WO2016136194A1 - 電池モジュール - Google Patents

電池モジュール Download PDF

Info

Publication number
WO2016136194A1
WO2016136194A1 PCT/JP2016/000820 JP2016000820W WO2016136194A1 WO 2016136194 A1 WO2016136194 A1 WO 2016136194A1 JP 2016000820 W JP2016000820 W JP 2016000820W WO 2016136194 A1 WO2016136194 A1 WO 2016136194A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cooling surface
batteries
battery module
arrangement
Prior art date
Application number
PCT/JP2016/000820
Other languages
English (en)
French (fr)
Inventor
慎也 本川
啓介 清水
和貴 清水
曉 高野
大貴 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016136194A1 publication Critical patent/WO2016136194A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module.
  • Alignment arrangement and staggered arrangement are known as a method of arranging a plurality of cylindrical batteries in a limited space.
  • Patent Document 1 an arrangement in which batteries are arranged in an aligned state with respect to the flow direction of the cooling air (Y direction) and the direction orthogonal to the flow direction (Z direction) is called an alignment arrangement.
  • an arrangement in which adjacent batteries are shifted by (1/2) pitch with respect to (Y direction) and (Z direction) is called a staggered arrangement.
  • the pitch between adjacent batteries is D and (2 1/2 ) D in the aligned arrangement, but in the staggered arrangement, the pitch is all D.
  • a staggered arrangement is suitable for close-packing.
  • a battery module that can increase the cooling efficiency while arranging a plurality of batteries close together is desired.
  • the battery module according to the present invention is arranged in a battery mounting space in which a cooling surface is determined in a close-packed arrangement in which the arrangement pitch between adjacent batteries is D, where D is the diameter of a battery having a circular cross section.
  • a plurality of batteries are arranged at a pitch D along a direction perpendicular to the cooling surface to form a battery array, and a pitch (3 1/2 ) ⁇ (D / In 2), adjacent battery rows are arranged.
  • the cooling efficiency can be improved while arranging a plurality of batteries in a close-packed manner in a limited battery mounting space.
  • FIG. 1 is a diagram showing an example in which a battery module according to an embodiment of the present invention is mounted on a vehicle.
  • FIG. 2 is a diagram showing a close-packed arrangement and an aligned arrangement of batteries having a circular cross section.
  • FIG. 2A is a diagram showing a close-packed arrangement
  • FIG. 2B is a diagram showing an aligned arrangement.
  • FIG. 2C is a diagram showing a dimensional relationship in the close-packed arrangement.
  • FIG. 3 is a diagram illustrating the operation of the battery module according to the embodiment of the present invention. Here, a comparison of the two installation methods for the closely packed cooling surface is shown.
  • FIG. 3A is a diagram showing the flow of heat flow in the installation method of FIG. 1, and FIG.
  • FIG. 3B is a diagram showing the flow of heat flow in another installation method.
  • FIG. 4 is a diagram showing the results of a temperature distribution simulation that supports FIG. 4A is a diagram showing the result of the temperature distribution simulation related to FIG. 3A
  • FIG. 4B is a diagram showing the result of the temperature distribution simulation related to FIG. 3B.
  • FIG. 5 is a diagram showing examples (a) to (d) of attaching the battery module according to the embodiment of the present invention to the cooling surface. Note that FIG. 5E is a cross-sectional view seen from the direction orthogonal to FIG.
  • FIG. 1 is a diagram showing a battery module 10 mounted on a vehicle 8.
  • FIG. 1A is a diagram showing a mounting state in the vehicle 8
  • FIG. 1B is an enlarged view of the battery module 10.
  • the position and size of the space in which the battery module can be mounted in the vehicle 8 is restricted due to the arrangement of other elements constituting the vehicle.
  • a space avoiding the axle or the like at the bottom of the seat is designated as the mounting space 12 for the battery module 10
  • the cooling surface 14 is designated as one surface on the floor side of the vehicle.
  • the X direction is a direction from the front side to the rear side of the vehicle 8, and is a direction in which traveling wind flows when the vehicle 8 travels.
  • the Y direction is the vehicle width direction of the vehicle 8
  • the Z direction is the upward direction from the running surface, and is the direction opposite to the direction of gravity.
  • the battery module 10 includes a plurality of batteries 20.
  • the plurality of batteries 20 are arranged closest to the mounting space 12 so as to satisfy the required battery capacity in the limited mounting space 12.
  • the battery 20 is a cylindrical battery having a circular cross section.
  • the battery 20 is a lithium ion battery.
  • a nickel metal hydride battery and various alkaline batteries may be used.
  • the cylindrical axial direction is parallel to the Y direction. This is merely an example, and the cylindrical axial direction may be a direction other than the direction parallel to the Y direction, depending on the shape of the mounting space 12, the surface shape of the cooling surface 14, the presence or absence of traveling wind, and the like.
