WO2016136096A1 - 無線通信装置、集積回路、送信方法、受信方法及び通信方法 - Google Patents

無線通信装置、集積回路、送信方法、受信方法及び通信方法 Download PDF

Info

Publication number
WO2016136096A1
WO2016136096A1 PCT/JP2015/084912 JP2015084912W WO2016136096A1 WO 2016136096 A1 WO2016136096 A1 WO 2016136096A1 JP 2015084912 W JP2015084912 W JP 2015084912W WO 2016136096 A1 WO2016136096 A1 WO 2016136096A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
phase rotation
symbol
unit
segments
Prior art date
Application number
PCT/JP2015/084912
Other languages
English (en)
French (fr)
Inventor
棚橋 誠
中西 俊之
慶真 江頭
多賀 昇
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2017501871A priority Critical patent/JP6290506B2/ja
Publication of WO2016136096A1 publication Critical patent/WO2016136096A1/ja
Priority to US15/441,439 priority patent/US10270636B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2618Reduction thereof using auxiliary subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • Embodiments described herein relate generally to a wireless communication device, an integrated circuit, a transmission method, a reception method, and a communication method.
  • the OFDM (Orthogonal Frequency Division Multiplexing) method has a high PAPR (Peak-to-Average Power Ratio). Since a signal with a high PAPR tends to cause distortion in the power amplifier, various methods for reducing the PAPR have been devised. Of the devised techniques, PTS (Partial Transmit Sequence) is a technique suitable for an actual system because it has a feature that PAPR can be reduced without causing distortion in a signal. PTS is a technique for dividing a plurality of subcarriers in the OFDM scheme into several groups, and applying phase rotation to the subcarrier signals for each group to reduce PAPR. A group obtained by dividing a plurality of subcarriers is called a segment.
  • the receiving device needs to acquire the amount of phase rotation given to the subcarrier signal included in each segment in the transmitting device.
  • the transmission device transmits a reference symbol having a known phase for each segment, and the reception device is given by the PTS from the displacement of the phase of the reference symbol.
  • phase rotation occurs with respect to the reference symbol in the wireless transmission path from the transmission apparatus to the reception apparatus
  • the phase shift of the reference symbol includes the phase rotation amount given by the PTS and the phase generated in the wireless transmission path. Rotation amount.
  • the receiving apparatus determines the phase rotation amount according to the transmission path response that varies with time and the phase rotation amount due to the PTS. Need to get.
  • the problem to be solved by the present invention is to provide a wireless communication device, an integrated circuit, a transmission method, a reception method, and a communication method capable of acquiring the amount of phase rotation by PTS and the amount of phase rotation in a wireless transmission path. is there.
  • the wireless communication apparatus includes a pilot insertion unit, a segment division unit, a phase rotation addition unit, and a first addition unit.
  • the pilot insertion unit inserts the first and second pilot symbols into the symbol sequence.
  • the segment division unit divides a plurality of subcarriers to which each symbol included in the symbol string into which the first and second pilot symbols are inserted into a plurality of segments.
  • the phase rotation adding unit applies phase rotation to one of the first and second pilot symbols and the symbol string included in the segment for each segment, and phase rotation to the other of the first and second pilot symbols. Don't give.
  • the first addition unit adds the signals corresponding to the subcarriers included in the plurality of segments given the phase rotation by the phase rotation giving unit to generate a transmission signal.
  • the block diagram which shows the structure of a phase process part The block diagram which shows the structure regarding transmission of the radio
  • FIG. 3 is a third external view of the wireless communication device. The figure which shows the outline
  • FIG. 1 is a block diagram illustrating a configuration related to transmission of the wireless communication device 100 according to the first embodiment.
  • Wireless communication apparatus 100 reduces PAPR by applying phase rotation to the signal of each segment.
  • the radio communication apparatus 100 includes an error correction coding unit 101, a constellation mapper 102, a serial / parallel conversion unit (S / P conversion unit) 103, a pilot insertion unit 104, and a segment division.
  • An insertion unit 112 and an RF processing unit 113 are provided.
  • Partial waveform forming section 106-1 includes multiplication section 107-1 and IFFT processing section 108-1.
  • the partial waveform forming unit 106-2 includes a multiplication unit 107-2 and an IFFT processing unit 108-2.
  • the partial waveform forming unit 106-3 includes a multiplication unit 107-3 and an IFFT processing unit 108-3.
  • reference numerals s101, s102, s103-1 to s103-3, s104-1 to s104-3, and s105 are given, and hatched rectangles represent signals in the wireless communication apparatus 100.
  • the error correction coding unit 101 performs error correction coding on the transmission target bit string, and supplies the coded bit string obtained by the error correction coding to the constellation mapper 102.
  • the constellation mapper 102 maps the encoded bit string to complex modulation symbols for each predetermined number of bits.
  • the constellation mapper 102 supplies the modulation symbol sequence obtained by the mapping to the serial / parallel conversion unit 103.
  • the serial / parallel converter 103 converts the modulation symbol sequence into a first symbol sequence s101 in which Ndat modulation symbols are parallelized.
  • the serial / parallel converter 103 supplies the first symbol sequence s101 to the pilot insertion unit 104.
  • Ndat is a value smaller than the number of subcarriers Nsc (Ndat ⁇ Nsc).
  • the pilot insertion unit 104 inserts (Nsc-Ndat) pilot symbols into the first symbol sequence s101.
  • the second symbol sequence s102 into which the pilot symbols are inserted is a symbol sequence in which Nsc symbols are parallelized. Pilot symbols inserted by pilot insertion section 104 are arranged on predetermined subcarriers defined by the communication protocol. Further, the phase of the pilot symbol is a known value determined by the communication protocol.
  • the pilot insertion unit 104 supplies the second symbol sequence s102 to the segment division unit 105. Each of the Nsc symbols paralleled in the second symbol sequence s102 corresponds to Nsc subcarriers.
  • the segment dividing unit 105 divides the second symbol string s102 into symbol strings having the number of segments Nseg.
  • the segment division unit 105 divides the second symbol sequence s102 into divided symbol sequences s103-1, s103-2, and s103-3 corresponding to three segments.
  • the segment division unit 105 supplies the divided symbol sequences s103-1, s103-2, and s103-3 obtained by the division to the partial waveform forming units 106-1, 106-2, and 106-3, respectively.
  • the multiplier 107-1 multiplies the scalar value c 1 complex on the divided symbol sequence s103-1 inputted from segmented section 105, a multiplication result IFFT processing section 108 To -1.
  • the complex scalar value c 1 is supplied from the phase rotation pattern generation unit 110 to the multiplication unit 107-1.
  • Multiplying unit 107-1 among the modulation symbols included in the dispersion symbol sequence S103-1, by multiplying the scalar value c 1 on the modulation symbols arranged in a predetermined sub-carrier, represented by scalar values c 1 Gives the amount of phase rotation.
  • Multiplier 107-1 operates as a phase rotation imparting unit.
  • the IFFT processing unit 108-1 converts the divided symbol sequence given the phase rotation by the multiplication unit 107-1 into a frequency domain signal.
  • IFFT processing section 108-1 converts the divided symbol sequence into time domain signal s104-1, by performing Nsc point IFFT on the divided symbol sequence.
  • the IFFT processing unit 108-1 supplies the time domain signal s104-1 obtained by the conversion to the adding unit 109.
  • the multiplication units 107-2 and 107-3, the IFFT processing units 108-2 and 108-3, and the multiplication unit 107-1 and the IFFT processing unit 108- It operates in the same way as 1. That is, multiplication of complex scalar values c 2 and c 3 and conversion by NFT-point IFFT are performed on the divided symbol sequences s103-2 and 103-3.
  • the time domain signal s104-2 and the time domain signal s104-3 are supplied to the adding unit 109.
  • the multipliers 107-2 and 107-3 operate as a phase rotation adding unit, like the multiplier 107-1.
  • the adding unit 109 acquires time domain signals s104-1, s104-2, and s104-3 supplied from the partial waveform forming units 106-1, 106-2, and 106-3, respectively.
  • the adder 109 adds the time domain signals s104-1, s104-2, and s104-3, and supplies the addition result to the PAPR evaluator 111 as an OFDM signal s105.
  • the OFDM signal s105 becomes a signal including Nsc samples by adding the time domain signals s104-1, s104-2, and s104-3 by the adding unit 109.
  • the phase rotation pattern generation unit 110 stores in advance a plurality of combinations of phase rotation amounts given to each segment.
  • the combination of the amount of phase rotation given to each segment is referred to as a phase rotation pattern.
  • the maximum number of phase rotation patterns stored in the phase rotation pattern generation unit 110 is M (Nseg) .
  • the phase rotation pattern generation unit 110 may store a smaller number of phase rotation patterns than M (Nseg) .
  • the PAPR evaluation unit 111 performs a plurality of OFDM signals for the same modulation symbol. s105 is acquired from the adding unit 109.
  • the PAPR evaluation unit 111 calculates a peak-to-average power ratio for the OFDM signal s105 for each phase rotation pattern.
  • the peak-to-average power ratio is referred to as PAPR.
  • the PAPR evaluation unit 111 calculates the PAPR corresponding to the phase rotation pattern by calculating the power value of the OFDM signal s105 over a predetermined period.
  • the PAPR evaluation unit 111 selects the OFDM signal s105 having the smallest PAPR, and supplies the selected OFDM signal s105 to the GI insertion unit 112.
  • the above-described operation of the PAPR evaluation unit 111 is an operation of selecting a phase rotation pattern that minimizes the PAPR from a plurality of predetermined phase rotation patterns.
  • the GI insertion unit 112 inserts a guard interval into the OFDM signal s105 supplied from the PAPR evaluation unit 111.
  • the GI insertion unit 112 supplies an OFDM signal including a guard interval to the RF processing unit 113.
  • the RF processing unit 113 performs transmission signal processing on the OFDM signal including the guard interval and transmits it from the antenna.
  • the transmission signal processing performed by the RF processing unit 113 includes, for example, digital / analog conversion, up-conversion to a radio frequency, amplification of transmission power, and the like.
  • FIG. 2 is a block diagram illustrating a configuration related to reception of the wireless communication device 200 according to the first embodiment.
  • the wireless communication apparatus 200 includes an RF processing unit 201, a GI removal unit 202, an FFT processing unit 203, a segment dividing unit 204, a phase processing unit 205, a segment combining unit 206, and a parallel processing unit.
  • a serial conversion unit (P / S conversion unit) 207, a constellation demapper 208, and an error correction decoding unit 209 are provided.
  • s201, s202, s203-1, s203-2, s203-3, s204-1, s204-2, s204-3, and s205 are given the hatched rectangles in the wireless communication apparatus 200.
  • the wireless communication device 200 receives a signal transmitted from the wireless communication device 100 and acquires data included in the received signal.
  • the RF processing unit 201 acquires a signal received by the antenna and performs reception signal processing on the signal.
  • the RF processing unit 201 supplies a digital baseband signal obtained by the received signal processing to the GI removal unit 202.
  • the received signal processing performed by the RF processing unit 201 includes, for example, low noise amplification, filtering for extracting the band of the OFDM signal, down-conversion from a radio frequency to a baseband frequency, analog / digital conversion, and the like.
  • the GI removal unit 202 removes the guard interval from the digital baseband signal.
  • the GI removal unit 202 supplies the signal s201 obtained by removing the guard interval to the FFT processing unit 203.
  • the FFT processing unit 203 converts the signal s201 from a time domain signal to a frequency domain signal.
  • the FFT processing unit 203 converts the signal s201 into a parallel symbol sequence s202 including symbols of subcarriers by performing Nsc point FFT on the signal s201.
  • the FFT processing unit 203 supplies the parallel symbol sequence s202 to the segment dividing unit 204. Signal conversion by the FFT processing unit 203 is performed for each OFDM symbol.
  • the segment dividing unit 204 divides the parallel symbol sequence s202 into symbol sequences s203-1, s203-2, and s203-3 having the number of segments Nseg.
