特に細低融点繊維と中空捲縮繊維とを組み合わせてニードルパンチした後でサーマルボンドすることで、厚さ方向に強い柱構造を導入できる。また太低融点繊維は、サーマルボンド時の熱処理により細径化されることで、水保持の為の空間を形成するのに効果的である。
 細低融点繊維の割合は、細低融点繊維と太低融点繊維の合計に対して、例えば、10質量%以上が好ましく、より好ましくは20質量%以上であり、更に好ましくは30質量%以上であり、100質量%以下が好ましく、より好ましくは70質量%以下であり、更に好ましくは50質量%以下であり、特に好ましくは45質量%以下である。
 これら低融点繊維の繊度は、サーマルボンド前の繊度を指す。例えば、芯鞘構造を有する低融点繊維の場合には、通常、芯と鞘の重量比は30:70~70:30(より好ましくは40:60~60:40、更に好ましくはほぼ50:50)であり、サーマルボンド後の低融点繊維の繊度はサーマルボンド前の繊度に対して、通常0.3~1倍である。サーマルボンド後の低融点繊維の繊度は、例えば、0.4dtex以上が好ましく、より好ましくは0.6dtex以上であり、更に好ましくは0.8dtex以上であり、36dtex以下が好ましく、より好ましくは27dtex以下であり、更に好ましくは18dtex以下である。
 低融点繊維としては、ガラス転移温度が10℃以上の硬質繊維であるのが好ましい。硬質繊維を用いる事で、プレエアフィルタの剛性を確保できる。硬質繊維のガラス転移温度は、好ましくは20℃以上であり、より好ましくは30℃以上であり、例えば、90℃以下が好ましく、より好ましくは70℃以下である。
 また低融点繊維として複数の繊維を組み合わせて用いる場合、前記硬質繊維に、ガラス転移温度が10℃未満の軟質繊維とを組み合わせるのが好ましい。軟質繊維を用いることで、プレエアフィルタの剛性を保ちつつ、折れにくいしなやかな柱構造を導入できる。軟質繊維のガラス転移温度は、8℃以下が好ましく、より好ましくは5℃以下であり、更に好ましくは2℃以下である。なお軟質繊維のガラス転移温度の下限は特に限定されないが、例えば、-10℃以上であってもよく、-5℃以上であってもよい。
 軟質繊維を用いる場合、その割合は、低融点繊維全体に対して、例えば、10質量%以上が好ましく、より好ましくは15質量%以上であり、更に好ましくは20質量%以上であり、例えば、80質量%以下が好ましく、より好ましくは60質量%以下であり、更に好ましくは50質量%以下である。
 低融点繊維が細低融点繊維と太低融点繊維の両方から構成される場合、細低融点繊維としてガラス転移温度が10℃以上の硬質繊維が使用され、太低融点繊維としてガラス転移温度が10℃以上の硬質繊維と、ガラス転移温度が10℃未満の軟質繊維とが組み合わせて使用されることが好ましい。太低融点繊維としての硬質繊維と軟質繊維の割合(質量比)は、例えば、10/90~90/10が好ましく、より好ましくは30/70~70/30であり、更に好ましくは40/60~60/40である。
 低融点繊維の割合は、中空捲縮繊維と低融点繊維の合計に対して、例えば、20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上であり、例えば、90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下である。
 低融点繊維の繊維長は、短繊維であれば特に限定されず、例えば、300mm以下が好ましく、より好ましくは100mm以下であり、また10mm以上が好ましく、より好ましくは20mm以上である。
3.他の繊維
 本発明では、前記中空捲縮繊維及び低融点繊維以外の繊維を使用してもよい。他の繊維としては、例えば、中空捲縮繊維と同等の範囲の融点を有する非中空捲縮繊維、天然繊維などが挙げられる。具体的には、例えば、綿、麻、毛、絹等の天然繊維;レーヨン、ポリノジック、キュプラ、レヨセル等の再生繊維;アセテート繊維、トリアセテート繊維等の半合成繊維;ナイロン6、ナイロン66等のポリアミド繊維;ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリ乳酸繊維、ポリアリレート繊維等のポリエステル繊維;ポリアクリロニトリル繊維、ポリアクリロニトリル-塩化ビニル共重合体繊維等のアクリル繊維;ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン繊維;ビニロン繊維、ポリビニルアルコール繊維等のポリビニルアルコール系繊維;ポリ塩化ビニル繊維、ビニリデン繊維、ポリクラール繊維等のポリ塩化ビニル系繊維;ポリウレタン繊維等の合成繊維;ポリエチレンオキサイド繊維、ポリプロピレンオキサイド繊維等のポリエーテル系繊維等が例示できる。
 他の繊維の繊度及び繊維長は、中空捲縮繊維と同等の範囲から選択できる。
 中空捲縮繊維、低融点繊維、及び必要に応じて使用される他の繊維は、共通の樹脂から構成される繊維(特に化学繊維)であるのが好ましい。共通の樹脂とは、一の樹脂とその変性樹脂とを含み、例えば、一の樹脂がポリエステル樹脂である場合、その共通の樹脂の範囲には、ポリエステル樹脂と変性ポリエステル樹脂とが含まれる。共通の樹脂を使用することで、プレエアフィルタのリサイクル性が高まる。