  • FIG. 1B is a cross-sectional view in which a plurality of batteries 20 are arranged in a close-packed manner.
  • the close-packed arrangement of the batteries 20 having a circular cross section is called a staggered arrangement, and the arrangement pitch between the batteries 20 adjacent to each other is D in order to minimize the gap between the batteries 20 adjacent to each other.
  • the center position of one battery 20 is O and the center positions of the six batteries 20 in contact with the battery are a, b, c, d, e, and f, respectively, O
  • the intervals of -a, Ob, Oc, Od, Oe, and Of are all D.
  • the plurality of batteries 20 arranged closest in the battery module 10 are installed as shown in FIG. That is, a plurality of batteries 20 are arranged at a pitch D along the Z direction perpendicular to the cooling surface 14 to form battery rows 21 and 22, and a pitch (3 1/2 ) ⁇ along the X direction parallel to the cooling surface 14
  • the adjacent battery rows 21 and 22 are arranged at (D / 2).
  • the battery array 21 is the one in which the five batteries 20 are arranged along the Z direction
  • the battery array 22 is the one in which the four batteries 20 are arranged.
  • FIG. 2 is a diagram showing a comparison between the staggered arrangement and the aligned arrangement, and a dimensional relationship in the staggered arrangement.
  • FIG. 2A shows a part of the battery module 10 having the configuration shown in FIG. 1, in which 23 batteries 20 are extracted in five battery rows in a staggered arrangement.
  • FIG. 2 (c) is a diagram showing the dimensional relationship by extracting the four adjacent batteries 20 among them, and the hatched triangles are right triangles having apex angles of 30 degrees and 60 degrees. Of the two sides sandwiching the right angle of this right triangle, the length of the side parallel to the X direction is ⁇ 3 1/2 ⁇ (D / 2) ⁇ . Therefore, the interval in the X direction between the battery rows 21 and 22 arranged along the X direction is (3 1/2 ) ⁇ (D / 2).
  • FIG. Twenty-three batteries 20 are accommodated in a rectangular frame of [2 ⁇ (D / 2) + (3 1/2 ) D ⁇ ] in the X direction and 5D in the Z direction. Since X dimension of the rectangular frame is about 4.44D, the area of the rectangular frame is about 22.2D 2. The accommodation rate per unit area of the staggered arrangement is about ⁇ 23 / 22.2D 2 ⁇ , which is about (1.04 / D 2 ).
  • FIG. 2B is a diagram in which the batteries 20 are arranged in an aligned arrangement.
  • a plurality of batteries 20 are arranged at an arrangement pitch D in both the X direction and the Z direction. Therefore, two types of arrangement pitches between adjacent batteries 20 are D and (2 1/2 ) D.
  • D arrangement pitch between adjacent batteries 20
  • FIG. 1B if the center position of one battery 20 is O and the center positions of the six batteries 20 in contact with the battery are g, h, i, j, k, and l, respectively, The intervals of ⁇ g, Oh, Oj, and Ok are D, and the intervals of Oi and O ⁇ 1 are (2 1/2 ) D. For this reason, the gap between the adjacent batteries 20 is not minimized.
  • the 20 batteries 20 are accommodated in a rectangular frame of 4D in the X direction and 5D in the Z direction. Area of the rectangular frame is 20D 2.
  • the staggered arrangement is about the same as the aligned arrangement in the same mounting space. 4% more batteries 20 can be arranged.
  • FIGS. 1 (b) and 2 (a) there is another installation method in addition to FIGS. 1 (b) and 2 (a).
  • FIG. 1B and FIG. 2A the direction in which the distance between adjacent batteries 20 is D is perpendicular to the cooling surface 14, but in another installation method, the distance between adjacent batteries 20 is D.
  • a direction is parallel to the cooling surface 14.
  • FIG. 3 is a diagram comparing the difference in heat flow for each of the two installation methods.
  • FIG. 3A shows an installation method in which the direction in which the interval between adjacent batteries 20 is D is perpendicular to the cooling surface 14, and is the installation method described in FIGS. 1B and 2A.
  • (B) is an installation method in which the direction in which the interval between adjacent batteries 20 is D is parallel to the cooling surface 14.
  • the interval between adjacent batteries 20 along the X direction is D
  • the interval between adjacent battery rows 21 and 22 along the Z direction is (3 1/2 ) ⁇ . (D / 2).
  • the cooling surface 14 functions as a heat flow sink, and the heat conductivity of the outer cylinder of the battery 20 is higher than the heat conductivity of the air in the gap space, so that the heat flow travels from the + Z side to the outer peripheral surface of the outer cylinder of each battery 20. And flow toward the cooling surface 14.
  • the heat flow 30 in FIG. 3A is the contact point (1), (2), (3), (4), (5), (6), (7) on the outer peripheral surface of the outer cylinder of the adjacent battery 20. , (8) flows along the outer peripheral surface of the battery 20.
  • the heat flow 31 in FIG. 3B is the contact point (1), (2), (3), (4), (5), (6), (7), (8), (9) of the battery 20. Flows along the outer peripheral surface of the battery 20.
  • the heat transfer path of the heat flow 30 in the installation method of FIG. / 8) ⁇ 100% short about 12.5%.