  • the segment division unit 204 performs division similar to the division performed by the segment division unit 105 in the wireless communication apparatus 100.
  • the subcarriers included in each segment are the same in radio communication apparatus 100 and radio communication apparatus 200.
  • the segment dividing unit 204 supplies the symbol sequences s203-1, s203-2, and s203-3 of each segment to the phase processing unit 205.
  • Phase processing section 205 determines between radio communication apparatus 100 and its own apparatus based on pilot symbols included in symbol sequences s203-1, s203-2, and s203-3 of the first, second, and third segments. Estimate the channel response at. Further, phase processing section 205 estimates the amount of phase rotation given in radio communication apparatus 100 for each segment based on pilot symbols included in symbol sequences s203-1, s203-2, and s203-3, respectively. . The phase processing unit 205 cancels the phase rotation given to each of the symbol sequences s203-1, s203-2, and s203-3, and further equalizes the effect received on the transmission path.
  • the phase processing unit 205 supplies the symbol sequences s204-1, s204-2, and s204-3 obtained by the phase rotation cancellation and equalization to the segment synthesis unit 206. Since the phase processing unit 205 removes the pilot symbols from each of the symbol sequences s203-1, s203-2, and s203-3, the sum of the number of modulation symbols included in the symbol sequences s204-1, s204-2, and s204-3 is Ndat It becomes.
  • the segment synthesizing unit 206 synthesizes the symbol sequences s204-1, s204-2, and s204-3 to generate a synthesized symbol sequence s205 in which Ndat modulation symbols are parallelized.
  • the segment combining unit 206 supplies the combined symbol string s205 to the parallel / serial conversion unit 207.
  • the parallel / serial conversion unit 207 converts the combined symbol sequence s205 into a sequence of modulation symbols, and supplies the obtained modulation symbol sequence to the constellation demapper 208.
  • the constellation demapper 208 demodulates each modulation symbol included in the modulation symbol string into a bit string.
  • the constellation demapper 208 acquires a bit string from the modulation symbol by a process reverse to the mapping in the constellation mapper 102 in the wireless communication apparatus 100.
  • the constellation demapper 208 supplies the bit string obtained by demodulation to the error correction decoding unit 209.
  • the error correction decoding unit 209 performs error detection and error correction on the bit string, and outputs the decoded bit string as data.
  • FIG. 3 is a graph showing temporal changes between a time domain signal and an OFDM signal when PTS is not applied.
  • FIG. 4 is a graph showing a time change between a time domain signal and an OFDM signal when PTS is applied.
  • the time domain signals correspond to the time domain signals s104-1, s104-2 and s104-3 in FIG.
  • the OFDM signal corresponds to the OFDM signal s105 in FIG. 3 and 4, the time domain signals of the three first, second, and third segments are plotted for 20 samples, and adjacent plots of sample times are connected by lines.
  • the time domain signal is a complex number
  • each sample is plotted on the complex plane to represent the locus.
  • the result of simply adding the time domain signals of the first, second, and third segments is an OFDM signal.
  • the trajectories of the time domain signals of the first, second, and third segments are substantially in phase, and the peak of the OFDM signal after addition becomes large. Further, the ratio between the average value and the peak of the waveform of the OFDM signal, that is, the PAPR also increases.
  • the result obtained by adding the phase rotation to the time domain signals of the first, second, and third segments is the OFDM signal.
  • the time domain signals of the first, second, and third segments are given phase rotations of 90 degrees, 270 degrees, and 180 degrees, respectively.
  • the trajectory of each time domain signal is almost in reverse phase, and the peak and PAPR of the OFDM signal, which is the waveform after addition, are reduced.
  • various phase rotation patterns C are given to the time domain signals of each segment, and PAPR is evaluated for each phase rotation pattern C. An OFDM signal corresponding to the minimum PAPR is actually transmitted.
  • FIG. 5 is a diagram illustrating the necessity for the wireless communication device to acquire the phase rotation amount by the PTS and the phase rotation amount in the wireless transmission path.
  • FIG. 5 shows the response that the OFDM signal receives on the transmission path in the frequency domain and the time domain when PTS is applied and when PTS is not applied.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the phase of the transmission line response.
  • the horizontal axis indicates the phase of the transmission line response
  • the vertical axis indicates the time.
  • the transmission line response is generally represented by a complex number, but here it is schematically shown by a real number.
  • phase rotation due to PTS is treated as part of the transmission line response. Since independent phase rotation is given to each segment in the frequency domain transmission line response when PTS is applied, a discontinuous change occurs in the frequency direction at the segment boundary. In addition, in the time domain transmission line response when PTS is applied, an independent phase rotation is given to each OFDM symbol, so that a discontinuous change occurs in the time direction at the OFDM symbol boundary.
  • transmission response of a subcarrier in which an SP is arranged using scattered pilot symbols (SP) periodically arranged in a frequency direction and a time direction. Is calculated.
  • the transmission line response of the subcarrier in which the SP is not arranged is calculated by interpolation.
  • the phase rotation due to PTS is regarded as a part of the transmission line response, discontinuity occurs in both the frequency direction and the time domain. This discontinuity makes it difficult for the receiving apparatus to interpolate transmission path responses in subcarriers where pilot signals are not arranged. Therefore, the receiving-side apparatus needs to estimate the amount of phase rotation due to PTS and the amount of phase rotation due to the transmission path response individually, and suppress the influence of discontinuity in the interpolation of the transmission path response.
  • FIG. 6 is a diagram illustrating an arrangement example of pilot symbols in the first embodiment.
  • the horizontal axis represents frequency and the vertical axis represents time.
  • each region divided by the frequency direction and the time direction represents a radio resource.
  • a radio resource is uniquely identified by a combination of subcarrier and time.
  • each radio resource is arranged with any of data, SP, and reference symbol.
  • the reference symbol (PTS ref) is a kind of pilot symbol and is a known symbol used for estimating the amount of phase rotation given to the segment.
  • a plurality of radio resources surrounded by a thick line are radio resources to which the same phase rotation is given by PTS.
  • the SP is periodically arranged in the radio resource in the frequency direction and the time direction.
  • reference symbol is arranged for each segment.
  • reference symbols are arranged in radio resources adjacent in the frequency direction to radio resources in which SPs are arranged.
  • the reference symbol may be arranged in a radio resource that is not adjacent to the radio resource in which the SP is arranged in the frequency direction.
  • FIG. 7 is a diagram showing a process of giving, canceling, and equalizing the PTS phase rotation in the first embodiment.
  • phase changes in each of the wireless communication device 100 on the transmission side, the transmission path, and the wireless communication device 200 on the reception side are shown.
  • each of the partial waveform forming units 106-1, 106-2, and 106-3 has sub-carriers in which data and reference symbols are arranged among subcarriers in the segment in order to reduce PAPR.
  • a phase rotation corresponding to the phase ⁇ is given to the carrier symbol.
  • Each of partial waveform forming sections 106-1, 106-2, and 106-3 does not apply phase rotation by PTS to the subcarrier symbols in which SPs are arranged among the subcarriers in the segment.
  • An OFDM signal is generated by adding and synthesizing the time domain signals s104-1, s104-2, and s104-3 output from the partial waveform forming units 106-1, 106-2, and 106-3, respectively.
  • the OFDM signal undergoes phase rotation according to the frequency.
  • the change in amplitude generated in the subcarrier of the subcarrier number n is denoted by a (n).
  • the transmission line response of the subcarrier number n is represented by a (n) exp (j ⁇ (n)).
  • phase processing section 205 estimates the transmission path response of the subcarrier in which the SP is arranged.
  • the estimated value of the channel response is obtained by dividing the received signal y (n) of the subcarrier in which the SP is arranged by the known pilot symbol x (n).
  • the transmission line response of the subcarrier in which the SP is arranged is obtained as a division result (y (n) / x (n)).
  • the phase processing unit 205 acquires the transmission path response of the subcarriers in which the SP is not arranged by interpolation based on the obtained transmission path response.
  • the phase processing unit 205 uses interpolation in the frequency direction and interpolation in the time direction when interpolating the transmission path response of subcarriers in which no SP is arranged. In the correction in the frequency direction, the phase processing unit 205 uses the transmission path response obtained in the segment adjacent in the frequency direction. Further, the phase processing unit 205 uses the transmission path response obtained in the segment adjacent in the time direction in the interpolation in the time direction.
  • the phase processing unit 205 equalizes the subcarrier signal in which the data and the reference symbol are arranged, using the transmission path response obtained by estimation and interpolation.
  • the equalization process shown in FIG. 7 shows a process of multiplying ⁇ (n) in order to pay attention to the phase. In the equalization process, the change a (n) with respect to the amplitude is also canceled.
  • the signal of the subcarrier in which the reference symbol is arranged becomes a signal given the phase rotation of the phase rotation amount ⁇ by PTS. Therefore, the phase rotation amount ⁇ by PTS is calculated by dividing the subcarrier signal in which the reference symbol is arranged by the known reference symbol.
  • phase rotation amount ⁇ is obtained by calculating the complex argument indicated by the calculation result. It is done.
  • the calculated phase rotation amount ⁇ is quantized to the effective phase of the PTS. For example, when the PTS phase candidate is limited to [+1, + j, ⁇ 1, ⁇ j] and the calculated declination is 89 °, the phase rotation amount by PTS is 90 ° (+ j).
  • phase processing section 205 obtains the transmitted modulation symbol by canceling the phase rotation given to the subcarrier signal in which the data is arranged on the transmission side.
  • FIG. 8 is a block diagram showing a detailed configuration of the partial waveform forming units 106-1, 106-2, and 106-3 in the first embodiment.
  • the partial waveform forming units 106-2 and 106-3 the same processing as that in the partial waveform forming unit 106-1 is performed.
  • the IFFT processing units 108-1, 108-2, and 108-3 perform IFFT every time phase rotation by PTS is given to the divided symbol sequences s103-1, s103-2, and 103-3.
  • FIG. 9 is a block diagram showing a configuration of the phase processing unit 205 in the first embodiment.
  • the phase processing unit 205 includes equalization / rotation removal units 210-1, 210-2, and 210-3.
  • the equalization / rotation removal units 210-1, 210-2, and 210-3 perform phase rotation cancellation and equalization on the symbol strings s203-1, s203-2, and s203-3, respectively.
  • the equalization / rotation removal unit 210-1 includes a transmission path response estimation unit 211, a first multiplication unit 212, a phase rotation amount calculation unit 213, and a second multiplication unit 214.
  • the transmission path response estimation unit 211 based on the subcarrier symbol in which the SP is arranged and the known SP among the symbols included in the symbol string s203-1 of the first segment, the subcarrier in which the SP is arranged Estimate the channel response.
  • SPs are arranged based on the estimated channel response, the channel response in the segment adjacent in the frequency direction, and the channel response in the same segment in the OFDM symbol adjacent in the time direction. Interpolate the transmission path response of unsubcarriers.
  • the transmission path response estimation unit 211 obtains transmission path responses in segments adjacent in the frequency direction from other equalization / rotation removal units.
  • the transmission path response estimation unit 211 stores the estimated transmission path response and the interpolated transmission path response as the transmission path response of the same segment in the OFDM symbol adjacent in the time direction.
  • the transmission path response estimation unit 211 calculates a complex conjugate with respect to the transmission path response of each subcarrier obtained by estimation and interpolation.
  • the transmission path response estimation unit 211 supplies the calculated complex conjugate to the first multiplication unit 212.
  • the first multiplication unit 212 multiplies each symbol included in the symbol string s203-1 by the complex conjugate of the corresponding subcarrier.
  • the multiplication result by the first multiplication unit 212 is a symbol string in which changes in amplitude and phase in the transmission path are equalized.
  • the phase rotation amount calculation unit 213 calculates the phase rotation amount by PTS based on the subcarrier symbol in which the reference symbol is arranged in the symbol sequence output from the first multiplication unit 212 and the known reference symbol. To do.
  • the phase rotation amount calculation unit 213 calculates a complex scalar value c 1 * that cancels the calculated phase rotation amount.
