WO2016136176A1 - 方向性電磁鋼板及びその製造方法 - Google Patents

方向性電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016136176A1
WO2016136176A1 PCT/JP2016/000745 JP2016000745W WO2016136176A1 WO 2016136176 A1 WO2016136176 A1 WO 2016136176A1 JP 2016000745 W JP2016000745 W JP 2016000745W WO 2016136176 A1 WO2016136176 A1 WO 2016136176A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
width
Prior art date
Application number
PCT/JP2016/000745
Other languages
English (en)
French (fr)
Inventor
重宏 ▲高▼城
大村 健
岡部 誠司
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177024600A priority Critical patent/KR101988480B1/ko
Priority to EP16754930.2A priority patent/EP3263720B1/en
Priority to MX2017010758A priority patent/MX2017010758A/es
Priority to BR112017018093A priority patent/BR112017018093B8/pt
Priority to CA2975245A priority patent/CA2975245C/en
Priority to CN201680011631.0A priority patent/CN107250391B/zh
Priority to RU2017133030A priority patent/RU2679812C1/ru
Priority to US15/552,297 priority patent/US10465259B2/en
Publication of WO2016136176A1 publication Critical patent/WO2016136176A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet used for, for example, an iron core of a transformer and a manufacturing method thereof.
  • Transformers using directional electrical steel sheets continue to be required to have low iron loss and low noise.
  • the magnetic domain is formed by irradiating the steel plate surface with laser, plasma, electron beam, etc.
  • the magnetic domain is formed by irradiating the steel plate surface with laser, plasma, electron beam, etc.
  • Patent Document 1 in introducing thermal strain into a point sequence in a direction crossing the rolling direction of the grain-oriented electrical steel sheet by electron beam irradiation, iron loss is reduced by optimizing the irradiation point interval and irradiation energy.
  • This technique not only subdivides the main magnetic domain, but also realizes a low iron loss by forming a new magnetic domain structure called a reflux magnetic domain inside the steel plate.
  • the reflux magnetic domain generated by the above-mentioned magnetic domain subdivision also causes magnetostriction and transformer noise deterioration. Therefore, as with the lancet, there is a demand for optimization of the return magnetic domain in order to achieve both low iron loss and low noise.
  • Patent Document 2 when the magnetic domain subdivision process is performed by irradiating an electron beam in a dot shape, the relationship between the residence time t per point and the point interval X is controlled according to the output of the electron beam.
  • Patent Document 3 describes a grain-oriented electrical steel sheet that has been subjected to magnetic domain fragmentation by electron beam irradiation and has optimized the relationship between the diameter A of the thermal strain introduction region and the irradiation pitch B.
  • Patent Document 4 describes a technique for optimizing the rolling direction width, the thickness direction depth, and the rolling direction introduction interval of the reflux magnetic domain by an electron beam method.
  • Patent Documents 2 and 3 since the electron beam is radiated in a point sequence, the shape of the formed reflux magnetic domain cannot be sufficiently optimized from the viewpoint of achieving both low iron loss and low noise. Further, in the technique of Patent Document 4, it is estimated that the iron loss is low and the rolling direction width of the return magnetic domain and the volume of the return magnetic domain are large, so that the building factor is also small, but the depth in the plate thickness direction of the return magnetic domain is constant. For this reason, the magnetostriction in the thickness direction tends to increase, and it is not suitable for transformer applications that place importance on noise.
  • an object of the present invention is to provide a grain-oriented electrical steel sheet with low iron loss and low noise when incorporated in a transformer, and a method for manufacturing the same.
  • the depth in the plate thickness direction is a condition for the return magnetic domain to achieve both low iron loss and low noise of the transformer. It has been found that it is effective to reduce the volume (defined in this specification as “average width Wave in rolling direction of reflux magnetic domain ⁇ maximum depth D / periodic interval s”). . Then, it has been found that the electron beam method is most advantageous as a method for introducing such a reflux magnetic domain. This is because the electron beam has a high transmission ability into the steel plate, and can form strain and a reflux magnetic domain from the irradiated surface to the inside of the plate thickness.
  • the present inventors have an electron beam method with extremely high beam controllability and capable of advanced position control.
  • the reflux magnetic domain on the steel sheet surface has a shape in which the width in the rolling direction is periodically changed, and the rolling direction. It has been found that by optimizing the ratio of the maximum width Wmax to the minimum width Wmin (Wmax / Wmin), a better iron loss / noise balance can be realized than before.
  • the inventors have found the optimum electron beam irradiation conditions for forming a reflux magnetic domain that satisfies these conditions. Specifically, it is a technique for controlling the stopping and moving at a high speed while reducing the diameter of the high accelerating voltage beam more than before.
  • a grain-oriented electrical steel sheet that is locally present in the surface layer portion of the steel sheet and extends in a direction crossing the rolling direction at a periodic interval s (mm) in the rolling direction, In each of the strain regions, a reflux magnetic domain region in which the width in the rolling direction on the steel sheet surface is periodically changed over 200 mm or more in the width direction is formed, Each said reflux domain region is The ratio of the maximum width Wmax in the rolling direction on the steel sheet surface to the minimum width Wmin (Wmax / Wmin) is 1.2 or more and less than 2.5, The average width Wave in the rolling direction on the steel sheet surface is 80 ⁇ m or more, Maximum depth D in the plate thickness direction is 32 ⁇ m or more, A grain-oriented electrical steel sheet characterized by satisfying the condition that (Wave ⁇ D) / s is 0.0007 mm or more and 0.0016 mm or less.
  • the irradiation condition is: Acceleration voltage is over 90kV, The beam diameter d1 in the direction orthogonal to the scanning direction is 80 ⁇ m or more and 220 ⁇ m or less, The beam diameter d2 in the scanning direction is (0.8 ⁇ d1) ⁇ m or more and (1.2 ⁇ d1) ⁇ m or less, Beam profile is Gaussian shape, The electron beam is scanned on the surface repeatedly stopping and moving at a moving distance p (where 1.5 ⁇ d2 ⁇ p ⁇ 2.5 ⁇ d2); A method for producing a grain-oriented electrical steel sheet characterized by satisfying the following condition.
  • the grain-oriented electrical steel sheet of the present invention has low iron loss and low noise when incorporated in a transformer. Moreover, according to the manufacturing method of the grain-oriented electrical steel sheet of the present invention, a grain-oriented electrical steel sheet with low iron loss and low noise when incorporated in a transformer can be obtained.
  • (B) is the schematic diagram of the steel plate surface which shows the shape of a reflux magnetic domain in one Embodiment of this invention. It is a graph which shows the relationship between (average width Wave of rolling direction x maximum depth D) / periodic space
  • the type (component composition, structure, etc.) of the grain-oriented electrical steel sheet used in the present invention is not particularly limited, and any kind of grain-oriented electrical steel sheet can be used.