  • FIG. 4 is a diagram showing the results of a temperature distribution simulation that supports FIG. 4A is a diagram showing the result of the temperature distribution simulation related to FIG. 3A
  • FIG. 4B is a diagram showing the result of the temperature distribution simulation related to FIG. 3B.
  • the heat flux (unit W) is the same
  • the cooling surface 14 is the same temperature.
  • the simulation results are indicated by isothermal lines in each figure.
  • the temperature axis is shown on the left side of FIG. 4, where stage I is the coldest side and stage V is the hottest side. In FIG. 4A, there is no stage V region, and stage IV is the highest temperature side region. On the other hand, in FIG. 4B, the region of stage V appears.
  • a plurality of batteries 20 are arranged at a pitch D along the Z direction perpendicular to the cooling surface 14 to form battery rows 21 and 22, and X parallel to the cooling surface 14
  • An installation method in which adjacent battery rows 21 and 22 are arranged at a pitch (3 1/2 ) ⁇ (D / 2) along the direction is preferable.
  • FIG. 5 is a diagram showing an example in which the battery module is attached to the cooling surface.
  • a battery module including the 23 batteries 20 described in FIG. 2A will be described as an example.
  • the battery module 16 in which the 23 batteries 20 described in FIG. 2A are accommodated in one battery case 40 is directly arranged on the cooling surface 14 which is one surface of the coolant 15.
  • the coolant 15 can be a metal plate or the like.
  • a body frame or the like can be used as the coolant 15.
  • the battery case 40 is made of a heat resistant material.
  • a metal battery case 40 is used.
  • the metal is preferably made of aluminum or aluminum alloy.
  • An appropriate fastening material can be used to attach the battery module 16 to the cooling surface 14.
  • an adhesive means such as a brazing can be used in addition to a fastener such as a bolt.
  • FIG. 5B is an example in which a heat conductive elastic body 50 is disposed between the battery case 40 and the cooling surface 14.
  • the outer peripheral surface of the battery case 40 and the cooling surface 14 have irregularities, which increases the contact thermal resistance.
  • the heat conductive elastic body 50 absorbs the unevenness to reduce the contact thermal resistance, and efficiently transmits the heat generated by the battery case 40 to the coolant 15.
  • a graphite sheet can be used as the thermal conductive elastic body 50.
  • FIG. 5C is a diagram showing an example in which cooling fins 66 are provided in the refrigerant passage 62 of the heat exchanger 60 when the heat exchanger 60 in which the refrigerant 64 flows is used as the coolant.
  • the roots of the cooling fins 66 are attached to the side of the refrigerant passage 62 on the wall surface that becomes the cooling surface 14.
  • As the refrigerant 64 cooling water, air, or the like can be used. When air is used, it is possible to use the traveling wind of the vehicle.
  • the battery module 16 is disposed at the position of the cooling surface 14 corresponding to the position where the cooling fins 66 are provided.
  • the battery module 16 is disposed on the cooling surface 14 via the heat conductive elastic body 50.
  • the heat conductive elastic body 50 may be omitted, and the battery module 16 may be disposed directly on the cooling surface 14 as shown in FIG.
  • FIG. 5 (d) is a diagram showing the battery module 18 using the battery case 42 that is integrally provided with the cooling fins 44.
  • the cooling fins 44 of the battery case 42 pass through the wall surface including the cooling surface 14 of the heat exchanger 60 and protrude into the refrigerant passage 62 of the heat exchanger 60.
  • FIG. 5E is a cross-sectional view perpendicular to the X direction in which the refrigerant 64 flows.
  • the battery 20 is not directly forcedly cooled with a refrigerant such as air, but the battery is indirectly cooled by reducing the number of cooling points by flowing a heat flow to the cooling surface 14. .
  • the cooling efficiency can be improved by adopting an installation method in which the heat transfer path is shortened.
  • the cooling circuit of the battery module 10 can be simplified.
  • the battery module mounted on the vehicle has been described.
  • this is an example for explaining the cooling surface defined as a limited mounting space, and is installed in a device, equipment, facility, etc. other than the vehicle. It may be a battery module.
  • the battery module is composed of a plurality of batteries.
  • the battery broadly refers to a single battery, a battery body including a plurality of single batteries, and a battery block including a plurality of battery bodies.
  • the cooling surface 14 is the direction parallel to the traveling wind of the vehicle, which is the X direction, but this is an illustrative example, and the cooling surface along other directions depending on the structure of the mounting target It may be.
  • the heat flow is described as flowing from the + Z direction, but generally speaking, the heat flow flows toward the cooling surface 14.
  • Cooling surface 15 Coolant, 20 Battery, 21, 22 Battery row, 31 Heat flow, 40, 42 Battery case, 44, 66 Cooling fin, 50 Heat Conductive elastic body, 60 heat exchanger, 62 refrigerant passage, 64 refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