  • Scalar value c 1 * is a complex conjugate of phase rotation amount c 1 given to each subcarrier signal included in the first segment in radio communication apparatus 100.
  • the phase rotation amount calculation unit 213 supplies the calculated scalar value c 1 * to the second multiplication unit 214.
  • the second multiplication unit 214 multiplies the symbol sequence output from the first multiplication unit 212 and the scalar value c 1 *, and outputs the multiplication result as a symbol sequence s204-1.
  • the equalization / rotation removal units 210-2 and 210-3 have the same configuration as that of the equalization / rotation removal unit 210-1.
  • the equalization / rotation removal units 210-2 and 210-3 perform the same processing as the processing performed in the equalization / rotation removal unit 210-1, so that the symbol strings s203-2 and s203-3 are equalized. And cancellation of phase rotation by PTS, and outputs symbol sequences s204-2 and s204-3.
  • FIG. 10 is a block diagram illustrating a configuration related to transmission of the wireless communication device 100A according to the second embodiment.
  • the wireless communication device 100A reduces the PAPR by applying a phase rotation to the signal of each segment.
  • the radio communication apparatus 100A includes an error correction coding unit 101, a constellation mapper 102, a serial / parallel conversion unit (S / P conversion unit) 103, a pilot insertion unit 104, and a segment division.
  • the wireless communication device 100A includes the partial waveform forming units 126-1, 126-2, and 126-3 in place of the partial waveform forming units 106-1, 106-2, and 106-3 in the first embodiment. Different from the wireless communication device 100. In the wireless communication device 100A, the same components as those in the wireless communication device 100 are denoted by the same reference numerals, and redundant description is omitted.
  • the partial waveform forming unit 126-1 includes an IFFT processing unit 127-1 and a multiplication unit 128-1.
  • the partial waveform forming unit 126-2 includes an IFFT processing unit 127-2 and a multiplication unit 128-2.
  • the partial waveform forming unit 126-3 includes an IFFT processing unit 127-3 and a multiplication unit 128-3.
  • the IFFT processing unit 127-1 converts the divided symbol string s103-1 input from the segment dividing unit 105 from a time domain signal to a frequency domain signal.
  • the IFFT processing unit 127-1 performs the Nsc point IFFT on the divided symbol sequence s103-1, thereby converting the divided symbol sequence s103-1 into the time domain signal s124-1.
  • the IFFT processing unit 127-1 supplies the time domain signal s124-1 to the multiplication unit 128-1.
  • the multiplier 128-1 multiplies the time domain signal s 124-1 by a complex scalar value c 1 and supplies the multiplication result to the adder 109.
  • the complex scalar value c 1 is supplied from the phase rotation pattern generation unit 110 to the multiplication unit 128-1.
  • Multiplying unit 128-1 by multiplying the scalar value c 1 on the time domain signals S104-1, phase with respect to the signal of a predetermined sub-carrier included in the first segment, represented by a scalar value c 1 Give the amount of rotation.
  • the IFFT processing units 127-2 and 127-3, the multiplication units 128-2 and 128-3, and the IFFT processing unit 127-1 and the multiplication unit 128- It operates in the same way as 1.
  • Nsc-point IFFT conversion and multiplication of complex scalar values c 2 and c 3 are performed on the divided symbol sequences s103-2 and 103-3.
  • the multiplication result of the time domain signal s124-3 scalar value c 3 is supplied to the adder 109.
  • the adding unit 109 adds the multiplication results supplied from the partial waveform forming units 126-1, 126-2, and 126-3, and supplies the addition result to the PAPR evaluation unit 11 as an OFDM signal s105.
  • pilot insertion section 104 arranges reference symbols on subcarriers adjacent to subcarriers on which SPs are arranged.
  • the adjacent subcarriers are adjacent subcarriers or subcarriers whose difference in center frequency is within a predetermined range and whose transmission path response is highly correlated.
  • the configuration related to reception of the wireless communication device in the second embodiment is the same as the configuration of the wireless communication device 200 shown in FIG.
  • FIG. 11 is a diagram showing the process of applying, canceling, and equalizing the PTS phase rotation in the second embodiment.
  • the figure shows the phase changes in each of the radio communication device 100A on the transmission side, the transmission path, and the radio communication device 200 on the reception side.
  • each of the partial waveform forming units 126-1, 126-2, and 126-3 includes subcarriers in which data and SPs are arranged among subcarriers in the segment in order to reduce PAPR.
  • a phase rotation corresponding to the phase ⁇ is given to the symbols.
  • Each of the partial waveform forming units 126-1, 126-2, and 126-3 does not apply phase rotation by PTS to the subcarrier symbols in which the reference symbols are arranged among the subcarriers in the segment.
  • An OFDM signal is generated from the multiplication results output from the partial waveform forming units 126-1, 126-2, and 126-3.
  • the OFDM signal also receives an amplitude change a (n) corresponding to the frequency for all subcarrier components.
  • the transmission path response of the subcarrier number n is represented by a (n) exp (j ⁇ (n)).
  • phase processing section 205 performs phase based on the received signal of the subcarrier in which the reference symbol is arranged and the received signal of the subcarrier in which the SP is arranged adjacent to the subcarrier.
  • the amount of rotation ⁇ is estimated for each segment.
  • the transmission line responses in two adjacent subcarriers are highly correlated, and the phase rotation ⁇ (n) generated in each subcarrier in the transmission line can be considered to be substantially equal. Therefore, the phase rotation due to the PTS phase rotation is based on the difference between the phase rotation ⁇ (n) of the subcarrier in which the reference symbol is arranged and the phase rotation ⁇ (n) of the subcarrier in which the SP is arranged adjacent to the subcarrier.
  • the quantity ⁇ is estimated. Based on the estimated phase rotation amount ⁇ , the phase processing unit 205 cancels the PTS phase rotation given on the transmission side to the signal of the subcarrier in which the data and the SP are arranged.
  • the phase processing unit 205 estimates the transmission channel response of the subcarrier based on the subcarrier signal in which the PTS phase rotation is canceled and the subcarrier signal in which the SP is arranged and the known pilot symbol.
  • the phase processing unit 205 acquires the transmission path response of the subcarrier in which the SP is not arranged by interpolation based on the estimated transmission path response.
  • the interpolation of the transmission path response is the same as the interpolation in the first embodiment.
  • the phase processing unit 205 equalizes the signal of the subcarrier in which the data is arranged, using the transmission path response obtained by estimation and interpolation.
  • the equalization process shown in FIG. 11 shows a process of multiplying ⁇ (n) to focus on the phase. In the equalization process, the change a (n) with respect to the amplitude is also canceled.
  • the phase processing unit 205 acquires the transmitted modulation symbol by performing equalization.
  • FIG. 12 is a block diagram showing different configurations of the partial waveform forming units 126-1 126-2 and 126-3 in the second embodiment.
  • the partial waveform forming unit 126-1 may further include an adding unit 129 in addition to the IFFT processing unit 127-1 and the multiplying unit 128-1.
  • the partial waveform forming units 126-2 and 126-3 may further include an adding unit 129.
  • the pilot insertion unit 104 performs division so as not to apply PTS phase rotation to the reference symbol (PTSref).
  • the adding unit 129 is provided in the time domain where the phase rotation of the phase rotation amount ⁇ is given by the multiplying units 128-1, 128-2, and 128-3.
  • the time domain signal corresponding to the reference symbol is added to the signal.
  • the adding unit 129 supplies the addition result to the adding unit 109 connected to the partial waveform forming units 126-1, 126-2, and 126-3.
  • the signal in the time domain corresponding to the reference symbol is x (Npts) exp (j2 ⁇ Nptsk / Nsc).
  • k is a variable indicating a time sample.
  • FIG. 13 is a block diagram showing a configuration of the phase processing unit 205 in the second embodiment.
  • the phase processing unit 205 includes equalization / rotation removal units 220-1, 220-2, and 220-3.
  • the equalization / rotation removal units 220-1, 220-2, and 220-3 perform phase rotation cancellation and equalization on the symbol strings s203-1, s203-2, and s203-3, respectively.
  • the equalization / rotation removal unit 220-1 includes a phase rotation amount calculation unit 221, a first multiplication unit 222, a transmission path response estimation unit 223, and a second multiplication unit 224.
  • the phase rotation amount calculation unit 221 calculates the PTS phase rotation amount based on the symbols included in the symbol string s203-1 of the first segment.
  • the phase rotation amount calculation unit 221 uses a subcarrier symbol in which a reference symbol is arranged and a subcarrier symbol in which an SP adjacent to the subcarrier is arranged for this calculation.
  • the phase rotation amount calculation unit 221 calculates a complex scalar value c 1 * that cancels the calculated phase rotation amount, and supplies the scalar value c 1 * to the first multiplication unit 222.
  • the first multiplier 222 multiplies each symbol included in the symbol string s203-1 by a scalar value c 1 * .
  • the multiplication result by the first multiplication unit 222 is a symbol string in which the PTS phase rotation is canceled.
  • the transmission path response estimation unit 223 transmits the subcarriers in which the SPs are arranged based on the subcarrier symbols in which the SPs are arranged in the symbol sequence output from the first multiplication unit 222 and the known pilot symbols. Estimate the road response.
  • the SP is arranged based on the estimated channel response, the channel response in the segment adjacent in the frequency direction, and the channel response in the same segment in the OFDM symbol adjacent in the time direction. Interpolate the channel response of unsubcarriers.
  • the transmission path response estimation unit 223 acquires a transmission path response in a segment adjacent in the frequency direction from another equalization / rotation removal unit.
  • the transmission path response estimation unit 223 stores the estimated transmission path response and the interpolated transmission path response as the transmission path response of the same segment in the OFDM symbol adjacent in the time direction.
  • the transmission path response estimation unit 223 calculates a complex conjugate with respect to the transmission path response of each subcarrier obtained by estimation and interpolation, and supplies the calculated complex conjugate to the second multiplication unit 224.
  • Second multiplier 224 multiplies each symbol included in the symbol string output from first multiplier 222 by the complex conjugate of the corresponding subcarrier.
  • the multiplication result by the second multiplication unit 224 is a symbol string in which changes in amplitude and phase in the transmission path are equalized.
  • the multiplication result by the second multiplication unit 224 is output as a symbol string s204-1.
  • the equalization / rotation removal units 220-2 and 220-3 have the same configuration as that of the equalization / rotation removal unit 220-1.
  • the equalization / rotation removal units 220-2 and 220-3 perform the same processing as that performed in the equalization / rotation removal unit 220-1, thereby performing PTS on the symbol strings s203-2 and s203-3.
  • the phase rotation is canceled and equalized, and symbol sequences s204-2 and s204-3 are output.
  • the wireless communication system including the wireless communication device 100A and the wireless communication device 200 in the second embodiment also applies phase rotation by PTS to the SP, the PAPR reduction performance can be improved.
  • the number of subcarriers in which SPs are arranged occupies several percent of the total number of subcarriers.
  • One reference symbol may be arranged for each segment.
  • a plurality of reference symbols may be arranged in each segment.
  • the configuration of the second embodiment that applies PTS phase rotation to the subcarrier symbols in which SPs are arranged is the first implementation. There is a high possibility that the PAPR can be further reduced as compared with the configuration of the embodiment.
  • the configuration related to the transmission of the wireless communication device in the third embodiment is the same as the configuration related to the transmission in the wireless communication device 100A shown in FIG.
  • the configuration related to reception of the wireless communication device in the third embodiment is the same as the configuration related to reception in the wireless communication device 200 shown in FIG.
  • FIG. 14 is a diagram illustrating an arrangement example of pilot symbols in the third embodiment.
  • the horizontal axis represents frequency and the vertical axis represents time.
  • each region divided by the frequency direction and the time direction represents a radio resource.
  • data, SP, or a reference symbol (PTSPref) is arranged.
  • PTSPref a reference symbol
  • a plurality of radio resources surrounded by thick lines are radio resources to which the same phase rotation is given by PTS.