 本発明のプレエアフィルタでは、第1繊維と第2繊維の割合は、全繊維中、例えば、70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上であり、100質量%であってもよい。残りは他の繊維である。
 前記中空捲縮繊維、低融点繊維、及び必要に応じて使用される他の繊維は、混綿し、カーディングし、クロスラッピングすることで積層繊維ウェブにされる。繊維ウェブを形成した時の全繊維の加重平均繊度は、例えば、7dtex以上が好ましく、より好ましくは8dtex以上であり、更に好ましくは9dtex以上であり、例えば、20dtex以下が好ましく、より好ましくは17dtex以下であり、更に好ましくは15dtex以下である。
 また繊維ウェブを形成した時の繊維目付量(繊維質量だけに基づく目付量)及び総目付量(全ての使用樹脂成分に基づく目付量)は、例えば、50g/m2以上が好ましく、より好ましくは80g/m2以上であり、更に好ましくは100g/m2以上であり、250g/m2以下が好ましく、より好ましくは200g/m2以下であり、更に好ましくは180g/m2以下である。なお、積層繊維ウェブでの繊維目付量及び総目付量は、不織布乃至プレエアフィルタでの繊維目付量及び総目付量と同等である。本発明によれば、これら繊維目付量及び総目付量を小さくしても優れた剛性を達成でき、不織布乃至プレエアフィルタを軽量化できる。
 なお本発明では、前記総目付量を満足する範囲の少量のバインダー樹脂を噴霧し、レジンボンドを組み合わせてもよいが、バインダー樹脂を噴霧、含浸しない方が好ましい。
 4.ニードルパンチ
 中空捲縮繊維と低融点繊維とを含む前記繊維ウェブは、平面方向に繊維が配向しており、こうした繊維ウェブをニードルパンチすることで、厚さ方向の繊維の配向度を高めることができる。非中空捲縮繊維を用いると、たとえ低融点繊維を用いても、厚さ方向の配向度を高めることは困難であり、中空捲縮繊維と低融点繊維とを組み合わせることで初めて厚さ方向の配向度が高くなる。そしてさらにサーマルボンドを組み合わせることで、プレエアフィルタの剛性、ダスト保持性、低圧力損失、水浸入時耐性を実現できる。より詳細に説明すると、繊維が厚さ方向に配向する不織布は、ダスト負荷時の厚さの維持性、及び剛性に非常に優れているが、プレエアフィルタでは繊維密度が低いために繊維ウェブ間の層間剥離やダスト抜けが発生しやすい。一方、繊維が平面方向に配向する不織布は、ダストの捕集性能に優れているが、厚さ方向の剛性に劣るため、ダスト負荷により厚さがへたり、ダスト保持量が少なくなる傾向がある。そこで、平面方向に配列された積層繊維ウェブに中空捲縮繊維を混綿することで、繊維ウェブが平面方向に形成されていても繊維ウェブに含まれる中空捲縮繊維が厚さ方向へも配向するとともに、ニードルパンチ加工をすることで繊維ウェブの一部を厚さ方向に配向させると、厚さ方向に対する剛性が大きくなりフィルタとしての捕集性能が向上する。なお厚さ方向への繊維の配向度は、得られるプレエアフィルタでの配向度によって評価できる。
 前記ニードルパンチによる交絡は、不織布の片側のみからニードルを侵入させることによって行うのが好ましい。繊維ウェブの片面側からニードルパンチ加工することで、単層でありながら厚さ方向に連続した密度勾配構造を形成できる。この密度勾配は、複数層からなる繊維ウェブの積層による密度勾配よりも簡便に形成でき、かつ緩やかである。なお密度勾配の大きさは、得られるプレエアフィルタで評価できる。
 ニードルパンチの針太さは、例えば、0.78mm以下が好ましく、より好ましくは0.75mm以下であり、更に好ましくは0.70mm以下であり、0.35mm以上が好ましく、より好ましくは0.40mm以上であり、更に好ましくは0.45mm以上である。太さの異なる2種類の針、例えば0.60mm以上(好ましくは0.78mm以下)の太い針と、0.60mm未満(より好ましくは0.35mm以上)の細い針とを組み合わせてもよい。太い針でパンチすることで大きい繊維束を形成して厚さ方向に配向する一方で、細い針も使用することで厚さ方向への繊維配向度を緩和しかつパンチ穴の開きすぎを防止してパンチ面を高密度化することができる。
 なお針太さと針番手の関係は、一般的に、28番手(0.78mm)、30番手(0.75mm)、32番手(0.70mm)、42番手(0.45mm)、44番手(0.40mm)、46番手(0.35mm)として知られているが、これに限定されるものではない。
 ニードルの単位面積当たりの打ち込み本数(ペネ数)は、例えば、15~25本/cm2が好ましく、より好ましくは17~23本/cm2であり、更に好ましくは18~22本/cm2である。
 ニードルパンチを行うにあたり、表面から入れた針が裏面に出ないように(すなわち針深さ0mm)調整するとよい。不織布全体に亘って繊維を交絡させるのではなく、不織布の厚さのある一定の深さまでの繊維を交絡させることで、厚さ方向に繊維の配向勾配を形成しやすくなる。
 5.サーマルボンド