 電池モジュールは、断面が円形の電池の直径をDとして、互いに隣接する電池の間の配列ピッチがDとなる最密配置で、予め冷却面が定められた電池の搭載スペースに配置される複数の電池について、冷却面に垂直な方向に沿ってピッチDで複数の電池を配列して電池列とし、冷却面に平行な方向に沿ってピッチ(31/2)×(D/2)で隣接する電池列を配列して構成される。電池モジュールとして複数の電池を金属製の電池ケースに収容したものを、熱伝導性弾性体を介して冷却面に配置することができる。

Description

電池モジュール
 本発明は、電池モジュールに関する。
 限られたスペースの中に円筒型の電池を複数配列する方法として、整列配置と千鳥配置が知られている。特許文献1には、冷却風の通流方向(Y方向)および通流方向とは直交する方向(Z方向)に対して、電池をそれぞれ整列状態で配列するものを整列配置と呼び、これに対し、隣接する電池同士を(Y方向)と(Z方向)に対して、それぞれ(1/2)ピッチずらして配置するものを千鳥配置と呼んでいる。
 電池の直径をDとすると、互いに隣接する電池の間のピッチは、整列配置ではDと(21/2)Dが混在するが、千鳥配置では全てDとなるので、限られたスペースの中に最密に配置するには千鳥配置が適している。
特開2001-297801号公報
 限られた電池の搭載スペースについて、複数の電池を最密に配置しながら、冷却効率を高めることができる電池モジュールが望まれる。
 本発明に係る電池モジュールは、断面が円形の電池の直径をDとして、互いに隣接する電池の間の配列ピッチがDとなる最密配置で、予め冷却面が定められた電池の搭載スペースに配置される複数の電池について、冷却面に垂直な方向に沿ってピッチDで複数の電池を配列して電池列とし、冷却面に平行な方向に沿ってピッチ(31/2)×(D/2)で隣接する電池列を配列して構成される。
 前記構成の電池モジュールによれば、限られた電池の搭載スペースについて、複数の電池を最密に配置しながら、冷却効率を高めることができる。
図1は車両に本発明に係る実施の形態の電池モジュールが搭載される例を示す図である。 図2は断面が円形の電池の最密配置と整列配置を示す図である。図2(a)は最密配置を示す図で、図2(b)は整列配置を示す図である。図2(c)は最密配置における寸法関係を示す図である。 図3は本発明に係る実施の形態の電池モジュールの作用を示す図である。ここでは最密配置の冷却面に対する2つの設置法の比較を示す。図3(a)は図1の設置法における熱流の流れを示す図で、図3(b)はもう1つの設置法における熱流の流れを示す図である。 図4は図3を裏付ける温度分布シミュレーションの結果を示す図である。図4(a)は図3(a)に関する温度分布シミュレーションの結果を示す図で、図4(b)は図3(b)に関する温度分布シミュレーションの結果を示す図である。 図5は本発明に係る実施の形態の電池モジュールを冷却面に取り付ける例を(a)~(d)として示す図である。なお、図5(e)は図5(d)に直交する方向から見た断面図である。
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下で述べる電池の個数等は説明のための例示であって、電池モジュールの仕様等に応じ適宜変更が可能である。以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。
 図1は、車両8に搭載される電池モジュール10を示す図である。図1(a)は車両8における搭載状況を示す図であり、(b)は電池モジュール10の拡大図である。車両8において電池モジュールを搭載できるスペースの位置や大きさは車両を構成する他の要素の配置等の兼ね合いで制約を受ける。図1の例では、座席シートの下部で、車軸等を避けた空間が電池モジュール10の搭載スペース12として指定され、さらに、冷却面14が車両の床側の1つの面として指定される。
 図1において、直交する3方向を示した。X方向は車両8の前方側から後方側に向かう方向であり、車両8が走行するときの走行風の流れる方向である。Y方向は車両8の車幅方向であり、Z方向は走行面から上方の方向であり、重力方向と逆方向である。
 電池モジュール10は、複数の電池20で構成される。限られた搭載スペース12の中で要求される電池容量等を満たすように、複数の電池20は、搭載スペース12に最密に配置される。電池20は、断面が円形の円筒型電池である。電池20は、リチウムイオン電池である。これ以外に、ニッケル水素電池、各種のアルカリ電池であってもよい。図1の例では、円筒形の軸方向をY方向に平行である。これは例示であって、搭載スペース12の形状や冷却面14の面形状、走行風の利用有無等によって、円筒形の軸方向をY方向に平行以外の方向としてもよい。