  • the grain-oriented electrical steel sheet of this embodiment has a tension coating on the surface of the steel sheet.
  • the type of the tension coating is not particularly limited.
  • a two-layer coating consisting of a forsterite coating mainly composed of Mg 2 SiO 4 formed by finish annealing and a phosphate-based tension coating formed thereon. It can be.
  • a phosphate-based tension-imparting insulating coating can be directly formed on the surface of a steel plate not having a forsterite coating.
  • the phosphate-based tension-imparting insulating coating can be formed, for example, by applying an aqueous solution mainly composed of metal phosphate and silica to the surface of the steel sheet and baking it.
  • the surface is locally present in the surface layer portion of the steel sheet by irradiating the surface with the electron beam while scanning the electron beam in a direction crossing the rolling direction on the surface (introduction).
  • a plurality of plastic strain regions extending in the direction crossing the rolling direction are formed at periodic intervals s (mm) in the rolling direction.
  • a reflux magnetic domain region is formed in each strain region.
  • the tension coating is not damaged by the electron beam irradiation. For this reason, it is not necessary to recoat for repair after electron beam irradiation. Therefore, it is possible to increase the space factor when the steel sheet is assembled as a transformer core without excessively increasing the thickness of the coating. Further, the electron beam has an advantage that the position irradiated by the steel plate can be controlled at high speed and in a complicated manner.
  • the feature of this embodiment is that the condition of the return magnetic domain for achieving both low iron loss and low noise of the transformer has been found, and details will be described below.
  • the magnetostriction parameter having a good correlation with the transformer noise is the magnetostrictive harmonic level.
  • the “magnetostrictive harmonic level” is a range from 0 to 1000 Hz with respect to a value obtained by decomposing a magnetostrictive waveform obtained by a laser Doppler vibrometer into velocity components every 100 Hz and correcting each frequency component with A scale. This is the value accumulated by.
  • the maximum magnetic flux density at the time of magnetostriction measurement was set to a value of 1.5 T, which had the highest correlation with the transformer noise with the maximum magnetic flux density of 1.3 to 1.8 T. Fig.
  • FIG. 1 shows magnetostrictive harmonic levels and transformers when magnetic domain subdivision is performed under various electron beam conditions on a 0.23 mm thick directional electrical steel sheet having a forsterite film and phosphate-based tension film on the steel sheet surface. It is a graph which shows the relationship with noise. As is apparent from FIG. 1, the magnetostrictive harmonic level has a good correlation with the transformer noise. Therefore, in some of the following experiments, the magnetostrictive harmonic level was used as a noise evaluation index.
  • parameters relating to the structure of the reflux magnetic domain are defined as follows.
  • Wmax Maximum width in the rolling direction on the steel plate surface in the reflux magnetic domain region (see FIG. 2)
  • Wmin Minimum width in the rolling direction on the steel plate surface in the reflux magnetic domain region (see FIG. 2)
  • Wave Average width in the rolling direction on the steel plate surface in the reflux magnetic domain region
  • D Maximum depth in the plate thickness direction
  • the periodic interval in the rolling direction of the reflux magnetic domain is substantially equal to the periodic interval s in the rolling direction in the strain region. It will be the same.
  • the width in the rolling direction of the reflux magnetic domain is obtained by observing the magnetic domain on the surface of the steel sheet with a magnet viewer containing a magnetic colloid solution.
  • the “average width Wave” is an arithmetic average of the maximum width Wmax and the minimum width Wmin.
  • the maximum depth D of the reflux magnetic domain was set to the maximum thickness at which the reflux magnetic domain was observed by the above-described observation method by gradually reducing the thickness of the steel sheet by the chemical polishing method.
  • Maximum depth D in the thickness direction is 32 ⁇ m or more
  • the depth of the reflux magnetic domain is thought to affect the iron loss. In order to increase the magnetic domain refinement effect, the depth should be larger. However, if the depth is excessively large, the volume of the reflux magnetic domain becomes large and the magnetostriction is deteriorated. Therefore, the maximum depth D in the thickness direction is preferably 32 ⁇ m or more and 50 ⁇ m or less.
  • FIG. 3 shows various rosary shapes (periods of magnetic domain widths) obtained by subdividing magnetic domain subdivisions by changing the electron beam conditions into a 0.23 mm thick directional electrical steel sheet having a forsterite film and a phosphate-based tensile film on the steel sheet surface.
  • the relationship between (Wave ⁇ D) / s and the level of the magnetostriction harmonic when the reflux magnetic domain having a shape that is changed in an automatic manner is shown.
  • the white dots in the figure indicate data in which the iron loss W 17/50 is 0.70 W / kg or more.
  • FIG. 4 shows the relationship between (Wmax / Wmin) and the magnetostrictive harmonic level.
  • the average width of the white spots was 200 to 220 ⁇ m, while the black spots were slightly large at 270 ⁇ m.
  • (Wmax / Wmin) is 1.2 or more and less than 2.5
  • (Wmax / Wmin) is 1.0, that is, the magnetostrictive harmonic level is reduced as compared with the case of a linear reflux magnetic domain.
  • the iron loss showed almost the same value. Therefore, in this embodiment, (Wmax / Wmin) is 1.2 or more and less than 2.5.
  • region is continuously formed over 200 mm or more in the width direction in the steel plate surface, and it is more preferable to form continuously over the full length direction. This is because if the thickness is less than 200 mm, the magnetic domain structure of the steel sheet becomes non-uniform and the magnetic properties are deteriorated even if the joint portions of the reflux magnetic domain regions generated in the width direction increase.
  • Wave width Wave in rolling direction on steel plate surface is 80 ⁇ m or more] If the wave is less than 80 ⁇ m, it is too narrow to obtain a sufficient magnetic domain subdivision effect. Therefore, in this embodiment, the wave is set to 80 ⁇ m or more. Moreover, it is preferable that Wave shall be 250 micrometers or less. This is because magnetostriction tends to increase when the thickness exceeds 250 ⁇ m.
  • a method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention is to obtain the grain-oriented electrical steel sheet described above, while scanning an electron beam in a direction across the rolling direction on the surface of the grain-oriented electrical steel sheet. The surface is irradiated with an electron beam to form the strain region.
  • the inventors of the present invention have conducted extensive experiments and found suitable electron beam irradiation conditions for satisfying the above-mentioned conditions of the reflux magnetic domain.
  • acceleration voltage Va 90kV to 300kV
  • a higher acceleration voltage is preferred. This is because the material permeability of the electron beam is increased, so that the film can be easily transmitted and the damage to the film can be easily suppressed, and the reflux magnetic domain region formed in the strain region is formed deep in the plate thickness direction. Because it is easy to do.
  • the beam diameter tends to be smaller as the acceleration voltage is higher.