 以上の様にしてニードルパンチされた繊維ウェブは、低融点繊維の融点以上であり、かつ中空捲縮繊維の融点未満の温度に加熱する事で、溶融繊維によって繊維間同士が接着・接合され、不織布の形状を固定し、強度を確保できる。本発明ではこのサーマルボンドの際に低融点繊維が細径化し、一部または全部が溶融した前記第1繊維が第2繊維と融着することで、水保持の為の空間を形成できる。そして繊維の交絡点は低融点繊維によって確実に接着・接合できるため、空間強度を強くでき、水を保持しても空間の形状を維持でき、水が膜化するのを防止でき、水保持時の圧力損失の増大も抑制できる。
 サーマルボンド時の加熱温度は、例えば、100℃以上が好ましく、より好ましくは120℃以上であり、更に好ましくは140℃以上であり、例えば、200℃以下が好ましく、より好ましくは190℃以下であり、更に好ましくは180℃以下である。
 加熱時間は、例えば、10秒以上が好ましく、より好ましくは20秒以上であり、更に好ましくは30秒以上であり、例えば、5分以下が好ましく、より好ましくは3分以下であり、更に好ましくは2分以下である。
 6.エアフィルタ
 以上のようにしてサーマルボンドされた不織布は、適当な形態にカット加工することでプレエアフィルタにできる。また必要に応じて、カット加工前又はカット加工後に、ニードルパンチ加工面を加熱ロールや加熱板間を通して平滑処理してもよい。平滑処理をすることで、ニードルパンチ穴を小さくでき、さらにはニードルパンチ面の毛羽立ちを防止して高密度面の密度アップによる捕集効率を向上できる。加えて不織布の剛性が増すためハンドリング性やカット加工性も向上する。プレエアフィルタの裏表の判別も容易になる。
 プレエアフィルタは、内燃機関の吸気系に設置されるメインフィルタを保護する役割を有しており、前記吸気系においてメインエアフィルタの上流側(空気流入側)に設けられる。図1は、このプレエアフィルタとメインエアフィルタとから構成される内燃機関用エアフィルタの一例を示す一部切り欠き概略斜視図である。図示例のメインエアフィルタ2は、不織布又は濾紙をプリーツ加工した複数の整列したフィルタ材4と、このフィルタ材4を固定する枠体3とから構成されている。そしてこのメインエアフィルタ2の空気流入側には、プレエアフィルタ1が配設されており、内燃機関に供給される空気は、まずこのプレエアフィルタ1を通って粗くダストが除去され、次いでメインエアフィルタ2で細かいダストも除去される。
 本発明のプレエアフィルタは、中空捲縮繊維が低融点繊維で固定されており、かつ厚さ方向への繊維配向度が適切な値になっており、また単層でありながら優れた密度勾配を有している。そのため剛性とダスト保持量に優れており、かつ低圧力損失特性も有し、加えて水浸入時耐性にも優れている。そのため、メインエアフィルタを有効かつ長期間に亘って保護可能であり、またダスト捕集効率も向上できる。
 密度勾配の大きさは、プレエアフィルタの空気流出側の密度と、空気流入側の密度の比によって評価でき、その大きさは求められるフィルタ性能により適宜設定できる。空気流出側の密度は、空気流入側の密度に対して、例えば、1.05倍以上が好ましく、より好ましくは1.10倍以上であり、更に好ましくは1.3倍以上にすることができ、例えば、3.0倍以下が好ましく、より好ましくは2.6倍以下であり、更に好ましくは2.0倍以下にすることができる。こうした範囲であれば、ダスト保持量をより大きくでき、フィルタライフをさらに長くできる。
 プレエアフィルタの空気流出側の密度は、例えば、0.012g/cm3以上が好ましく、より好ましくは0.018g/cm3以上であり、更に好ましくは0.022g/cm3以上であり、例えば、0.04g/cm3以下が好ましく、より好ましくは0.035g/cm3以下であり、更に好ましくは0.030g/cm3以下である。
 プレエアフィルタの空気流入側の密度は、例えば、0.005g/cm3以上が好ましく、より好ましくは0.008g/cm3以上であり、更に好ましくは0.010g/cm3以上であり、例えば、0.025g/cm3以下が好ましく、より好ましくは0.020g/cm3以下であり、更に好ましくは0.018g/cm3以下である。
 プレエアフィルタ全体の密度は、例えば、0.010g/cm3以上が好ましく、より好ましくは0.012g/cm3以上であり、更に好ましくは0.014g/cm3以上であり、例えば、0.030g/cm3以下が好ましく、より好ましくは0.026g/cm3以下であり、更に好ましくは0.023g/cm3以下である。
 プレエアフィルタの厚さ方向への繊維配向度は、例えば、20°以上が好ましく、より好ましくは25°以上であり、更に好ましくは30°以上であり、例えば、50°以下が好ましく、より好ましくは45°以下であり、更に好ましくは40°以下である。繊維配向度は実施例に記載の方法で測定することができる。
 プレエアフィルタの見掛け厚さは、例えば、3mm以上が好ましく、より好ましくは5mm以上であり、更に好ましくは6mm以上であり、例えば、12mm以下が好ましく、より好ましくは10mm以下であり、更に好ましくは8mm以下である。