 図1(b)は、複数の電池20を最密配置した断面図である。断面が円形の電池20の最密配置は千鳥配置と呼ばれ、互いに隣接する電池20の間の隙間を最小にするため、互いに隣接する電池20の間の配列ピッチが全てDである。図1(b)の例では、1つの電池20の中心位置をOとし、この電池に接する6つの電池20のそれぞれの中心位置をそれぞれa,b,c,d,e,fとすると、O-a,O-b,O-c,O-d,O-e,O-fの間隔はすべてDである。
 電池モジュール10において最密配置された複数の電池20は、冷却面14が指定されると、図1(b)に示すように設置される。すなわち、冷却面14に垂直なZ方向に沿ってピッチDで複数の電池20を配列して電池列21,22とし、冷却面14に平行なX方向に沿ってピッチ(31/2)×(D/2)で隣接する電池列21,22を配列する。ここでは、Z方向に沿って5つの電池20が配列されるものを電池列21とし、4つの電池20が配列されるものを電池列22とした。
 この構成の作用効果について、図2から図4を用いて説明する。図2は、千鳥配置と整列配置の比較と、千鳥配置における寸法関係を示す図である。図2(a)は、図1の構成の電池モジュール10の一部で、千鳥配置において、5列の電池列で23個の電池20を抜き出した図である。図2(c)はその中で隣接する4つの電池20を抜き出して寸法関係を示す図で、斜線を付した三角形において、頂角が30度と60度の直角三角形となる。この直角三角形の直角を挟む2辺のうち、X方向に平行な辺の長さは、{31/2×(D/2)}となる。したがって、X方向に沿って並ぶ電池列21,22の間のX方向の間隔は、(31/2)×(D/2)となる。
 この結果を図2(a)に示した。23個の電池20は、X方向に[2{(D/2)+(31/2)D}]、Z方向に5Dの矩形枠の中に最密に収容される。矩形枠のX方向の寸法は約4.44Dであるので、矩形枠の面積は約22.2D2である。千鳥配置の単位面積当たりの収容率は、約{23/22.2D2}で、約(1.04/D2)である。
 図2(b)は整列配置で電池20を配列した図である。整列配置では、X方向にもZ方向にも配列ピッチDで複数の電池20が配列される。そのため、隣接する電池20の間の配列ピッチがDと(21/2)Dの2種類が混在する。図1(b)の例では、1つの電池20の中心位置をOとし、この電池に接する6つの電池20のそれぞれの中心位置をそれぞれg,h,i,j,k,lとすると、O-g,O-h,O-j,O-kの間隔はDで、O-i,O-lの間隔は(21/2)Dである。そのために、隣接する電池20の間の隙間が最小にならない。
 図2(b)に示すように20個の電池20は、X方向に4D、Z方向に5Dの矩形枠の中に収容される。矩形枠の面積は20D2である。整列配置の単位面積当たりの収容率は、{20/20D2}=(1/D2)である。これを図2(a)の千鳥配置の千鳥配置の単位面積当たりの収容率の約(1.04/D2)と比較すると、同じ搭載スペースにおいて、千鳥配置の方が整列配置に比べ、約4%多い数の電池20を配置できる。
 千鳥配置で配置された複数の電池20を冷却面14に設置するには、図1(b)、図2(a)の他にもう1つの設置方法がある。図1(b)、図2(a)では、隣接する電池20の間隔はDである方向を冷却面14に垂直としたが、もう1つの設置方法では、隣接する電池20の間隔はDである方向を冷却面14に平行とする。
 図3は、この2つの設置方法のそれぞれについて、熱流の流れの相違を比較した図である。図3(a)は、隣接する電池20の間隔がDとなる方向を冷却面14に垂直とした設置法で、図1(b)、図2(a)で述べた設置法である。(b)は、隣接する電池20の間隔がDとなる方向を冷却面14に平行とした設置法である。図3(b)の設置方法においては、X方向に沿って隣接する電池20の間隔はDであるが、Z方向に沿って隣接する電池列21,22の間隔は(31/2)×(D/2)となる。
 冷却面14は、熱流のシンクとして働き、電池20の外筒の熱伝導率は隙間空間の空気の熱伝導率よりも高いので、熱流は+Z側から各電池20の外筒の外周面を伝って冷却面14に向かって流れるものとする。
 図3(a)における熱流30は、隣接する電池20の外筒の外周面における接触点(1),(2),(3),(4),(5),(6),(7),(8)の間で電池20の外周面を伝って流れる。各接触点の間の電池20の外周面の長さは、図2(c)を参照すると、{(60度/360度)×πD}={(π/6)D}である。接触点の数=8である。したがって、熱流30の熱伝達経路の長さは、{(π/6)D}×(8-1)={(7π/6)D}である。
 図3(b)における熱流31は、電池20の接触点(1),(2),(3),(4),(5),(6),(7),(8),(9)の間で電池20の外周面を伝って流れる。各接触点の間の電池20の外周面の長さは{(π/6)D}で、接触点の数=9である。したがって、熱流31の熱伝達経路の長さは、{(π/6)D}×(9-1)={(8π/6)D}である。これを図3(a)の熱流30の熱伝達経路の長さ{(7π/6)D}と比較すると、図3(a)の設置法における熱流30の熱伝達経路の方が約(1/8)×100%=約12.5%短い。