  • FIG. 5 shows a directional electromagnetic steel sheet having a forsterite film and a phosphate-based tensile film on the surface of a steel sheet having a thickness of 0.23 mm, and predetermined electron beam conditions (beam diameter 200 ⁇ m, scanning speed 30 m / s, scanning direction: width).
  • (Direction) shows the relationship between the acceleration voltage of the electron beam and the maximum depth D of the return magnetic domain region when the magnetic domain is subdivided.
  • W 17/50 was less than 0.70 W / kg. Under this condition, by setting the acceleration voltage to 90 kV or more, the maximum depth D in the plate thickness direction can be set to 32 ⁇ m or more.
  • the upper limit is practically about 300 kV.
  • a more preferable lower limit of the acceleration voltage is 150 kV.
  • the diameter of the electron beam is reduced in order to reduce the volume of the reflux magnetic domain. That is, the beam diameter d1 is set to 220 ⁇ m or less. Further, if the beam diameter is excessively narrow and the width of the reflux magnetic domain becomes too narrow, the magnetic domain fragmentation effect is reduced, so the beam diameter d1 is set to 80 ⁇ m or more. A more preferable range of the beam diameter d1 is 100 to 150 ⁇ m.
  • beam diameter is defined by the half width of the beam profile measured by the slit method (slit width 0.03 mm) for both d1 and d2.
  • Beam profile is Gaussian
  • the electron beam takes various profile shapes depending on how it is converged and can be roughly divided into the four shapes shown in FIG. Of these, the # 1 beam had the highest energy density and was effective in reducing iron loss. That is, when the # 2, # 3, and # 4 beams having low energy density are irradiated, it is difficult to make the depth of the return magnetic domain to a desired depth. Conversely, when measures are taken to increase the energy density, such as increasing the beam current, in order to obtain the desired depth of the return magnetic domain, the width of the return magnetic domain increases, which in turn increases iron loss. Because. In this embodiment, a beam like # 1 is called a “Gaussian beam”, the beam width (beam diameter) of intensity 1/2 is 265 ⁇ m or less, and the ratio to the beam width of intensity 1/5 is It is defined as 3.0 or less.
  • Line angle 60 ° to 120 °
  • the linear scanning direction of the electron beam is a direction that forms an angle of 60 ° to 120 ° with respect to the rolling direction. If it deviates from 90 °, the volume of the strained portion increases, so 90 ° is desirable.
  • the electron beam is scanned to form a strain that is continuously distributed in the width direction on the steel plate to be passed.
  • the average scanning speed of the electron beam on the steel plate is preferably 30 m / s or more. If the average scanning speed is less than 30 m / s, high productivity cannot be achieved. Desirably, it is 100 m / s or more.
  • the upper limit of the average scanning speed is preferably 300 m / s so that high-speed repetitive control of beam stop and movement can be performed.
  • the scanning speed of the electron beam is constant, and the “average scanning speed” means an average scanning speed including the stop time.
  • the beam may be irradiated so as to repeat scanning and stopping rather than scanning the beam in the width direction at a constant speed.
  • the distance (movement distance) p between the adjacent stop portions is set such that the scanning direction beam diameter d2 ⁇ 1.5 ⁇ p ⁇ the scanning direction beam diameter d2 ⁇ 2.5.
  • p is smaller than d2 ⁇ 1.5, the reflux magnetic domain becomes a continuous shape.
  • d2 ⁇ 2.5 the reflux magnetic domain becomes discontinuous in the width direction or the width ratio (Wmax / Wmin) is large. It becomes too much.
  • the beam stop time is 100 m / s or more, it is necessary to stop for 2 ⁇ s or more.
  • the average scanning speed is 30 m / s or more, a higher effect can be obtained by setting it to 8 ⁇ s or more.
  • the upper limit is preferably 20 ⁇ s from the viewpoint of inhibiting damage to the film.
  • the electron beam is preferably irradiated so that the periodic interval s in the rolling direction of the reflux magnetic domain region formed in the width direction is 15 mm or less. This is because if the distance between the irradiation lines is too wide, the effect of subdividing the magnetic domain becomes poor and the iron loss is difficult to improve.
  • There is no particular lower limit for the line spacing but it is limited to some extent by the above-mentioned reflux magnetic domain volume. However, if the line spacing is narrow, the production capacity is impaired, so the preferable condition is 5 mm or more.
  • the line spacing must be such that Wave ⁇ D) / s is 0.0007 to 0.0016 mm.
  • Beam current: 0.5 mA to 30 mA A lower beam current is better from the viewpoint of beam diameter reduction. This is because when charged particles repel each other, the beam hardly converges. Therefore, the upper limit of the beam current is 30 mA. More preferably, it is 20 mA or less. On the other hand, when the beam current is too low, the effect of magnetic domain fragmentation cannot be obtained, so 0.5 mA is set as the lower limit.
  • WD working distance: 1000mm or less
  • WD is the distance from the center of the focusing coil to the steel sheet surface. This distance has a significant effect on the beam diameter. The smaller the WD, the shorter the path length of the beam and the easier the beam converges. Accordingly, the thickness is preferably 1000 mm or less.
  • the wide coil can be irradiated with a smaller number of electron guns.
  • the scanning length is preferably as large as possible, and is 200 mm or more, preferably 300 mm or more.
  • the scanning length is excessively large, it is necessary to enlarge the WD or increase the deflection angle.
  • the upper limit is preferably 650 mm.
  • LaB 6 is known to be advantageous for outputting a high-intensity beam, and is preferable because the beam diameter can be easily reduced.
  • a directional electrical steel sheet having a thickness of 0.23 mm having a forsterite film and a phosphate-based tension film on the surface of the steel sheet was subjected to magnetic domain refinement treatment under various electron beam irradiation conditions shown in Table 1.
  • the magnetic flux density B 8 when magnetized at 800 A / m was about 1.935 T.
  • the scanning direction of the electron beam was perpendicular to the rolling direction of the steel plate, and the processing chamber pressure was 0.02 Pa.
  • the beam current was adjusted within the range of 1 to 3 kW.
  • WD was set to 300 mm, and other than that, WD was set to 900 mm.
  • “# 1” in the profile shape column of Table 1 indicates a Gaussian shape such as # 1 in FIG. 6, and “# 4” indicates a shape such as # 4 in FIG.
  • Table 2 shows the presence / absence of film damage after domain subdivision, various dimensions of the reflux domain, iron loss W 17/50 , and harmonic level MHL 15/50 .
  • the iron loss W 17/50 is 0.66 to 0.68 W / kg and the magnetostrictive harmonic level MHL Low iron loss and low magnetostriction with 15/50 of 29 dBA are compatible.
  • the cathode is Tungsten, both low iron loss and low magnetostriction of 0.67 W / kg and 30 dBA are achieved.
  • both low iron loss and low magnetostriction of 0.67 / kg and 29 dBA are achieved.
  • No.15 and No.16 model transformers were manufactured and the noise was measured. As a result, No.15 was 33dBA and No.16 was 35dBA. By reducing the magnetostrictive harmonic level, transformer noise was reduced. It was confirmed to make it smaller.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet with low iron loss and low noise when incorporated in a transformer, and a method for manufacturing the same. Thereby, the energy efficiency of a transformer can be improved and a use environment can be expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