 本発明のプレエアフィルタを後述する実施例の圧力損失試験に供した時の圧力損失は、例えば、40Pa以下であり、好ましくは30Pa以下であり、より好ましくは25Pa以下である。圧力損失の下限は特に限定されないが、例えば、15Pa程度であり、特に20Pa程度であっても良好なプレエアフィルタであると言える。
 本発明のプレエアフィルタを後述する実施例のダスト負荷時厚さ減少試験に供した時の厚さ減少率は、例えば、88%以上であり、好ましくは90%以上であり、より好ましくは92%以上である。また厚さ減少率の上限は特に限定されないが、例えば、100%以下であり、特に97%以下であっても良好なプレエアフィルタであると言える。
 プレエアフィルタを後述する実施例のダスト保持試験に供した時のダスト保持量は、例えば、90g/0.1m2以上であり、好ましくは100g/0.1m2以上、より好ましくは120g/0.1m2以上である。ダスト保持量の上限は特に限定されないが、例えば、300g/0.1m2以下であり、特に200g/0.1m2以下であっても良好なプレエアフィルタであると言える。
 プレエアフィルタを後述する実施例の水抜け試験に供した時、試験後における流出側のプレエアフィルタ表面では、水抜けがほとんど観察されず、プレエアフィルタ内部に水が浸入して保持されている。そのため水抜け試験におけるプレエアフィルタの水保持量は、5.5~12gと極めて高い(より好ましくは6.0~11g)。
 メインエアフィルタとしては、公知の種々のフィルタが使用できる。本発明のプレエアフィルタと組み合わせにおいて特に適したメインエアフィルタは、濾紙製または不織布製の濾材を用いたエアフィルタ、特に密度が高く、高ダスト清浄効率を発揮し得る濾紙製の濾材を用いたエアフィルタが好ましい。特にエアフィルタは、密度の異なる複数の層を積層したフィルタであり、例えば、以下の特性を有する。
 1)通気抵抗
 メインエアフィルタの通気抵抗は、例えば、100Pa以上であり、好ましくは200Pa以上であり、400Pa以下、好ましくは300Pa以下である。
 なお通気抵抗は、JIS D1612(自動車用エアクリーナ試験方法)に準じ、以下の条件で試験することで得られる値である。
 有効濾過面積:1760cm2、投影面積:281cm2、空気量:5.7m3/分、空気速度:54cm/秒
 2)ダスト捕集効率、捕集量
 メインエアフィルタのダスト捕集効率は、例えば、90%以上であり、好ましくは95%以上、より好ましくは97%以上であり、例えば、上限は特になく100%が好ましい。
 またダスト捕集量は、例えば、70g以上であり、好ましくは100g以上、より好ましくは120g以上であり、例えば、200g以下、好ましくは180g以下である。
 なおダスト捕集効率及び捕集量は、JIS D1612(自動車用エアクリーナ試験方法)に準じて実施し、特にダスト捕集効率はJIS D1612 9.4(3)で規定するフルライフ清浄効率試験に準じて実施し、またダスト捕集量はJIS D1612 10に準じて実施して得られる値である。それぞれの試験条件は、以下の様に設定される。
 有効濾過面積:1760cm2、空気量:5.7m3/分、空気速度:54cm/秒、ダスト:JIS Z8901 8種、ダスト濃度:1g/m3、試験終了条件:増加抵抗300mmAq時
 本発明のエアフィルタが使用可能な内燃機関としては、ピストンエンジン(レシプロエンジン)、ロータリーエンジン、ガスタービンエンジン、ジェットエンジンなどが例示でき、好ましくは自動車用エンジンが挙げられる。
 本願は、2015年2月24日に出願された日本国特許出願第2015-034054号に基づく優先権の利益を主張するものである。2015年2月24日に出願された日本国特許出願第2015-034054号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 本願明細書で採用した不織布の評価方法は以下の通りである。
(1)平均繊度;用いた繊維の繊度を、使用質量比に応じて加重平均した。
(2)捲縮率;JIS L1015の8.12.2法に準ず。
(3)中空率;繊維の断面写真から次式により算出した。
   中空率(%)=(中空部の断面積/繊維の断面積)×100
(4)捲縮数;JIS L 1015の7.12法に準ず。
(5)繊維長;JIS L 1015 8.4.1 C)直接法(C法)に基づき、繊維を伸長せずまっすぐに伸ばし、置尺上で測定する。
(6)目付;JIS L1913の6.2法に準ず。
(7)見掛け厚さ;JIS1級鋼尺を用いて見掛け厚さを測定した。
(8)全体密度;プレエアフィルタ全体の目付を、プレエアフィルタ全体の見掛け厚さで除して求めた。
(9)流入側密度、流出側密度、密度比
 半分の厚さになるように断面を鋭利なカッターでカットし、流入側と流出側に分離する。それぞれの目付と見掛け厚さを測定し、次式により算出する。
   流入側密度(g/cm3)=流入側の目付/流入側の見掛け厚さ
   流出側密度(g/cm3)=流出側の目付/流出側の見掛け厚さ
   密度比=流出側密度/流入側密度
(10)厚さ方向繊維配向度