 図4は、図3を裏付ける温度分布シミュレーションの結果を示す図である。図4(a)は図3(a)に関する温度分布シミュレーションの結果を示す図で、図4(b)は図3(b)に関する温度分布シミュレーションの結果を示す図である。図4(a),(b)において、熱流束(単位W)を同一条件とし、冷却面14は同じ温度とした。シミュレーションの結果は、各図において、等温度線で示した。図4の左側に温度軸が示され、段階Iが最も低温側で、段階Vが最も高温側である。図4(a)では段階Vの領域がなく、段階IVが最も高温側領域である。これに対し、図4(b)では、段階Vの領域が現われる。
 これらのことから、最密配置である千鳥配置において、冷却面14に垂直なZ方向に沿ってピッチDで複数の電池20を配列して電池列21,22とし、冷却面14に平行なX方向に沿ってピッチ(31/2)×(D/2)で隣接する電池列21,22を配列する設置法が好ましい。この設置法を用いることで、限られた搭載スペース12について、複数の電池20を最密に配置しながら、冷却効率を高める電池モジュールとすることができる。
 図5は、電池モジュールを冷却面に取り付ける例を示す図である。ここでは、図2(a)で説明した23個の電池20で構成される電池モジュールを例として説明する。
 図5(a)は、図2(a)で説明した23個の電池20を1つの電池ケース40に収納した電池モジュール16を冷却材15の1つの面である冷却面14に直接的に配置する例を示す図である。冷却材15は金属板等を用いることができる。例えば、車両に搭載する場合、車体フレーム等を冷却材15とすることができる。
 電池ケース40は、耐熱性のある材料で構成される。ここでは、金属製の電池ケース40を用いる。金属製としては、アルミニウム製またはアルミニウム合金製とすることがよい。電池モジュール16を冷却面14に取り付けるには、適当な締結材を用いることができる。締結材としては、ボルト等の締結具の他、ロー付等の接着手段を用いることができる。
 図5(b)は、電池ケース40と冷却面14の間に、熱伝導性弾性体50を配置する例である。電池ケース40の外周面、冷却面14には凹凸があり、このために接触熱抵抗が高くなる。熱伝導性弾性体50はこの凹凸を吸収して接触熱抵抗を低減し、電池ケース40の発熱を冷却材15に効率よく伝達する。かかる熱伝導性弾性体50として、グラファイトシートを用いることができる。
 図5(c)は、冷却材として冷媒64が流通する熱交換器60を用いる場合に、熱交換器60の冷媒通路62に冷却フィン66を設ける例を示す図である。冷却フィン66の根元は、冷却面14となる壁面の冷媒通路62の側に取り付けられる。冷媒64としては、冷却水、空気等を用いることができる。空気を用いる場合、車両の走行風を利用することも可能である。
 電池モジュール16は、冷却フィン66が設けられる位置に対応する冷却面14の位置に配置される。電池モジュール16は熱伝導性弾性体50を介して冷却面14に配置される。場合により、熱伝導性弾性体50を省略して図5(a)のように冷却面14に直接的に電池モジュール16を配置してもよい。
 図5(d)は、冷却フィン44を一体として備える電池ケース42を用いる電池モジュール18を示す図である。電池ケース42の冷却フィン44は、熱交換器60の冷却面14を含む壁面を通り、熱交換器60の冷媒通路62の中に突き出す。図5(e)は、冷媒64の流れる方向であるX方向に垂直な断面図である。
 上記構成によれば、電池20を空気等の冷媒で直接的に強制冷却するのではなく、冷却面14に対して熱流を流すようにして、冷却箇所を少なくして間接的に電池を冷却する。その際に、熱伝達経路が短くなる設置法を取ることで、冷却効率を向上できる。これによって、電池モジュール10の冷却回路を簡素化できる。
 上記では、車両に搭載される電池モジュールを述べたが、これは限られた搭載スペースと定められた冷却面の説明のための例示であって、車両以外の装置、機器、施設等に設置される電池モジュールであってもよい。
 上記では、電池モジュールは、複数の電池で構成されるものとしたが、電池とは、単電池、複数の単電池をまとめた電池体、複数の電池体をまとめた電池ブロックを広く指す。
 上記では、冷却面14をX方向である車両の走行風に平行な方向としたが、これは説明のための例示であって、搭載対象の構造に応じてこれ以外の方向に沿った冷却面であってもよい。なお、上記では、+Z方向から熱流が流れるものとして説明したが、一般的に言えば、冷却面14に向かって熱流が流れる。
 10,16,18 電池モジュール、12 (電池の)搭載スペース、14 冷却面、15 冷却材、20 電池、21,22 電池列、31 熱流、40,42 電池ケース、44,66 冷却フィン、50 熱伝導性弾性体、60 熱交換器、62 冷媒通路、64 冷媒。