  • SPs are periodically arranged in radio resources in the frequency direction and the time direction as described above.
  • a PS and a reference symbol are arranged in radio resources at the same time of two subcarriers adjacent to the segment boundary.
  • phase processing unit 205 performs phase processing including cancellation and equalization of PTS phase rotation for each OFDM signal having a predetermined number of OFDM symbols.
  • FIG. 15 is a diagram showing a process of giving, canceling, and equalizing the PTS phase rotation in the third embodiment.
  • the figure shows the phase changes in each of the radio communication device 100A on the transmission side, the transmission path, and the radio communication device 200 on the reception side.
  • each of the partial waveform forming units 126-1 126-2 and 126-3 reduces the PAPR by a phase ⁇ amount with respect to all subcarrier symbols in the segment.
  • An OFDM signal is generated from the multiplication results output from the partial waveform forming units 126-1, 126-2, and 126-3.
  • the OFDM signal also receives an amplitude change a (n) corresponding to the frequency for all subcarrier components.
  • the transmission path response of the subcarrier number n is represented by a (n) exp (j ⁇ (n)).
  • phase processing section 205 stores symbol sequences s203-1, s203-2, and s203-3 of each segment for a predetermined OFDM symbol.
  • the phase processing unit 205 stores the symbol strings s203-1, s203-2, and s203-3 of each segment for each predetermined period.
  • the phase processing unit 205 assigns, cancels, and equalizes the PTS phase rotation with the symbol sequences s203-1, s203-2, and s203-3 of each segment over a predetermined period as the phase processing target for one time. .
  • the phase processing unit 205 calculates the phase difference between the segments based on the received signals of the subcarriers that are arranged in different segments and in which the SP and the reference symbol adjacent to the segment boundary are arranged.
  • the phase rotation occurring in each segment is calculated using the same method as that described in the first and second embodiments.
  • the phase processing unit 205 calculates the phase difference between the segments included in the OFDM signal at the same time and the phase difference in the time direction between the segments over a predetermined period, and stores the calculated phase difference.
  • the phase processing unit 205 uses the phase rotation generated in any of the segments included in the phase processing target as a reference and matches the phase rotation generated in the other segment with the phase of the segment as a reference.
  • the phase processing unit 205 applies and cancels the PTS phase rotation and equalizes the phase rotation that cancels the phase rotation generated in the reference segment to all the segments included in the phase processing target. .
  • FIG. 16 is a diagram illustrating an example of processing by giving and canceling PTS phase rotation and equalization performed by the phase processing unit 205.
  • the predetermined period is 3 OFDM symbols, and a plurality of subcarriers are divided into first, second, and third segments.
  • a segment in FIG. 16 corresponds to a segment including a plurality of radio resources surrounded by a thick line in FIG.
  • a value described in a rectangle indicating each segment in FIG. 16 indicates the amount of PST phase rotation given on the transmission side.
  • the phase rotation amounts given to the first, second, and third segments at time t1 are ⁇ / 2, 3 ⁇ / 2, and ⁇ , respectively.
  • the amount of phase rotation given to the first, second, and third segments at time t2 is all ⁇ .
  • the amount of phase rotation given to the first, second, and third segments at time t3 is 3 ⁇ / 2, 3 ⁇ / 2, and 0.
  • the phase rotation of the first segment at time t1 is the reference.
  • the phase processing unit 205 calculates a phase rotation amount for each of the first, second, and third segments based on a received signal of a subcarrier in which a pilot symbol included in the segment is arranged and a known pilot symbol. To do.
  • the phase processing unit 205 calculates a phase difference between segments adjacent in the time direction by using the calculated phase rotation amount of each segment (step S1). In calculating the phase of each segment, pilot symbols arranged in the same subcarrier adjacent in the time direction shown in FIG. 14 are used.
  • the phase processing unit 205 cancels the phase difference based on the phase differences in the time direction of the first, second, and third segments (step S2).
  • the phase processing unit 205 cancels the phase difference by multiplying the segment signal by the complex conjugate of the complex scalar value corresponding to the phase difference.
  • phase difference between the phase rotation amount ⁇ at time t2 and the phase rotation amount 3 ⁇ / 2 at time t3 is ⁇ /
  • the phase rotation amount at time t3 is Has a phase difference of ( ⁇ / 2 + ⁇ / 2). Therefore, a cumulative phase difference ( ⁇ / 2 + ⁇ / 2) based on the phase rotation amount at time t1 is calculated with respect to the phase rotation amount 3 ⁇ / 2 at time t3, and the phase difference of the phase rotation amount at time t3 is canceled.
  • step S1 changes to the state shown in step S2 by the phase processing unit 205 performing the same process as described above. .
  • the phase rotation amounts of the first, second, and third segments are equal in the time direction.
  • the phase processing unit 205 calculates a phase rotation amount for each of the first, second, and third segments based on a received signal of a subcarrier in which a pilot symbol included in the segment is arranged and a known pilot symbol.
  • the phase processing unit 205 calculates the phase difference between segments adjacent in the frequency direction using the calculated phase rotation amount of each segment (step S3).
  • the phase processing unit 205 cancels the phase difference based on the phase difference between the first, second, and third segments (step S4).
  • the cumulative phase difference ( ⁇ + 3 ⁇ / 2) ⁇ / 2 with respect to the phase rotation amount ⁇ / 2 of the first segment with respect to the phase rotation amount ⁇ of the third segment is calculated.
  • the phase difference of the phase rotation amount is canceled out. This process is performed collectively for each of the first, second, and third segments at each time.
  • the phase rotation amount of each segment at each time is unified to ⁇ / 2. That is, the phase discontinuity is canceled in both the time direction and the frequency direction, and the interpolation of the transmission line response between the segments adjacent in the time direction and the interpolation of the transmission line response between the segments adjacent in the frequency direction are performed. It becomes possible.
  • the phase rotation amount ⁇ / 2 in each segment can be regarded as the phase rotation generated by the transmission line response, and is canceled by the equalization process.
  • FIG. 16 a case has been described in which the phase difference between segments in the frequency direction is canceled after the phase difference between segments in the time direction is canceled. However, after canceling the phase difference between segments in the frequency direction, it is also possible to cancel the phase difference between segments in the time direction.
  • FIG. 17 is a block diagram showing a detailed configuration of the partial waveform forming units 126-1 to 126-2 in the third embodiment.
  • the partial waveform forming unit 126-1 according to the third embodiment is configured to apply PTS phase rotation to all subcarrier symbols in which data, SP, and reference symbols are arranged. Therefore, the configuration of the partial waveform forming unit in the third embodiment is simpler than that of the partial waveform forming unit in the first and second embodiments.
  • FIG. 18 is a block diagram illustrating a configuration of the phase processing unit 205 according to the third embodiment.
  • the phase processing unit 205 includes a storage unit 231, a phase rotation amount calculation unit 232, a first phase difference removal unit 233, a second phase difference removal unit 234, and an equalization unit 235. And an output unit 236.
  • the storage unit 231 stores the symbol sequences s203-1, s203-2, and s203-3 of the first, second, and third segments in a predetermined period.
  • the phase rotation amount calculation unit 232 reads the symbols of the first, second, and third segments at each time from the storage unit 231.
  • the phase rotation amount calculation unit 232 calculates the phase rotation amount in each segment based on the subcarrier symbol in which the pilot symbol is arranged among the read symbols and the known pilot symbol.
  • the first phase difference removal unit 233 Based on the phase rotation amount of each segment calculated by the phase rotation amount calculation unit 232, the first phase difference removal unit 233 accumulates the same segment at other times based on the phase rotation amount of a predetermined segment. Calculate the phase difference.
  • the first phase difference removal unit 233 reads the segment symbol strings at other times from the storage unit 231 for each segment, and cancels the accumulated phase difference for the read segment symbol strings.
  • the first phase difference removal unit 233 rewrites the symbol string of the segment for which the accumulated phase difference has been canceled back to the storage unit 231 and updates the symbol string of the segment.
  • the second phase difference removal unit 234 Based on the phase rotation amount of each segment calculated by the phase rotation amount calculation unit 232, the second phase difference removal unit 234 accumulates with respect to other segments at the same time based on the phase rotation amount of a predetermined segment. Calculate the phase difference.
  • the second phase difference removal unit 234 reads the symbol sequence of the other segment at the same time from the storage unit 231 for each segment, and cancels the accumulated phase difference with respect to the read symbol sequence of the segment.
  • the second phase difference removal unit 234 writes back the segment symbol sequence in which the accumulated phase difference is canceled to the storage unit 231 and updates the symbol sequence of the segment.
  • the equalization unit 235 equalizes the phase rotation amount of each segment stored in the storage unit 231 based on the phase rotation amount calculated by the phase rotation amount calculation unit 232.
  • the equalizing unit 235 performs equalization on each segment after the accumulated phase difference is canceled by the first phase difference removing unit 233 and the second phase difference removing unit 234.
  • the output unit 236 reads the symbol sequences of the first, second, and third segments from the storage unit 231 in time order, and the read symbol sequence is the symbol sequence s204-1. , S204-2 and s204-3.
  • the phase difference based on the phase rotation amount in a predetermined segment is calculated instead of the phase rotation amount by PTS in the other segment.
  • the phase rotation amount of the segment as a reference is calculated as a phase rotation amount including the phase rotation amount due to the transmission path response and the phase rotation amount due to the PTS.
  • the wireless communication device 200 according to the third embodiment applies the PTS by indirectly acquiring the phase rotation amount by the PTS and the phase rotation amount in the wireless transmission path and canceling each phase rotation. Data transmitted from the received signal can be acquired.
  • the wireless communication apparatus illustrated in FIG. 19 is a notebook computer 501 and includes a communication module 505.
  • the communication module 505 includes components included in the wireless communication devices 100 and 100A and the wireless communication device 200 in the first, second, and third embodiments.
  • the communication module 505 includes, for example, an error correction encoding unit 101, a constellation mapper 102, a serial / parallel conversion unit 103, a pilot insertion unit 104, and a segment division unit included in the wireless communication apparatus 100 (FIG. 1) in the first embodiment.
  • the communication module 505 is an integrated circuit in which the components included in the wireless communication device 100 illustrated in FIG. 1 or the wireless communication device 100A illustrated in FIG. 10 and the wireless communication device 200 illustrated in FIG. May be configured.
  • the communication module 505 includes an analog IC in which the RF processing unit 113 is mounted, an error correction coding unit 101, a constellation mapper 102, a serial / parallel conversion unit 103, a pilot insertion unit 104, a segment division unit 105, and a partial waveform. It includes an integrated circuit for baseband signal processing in which forming units 106-1, 106-2 and 106-3, an adding unit 109, a phase rotation pattern generating unit 110, a PAPR evaluating unit 111, and a GI inserting unit 112 are mounted. May be.
  • the wireless communication apparatus shown in FIG. 20 is a mobile terminal 511, and includes a communication module 505.
  • the wireless communication apparatus including the communication module 505 is not limited to the notebook computer 501 and the mobile terminal 511 illustrated in FIGS. 19 and 20.
  • the wireless communication device may be a smartphone, a tablet terminal, a television receiver, a digital camera, a wearable device, a game machine, or the like.
  • the wireless communication device may be a device mounted on a vehicle such as a navigation device. Further, the wireless communication device may be either a portable type that is easy to carry or a stationary type.
  • the memory card 521 including the communication module 505 may be a wireless communication device. A device in which the memory card 521 is mounted can use data acquired by the communication module 505 included in the memory card 521 or transmit data via the communication module 505.
  • FIG. 22 is a diagram illustrating an outline of a wireless communication device according to the fifth embodiment.
  • the wireless communication device shown in the figure includes an antenna device 611, an RF device 612, and a baseband device 613, and is installed in a building 601.
  • the antenna device 611 includes an antenna connected to the wireless communication device 100 (FIG. 1) in the first embodiment.
  • the RF device 612 includes an RF processing unit 113 provided in the wireless communication device 100.