 プレエアフィルタの断面を日立ハイテクノロジーズ社製の走査電子顕微鏡TM3000型MINISCOPEを使用して倍率40倍で画像を撮影する。なお撮影時にはゼロ点あわせとして、撮影後の写真のヨコ方向及びタテ方向が、不織布の機械方向(MD)及び幅方向(CD)方向と一致するようにした。
 その後撮影した画像をA4サイズに印刷し、流出側の任意の1mm2中にある繊維を長さ0.1mmごとに画像に含まれる全ての繊維について分度器で角度を測定する。測定された角度の平均値を繊維配向度とする。但し、角度は0~90°までで評価し、90°を超える場合には、(180°-測定値)で求められる角度を繊維配向度の評価に用いることとする。
(11)水抜け試験
 JIS L1092 7.2法に準ずる撥水度試験装置を用いて評価をする。
 試験片ホルダに予め重量を測定した200mm×200mmの試験片を設置し、水250mlを漏斗に入れて試験片上に散布する。
 水の散布開始から2分後に試験片を取り出し、表面に付着している水の状態を目視観察し、下記の基準で圧力損失特性を評価する。
 ○:表面に水の付着が少なく、不織布の内部に水が浸入している
 ×:表面に水が多く付着している(すなわち、圧力損失が高い)
 表面に付着している余分な水を除去した後、試験片の重量を測定し、次式により算出する。
   水保持量(g)=試験後の試験片重量(g)-試験前の試験片重量(g)
 また水抜け性は、水抜けの有無を、試験後における流出側の試験片表面を目視及び触感により評価する。
(12)ダスト負荷時厚さ減少率
 200mm×200mm寸法の試験片の見掛け厚さ(t0)を測定した後、試験片に15kg/m2の荷重を負荷した状態での見掛け厚さ(t1)を測定し、次式により算出する。
   ダスト負荷時厚さ減少率(%)=(t1/t0)×100
(13)圧力損失
 JIS D1612(自動車用エアクリーナ試験方法)に準じ、以下の条件で試験することにより測定できる。
 有効濾過面積:0.1m2、空気量:3.6m3/分、空気速度:60cm/秒
(14)ダスト保持量
 JIS D1612 9.4(3)で規定するフルライフ清浄効率試験に準じ、JIS Z8901-8種粉体を空気量3.6m3/minで投入した。増加抵抗150mmAq時に試験を終了し、その段階でのダスト保持量を決定した。
 実施例1
 高融点繊維としての中空顕在捲縮ポリエステル繊維(ポリエチレンテレフタレート(PET)、融点260℃、繊度6.6dtex、繊維長51mm、捲縮率20%、捲縮数9個/インチ、中空率27%)20重量%と、第1の低融点ポリエステル繊維(芯がPET・鞘が変性ポリエステル(L-PET)、融点110℃、ガラス転移温度60℃、繊度4.4dtex、繊維長51mm)15重量%と、第2の低融点ポリエステル繊維(芯がPET・鞘が変性ポリエステル(L-PET)、融点110℃、ガラス転移温度60℃、繊度17dtex、繊維長51mm)65重量%をそれぞれ計量、混綿後、カーディングし、次いでクロスラッピングして積層繊維ウェブを得た。この積層繊維ウェブを、その片面側から、針番手40番のニードル(オルガン針社製:FPD1-40、ブレード寸法0.50mm)で針本数20本/cm2、針深さ0mmでニードルパンチ加工した。次いで熱風の温度を160℃に保ったコンベア式連続熱処理機の中で1分間熱処理を行い、目付150g/m2、見掛け厚さ7.2mmのプレエアフィルタ用短繊維不織布を得た。
 実施例2~7、比較例1~2
 高融点繊維及び低融点繊維の種類と量を下記表1~2に示す様に変更し、かつニードルパンチ条件を表1~2に示す様に変更した以外は、実施例1と同様にした。
 なお本製造例において使用した繊維は以下の通りである。
 「中空顕在捲縮繊維(コンジュゲート)」とは、サイドバイサイド構造を有する中空の捲縮繊維であって、ポリエチレンテレフタレート(PET)からなり、融点260℃、繊度7.7dtex、繊維長51mm、捲縮率16%、捲縮数8個/インチ、中空率10%である。
 「非中空繊維」とは、中実の捲縮繊維であって、ポリエチレンテレフタレート(PET)からなり、融点260℃、繊維長51mm、表に示す捲縮率、捲縮数、繊度を有する繊維である。
 「L-PP」とは、融点130℃、ガラス転移温度-20℃、繊度20dtex、繊維長64mmのポリエチレン樹脂及びポリプロピレン樹脂からなる低融点繊維である。
 比較例3
 ニードルパンチにより繊維を交絡させないこと以外は、実施例1と同様の方法によりプレエアフィルタ用短繊維不織布を得た。
 比較例4~5
 非中空繊維(ポリエチレンテレフタレート(PET)、融点260℃、繊度6.6dtex又は17dtex、繊維長51mm)の100重量%を計量、カーディングし、次いでクロスラッピングして積層繊維ウェブを得た。この積層繊維ウェブを、その片面側から表2に示す条件でニードルパンチ加工した後、アクリル系エマルジョンをスプレー塗布して含浸させた。熱風の温度を150℃に保ったコンベア式連続熱処理機の中で5分間熱処理兼乾燥し、プレエアフィルタ用短繊維不織布を得た。
 実施例及び比較例で得られたプレエアフィルタ用短繊維不織布の各特性を評価した。結果を表1~2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のプレエアフィルタは、内燃機関の吸気ラインに使用できる。