 低鉄損で、変圧器に組み込んだときの騒音が小さい方向性電磁鋼板及びその製造方法を提供する。 本発明は、鋼板の表層部に局所的に存在し、圧延方向を横切る方向に延びる歪み領域が、圧延方向に周期的間隔s(mm)で複数形成された方向性電磁鋼板であって、各々の前記歪み領域には、幅方向に200mm以上にわたり連続的に、圧延方向幅が周期的に変化した還流磁区領域が形成され、各々の還流磁区領域が、鋼板表面における圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)が1.2以上2.5未満、鋼板表面における圧延方向の平均幅Waveが80μm以上、板厚方向の最大深さDが32μm以上、(Wave×D)/sが0.0007mm以上0.0016mm以下の条件を満たすことを特徴とする。

Description

方向性電磁鋼板及びその製造方法
 本発明は、例えば変圧器の鉄心に用いられる方向性電磁鋼板及びその製造方法に関するものである。
 方向性電磁鋼板が使用される変圧器には、低鉄損と低騒音であることが求められ続けている。変圧器の低鉄損化には、方向性電磁鋼板そのものの低鉄損化が有効であり、そのための技術の一つとして、鋼板表面にレーザ、プラズマ、電子ビーム等を照射することによって磁区を細分化する技術がある。特許文献1には、電子ビーム照射により方向性電磁鋼板の圧延方向と交差する向きに点列に熱歪みを導入するに当たり、照射点間隔や照射エネルギーを適正化することで、鉄損を低減する技術が記載されている。この技術は、主磁区を細分化するだけでなく、鋼板内部に還流磁区と呼ばれる新たな磁区構造を形成することで、低鉄損を実現するものである。
 しかしながら、還流磁区が増大すると変圧器に組み込んだときの騒音が不利となる。これは、還流磁区の磁気モーメントが圧延方向に直交する面内に向いているため、方向性電磁鋼板の励磁過程で圧延方向に向きが変化するのに伴って、磁気歪み(磁歪)を生じるためである。鋼板内部には、その他にランセットと呼ばれる還流磁区が存在するが、交流磁界で励磁中にランセットが生成消失することによっても磁歪が生じる。ランセットは張力付与などにより低減することができ、磁歪も改善することが知られている。一方、上記した磁区細分化により生じる還流磁区も磁歪や変圧器騒音劣化の要因となる。よって、ランセットと同様に低鉄損と低騒音を両立するための還流磁区の適正化が求められている。
 電子ビーム法による鉄損と騒音の改善技術としては、以下のものがある。特許文献2には、電子ビームを点状に照射して磁区細分化処理を行う場合に、電子ビームの出力に応じて、一点当たりの滞留時間tと点間隔Xとの関係を制御することで、優れた鉄損特性及び騒音特性を有する方向性電磁鋼板を提供する技術が記載されている。特許文献3には、電子ビーム照射により磁区細分化処理がされ、熱歪み導入領域の直径Aと照射ピッチBとの関係を適正化した方向性電磁鋼板が記載されている。
 また、特許文献4には、電子ビーム法によって、還流磁区の圧延方向幅、板厚方向深さ、圧延方向導入間隔を適正化する技術が記載されている。
特開2012-036450号公報 特開2012-172191号公報 特開2012-036445号公報 国際公開第2014/068962号
 しかしながら、特許文献2,3では、点列状に電子ビームを照射しているため、形成された還流磁区の形状が低鉄損及び低騒音を両立する観点から十分に適正化できていない。また、特許文献4の技術では、鉄損は低く、還流磁区の圧延方向幅や還流磁区の体積も大きいことからビルディングファクターも小さいことが推定されるが、還流磁区の板厚方向深さを一定以上とするために板厚方向の磁歪が大きくなる傾向があり、騒音を重視する変圧器用途としては、適切ではない。
 本発明は、上記課題に鑑み、低鉄損で、変圧器に組み込んだときの騒音が小さい方向性電磁鋼板及びその製造方法を提供することを目的とする。
 このような還流磁区形成の考え方は従来にも認められているが、本発明者らは、変圧器の低鉄損と低騒音を両立するための還流磁区の条件として、その板厚方向の深さは大きく、その体積(本明細書では、「還流磁区の圧延方向の平均幅Wave×最大深さD/周期的間隔s」で定義する。)は小さくすることが有効であることを見出した。そして、このような還流磁区の導入方法として、電子ビーム法が最も有利であることを見出した。電子ビームは鋼板内部への透過能力が高く、照射面からより板厚内部にまで歪みと還流磁区を形成できるからである。
 さらに、本発明者らは、ビームの制御性が極めて高く、高度な位置制御が可能な電子ビーム法で、鋼板表面における還流磁区を、圧延方向の幅が周期的に変化した形状とし、圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)を最適化することによって、従来よりも良好な鉄損・騒音バランスが実現できることを見出した。
 そして、本発明者らは、これらの条件を満たす還流磁区を形成するための最適な電子ビーム照射条件を見出した。具体的には、高加速電圧ビームを従来以上に小径化させるとともに、停留と移動を高速で制御する技術である。
 本発明は、上記の知見によって完成されたものであり、その要旨構成は以下のとおりである。
 (1)鋼板の表層部に局所的に存在し、圧延方向を横切る方向に延びる歪み領域が、圧延方向に周期的間隔s(mm)で複数形成された方向性電磁鋼板であって、
 各々の前記歪み領域には、幅方向に200mm以上にわたり連続的に、鋼板表面における圧延方向の幅が周期的に変化した還流磁区領域が形成され、
 各々の前記還流磁区領域が、
 鋼板表面における圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)が1.2以上2.5未満、
 鋼板表面における圧延方向の平均幅Waveが80μm以上、
 板厚方向の最大深さDが32μm以上、
 (Wave×D)/sが0.0007mm以上0.0016mm以下
の条件を満たすことを特徴とする方向性電磁鋼板。
 (2)上記(1)に記載の方向性電磁鋼板を得るための製造方法であって、
 方向性電磁鋼板の表面上で圧延方向を横切る方向に電子ビームを走査しながら、前記表面に電子ビームを照射して、前記歪み領域を形成する際に、その照射条件が、
 加速電圧が90kV以上、
 走査方向と直交する方向のビーム径d1が80μm以上220μm以下、
 走査方向のビーム径d2が、(0.8×d1)μm以上(1.2×d1)μm以下、
 ビームプロファイルがガウシアン形状、
 電子ビームが前記表面上で、停止と、移動距離p(ただし、1.5×d2≦p≦2.5×d2)の移動を繰り返しながら走査されること、
の条件を満たすことを特徴とする方向性電磁鋼板の製造方法。
 (3)前記停止時間が2μ秒以上であり、前記走査の平均速度が100m/s以上である上記(2)に記載の方向性電磁鋼板の製造方法。
 (4)前記停止時間が8μ秒以上であり、前記走査の平均速度が30m/s以上である上記(2)に記載の方向性電磁鋼板の製造方法。
 (5)前記表面上で、電子ビームの幅方向走査長が200mm以上である上記(2)~(4)のいずれか一項に記載の方向性電磁鋼板の製造方法。
 (6)前記表面上で、電子ビームの幅方向走査長が300mm以上である上記(2)~(4)のいずれか一項に記載の方向性電磁鋼板の製造方法。
 (7)電子ビームの発生源がLaB6である上記(2)~(6)のいずれか一項に記載の方向性電磁鋼板の製造方法。
 (8)電子ビームを収束させるためのコイルを2つ以上用いる上記(2)~(7)のいずれか一項に記載の方向性電磁鋼板の製造方法。
 本発明の方向性電磁鋼板は、低鉄損で、変圧器に組み込んだときの騒音が小さい。また、本発明の方向性電磁鋼板の製造方法によれば、低鉄損で、変圧器に組み込んだときの騒音が小さい方向性電磁鋼板を得ることができる。
磁歪高調波レベルと変圧器騒音との関係を示すグラフである。 (A)は比較例における、(B)は本発明の一実施形態における、還流磁区の形状を示す鋼板表面の模式図である。 還流磁区領域の、(圧延方向の平均幅Wave×最大深さD)/周期的間隔sと、磁歪高調波レベルとの関係を示すグラフである。 還流磁区領域の、圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)と、磁歪高調波レベルとの関係を示すグラフである。 電子ビームの加速電圧と還流磁区領域の最大深さDとの関係を示すグラフである。 種々のビームプロファイルの形状を示すグラフである。
 (方向性電磁鋼板)