  • the baseband device 613 includes an error correction encoding unit 101, a constellation mapper 102, a serial / parallel conversion unit 103, a pilot insertion unit 104, a segment division unit 105, and a partial waveform formation unit 106- 1, 106-2 and 106-3, an addition unit 109, a phase rotation pattern generation unit 110, a PAPR evaluation unit 111, and a GI insertion unit 112.
  • the wireless communication apparatus includes three devices, that is, the antenna device 611, the RF device 612, and the baseband device 613, and performs the same processing as the wireless communication device 100.
  • the wireless communication device in the fifth embodiment may perform the same processing as the wireless communication device 200 in the first embodiment and the wireless communication device 100A in the second or third embodiment.
  • the RF device 612 may include the RF processing unit 201 included in the wireless communication device 200 according to the first, second, or third embodiment.
  • the antenna device 611 is installed at a high place of the building 601.
  • the building 601 may have a structure having a wall or a roof, or may be a steel structure having no wall or roof.
  • the RF device 612 is installed at a position near the antenna device 611 in the building 601 and supplies an OFDM signal transmitted from an antenna included in the antenna device 611.
  • the baseband device 613 is installed at any position of the building 601 and supplies an OFDM signal to the RF device 612.
  • the baseband device 613 may include one or a plurality of FPGAs.
  • the FPGA reads the configuration stored in the non-transitory storage medium provided in the baseband device 613, thereby causing the error correction encoding unit 101, the constellation mapper 102, the serial / parallel conversion unit 103, and the pilot.
  • the operations of the insertion unit 104, the segment division unit 105, the partial waveform forming units 106-1, 106-2 and 106-3, the addition unit 109, the phase rotation pattern generation unit 110, the PAPR evaluation unit 111, and the GI insertion unit 112 are executed. To do.
  • the FPGA performs the GI removal unit 202, the FFT processing unit 203, and the segment division. Operations of the unit 204, the phase processing unit 205, the segment synthesis unit 206, the parallel / serial conversion unit 207, the constellation demapper 208, and the error correction decoding unit 209 are executed.
  • the baseband device 613 may further include an interface unit that receives data to be transmitted.
  • the baseband device 613 may further include a power supply device.
  • the baseband device 613 may further include a data update unit that updates the configuration of the FPGA stored in the non-temporary storage medium.
  • the wireless communication device includes an antenna
  • the wireless communication device may not include an antenna. In this case, transmission and reception are performed via an antenna connected to the wireless communication device.
  • the wireless communication device includes a bus, a processor unit, a storage unit, and an external interface unit in addition to the components included in any of the wireless communication devices according to the above-described embodiments.
  • the processor unit and the external interface unit are connected to each component via a bus.
  • the processor unit controls each component by executing the firmware stored in the storage unit.
  • the wireless communication device since the wireless communication device includes the storage unit that stores the firmware, it is possible to easily change the function of the wireless communication device by rewriting the firmware.
  • the wireless communication apparatus includes a clock generation unit in addition to the components included in any of the wireless communication apparatuses according to the above-described embodiments.
  • the clock generation unit generates a clock signal and outputs the clock signal from the output terminal to the outside of the wireless communication device.
  • the clock signal generated inside the wireless communication device is output to the outside, and the host side is operated by the clock signal output to the outside, so that the host side and the wireless communication device side are operated in synchronization. It becomes possible to make it.
  • the wireless communication device includes a power supply unit, a power supply control unit, and a wireless power supply unit in addition to the components included in any of the wireless communication devices according to the above-described embodiments.
  • the power supply control unit is connected to the power supply unit and the wireless power supply unit, and performs control to select a power supply to be supplied to the wireless communication device. As described above, by providing the wireless communication apparatus with the power supply, it is possible to perform a low power consumption operation by controlling the power supply.
  • the wireless communication apparatus includes a SIM card and a control unit in addition to the components included in any of the wireless communication apparatuses according to the above-described embodiments.
  • the control unit performs authentication using, for example, identification information stored in the SIM card, and performs control so that transmission or reception is not performed in the wireless communication device according to the approval result.
  • an operation based on the authentication result can be performed.
  • the wireless communication apparatus includes a moving image compression / decompression unit in addition to the components included in any of the wireless communication apparatuses according to the above-described embodiments.
  • the moving image compression / decompression unit is connected to the bus. As described above, by providing the wireless communication device with the moving image compression / decompression unit, it is possible to easily transmit the compressed moving image and expand the received compressed moving image.
  • the wireless communication device includes an LED unit and a control unit in addition to the components included in any of the wireless communication devices according to the above-described embodiments.
  • the control unit acquires whether or not each component is operating, the amount of data being transmitted or received, and the like.
  • the control unit turns on or blinks the LED included in the LED unit according to the operation status of each component or the amount of data being processed. It is possible to easily notify the user of the operation state of the wireless communication device by turning on or blinking the LED according to the operation state of the wireless communication device.
  • the wireless communication device includes a vibrator unit and a control unit in addition to the components included in any of the wireless communication devices according to the above-described embodiments.
  • the control unit acquires whether or not each component is operating, the amount of data being transmitted or received, and the like.
  • the control unit operates the vibrator unit according to the operation status of each component or the amount of data being processed. For example, the control unit controls the magnitude and interval of vibration generated by the vibrator unit when operating the vibrator unit. By operating the vibrator unit, it is possible to easily notify the user of the operating state of the wireless communication device.
  • the wireless communication device includes components related to transmission included in the wireless communication devices 100 and 100A according to each embodiment, and does not include components related to reception.
  • the wireless communication apparatus exclusively transmits data.
  • the wireless communication device includes components related to reception included in the wireless communication device 200 according to each embodiment, and does not include components related to transmission.
  • the wireless communication apparatus exclusively receives data.
  • the wireless communication apparatus according to the fifteenth embodiment includes constituent elements related to transmission included in the wireless communication apparatuses 100 and 100A according to the respective embodiments and constituent elements related to reception included in the wireless communication apparatus 200 according to the respective embodiments.
  • the wireless communication apparatus in the fifteenth embodiment performs data transmission and data reception.
  • the IFFT processing units 108-1, 108-2, 108-3, 127-1, 127-2, and 127-3 perform IFFT
  • the FFT processing unit 203 performs FFT.
  • IFFT processing units 108-1, 108-2, 108-3, 127-1, 127-2, and 127-3 perform inverse Fourier transform or inverse discrete Fourier transform instead of IFFT (inverse fast Fourier transform).
  • the modulation symbol of each subcarrier may be converted into a time domain signal.
  • the FFT processing unit 203 may convert a signal obtained from the received signal into a frequency domain signal by performing Fourier transform or discrete Fourier transform instead of FFT (Fast Fourier Transform).
  • the wireless communication apparatus includes an antenna
  • the wireless communication device may not include an antenna. In this case, transmission and reception are performed via an antenna connected to the wireless communication device.
  • the wireless communication device described in each of the above-described embodiments can be realized by hardware including one or a plurality of processors, for example.
  • Each component included in the wireless communication device is realized by executing a program by a processor included in hardware included in the wireless communication device.
  • This program may be installed in advance in a non-transitory storage medium included in the hardware and readable by the processor.
  • the hardware may acquire a program distributed via a network and install it on a non-transitory storage medium included in the hardware.
  • the processor executes the program to provide the error correction encoding unit 101, the constellation mapper 102, the serial / parallel conversion unit 103, the pilot insertion unit 104, the segment division unit 105, and the partial waveform included in the wireless communication apparatus 100. It operates as the forming units 106-1, 106-2 and 106-3, the adding unit 109, the phase rotation pattern generating unit 110, the PAPR evaluating unit 111, and the GI inserting unit 112.
  • hardware including a processor inputs data to be transmitted and generates an OFDM signal. This hardware performs transmission signal processing on the generated OFDM signal, and sends out a signal obtained by the transmission signal processing from the connected antenna.
  • an integrated circuit including one or more processors and a non-transitory storage medium may operate as a component included in the wireless communication device described in each of the above-described embodiments.
  • the processor of the integrated circuit executes a program stored in a non-transitory storage medium
  • the processor operates as each component provided in the wireless communication apparatus 100.
  • the integrated circuit inputs data to be transmitted and generates an OFDM signal from the data.
  • This integrated circuit performs transmission signal processing on an OFDM signal with a guard interval inserted.
  • the integrated circuit transmits a signal obtained by transmission signal processing from the connected antenna.
  • the multiplier that does not give PTS phase rotation to the subcarrier symbols in which either SP or reference symbols are arranged among the subcarriers included in each segment.