Claims (5)

  1.  断面が円形の電池の直径をDとして、互いに隣接する前記電池の間の配列ピッチがDとなる最密配置で、予め冷却面が定められた電池の搭載スペースに配置される複数の前記電池について、
     前記冷却面に垂直な方向に沿って前記ピッチDで複数の前記電池を配列して電池列とし、
     前記冷却面に平行な方向に沿ってピッチ(31/2)×(D/2)で隣接する前記電池列を配列して構成される、電池モジュール。
  2.  前記最密配置された複数の前記電池は金属製ケースの内部に収納される、請求項1に記載の電池モジュール。
  3.  前記金属製ケースと前記冷却面との間に熱伝導性弾性体が配置される、請求項2に記載の電池モジュール。
  4.  前記金属製ケースは、前記冷却面に接続される放熱フィンを有する、請求項2に記載の電池モジュール。
  5.  前記冷却面は、冷媒が流通する熱交換器の壁面であり、
     前記金属製ケースの前記放熱フィンは、前記熱交換器の壁面を通り冷媒通路に突き出ている、請求項4に記載の電池モジュール。
PCT/JP2016/000820 2015-02-25 2016-02-17 電池モジュール WO2016136194A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034778A JP2018060594A (ja) 2015-02-25 2015-02-25 電池モジュール
JP2015-034778 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136194A1 true WO2016136194A1 (ja) 2016-09-01