 まず、本発明の一実施形態による方向性電磁鋼板(以下、単に「鋼板」ということもある。)を説明する。
 本発明に使用される方向性電磁鋼板の種類(成分組成、組織等)は特に限定されず、各種任意の方向性電磁鋼板を使用することができる。
 本実施形態の方向性電磁鋼板は、鋼板の表面に張力被膜を有する。張力被膜の種類は特に限定されず、例えば、仕上焼鈍において形成されたMg2SiO4を主成分とするフォルステライト被膜と、さらにその上に形成されたリン酸塩系張力被膜からなる2層被膜とすることができる。また、フォルステライト被膜を有しない鋼板の表面に、リン酸塩系の張力付与型絶縁被膜を直接形成することもできる。前記リン酸塩系の張力付与型絶縁被膜は、例えば、金属リン酸塩とシリカを主成分とする水溶液を、鋼板の表面に塗布し、焼付けることによって形成することができる。
 本実施形態の方向性電磁鋼板では、その表面上で圧延方向を横切る方向に電子ビームを走査しながら、前記表面に電子ビームを照射することによって、鋼板の表層部に局所的に存在し(導入され)、圧延方向を横切る方向に延びる塑性歪み領域が、圧延方向に周期的間隔s(mm)で複数形成されている。そして、各々の歪み領域には、還流磁区領域が形成されている。
 本実施形態では、電子ビーム照射によって張力被膜が損傷を受けない。このため、電子ビーム照射後に補修のための再コートを行う必要がない。そのため、被膜の厚みを過度に厚くすることがなく、鋼板を変圧器用鉄心として組んだ際の占積率を高くすることができる。また、電子ビームは、鋼板の照射する位置を高速かつ複雑に制御できる利点がある。
 本実施形態の特徴は、変圧器の低鉄損と低騒音を両立するための還流磁区の条件を見出した点であり、以下に詳細を説明する。
 まず、本発明者らは、電子ビーム照射法の場合、変圧器騒音と良い相関がある磁歪パラメータは、磁歪高調波レベルであることに気づいた。ここで、「磁歪高調波レベル」は、レーザドップラー式振動計によって得られた磁歪波形を、100Hz毎の速度成分に分解し、各周波数成分にAスケール補正した値について、0~1000Hzまでの範囲で積算した値である。また、磁歪測定時の最大磁束密度は、最大磁束密度1.3~1.8Tの変圧器騒音と最も相関が高かった1.5Tの値とした。図1は、鋼板表面にフォルステライト被膜及びリン酸塩系張力被膜を有する板厚0.23mmの方向性電磁鋼板に、種々の電子ビーム条件で磁区細分化した際の、磁歪高調波レベルと変圧器騒音との関係を示すグラフである。図1から明らかなように、磁歪高調波レベルは変圧器騒音と良好な相関関係があった。よって、以下の一部の実験では、磁歪高調波レベルを騒音の評価指標として用いた。
 ここで、還流磁区の構造に関するパラメータを以下のとおり定義する。
Wmax:還流磁区領域の鋼板表面における圧延方向の最大幅(図2参照)
Wmin:還流磁区領域の鋼板表面における圧延方向の最小幅(図2参照)
Wave:還流磁区領域の鋼板表面における圧延方向の平均幅
D:板厚方向の最大深さ
なお、還流磁区の圧延方向における周期的間隔は、歪み領域の圧延方向における周期的間隔sと実質的に同じとなる。
 還流磁区の圧延方向の幅は、磁性コロイド溶液を含んだマグネットビュアーによって鋼板の表面の磁区を観察して求める。「平均幅Wave」は、最大幅Wmaxと最小幅Wminの相加平均とする。還流磁区の最大深さDは、化学研磨の方法によって鋼板表面を段階的に減厚していき、上記の観察手法によって還流磁区が観察される最大の減厚量とした。
 [板厚方向の最大深さDが32μm以上]
 還流磁区の深さは鉄損に影響を及ぼすと考えられている。磁区細分化効果増大のためには、深さがより大きい方が良いが、過度に大きくしすぎると、還流磁区の体積が大きくなって、磁歪を劣化させる。よって、板厚方向の最大深さDは32μm以上50μm以下とすることが好ましい。
 [(Wave×D)/sが0.0007mm以上0.0016mm以下]
 本発明者らは、還流磁区の体積を小さくすることで低騒音を実現できることを見出した。図3は、鋼板表面にフォルステライト被膜及びリン酸塩系張力被膜を有する板厚0.23mmの方向性電磁鋼板に、電子ビーム条件を変えて磁区細分化して、種々の数珠形状(磁区幅を周期的に変化させた形状)の還流磁区を形成した際の、(Wave×D)/sと磁歪高調波レベルとの関係を示した。図中白抜きの点は、鉄損W17/50が0.70W/kg以上であったデータを示す。(Wave×D)/sが小さいほど、磁歪高調波レベルが小さく、低騒音が実現できる。この観点から、本実施形態で(Wave×D)/sは0.0016mm以下とする。一方、(Wave×D)/sが低すぎると、磁区細分化効果が小さく鉄損が高い。この観点から、本実施形態で(Wave×D)/sは0.0007mm以上とする。
 [還流磁区の鋼板表面における形状]
 続いて、還流磁区の最大深さDは36μm、周期的間隔sを5mmとし、電子ビーム照射条件(停留点の間隔、ビーム電流)を種々に変更して、鋼板表面における形状を変化させた。その結果、図2(A)のような直線状の還流磁区形状よりも、図2(B)に示すように、幅方向に連続的に、鋼板表面における圧延方向の幅が周期的に変化した形状の方が、磁歪高調波レベルをさらに低くできることがわかった。図4に、(Wmax/Wmin)と磁歪高調波レベルとの関係を示す。平均幅は、白点が200~220μmであるのに対して、黒点は270μmとやや大きかった。(Wmax/Wmin)が1.2以上2.5未満の範囲内で、(Wmax/Wmin)が1.0、すなわち、直線状の還流磁区の場合に比較して、磁歪高調波レベルが低減した。なお、鉄損はほぼ同じ値を示していた。よって本実施形態で、(Wmax/Wmin)は1.2以上2.5未満とする。
 なお、各々の還流磁区領域は、鋼板表面において幅方向に200mm以上にわたり連続的に形成されることが好ましく、幅方向全長にわたり連続的に形成されることがより好ましい。200mm未満の場合、幅方向に生じる還流磁区領域のつなぎ目部が多くなっても鋼板の磁区構造を不均一化し、磁気特性を劣化させるからである。
 [鋼板表面における圧延方向の平均幅Waveが80μm以上]
 Waveが80μm未満の場合、狭すぎて十分な磁区細分化効果が得られないため、本実施形態でWaveは80μm以上とする。また、Waveは250μm以下とすることが好ましい。250μm超えの場合、磁歪が増大しやすいからである。
 (方向性電磁鋼板の製造方法)
 本発明の一実施形態による方向性電磁鋼板の製造方法は、上記で説明した方向性電磁鋼板を得るものであり、方向性電磁鋼板の表面上で圧延方向を横切る方向に電子ビームを走査しながら、前記表面に電子ビームを照射して、前記歪み領域を形成する。
 本発明者らは、鋭意実験を重ね、上記の還流磁区の条件を満たすための好適な電子ビーム照射条件を見出した。
 [加速電圧Va:90kV以上300kV以下]
 加速電圧は高い方が好ましい。これは、電子ビームの物質透過性が高まることにより、被膜を透過しやすくなり、被膜の損傷が抑制されやすくなるだけでなく、歪み領域に形成される還流磁区領域を、板厚方向深くに形成しやすいからである。また、本実施形態では後述のように還流磁区体積を小さくするためにビーム径を極力絞る必要があるが、加速電圧が高いほどビーム径が小さくなりやすい利点もある。図5に、鋼板表面にフォルステライト被膜及びリン酸塩系張力被膜を有する板厚0.23mmの方向性電磁鋼板に、所定の電子ビーム条件(ビーム径200μm、走査速度30m/s、走査方向:幅方向)で磁区細分化した際の、電子ビームの加速電圧と還流磁区領域の最大深さDとの関係を示す。全ての方向性電磁鋼板においてW17/50で0.70W/kg未満であった。本条件では、加速電圧を90kV以上とすることにより、板厚方向の最大深さDを32μm以上とすることができる。なお、その他のビーム条件を適正化すれば、加速電圧を変更させずに、還流磁区深さを増大することも可能である。例えば、電子ビームを同一箇所に長時間照射することにより、熱伝導の影響でより深い領域にまで歪みを導入できる。
 一方、加速電圧は高くなると、被照射体から発生するX線の遮蔽が困難になることから、実用上は上限を300kV程度とするのが良い。さらに好ましい加速電圧の下限は150kVである。
 [走査方向と直交する方向のビーム径d1:80μm以上220μm以下]
 本実施形態では、還流磁区の体積を小さくするために、電子ビームを小径化した。すなわち、ビーム径d1は220μm以下とする。また、ビーム径が過度に狭く、還流磁区の幅が狭くなりすぎると、磁区細分化効果が小さくなるため、ビーム径d1は80μm以上とする。より好適なビーム径d1の範囲は、100~150μmである。