  • the phase rotation amount in the wireless transmission path or the phase rotation amount by PTS can be acquired on the receiving side from the SP or reference symbol subcarrier signal to which no phase rotation is applied. Further, the phase rotation amount in the wireless transmission path or the phase rotation amount by PTS can be acquired from the SP or reference symbol subcarrier signal to which phase rotation is given and the acquired phase rotation amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

 実施形態の無線通信装置は、パイロット挿入部と、セグメント分割部と、位相回転付与部と、第1の加算部とを持つ。パイロット挿入部は、シンボル列に第1および第2のパイロットシンボルを挿入する。セグメント分割部は、第1および第2のパイロットシンボルが挿入されたシンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割する。位相回転付与部は、セグメントごとに、第1および第2のパイロットシンボルのいずれか一方とセグメントに含まれるシンボル列とに位相回転を与え、第1および第2のパイロットシンボルの他方に位相回転を与えない。第1の加算部は、乗算部により位相回転を与えられた複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する。

Description

無線通信装置、集積回路、送信方法、受信方法及び通信方法
 本発明の実施形態は、無線通信装置、集積回路、送信方法、受信方法及び通信方法に関する。
 OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式は、PAPR(Peak-to-Average Power Ratio:ピーク対平均電力比)が高い。PAPRの高い信号は電力増幅器における歪みを生じさせやすいため、PAPRを低減させる数々の手法が考案されている。考案された手法のうち、PTS(Partial Transmit Sequence)は、信号に歪みを生じさせずにPAPRを低減することができるという特徴を有するため、実システムに好適な手法である。PTSは、OFDM方式における複数のサブキャリアをいくつかのグループに分割し、グループごとにサブキャリアの信号に対して位相回転を与えてPAPRを低減させる手法である。複数のサブキャリアを分割したグループは、セグメントと呼ばれる。
 受信装置は、送信装置において各セグメントに含まれるサブキャリアの信号に対して与えられた位相回転量を取得する必要がある。送信装置から受信装置へ位相回転量を通知する手法としては、例えば、送信装置がセグメントごとに既知の位相を有するリファレンスシンボルを送信し、受信装置がリファレンスシンボルの位相の変位からPTSにより与えられた各セグメントの位相回転量を推定する手法がある。
 送信装置から受信装置への無線伝送路においてリファレンスシンボルに対して位相回転が生じてしまうため、リファレンスシンボルの位相の変位には、PTSにより与えられた位相回転量と、無線伝送路において生じた位相回転量とが含まれる。一般に、無線伝送路の伝送路応答は時変動するため、受信装置は、PTSが適用された信号を受信する際に、時変動する伝送路応答に応じた位相回転量とPTSによる位相回転量とを取得する必要がある。
特表2005-524278号公報 特開2009-055395号公報
 本発明が解決しようとする課題は、PTSによる位相回転量と無線伝送路における位相回転量とを取得することができる無線通信装置、集積回路、送信方法、受信方法及び通信方法を提供することである。
 実施形態の無線通信装置は、パイロット挿入部と、セグメント分割部と、位相回転付与部と、第1の加算部とを持つ。パイロット挿入部は、シンボル列に第1および第2のパイロットシンボルを挿入する。セグメント分割部は、第1および第2のパイロットシンボルが挿入されたシンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割する。位相回転付与部は、セグメントごとに、第1および第2のパイロットシンボルのいずれか一方とセグメントに含まれるシンボル列とに位相回転を与え、第1および第2のパイロットシンボルの他方に位相回転を与えない。第1の加算部は、位相回転付与部により位相回転を与えられた複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する。
第1の実施形態における無線通信装置の送信に関する構成を示すブロック図。 無線通信装置の受信に関する構成を示すブロック図。 PTSを適用していない場合の時間領域信号とOFDM信号との時間変化を示すグラフ。 PTSを適用した場合の時間領域信号とOFDM信号との時間変化を示すグラフ。 無線通信装置がPTSによる位相回転量と無線伝送路における位相回転量とを取得する必要性を示す図。 パイロットシンボルの配置例を示す図。 PTS位相回転の付与及び打ち消しと等化の過程を示す図。 部分波形形成部の詳細な構成を示すブロック図。 位相処理部の構成を示すブロック図。 第2の実施形態における無線通信装置の送信に関する構成を示すブロック図。 PTS位相回転の付与及び打ち消しと等化の過程を示す図。 部分波形形成部の異なる構成を示すブロック図。 位相処理部の構成を示すブロック図。 第3の実施形態におけるパイロットシンボルの配置例を示す図。 PTS位相回転の付与及び打ち消しと等化の過程を示す図。 位相処理部が行うPTS位相回転の付与及び打ち消しと等化と処理例を示す図。 部分波形形成部の詳細な構成を示すブロック図。 位相処理部の構成を示すブロック図。 第4の実施形態における無線通信装置の第1の外観図。 無線通信装置の第2の外観図。 無線通信装置の第3の外観図。 第5の実施形態における無線通信装置の概要を示す図。
 以下、実施形態の無線通信装置、集積回路、送信方法、受信方法及び通信方法を、図面を参照して説明する。なお、以下の実施形態では、同一の参照符号を付した部分は同様の動作を行うものとして、重複する説明を適宜省略する。以下の説明では、OFDM方式で用いられる複数のサブキャリアを3つのセグメントに分割するPTSを適用した無線通信装置について説明する。なお、セグメントの数は、2つであってもよいし、4つ以上であってもよい。
(第1の実施形態)
 図1は、第1の実施形態における無線通信装置100の送信に関する構成を示すブロック図である。無線通信装置100は、各セグメントの信号に対して位相回転を与えることで、PAPRを低減させる。同図に示すように、無線通信装置100は、誤り訂正符号化部101と、コンスタレーションマッパ102と、シリアル・パラレル変換部(S/P変換部)103と、パイロット挿入部104と、セグメント分割部105と、部分波形形成部106-1、106-2及び106-3と、加算部109と、位相回転パターン生成部110と、PAPR評価部(ピーク対平均電力比評価部)111と、GI挿入部112と、RF処理部113とを備える。部分波形形成部106-1は、乗算部107-1とIFFT処理部108-1とを備える。部分波形形成部106-2は、乗算部107-2とIFFT処理部108-2とを備える。部分波形形成部106-3は、乗算部107-3とIFFT処理部108-3とを備える。図1において、s101、s102、s103-1~s103-3、s104-1~s104-3及びs105の符号が付され、ハッチングされた矩形は、無線通信装置100における信号を表す。
 無線通信装置100が送信するデータは、ランダムな「0」と「1」とのビット列である場合について説明する。誤り訂正符号化部101は、送信対象のビット列に対して誤り訂正符号化を行い、誤り訂正符号化により得られた符号化ビット列をコンスタレーションマッパ102へ供給する。コンスタレーションマッパ102は、所定のビット数ごとに符号化ビット列を複素で表される変調シンボルにマッピングする。コンスタレーションマッパ102は、マッピングにより得られた変調シンボル列をシリアル・パラレル変換部103へ供給する。
 シリアル・パラレル変換部103は、変調シンボル列をNdat個の変調シンボルが並列化された第1のシンボル列s101に変換する。シリアル・パラレル変換部103は、第1のシンボル列s101をパイロット挿入部104へ供給する。なお、Ndatはサブキャリア数Nscより小さい値である(Ndat<Nsc)。
 パイロット挿入部104は、第1のシンボル列s101に対して、(Nsc-Ndat)個のパイロットシンボルを挿入する。パイロットシンボルを挿入された第2のシンボル列s102は、Nsc個のシンボルが並列化されたシンボル列になる。パイロット挿入部104により挿入されるパイロットシンボルは、通信規約によって定められた所定のサブキャリアに配置される。また、パイロットシンボルの位相は、通信規約によって定められた既知の値である。パイロット挿入部104は、第2のシンボル列s102をセグメント分割部105へ供給する。第2のシンボル列s102において並列化されたNsc個のシンボルそれぞれは、Nsc個のサブキャリアにそれぞれ対応する。
 セグメント分割部105は、第2のシンボル列s102をセグメント数Nsegのシンボル列に分割する。セグメント分割部105は、3個のセグメントに対応する分割シンボル列s103-1、s103-2及びs103-3に第2のシンボル列s102を分割する。分割シンボル列s103-1、s103-2及びs103-3それぞれは、Ksc(=Nsc/Nseg)個のシンボルが並列化されたシンボル列である。なお、各セグメントに対応する分割シンボル列は、それぞれにおいて並列化されるシンボル数が異なっていてもよい。セグメント分割部105は、分割により得られた分割シンボル列s103-1、s103-2及びs103-3を、部分波形形成部106-1、106-2及び106-3にそれぞれ供給する。
 部分波形形成部106-1において、乗算部107-1は、セグメント分割部105から入力される分割シンボル列s103-1に対して複素数のスカラー値cを乗算し、乗算結果をIFFT処理部108-1へ供給する。複素数のスカラー値cは、位相回転パターン生成部110から乗算部107-1へ供給される。乗算部107-1は、分散シンボル列s103-1に含まれる変調シンボルのうち、所定のサブキャリアに配置された変調シンボルにスカラー値cを乗算することにより、スカラー値cで表される位相回転量を与える。乗算部107-1は、位相回転付与部として動作する。
 IFFT処理部108-1は、乗算部107-1で位相回転を与えられた分割シンボル列を、周波数領域の信号に変換する。IFFT処理部108-1は、NscポイントのIFFTを分割シンボル列に対して行うことにより、分割シンボル列を時間領域信号s104-1へ変換する。IFFT処理部108-1は、変換により得られた時間領域信号s104-1を加算部109へ供給する。
 部分波形形成部106-2及び106-3それぞれにおいても、乗算部107-2及び107-3と、IFFT処理部108-2及び108-3とが、乗算部107-1とIFFT処理部108-1と同様に動作する。すなわち、複素数のスカラー値c及びcの乗算とNscポイントのIFFTによる変換とが、分割シンボル列s103-2及び103-3に対して行われる。時間領域信号s104-2と時間領域信号s104-3とが加算部109へ供給される。乗算部107-2及び107-3は、乗算部107-1と同様に、位相回転付与部として動作する。
 乗算部107-1、107-2及び107-3において分割シンボル列s103-1、s103-2及びs103-3に対して乗算されるスカラー値c(n=1,2,…,Nseg)は、複素平面上の単位円において予め定められたM点のいずれかの値が割り当てられる。例えば、M=4の場合、[+1,+j,-1,-j]のいずれかの値がcに割り当てられる。なお、jは虚数単位である。M点を定める際に、各点が前述のように位相をπ/2とする等間隔で定められていなくてもよく、各点を単位円上に任意の位置に定めてもよい。
 加算部109は、部分波形形成部106-1、106-2及び106-3それぞれから供給される時間領域信号s104-1、s104-2及びs104-3を取得する。加算部109は、時間領域信号s104-1、s104-2及びs104-3を加算し、加算結果をOFDM信号s105としてPAPR評価部111へ供給する。OFDM信号s105は、時間領域信号s104-1、s104-2及びs104-3を加算部109で加算することにより、Nscサンプルを含む信号になる。
 位相回転パターン生成部110は、各セグメントに与える位相回転量の複数の組み合わせを予め記憶している。以下、各セグメントに与える位相回転量の組み合わせを位相回転パターンという。位相回転パターン生成部110に記憶されている位相回転パターンの数は、最も多くてM(Nseg)である。なお、位相回転パターン生成部110は、M(Nseg)通りより少ない数の位相回転パターンを記憶してもよい。位相回転パターンは、各セグメントに対する位相回転量c(n=1,2,…,Nseg)の組み合わせC=[c,c,…,cNseg]である。位相回転パターン生成部110は、複数の位相回転パターンからいずれか一つを順に選択し、選択した位相回転パターンに含まれるスカラー値c(n=1,2,…,Nseg)を部分波形形成部106-1、106-2及び106-3へ供給する。位相回転パターン生成部110が複数の位相回転パターンを部分波形形成部106-1、106-2及び106-3へ供給することにより、PAPR評価部111は、同じ変調シンボルに対して複数のOFDM信号s105を加算部109から取得する。