Family

ID=56788230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000820 WO2016136194A1 (ja) 2015-02-25 2016-02-17 電池モジュール

Country Status (2)

Country Link
JP (1) JP2018060594A (ja)
WO (1) WO2016136194A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534454A1 (en) * 2018-03-02 2019-09-04 Hyundai Motor Company Integrated battery cooling system
US11128012B2 (en) * 2016-06-29 2021-09-21 Panasonic Intellectual Property Management Co., Ltd. Battery module including thermal insulator disposed between battery blocks

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105942A (ja) * 2018-12-26 2020-07-09 株式会社デンソー 車両用熱マネジメントシステム
CN109755450A (zh) * 2019-01-11 2019-05-14 南京工业职业技术学院 一种新能源汽车动力电池组
JP7503933B2 (ja) 2020-04-23 2024-06-21 株式会社豊田中央研究所 電池パック

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047301A (ja) * 2006-08-10 2008-02-28 Sanyo Electric Co Ltd パック電池
JP2009117086A (ja) * 2007-11-05 2009-05-28 Toyota Motor Corp 温度調節機構
JP2012156124A (ja) * 2011-01-07 2012-08-16 Lithium Energy Japan:Kk 蓄電素子及び蓄電装置
JP2012243619A (ja) * 2011-05-20 2012-12-10 Kobelco Contstruction Machinery Ltd 蓄電器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047301A (ja) * 2006-08-10 2008-02-28 Sanyo Electric Co Ltd パック電池
JP2009117086A (ja) * 2007-11-05 2009-05-28 Toyota Motor Corp 温度調節機構
JP2012156124A (ja) * 2011-01-07 2012-08-16 Lithium Energy Japan:Kk 蓄電素子及び蓄電装置
JP2012243619A (ja) * 2011-05-20 2012-12-10 Kobelco Contstruction Machinery Ltd 蓄電器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128012B2 (en) * 2016-06-29 2021-09-21 Panasonic Intellectual Property Management Co., Ltd. Battery module including thermal insulator disposed between battery blocks
EP3534454A1 (en) * 2018-03-02 2019-09-04 Hyundai Motor Company Integrated battery cooling system
US10756397B2 (en) 2018-03-02 2020-08-25 Hyundai Motor Company Integrated battery cooling system

Also Published As

Publication number Publication date
JP2018060594A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
WO2016136194A1 (ja) 電池モジュール
JP4948625B2 (ja) 複数のフィンピッチを有する冷却装置
US9844165B2 (en) Advanced heat exchanger with integrated coolant fluid flow deflector
WO2017010536A1 (ja) 冷却装置
KR101865635B1 (ko) 액체 냉각을 위한 내부 캐비티를 갖는 히트싱크
KR100821180B1 (ko) 열교환기용 방열핀
CN110247133B (zh) 一种动力电池模组用冷却板及液冷循环系统
JP2013195024A (ja) 熱交換器用フィンおよび熱交換器
US20150168031A1 (en) Heat exchanger with thermoelectric elements
JP2013030736A (ja) 冷却装置
JP5148931B2 (ja) ヒートパイプ式冷却器
JP5906921B2 (ja) 電池モジュール及び車両
TWI470181B (zh) 熱交換器
KR20220049585A (ko) 방열기, 전자 디바이스 및 차량
CN215447562U (zh) 散热翅片、散热器以及车辆
JP5653852B2 (ja) 冷却装置
JP4415712B2 (ja) 熱交換器
US20210389057A1 (en) Heat exchanger
CN203225981U (zh) 高效率散热器
CN218569080U (zh) 电池装置
CN210512768U (zh) 一种用于水冷散热器的冷却管
CN210512738U (zh) 一种水冷散热器
CN221530043U (zh) 一种电池冷却装置及系统
KR102086161B1 (ko) 열 교환형 냉각장치
JP2012114466A (ja) ヒートパイプ式冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16754946

Country of ref document: EP

Kind code of ref document: A1