 1 プレエアフィルタ
 2 メインエアフィルタ
 3 枠体
 4 フィルタ材
 

Claims (13)

  1.  融点が80℃以上200℃以下である第1繊維と、融点が前記第1繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維とがニードルパンチによって交絡し、且つ、
     一部または全部が溶融した前記第1繊維が第2繊維と融着した不織布から構成されることを特徴とする内燃機関用プレエアフィルタ。
  2.  前記ニードルパンチによる交絡が、繊維ウェブの片側のみからニードルを侵入させることによって行われる請求項1に記載のプレエアフィルタ。
  3.  厚さ方向への繊維配向度が20°以上50°以下である請求項1または2に記載のプレエアフィルタ。
  4.  融点が80℃以上200℃以下である第1繊維と、融点が前記第1繊維よりも30℃以上高い中空構造を有し且つ捲縮した第2繊維とが交絡し、且つ、一部または全部が溶融した前記第1繊維が第2繊維と融着しており、
     厚さ方向への繊維配向度が20°以上50°以下である内燃機関用プレエアフィルタ。
  5.  空気流出側の密度が、空気流入側の密度の1.05倍以上である請求項1~4のいずれかに記載のプレエアフィルタ。
  6.  前記第2繊維の繊度が4dtex以上40dtex以下であり、前記第1繊維の繊度が1dtex以上40dtex以下であり、
     第1繊維及び第2繊維の合計に対して、第1繊維を20質量%以上90質量%以下含む請求項1~5のいずれかに記載のプレエアフィルタ。
  7.  前記第2繊維として、12dtex以下の中空捲縮繊維を、第2繊維全体に対して10質量%以上の割合で含む請求項6に記載のプレエアフィルタ。
  8.  前記第1繊維が、繊度1dtex以上10dtex以下の細繊維と、繊度10dtex超40dtex以下の太繊維の混合繊維であり、細繊維の割合が、細繊維と太繊維の合計に対して、10質量%以上である請求項1~7のいずれかに記載のプレエアフィルタ。
  9.  前記第1繊維が、ガラス転移温度が10℃以上の硬質繊維と、ガラス転移温度が10℃未満の軟質繊維とから構成される請求項1~8のいずれかに記載のプレエアフィルタ。
  10.  前記細繊維はガラス転移温度が10℃以上の硬質繊維であり、
     前記太繊維はガラス転移温度が10℃以上の硬質繊維と、ガラス転移温度が10℃未満の軟質繊維とから構成される請求項8に記載のプレエアフィルタ。
  11.  前記第1繊維及び第2繊維が、共通の樹脂から構成されている請求項1~10のいずれかに記載のプレエアフィルタ。
  12.  不織布全体の平均繊度が7dtex以上20dtex以下であり、不織布全体の目付量が50g/m2以上250g/m2以下である請求項1~11のいずれかに記載のプレエアフィルタ。
  13.  メインエアフィルタと、このメインエアフィルタの空気流入側に設けられた請求項1~12のいずれかに記載のプレエアフィルタとから構成される内燃機関用エアフィルタ。
PCT/JP2016/054541 2015-02-24 2016-02-17 内燃機関用プレエアフィルタ WO2016136549A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/551,181 US10596499B2 (en) 2015-02-24 2016-02-17 Pre-air-filter for internal combustion engine
CN201680011475.8A CN107249713B (zh) 2015-02-24 2016-02-17 内燃机用预空气过滤器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-034054 2015-02-24
JP2015034054A JP6511289B2 (ja) 2015-02-24 2015-02-24 内燃機関用プレエアフィルタ

Publications (1)

Publication Number Publication Date
WO2016136549A1 true WO2016136549A1 (ja) 2016-09-01

Family

ID=56788710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054541 WO2016136549A1 (ja) 2015-02-24 2016-02-17 内燃機関用プレエアフィルタ

Country Status (4)

Country Link
US (1) US10596499B2 (ja)
JP (1) JP6511289B2 (ja)
CN (1) CN107249713B (ja)
WO (1) WO2016136549A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786345B1 (ko) * 2016-05-18 2017-10-18 현대자동차주식회사 고밀도 여지 적용 흡기 필터와 에어클리너 및 차량