 [走査方向のビーム径d2:(0.8×d1)μm以上(1.2×d1)μm以下]
 ビームを停留と移動を繰り返しながら動かす方法においては、ビーム形状は真円に近いほうが良いことも明らかとなった。これは、ビーム径が楕円状になると、ビームのエネルギー密度が減少するため、ビーム電流を増大させて高エネルギー化する必要があるが、その場合、ビーム径が大きな値になってしまうからである。この観点から、ビーム径d2は(0.8×d1)~(1.2×d1)μmとする。
 ここで「ビーム径」はd1、d2ともに、スリット法(スリット幅0.03mm)によって測定したビームプロファイルの半値幅で定義する。
 [ビームプロファイルがガウシアン形状]
 電子ビームは収束のされ方によって、さまざまなプロファイル形状をとり、図6に示した4つの形状に大別できることが明らかとなった。このうち、#1のビームが最もエネルギー密度が高く、低鉄損化に有効であった。すなわち、エネルギー密度が低い#2、#3および#4のビームを照射した場合、還流磁区の深さを所望の深さにしにくくなる。逆に所望する還流磁区の深さとするために、ビーム電流を高くするなど、エネルギー密度を高くする措置を講じた場合には、還流磁区の幅が増大するので、むしろ鉄損増大を招いてしまうからである。本実施形態において、#1のようなビームを「ガウシアン形状のビーム」と呼び、強度1/2のビーム幅(ビーム径)が265μm以下であり、かつ強度1/5のビーム幅との比が3.0以下であることと定義する。
 [線角度:60°以上120°以下]
 電子ビームの直線状の走査方向は、圧延方向から60°以上120°以下の角度をなす方向とする。90°からずれると、歪み部の体積が増大してしまうので、望ましくは90°とするのが良い。
 [電子ビーム照射パターン]
 電子ビームを走査して、通板される鋼板に幅方向に連続的に分布する歪を形成する。このとき、電子ビームの鋼板上の平均走査速度は30m/s以上とするのが良い。平均走査速度が30m/sより小さいと、高い生産性を達成できない。望ましくは、100m/s以上とするのが良い。平均走査速度の上限は、ビームの停止と移動の高速繰り返し制御を行えるようにするため、300m/sとするのが良い。なお、電子ビームの走査中は一定速度であり、「平均走査速度」とは、停止時間を含めた平均の走査速度を意味するものである。
 このように高速で電子ビームを走査する場合、ビームのon,offに不必要な時間が費やされることから、電子ビームは常時照射状態にするのが良い。この場合、前述のように還流磁区幅を幅方向において周期的に変化させるためには、ビームを幅方向に一定速度で走査させるのではなく、走査と停留を繰り返すように照射させれば良い。そして、隣接する停留部間の距離(移動距離)pは、走査方向ビーム径d2×1.5≦p≦走査方向ビーム径d2×2.5とする。pがd2×1.5より小さいと、還流磁区が連続的な形状になってしまうし、d2×2.5より大きいと、還流磁区が幅方向に不連続になるか、幅比(Wmax/Wmin)が大きくなりすぎてしまう。
 また、前述の還流磁区を形成するには、停留部におけるビーム停止時間をできるだけ長時間確保する必要がある。平均走査速度が100m/s以上のときには2μ秒以上停留する必要がある。平均走査速度が30m/s以上の場合には8μ秒以上とすれば、さらに高い効果を得ることができる。上限は、被膜損傷抑止の観点から20μ秒とすることが好ましい。
 [照射線間隔:15mm以下]
 電子ビームは、幅方向に形成される還流磁区領域の圧延方向の周期的間隔sが15mm以下となるように照射することが好ましい。照射線間隔が広すぎると、磁区細分化効果が乏しくなり、鉄損が改善しにくいためである。線間隔の下限は特にないが、既述の還流磁区体積である程度制限を受ける。ただし、線間隔が狭いと生産能力を損なうため、好ましい条件としては5mm以上である。また、線間隔は、Wave×D)/sが0.0007~0.0016mmとなるようにする必要がある。
 [ビーム電流:0.5mA以上30mA以下]
 ビーム電流は、ビーム径縮小の観点からは低い方が良い。これは、荷電粒子同士が反発すると、ビームが収束しがたくなるためである。従って、ビーム電流の上限は30mAとする。より好ましくは20mA以下である。一方、ビーム電流が低すぎる場合には、磁区細分化の効果が得られないため、0.5mAを下限とする。
 [加工室の圧力:3Pa以下]
 電子ビームは、気体分子によって散乱され、その径が大きくなってしまうため、3Pa以下の圧力が必要である。また下限については、過度に低くするには、真空ポンプなどの真空系にかかるコストが増大するため、実用上10-5Pa程度である。
 [WD(ワーキングディスタンス): 1000mm以下]
 WDは、収束コイルの中心から鋼板表面までの距離である。この距離は、ビーム径に著しい影響を及ぼす。WDは小さい方が、ビームの行路長が短くなって、ビームが収束しやすくなる。従って、1000mm以下とするのが好ましい。
 [コイル配置:2段収束コイル]
 前述したガウシアン状の電子ビームを鋼板上で作りこむには、熱電子源から放出された電子を収束コイルで強力に収束させる必要がある。しかし、電子が高電圧で加速された場合には、収束コイルを通過する時間が極めて短くなるため、収束能力が不足し、所望のプロファイルを得ることができない。コイル電流を増大して磁界強度を増大させる方法があるが、コイルや収束にかかる回路基板内で発熱が過度に増大してしまう。そこで、収束コイルを2つ以上用いることで、発熱量を分散させ、安定してガウシアン状ビームを形成させることが可能である。
 [鋼板表面での電子ビームの幅方向走査長さ:200mm以上]
 鋼板表面での電子ビームの幅方向走査長さは大きいほど、少ない電子銃台数で広幅コイルを照射できる。例えば、コイルの幅が1000mmであった場合、走査長さが200mmであれば5台電子銃が必要で、50mmであれば20台もの数が必要になる。したがって、生産効率やメンテナンス性を考慮すると、この走査長さは大きいほど好ましく、200mm以上、好ましくは300mm以上とする。しかし、走査長さが過度に大きい場合には、WDを拡大するか、偏向角度を増大する必要があり、前者の場合、ビーム径が広がってしまう問題があり、後者の場合、偏向収差が大きく、偏向ビームの鋼板上での形状が楕円化してしまうため、ビーム小径化の観点から好ましくない。よって、上限は650mmが好ましい。
 [電子ビームの発生源:LaB6
 一般に、LaB6は高輝度ビームを出力するのに有利であることが知られており、ビーム径を絞り易いため、好ましい。
 鋼板表面にフォルステライト被膜及びリン酸塩系張力被膜を有する板厚0.23mmの方向性電磁鋼板に、表1に示す種々の電子ビーム照射条件で磁区細分化処理を施した。800A/mで磁化したときの磁束密度B8は約1.935Tであった。電子ビームの走査方向は、鋼板の圧延方向に直角で、加工室圧力は0.02Paとした。ビーム電流は出力1~3kWの範囲内で調整した。No.12はWDを300mmとし、それ以外はWDを900mmとした。表1のプロファイル形状の欄における「#1」は、図6の#1のようなガウシアン形状を示し、「#4」は図6の#4のような形状を示す。
Figure JPOXMLDOC01-appb-T000001
 磁区細分化後の被膜損傷の有無、還流磁区領域の各種寸法、鉄損W17/50、及び高調波レベルMHL15/50を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明によって、加速電圧が150kVでLaB6陰極を使用し、本発明に適合する上限で電子ビームを照射した場合、鉄損W17/50が0.66~0.68W/kgかつ、磁歪高調波レベルMHL15/50が29dBAとなる低鉄損・低磁歪を両立した。陰極をTungstenとした場合は0.67W/kgかつ30dBAとなる低鉄損・低磁歪を両立した。またLaB6陰極で収束コイルを一段とした条件では0.67/kgかつ29dBAとなる低鉄損・低磁歪を両立した。さらに、No.15とNo.16については、モデル変圧器を作製し、騒音を測定した結果、No.15は33dBA、No.16は35dBAであり、磁歪高調波レベルの低減によって、変圧器騒音を小さくすることを確認した。
 本発明によれば、低鉄損で、変圧器に組み込んだときの騒音が小さい方向性電磁鋼板及びその製造方法を提供することできる。これにより、変圧器のエネルギー効率を向上し、使用環境を拡大することができる。