 PAPR評価部111は、位相回転パターンごとに、OFDM信号s105に対するピーク対平均電力比を算出する。以下、ピーク対平均電力比をPAPRという。PAPR評価部111は、予め定められた期間に亘りOFDM信号s105の電力値を算出することで、位相回転パターンに対応するPAPRを算出する。PAPR評価部111は、PAPRが最も小さいOFDM信号s105を選択し、選択したOFDM信号s105をGI挿入部112へ供給する。PAPR評価部111の前述動作は、予め定められた複数の位相回転パターンのうちPAPRが最小になる位相回転パターンを選択する動作となる。
 GI挿入部112は、PAPR評価部111から供給されるOFDM信号s105に対してガードインターバルを挿入する。GI挿入部112は、ガードインターバルを含むOFDM信号をRF処理部113へ供給する。RF処理部113は、ガードインターバルを含むOFDM信号に対して送信信号処理を施してアンテナから送出する。RF処理部113により行われる送信信号処理は、例えばデジタル・アナログ変換、無線周波数へのアップコンバート、送信電力の増幅などを含む。
 図2は、第1の実施形態における無線通信装置200の受信に関する構成を示すブロック図である。同図に示すように、無線通信装置200は、RF処理部201と、GI除去部202と、FFT処理部203と、セグメント分割部204と、位相処理部205と、セグメント合成部206と、パラレル・シリアル変換部(P/S変換部)207と、コンスタレーションデマッパ208と、誤り訂正復号部209とを備える。同図において、s201、s202、s203-1、s203-2、s203-3、s204-1、s204-2、s204-3及びs205の符号が付され、ハッチングされた矩形は、無線通信装置200における信号を表す。無線通信装置200は、無線通信装置100から送信された信号を受信し、受信した信号に含まれるデータを取得する。
 RF処理部201は、アンテナで受信された信号を取得し、当該信号に対して受信信号処理を施す。RF処理部201は、受信信号処理により得られるデジタルのベースバンドの信号をGI除去部202へ供給する。RF処理部201により行われる受信信号処理は、例えば低ノイズ増幅、OFDM信号の帯域を抽出するフィルタリング、無線周波数からベースバンド周波数へのダウンコンバート、アナログ・デジタル変換などを含む。GI除去部202は、デジタルのベースバンド信号からガードインターバルを除去する。GI除去部202は、ガードインターバルを除去して得られた信号s201をFFT処理部203へ供給する。
 FFT処理部203は、信号s201を、時間領域の信号から周波数領域の信号へ変換する。FFT処理部203は、NscポイントのFFTを信号s201に対して行うことにより、信号s201をサブキャリアそれぞれのシンボルを含む並列シンボル列s202に変換する。FFT処理部203は、並列シンボル列s202をセグメント分割部204に供給する。FFT処理部203による信号の変換は、OFDMシンボルごとに行われる。
 セグメント分割部204は、並列シンボル列s202をセグメント数Nsegのシンボル列s203-1、s203-2及びs203-3に分割する。セグメント分割部204は、無線通信装置100におけるセグメント分割部105が行う分割と同様の分割を行う。各セグメントに含まれるサブキャリアは、無線通信装置100と無線通信装置200とにおいて同じである。セグメント分割部204は、各セグメントのシンボル列s203-1、s203-2、s203-3を位相処理部205へ供給する。
 位相処理部205は、第1、第2及び第3のセグメントのシンボル列s203-1、s203-2、s203-3それぞれに含まれるパイロットシンボルに基づいて、無線通信装置100と自装置との間における伝送路応答を推定する。また、位相処理部205は、シンボル列s203-1、s203-2、s203-3それぞれに含まれるパイロットシンボルに基づいて、各セグメントに対して無線通信装置100において与えられた位相回転量を推定する。位相処理部205は、シンボル列s203-1、s203-2、s203-3それぞれに対して与えられた位相回転を打ち消し、更に伝送路において受けた影響を等化する。位相処理部205は、位相回転の打ち消し及び等化により得られたシンボル列s204-1、s204-2及びs204-3をセグメント合成部206へ供給する。位相処理部205がシンボル列s203-1、s203-2、s203-3それぞれからパイロットシンボルを取り除くので、シンボル列s204-1、s204-2及びs204-3に含まれる変調シンボルの数の和はNdatとなる。
 セグメント合成部206は、シンボル列s204-1、s204-2及びs204-3を合成することで、Ndat個の変調シンボルが並列化された合成シンボル列s205を生成する。セグメント合成部206は、合成シンボル列s205をパラレル・シリアル変換部207へ供給する。パラレル・シリアル変換部207は、合成シンボル列s205を一列の変調シンボルの列に変換し、得られた変調シンボル列をコンスタレーションデマッパ208へ供給する。
 コンスタレーションデマッパ208は、変調シンボル列に含まれる各変調シンボルをビット列に復調する。コンスタレーションデマッパ208は、無線通信装置100におけるコンスタレーションマッパ102におけるマッピングと逆の処理により、変調シンボルからビット列を取得する。コンスタレーションデマッパ208は、復調により得られたビット列を誤り訂正復号部209へ供給する。誤り訂正復号部209は、ビット列に対して誤り検出及び誤り訂正を施して、復号したビット列をデータとして出力する。
 ここで、PTSによってPAPRが低減される原理について説明する。ここでは、セグメント数Nsegを3とする。図3は、PTSを適用していない場合の時間領域信号とOFDM信号との時間変化を示すグラフである。図4は、PTSを適用した場合の時間領域信号とOFDM信号との時間変化を示すグラフである。時間領域信号は、図1における時間領域信号s104-1、s104-2及びs104-3に対応する。OFDM信号は、図1におけるOFDM信号s105に対応する。図3及び図4では、3個の第1、第2及び第3セグメントそれぞれの時間領域信号が20サンプル分プロットされ、サンプル時間の隣接するプロットが線で接続されている。
 時間領域信号は複素数であるため、複素平面に各サンプルをプロットして軌跡を表している。図3に示すPTSが適用されていない場合では、第1、第2及び第3セグメントの時間領域信号を単純に加算した結果がOFDM信号となる。図3に示す例では、第1、第2及び第3セグメントそれぞれの時間領域信号の軌跡がほぼ同相であり、加算後のOFDM信号のピークが大きくなる。また、OFDM信号の波形の平均値とピークとの比、すなわちPAPRも大きくなってしまう。
 一方、図4に示すPTSが適用された場合では、第1、第2及び第3セグメントの時間領域信号に対して位相回転を付与して加算した結果がOFDM信号となる。図4に示す例では、第1、第2及び第3セグメントの時間領域信号は、90度、270度、180度の位相回転をそれぞれ与えられている。この結果、各時間領域信号の軌跡がほぼ逆相になり、加算後の波形であるOFDM信号のピーク及びPAPRが低下している。PTSでは、様々な位相回転パターンCが各セグメントの時間領域信号に対して与えられ、位相回転パターンCごとにPAPRが評価される。最小のPAPRに対応するOFDM信号が実際に送信される。
 図5は、無線通信装置がPTSによる位相回転量と無線伝送路における位相回転量とを取得する必要性を示す図である。図5には、PTSが適用された場合とPTSが適用されていない場合それぞれにおいて、OFDM信号が伝送路で受ける応答が周波数領域と時間領域とで示されている。この応答を周波数領域で示すグラフでは、横軸が周波数を示し、縦軸が伝送路応答の位相を示す。この応答を時間領域で示すグラフでは、横軸が伝送路応答の位相を示し、縦軸が時間を示す。なお、伝送路応答は一般に複素数で表されるが、ここでは実数で模式的に示している。PTSが適用された場合の2つのグラフでは、PTSによる位相回転が伝送路応答の一部として扱われている。PTSが適用された場合における周波数領域の伝送路応答には、独立した位相回転がセグメントごとに与えられるため、セグメントの境界において周波数方向に不連続な変化が生じている。また、PTSが適用された場合における時間領域の伝送路応答には、OFDMシンボルごとに独立した位相回転が与えられるため、OFDMシンボルの境界において時間方向に不連続な変化が生じている。
 一般に、OFDM方式を用いた無線通信では、周波数方向と時間方向とにおいて周期的に配置されたスキャッタード・パイロットシンボル(Scattered Pilot symbol:SP)を用いて、SPが配置されたサブキャリアの伝送路応答が算出される。推定された伝送路応答に基づいて、SPが配置されていないサブキャリアの伝送路応答が補間により算出される。前述したように、PTSによる位相回転を伝送路応答の一部としてみなした場合、周波数方向及び時間領域の両方において不連続性が生じる。この不連続性により、受信側の装置において、パイロット信号が配置されていないサブキャリアにおける伝送路応答の補間が困難になる。したがって、受信側の装置は、PTSによる位相回転量と伝送路応答による位相回転量とを個別に推定し、伝送路応答の補間における不連続性の影響を抑える必要がある。
 図6は、第1の実施形態におけるパイロットシンボルの配置例を示す図である。同図において、横軸は周波数を示し、縦軸は時間を示す。同図において、周波数方向と時間方向とで区切られた各領域は無線リソースを表す。無線リソースは、サブキャリアと時間との組み合わせで一意に特定される。同図において、各無線リソースには、データとSPとリファレンスシンボルとのいずれかが配置される。リファレンスシンボル(PTS ref)は、パイロットシンボルの一種であり、セグメントに対して与えられる位相回転量を推定するために用いられる既知のシンボルである。同図において、太い線で囲まれる複数の無線リソースは、PTSにより同じ位相回転が与えられる無線リソースである。SPは、前述のように、周波数方向及び時間方向に周期的に無線リソースに配置される。リファレンスシンボルは、セグメントそれぞれに一つずつ配置されている。図6に示す配置例では、リファレンスシンボルが、SPが配置されている無線リソースに対して周波数方向に隣接する無線リソースに配置されている。しかし、リファレンスシンボルは、各セグメントに少なくとも一つ配置されていれば、SPが配置されている無線リソースに対して周波数方向に隣接していない無線リソースに配置されていてもよい。
 図7は、第1の実施形態におけるPTS位相回転の付与及び打ち消しと等化の過程を示す図である。同図には、送信側の無線通信装置100、伝送路、受信側の無線通信装置200のそれぞれにおける位相変化が示されている。送信側の無線通信装置100において、部分波形形成部106-1、106-2及び106-3それぞれは、PAPRを低減させるために、セグメント内のサブキャリアのうちデータ及びリファレンスシンボルが配置されたサブキャリアのシンボルに対して位相θ分の位相回転を与える。部分波形形成部106-1、106-2及び106-3それぞれは、セグメント内のサブキャリアのうち、SPが配置されたサブキャリアのシンボルに対してPTSによる位相回転を与えない。部分波形形成部106-1、106-2及び106-3それぞれから出力される時間領域信号s104-1、s104-2及びs104-3を加算合成することにより、OFDM信号が生成される。
 伝送路において、OFDM信号は、周波数に応じた位相回転を受ける。サブキャリア番号n(n=1,2,…,Nsc)のサブキャリアに生じる位相回転量をφ(n)で示し、サブキャリア番号nのサブキャリアに生じる振幅の変化をa(n)で示すと、サブキャリア番号nの伝送路応答は、a(n)exp(jφ(n))で表される。
 受信側の無線通信装置200において、位相処理部205は、SPが配置されたサブキャリアの伝送路応答を推定する。伝送路応答の推定値は、SPが配置されたサブキャリアの受信信号y(n)を既知のパイロットシンボルx(n)で除算することにより得られる。SPが配置されたサブキャリアの伝送路応答は、除算結果(y(n)/x(n))として得られる。位相処理部205は、得られた伝送路応答に基づいた補間により、SPが配置されていないサブキャリアの伝送路応答を取得する。位相処理部205は、SPが配置されていないサブキャリアの伝送路応答を補間する際、周波数方向における補間と時間方向における補間とを用いる。位相処理部205は、周波数方向の補正において、周波数方向に隣接するセグメントで得られた伝送路応答を用いる。また、位相処理部205は、時間方向における補間において、時間方向に隣接するセグメントで得られた伝送路応答を用いる。
 位相処理部205は、推定及び補間で得られた伝送路応答を用いて、データとリファレンスシンボルとが配置されたサブキャリアの信号を等化する。図7に示す等化の処理では、位相に注目するために、-φ(n)を乗じる処理が示されている。なお、等化の処理では、振幅に対する変化a(n)もキャンセルされる。等化の処理が行われることにより、リファレンスシンボルが配置されたサブキャリアの信号は、PTSによる位相回転量θの位相回転が与えられた信号になる。よって、リファレンスシンボルが配置されたサブキャリアの信号を既知のリファレンスシンボルで除算することにより、PTSによる位相回転量θが算出される。
 具体的には、伝送路応答を推定する際の演算と同様に、y(n)/x(n)を算出し、算出結果が示す複素数の偏角を算出することで位相回転量θが得られる。算出された位相回転量θは、PTSの有効位相に量子化される。例えば、PTSの位相候補が[+1,+j,-1,-j]に限定される場合において算出された偏角が89°であるとき、PTSによる位相回転量は90°(+j)になる。位相処理部205は、得られた位相回転量θに基づいて、データの配置されたサブキャリアの信号に送信側で与えられた位相回転を打ち消すことで、送信された変調シンボルを取得する。