US20200164295A1 (en) * 2017-01-27 2020-05-28 Teijin Frontier Co., Ltd. Bag filter fabric and production method therefor
JP7032963B2 (ja) * 2018-03-12 2022-03-09 呉羽テック株式会社 フィルター補強材及びこれを含む脱臭フィルター用濾材
US10342889B1 (en) * 2018-06-28 2019-07-09 Jason Fladoos Electrically actuated adhesive physio tape with thermal properties
WO2020198428A1 (en) * 2019-03-26 2020-10-01 Resolute Fp Canada, Inc. Filter media, filters, and methods for making the same
CN113795323B (zh) * 2019-05-13 2023-11-28 东洋纺Mc株式会社 过滤器用滤材及过滤器
KR102354177B1 (ko) * 2019-10-16 2022-01-24 주식회사 휴비스 저융점 폴리에스테르 섬유를 포함하는 캐빈에어필터용 부직포
CN113846420B (zh) * 2021-10-27 2023-04-28 京遇荷花(北京)科技发展有限公司 一种新型过滤滤材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180023A (ja) * 1996-12-26 1998-07-07 Kureha Tec Kk フィルター用不織布
JPH11200139A (ja) * 1998-01-20 1999-07-27 Daikin Ind Ltd 熱溶融性フッ素樹脂繊維
JPH11222756A (ja) * 1998-02-10 1999-08-17 Teijin Ltd 繊維構造体
JP2010131892A (ja) * 2008-12-05 2010-06-17 Ambic Co Ltd 不織布クリーナー
JP2012081389A (ja) * 2010-10-08 2012-04-26 Kurashiki Seni Kako Kk フィルタ用不織布濾材、その製造方法およびエアフィルタ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748836A (en) * 1971-06-03 1973-07-31 Teledyne Inc Filter cleaning system for internal combustion engine
US5368925A (en) * 1989-06-20 1994-11-29 Japan Vilene Company, Ltd. Bulk recoverable nonwoven fabric, process for producing the same and method for recovering the bulk thereof
JPH1085526A (ja) * 1996-09-11 1998-04-07 Toyoda Spinning & Weaving Co Ltd プレフィルタ
US20030187778A1 (en) * 2002-03-27 2003-10-02 First Data Corporation Merchant application and underwriting systems and methods
US7682686B2 (en) * 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
JP4800643B2 (ja) * 2005-03-16 2011-10-26 ダイワボウホールディングス株式会社 筒状フィルターおよびその製造方法
US20080070465A1 (en) * 2006-09-18 2008-03-20 Thomas Cobbett Wiles High loft nonwoven for foam replacement
US20080081182A1 (en) * 2006-10-02 2008-04-03 Pham Hoai Nam Fluoropolymer blends with inorganic layered compounds
WO2008053741A1 (fr) * 2006-10-30 2008-05-08 Kinsei Seishi Co., Ltd. Filtres à air à rigidité élevée
US8463167B2 (en) * 2007-11-09 2013-06-11 Canon Kabushiki Kaisha Image heating apparatus and image heating rotational body to be mounted on the image heating apparatus