Claims (8)

  1.  鋼板の表層部に局所的に存在し、圧延方向を横切る方向に延びる歪み領域が、圧延方向に周期的間隔s(mm)で複数形成された方向性電磁鋼板であって、
     各々の前記歪み領域には、幅方向に200mm以上にわたり連続的に、鋼板表面における圧延方向の幅が周期的に変化した還流磁区領域が形成され、
     各々の前記還流磁区領域が、
     鋼板表面における圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)が1.2以上2.5未満、
     鋼板表面における圧延方向の平均幅Waveが80μm以上、
     板厚方向の最大深さDが32μm以上、
     (Wave×D)/sが0.0007mm以上0.0016mm以下
    の条件を満たすことを特徴とする方向性電磁鋼板。
  2.  請求項1に記載の方向性電磁鋼板を得るための製造方法であって、
     方向性電磁鋼板の表面上で圧延方向を横切る方向に電子ビームを走査しながら、前記表面に電子ビームを照射して、前記歪み領域を形成する際に、その照射条件が、
     加速電圧が90kV以上、
     走査方向と直交する方向のビーム径d1が80μm以上220μm以下、
     走査方向のビーム径d2が、(0.8×d1)μm以上(1.2×d1)μm以下、
     ビームプロファイルがガウシアン形状、
     電子ビームが前記表面上で、停止と、移動距離p(ただし、1.5×d2≦p≦2.5×d2)の移動を繰り返しながら走査されること、
    の条件を満たすことを特徴とする方向性電磁鋼板の製造方法。
  3.  前記停止時間が2μ秒以上であり、前記走査の平均速度が100m/s以上である請求項2に記載の方向性電磁鋼板の製造方法。
  4.  前記停止時間が8μ秒以上であり、前記走査の平均速度が30m/s以上である請求項2に記載の方向性電磁鋼板の製造方法。
  5.  前記表面上で、電子ビームの幅方向走査長が200mm以上である請求項2~4のいずれか一項に記載の方向性電磁鋼板の製造方法。
  6.  前記表面上で、電子ビームの幅方向走査長が300mm以上である請求項2~4のいずれか一項に記載の方向性電磁鋼板の製造方法。
  7.  電子ビームの発生源がLaB6である請求項2~6のいずれか一項に記載の方向性電磁鋼板の製造方法。
  8.  電子ビームを収束させるためのコイルを2つ以上用いる請求項2~7のいずれか一項に記載の方向性電磁鋼板の製造方法。
PCT/JP2016/000745 2015-02-24 2016-02-12 方向性電磁鋼板及びその製造方法 WO2016136176A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177024600A KR101988480B1 (ko) 2015-02-24 2016-02-12 방향성 전자 강판 및 그의 제조 방법
EP16754930.2A EP3263720B1 (en) 2015-02-24 2016-02-12 Grain-oriented electrical steel sheet and production method therefor
MX2017010758A MX2017010758A (es) 2015-02-24 2016-02-12 Lamina de acero electrico de grano orientado y metodo de produccion para la misma.
BR112017018093A BR112017018093B8 (pt) 2015-02-24 2016-02-12 chapa de aço elétrica de grão orientado e método de produção da mesma
CA2975245A CA2975245C (en) 2015-02-24 2016-02-12 Grain-oriented electrical steel sheet and production method therefor
CN201680011631.0A CN107250391B (zh) 2015-02-24 2016-02-12 方向性电磁钢板及其制造方法
RU2017133030A RU2679812C1 (ru) 2015-02-24 2016-02-12 Листовая электротехническая сталь с ориентированной структурой и способ ее производства
US15/552,297 US10465259B2 (en) 2015-02-24 2016-02-12 Grain-oriented electrical steel sheet and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034204A JP6060988B2 (ja) 2015-02-24 2015-02-24 方向性電磁鋼板及びその製造方法
JP2015-034204 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016136176A1 true WO2016136176A1 (ja) 2016-09-01

Family

ID=56789236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000745 WO2016136176A1 (ja) 2015-02-24 2016-02-12 方向性電磁鋼板及びその製造方法

Country Status (10)

Country Link
US (1) US10465259B2 (ja)
EP (1) EP3263720B1 (ja)
JP (1) JP6060988B2 (ja)
KR (1) KR101988480B1 (ja)
CN (1) CN107250391B (ja)
BR (1) BR112017018093B8 (ja)
CA (1) CA2975245C (ja)
MX (1) MX2017010758A (ja)
RU (1) RU2679812C1 (ja)
WO (1) WO2016136176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182154A1 (ja) 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432713B1 (ja) * 2017-02-28 2018-12-05 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6776952B2 (ja) * 2017-03-06 2020-10-28 日本製鉄株式会社 巻鉄心
CN108660295A (zh) * 2017-03-27 2018-10-16 宝山钢铁股份有限公司 一种低铁损取向硅钢及其制造方法
WO2019189859A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 変圧器用鉄心
RU2744690C1 (ru) 2018-03-30 2021-03-15 ДжФЕ СТИЛ КОРПОРЕЙШН Железный сердечник трансформатора
JP6973369B2 (ja) * 2018-12-27 2021-11-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US11866796B2 (en) 2019-06-17 2024-01-09 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
JP6879439B1 (ja) * 2019-07-31 2021-06-02 Jfeスチール株式会社 方向性電磁鋼板
KR20230034355A (ko) * 2020-09-04 2023-03-09 제이에프이 스틸 가부시키가이샤 방향성 전기 강판
EP4317468A4 (en) 2021-03-26 2024-08-07 Nippon Steel Corp GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCING THE SAME
US20240177901A1 (en) 2021-03-26 2024-05-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
WO2022203089A1 (ja) 2021-03-26 2022-09-29 日本製鉄株式会社 方向性電磁鋼板及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017693A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2013099272A1 (ja) * 2011-12-28 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2014034128A1 (ja) * 2012-08-30 2014-03-06 Jfeスチール株式会社 鉄心用方向性電磁鋼板およびその製造方法
WO2014068962A1 (ja) * 2012-10-31 2014-05-08 Jfeスチール株式会社 方向性電磁鋼板とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2016094C1 (ru) * 1992-09-02 1994-07-15 Новолипецкий металлургический комбинат им.Ю.В.Андропова Способ лазерной обработки крупнозернистой электротехнической анизотропной стали толщиной 0,15 - 0,30 мм
EP0870843A1 (en) 1995-12-27 1998-10-14 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
DE60139222D1 (de) * 2000-04-24 2009-08-27 Nippon Steel Corp Kornorientiertes Elektroblech mit ausgezeichneten magnetischen Eigenschaften
JP5594252B2 (ja) * 2010-08-05 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5593942B2 (ja) 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5712667B2 (ja) 2011-02-21 2015-05-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US10020101B2 (en) 2011-12-22 2018-07-10 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing same
RU2570250C1 (ru) * 2011-12-27 2015-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированный лист из электротехнической стали
RU2501866C1 (ru) * 2012-11-23 2013-12-20 Владимир Иванович Пудов Способ улучшения магнитных свойств анизотропной электротехнической стали лазерной обработкой

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017693A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2013099272A1 (ja) * 2011-12-28 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2014034128A1 (ja) * 2012-08-30 2014-03-06 Jfeスチール株式会社 鉄心用方向性電磁鋼板およびその製造方法
WO2014068962A1 (ja) * 2012-10-31 2014-05-08 Jfeスチール株式会社 方向性電磁鋼板とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182154A1 (ja) 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
KR20200121873A (ko) 2018-03-22 2020-10-26 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
US11562840B2 (en) 2018-03-22 2023-01-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR101988480B1 (ko) 2019-06-12
CA2975245A1 (en) 2016-09-01
CA2975245C (en) 2019-07-30
EP3263720A4 (en) 2018-03-07
US10465259B2 (en) 2019-11-05
MX2017010758A (es) 2017-11-28
RU2679812C1 (ru) 2019-02-13
BR112017018093B1 (pt) 2021-01-26
BR112017018093B8 (pt) 2021-07-06
EP3263720A1 (en) 2018-01-03
KR20170107575A (ko) 2017-09-25
CN107250391B (zh) 2019-04-19
BR112017018093A2 (ja) 2018-04-10
EP3263720B1 (en) 2019-03-27
US20180037965A1 (en) 2018-02-08
JP2016156047A (ja) 2016-09-01
CN107250391A (zh) 2017-10-13
JP6060988B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6060988B2 (ja) 方向性電磁鋼板及びその製造方法
JP6176282B2 (ja) 方向性電磁鋼板およびその製造方法
JP5594439B1 (ja) 方向性電磁鋼板とその製造方法
JPWO2009075328A1 (ja) レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法
KR101961175B1 (ko) 방향성 전자 강판 및 그의 제조 방법
JP3482340B2 (ja) 一方向性電磁鋼板とその製造方法
KR20160126015A (ko) 저소음 변압기용의 방향성 전자 강판 및 그 제조 방법
JP2006233299A (ja) 磁気特性の優れた一方向性電磁鋼板およびその製造方法
KR102163142B1 (ko) 방향성 전기 강판 및 그 제조 방법
JP6015723B2 (ja) 低騒音変圧器鉄心用方向性電磁鋼板の製造方法
JP2016166419A (ja) 方向性電磁鋼板の製造方法
JP6160376B2 (ja) 変圧器鉄心用方向性電磁鋼板およびその製造方法
JP5594440B1 (ja) 低鉄損方向性電磁鋼板の製造方法
JP7287506B2 (ja) 方向性電磁鋼板
JP5867126B2 (ja) 方向性電磁鋼板の鉄損改善方法およびその装置
CA3157424C (en) Grain-oriented electrical steel sheet and method of manufacturing same
JP5870580B2 (ja) 方向性電磁鋼板の製造方法
JP2017106117A (ja) 変圧器鉄心用方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2975245

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2016754930

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15552297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010758

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177024600

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017018093

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017133030

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017018093

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170823