US20100018174A1 (en) * 2008-07-23 2010-01-28 Nippon Rokaki Co., Ltd. Air cleaner
US20100310845A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid permeable structured fibrous web
CN102859059B (zh) * 2010-04-13 2015-03-25 3M创新有限公司 厚无机纤维幅材以及制备和使用方法
EP2580790A4 (en) * 2010-06-08 2015-11-25 Amerasia Int Technology Inc SOLAR CELL NETWORKING AND MODULE, TABLE AND METHOD THEREFOR
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web
US9822225B2 (en) * 2012-12-25 2017-11-21 Daikin Industries, Ltd. Fluororesin film having excellent transparency
CA3126665C (en) * 2014-10-02 2023-04-18 Composites Intellectual Holdings, Inc. Composite structural panel and method of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180023A (ja) * 1996-12-26 1998-07-07 Kureha Tec Kk フィルター用不織布
JPH11200139A (ja) * 1998-01-20 1999-07-27 Daikin Ind Ltd 熱溶融性フッ素樹脂繊維
JPH11222756A (ja) * 1998-02-10 1999-08-17 Teijin Ltd 繊維構造体
JP2010131892A (ja) * 2008-12-05 2010-06-17 Ambic Co Ltd 不織布クリーナー
JP2012081389A (ja) * 2010-10-08 2012-04-26 Kurashiki Seni Kako Kk フィルタ用不織布濾材、その製造方法およびエアフィルタ

Also Published As

Publication number Publication date
CN107249713B (zh) 2020-03-03
US10596499B2 (en) 2020-03-24
CN107249713A (zh) 2017-10-13
JP2016155068A (ja) 2016-09-01
JP6511289B2 (ja) 2019-05-15
US20180028953A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2016136549A1 (ja) 内燃機関用プレエアフィルタ
JP3554307B2 (ja) 摩擦電気を帯電した不織布の製造方法
JP6801643B2 (ja) 積層不織布
KR20220034116A (ko) 섬유 구조체 및 그 제조 방법
JPWO2017208952A1 (ja) エアフィルタ材料
JP3715396B2 (ja) フィルター用不織布
JP6614917B2 (ja) 不織布濾過材
JP6133035B2 (ja) 静電フィルター
JP2012245449A (ja) 大粒子径ダスト対応高効率不織布濾材
JPS622060B2 (ja)
JP2018023913A (ja) エアフィルタ
JP2001279570A (ja) 複合不織布およびその製造方法
JP4142903B2 (ja) 複合繊維不織布及びその複合不織布
JP4431466B2 (ja) 複合不織布及びエアフィルター
JP2006281108A (ja) 換気扇用フィルター及びその製造方法
JP4908916B2 (ja) 自動車用内装基材
JP6091313B2 (ja) 成形用表皮材
JP3131217B2 (ja) 精密濾過用円筒状フィルター
JP2010259633A (ja) 清掃シート及びその製造方法
JP6681160B2 (ja) 自動車エンジン用濾材
JP4800598B2 (ja) プリーツ折り不織布からなるエレクトレットフィルター材の製造方法及びこれを用いたフィルター材
JP6614919B2 (ja) 不織布濾過材の製造方法
JP2008190051A (ja) 低圧損高効率不織布
JP6129655B2 (ja) エアフィルタ濾材の製造方法
JPH04153351A (ja) 積層不織布及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755296

Country of ref document: EP

Kind code of ref document: A1