 図8は、第1の実施形態における部分波形形成部106-1、106-2及び106-3の詳細な構成を示すブロック図である。部分波形形成部106-1では、分割シンボル列s103-1から時間領域信号s104-1を算出する処理が行われる。この処理において、データとリファレンスシンボルとが配置されたサブキャリアの信号に対して位相回転量c(n=1,…,Nseg)を与える位相回転が行われる。一方、SPが配置されたサブキャリアの信号に対してPTSによる位相回転が行われない。部分波形形成部106-2及び106-3においても、部分波形形成部106-1における処理と同様の処理が行われる。IFFT処理部108-1、108-2及び108-3は、PTSによる位相回転が分割シンボル列s103-1、s103-2及び103-3に対して与えられる度に、IFFTを行う。
 図9は、第1の実施形態における位相処理部205の構成を示すブロック図である。同図に示すように、位相処理部205は、等化・回転除去部210-1、210-2及び210-3を備える。等化・回転除去部210-1、210-2及び210-3は、シンボル列s203-1、s203-2及びs203-3に対する位相回転の打ち消し及び等化をそれぞれ行う。等化・回転除去部210-1は、伝送路応答推定部211と、第1の乗算部212と、位相回転量算出部213と、第2の乗算部214とを備える。
 伝送路応答推定部211は、第1のセグメントのシンボル列s203-1に含まれるシンボルのうちSPが配置されたサブキャリアのシンボルと既知のSPとに基づいて、SPが配置されたサブキャリアの伝送路応答を推定する。伝送路応答推定部211は、推定した伝送路応答と、周波数方向に隣接するセグメントにおける伝送路応答と、時間方向に隣接するOFDMシンボルにおける同じセグメントにおける伝送路応答とに基づいて、SPが配置されてないサブキャリアの伝送路応答を補間する。伝送路応答推定部211は、周波数方向に隣接するセグメントにおける伝送路応答を他の等化・回転除去部から取得する。伝送路応答推定部211は、推定した伝送路応答と補間した伝送路応答とを、時間方向に隣接するOFDMシンボルにおける同じセグメントの伝送路応答として記憶する。
 伝送路応答推定部211は、推定と補間とにより得られた各サブキャリアの伝送路応答に対する複素共役を算出する。伝送路応答推定部211は、算出した複素共役を第1の乗算部212へ供給する。第1の乗算部212は、シンボル列s203-1に含まれるシンボルそれぞれと、対応するサブキャリアの複素共役とを乗算する。第1の乗算部212による乗算結果は、伝送路における振幅及び位相の変化が等化されたシンボル列となる。
 位相回転量算出部213は、第1の乗算部212から出力されるシンボル列のうちリファレンスシンボルが配置されたサブキャリアのシンボルと、既知のリファレンスシンボルとに基づいて、PTSによる位相回転量を算出する。位相回転量算出部213は、算出した位相回転量を打ち消す複素数のスカラー値c を算出する。スカラー値c は、無線通信装置100において第1のセグメントに含まれる各サブキャリアの信号に対して与えられた位相回転量cの複素共役である。位相回転量算出部213は、算出したスカラー値c を第2の乗算部214に供給する。第2の乗算部214は、第1の乗算部212から出力されるシンボル列とスカラー値c とを乗算し、乗算結果をシンボル列s204-1として出力する。
 等化・回転除去部210-2及び210-3は、等化・回転除去部210-1が備える構成と同じ構成を備える。等化・回転除去部210-2及び210-3は、等化・回転除去部210-1において行われる処理と同様の処理を行うことで、シンボル列s203-2及びs203-3に対して等化とPTSによる位相回転の打ち消しとを行い、シンボル列s204-2及びs204-3を出力する。
(第2の実施形態)
 図10は、第2の実施形態における無線通信装置100Aの送信に関する構成を示すブロック図である。無線通信装置100Aは、第1の実施形態における無線通信装置100と同様に、各セグメントの信号に対して位相回転を与えることでPAPRを低減させる。同図に示すように、無線通信装置100Aは、誤り訂正符号化部101と、コンスタレーションマッパ102と、シリアル・パラレル変換部(S/P変換部)103と、パイロット挿入部104と、セグメント分割部105と、部分波形形成部126-1、126-2及び126-3と、加算部109と、位相回転パターン生成部110と、PAPR評価部111と、GI挿入部112と、RF処理部113とを備える。
 無線通信装置100Aは、部分波形形成部106-1、106-2及び106-3に代えて、部分波形形成部126-1、126-2及び126-3を備える構成が第1の実施形態の無線通信装置100と異なる。無線通信装置100Aにおいて、無線通信装置100における構成要素と同じ構成要素に対しては同じ符号を付して、重複する説明を省略する。部分波形形成部126-1は、IFFT処理部127-1と乗算部128-1とを備える。部分波形形成部126-2は、IFFT処理部127-2と乗算部128-2とを備える。部分波形形成部126-3は、IFFT処理部127-3と乗算部128-3とを備える。
 部分波形形成部126-1において、IFFT処理部127-1は、セグメント分割部105から入力される分割シンボル列s103-1を、時間領域の信号から周波数領域の信号へ変換する。IFFT処理部127-1は、NscポイントのIFFTを分割シンボル列s103-1に対して行うことにより、分割シンボル列s103-1を時間領域信号s124-1へ変換する。IFFT処理部127-1は、時間領域信号s124-1を乗算部128-1へ供給する。
 乗算部128-1は、時間領域信号s124-1に対して複素数のスカラー値cを乗算し、乗算結果を加算部109へ供給する。複素数のスカラー値cは、位相回転パターン生成部110から乗算部128-1へ供給される。乗算部128-1は、時間領域信号s104-1にスカラー値cを乗算することにより、第1のセグメントに含まれる所定のサブキャリアの信号に対して、スカラー値cで表される位相回転量を与える。
 部分波形形成部126-2及び126-3それぞれにおいても、IFFT処理部127-2及び127-3と、乗算部128-2及び128-3とが、IFFT処理部127-1と乗算部128-1と同様に動作する。すなわち、NscポイントのIFFTによる変換と、複素数のスカラー値c及びcの乗算とが、分割シンボル列s103-2及び103-3に対して行われる。時間領域信号s124-2とスカラー値cとの乗算結果と、時間領域信号s124-3とスカラー値cとの乗算結果とが加算部109へ供給される。加算部109は、部分波形形成部126-1、126-2及び126-3それぞれから供給される乗算結果を加算し、加算結果をOFDM信号s105としてPAPR評価部11へ供給する。
 第2の実施形態において、パイロット挿入部104は、SPが配置されたサブキャリアに隣接するサブキャリアにリファレンスシンボルを配置する。第2の実施形態において、隣接するサブキャリアとは、隣り合うサブキャリア、又は中心周波数の差が所定の範囲内であり、伝送路応答の相関が高いサブキャリアである。第2の実施形態における無線通信装置の受信に関する構成は、図2に示した無線通信装置200における構成と同じ構成である。
 図11は、第2の実施形態におけるPTS位相回転の付与及び打ち消しと等化の過程を示す図である。同図には、送信側の無線通信装置100A、伝送路、受信側の無線通信装置200のそれぞれにおける位相変化が示されている。送信側の無線通信装置100Aにおいて、部分波形形成部126-1、126-2及び126-3それぞれは、PAPRを低減させるために、セグメント内のサブキャリアのうちデータ及びSPが配置されたサブキャリアのシンボルに対して位相θ分の位相回転を与える。部分波形形成部126-1、126-2及び126-3それぞれは、セグメント内のサブキャリアのうち、リファレンスシンボルが配置されたサブキャリアのシンボルに対してPTSによる位相回転を与えない。部分波形形成部126-1、126-2及び126-3それぞれから出力される乗算結果からOFDM信号が生成される。
 伝送路において、OFDM信号は、全てのサブキャリアの成分に対して、周波数に応じた位相回転量φ(n)(n=1,2,…,Nsc)で表される位相回転を受ける。また、OFDM信号は、全てのサブキャリアの成分に対して、周波数に応じた振幅の変化a(n)も受ける。サブキャリア番号nの伝送路応答は、a(n)exp(jφ(n))で表される。
 受信側の無線通信装置200において、位相処理部205は、リファレンスシンボルが配置されたサブキャリアの受信信号と、当該サブキャリアに隣接しSPが配置されたサブキャリアの受信信号とに基づいて、位相回転量θをセグメントごとに推定する。隣接する2つのサブキャリアにおける伝送路応答は相関が高く、伝送路においてそれぞれのサブキャリアに生じる位相回転φ(n)はほぼ等しいとみなすことができる。したがって、リファレンスシンボルが配置されたサブキャリアの位相回転φ(n)と、当該サブキャリアに隣接しSPが配置されたサブキャリアの位相回転φ(n)との差により、PTS位相回転による位相回転量θが推定される。位相処理部205は、推定した位相回転量θに基づいて、データ及びSPが配置されたサブキャリアの信号に送信側で与えられたPTS位相回転を打ち消す。
 位相処理部205は、PTS位相回転が打ち消されたサブキャリアの信号であってSPが配置されたサブキャリアの信号と既知のパイロットシンボルとに基づいて、当該サブキャリアの伝送路応答を推定する。位相処理部205は、推定した伝送路応答に基づいた補間により、SPが配置されていないサブキャリアの伝送路応答を取得する。伝送路応答の補間は、第1の実施形態における補間と同じである。位相処理部205は、推定及び補間で得られた伝送路応答を用いて、データが配置されたサブキャリアの信号を等化する。図11に示す等化の処理では、位相に注目するために、-φ(n)を乗じる処理が示されている。なお、等化の処理では、振幅に対する変化a(n)もキャンセルされる。位相処理部205は、等化を行うことにより、送信された変調シンボルを取得する。
 図12は、第2の実施形態における部分波形形成部126-1、126-2及び126-3の異なる構成を示すブロック図である。同図に示すように、部分波形形成部126-1は、IFFT処理部127-1と乗算部128-1とに加えて、加算部129を更に備えてもよい。部分波形形成部126-2及び126-3も、同様に、加算部129を更に備えてもよい。この部分波形形成部126-1、126-2及び126-3が無線通信装置100Aに備えられる場合、パイロット挿入部104は、リファレンスシンボル(PTSref)にPTS位相回転を加えないようにするため、分割シンボルs103-1、s103-2及びs103-3におけるリファレンスシンボルを配置するサブキャリアに0(ゼロ)を配置する。部分波形形成部126-1、126-2及び126-3において、加算部129は、乗算部128-1、128-2及び128-3で位相回転量θの位相回転が与えられた時間領域の信号に対して、リファレンスシンボルに対応する時間領域の信号を加算する。加算部129は、部分波形形成部126-1、126-2及び126-3に接続された加算部109へ加算結果を供給する。
 リファレンスシンボルを配置するサブキャリアのサブキャリア番号をNptsとし、リファレンスシンボルの値(複素数)をx(Npts)とする場合、リファレンスシンボルに対応する時間領域の信号は、x(Npts)exp(j2πNptsk/Nsc)で表される正弦波信号である。kは時間サンプルを示す変数である。図12に示すように構成された部分波形形成部126-1、126-2及び126-3では、PAPRを低減するために与える位相回転量θを変更されても、IFFT演算を再度行う必要がない。そのため、位相回転パターンを決定する際の演算量が削減され、OFDM信号を生成する際に要する時間が短縮される。
 図13は、第2の実施形態における位相処理部205の構成を示すブロック図である。同図に示すように、位相処理部205は、等化・回転除去部220-1、220-2及び220-3を備える。等化・回転除去部220-1、220-2及び220-3は、シンボル列s203-1、s203-2及びs203-3に対する位相回転の打ち消し及び等化をそれぞれ行う。等化・回転除去部220-1は、位相回転量算出部221と、第1の乗算部222と、伝送路応答推定部223と、第2の乗算部224とを備える。
 位相回転量算出部221は、第1のセグメントのシンボル列s203-1に含まれるシンボルに基づいて、PTS位相回転量を算出する。位相回転量算出部221は、この算出に、リファレンスシンボルが配置されたサブキャリアのシンボルと、当該サブキャリアに隣接するSPが配置されたサブキャリアのシンボルとを用いる。位相回転量算出部221は、算出した位相回転量を打ち消す複素数のスカラー値c を算出し、スカラー値c を第1の乗算部222へ供給する。第1の乗算部222は、シンボル列s203-1に含まれるシンボルそれぞれにスカラー値c を乗算する。第1の乗算部222による乗算結果は、PTS位相回転が打ち消されたシンボル列となる。
 伝送路応答推定部223は、第1の乗算部222から出力されるシンボル列のうちSPが配置されたサブキャリアのシンボルと既知のパイロットシンボルとに基づいて、SPが配置されたサブキャリアの伝送路応答を推定する。伝送路応答推定部223は、推定した伝送路応答と、周波数方向に隣接するセグメントにおける伝送路応答と、時間方向に隣接するOFDMシンボルにおける同じセグメントにおける伝送路応答とに基づいて、SPが配置されていないサブキャリアの伝送路応答を補間する。伝送路応答推定部223は、周波数方向に隣接するセグメントにおける伝送路応答を他の等化・回転除去部から取得する。伝送路応答推定部223は、推定した伝送路応答と補間した伝送路応答とを、時間方向に隣接するOFDMシンボルにおける同じセグメントの伝送路応答として記憶する。
 伝送路応答推定部223は、推定と補間とにより得られた各サブキャリアの伝送路応答に対する複素共役を算出し、算出した複素共役を第2の乗算部224へ供給する。第2の乗算部224は、第1の乗算部222から出力されるシンボル列に含まれるシンボルそれぞれと、対応するサブキャリアの複素共役とを乗算する。第2の乗算部224による乗算結果は、伝送路における振幅及び位相の変化が等化されたシンボル列となる。第2の乗算部224による乗算結果は、シンボル列s204-1として出力される。
 等化・回転除去部220-2及び220-3は、等化・回転除去部220-1が備える構成と同じ構成を備える。等化・回転除去部220-2及び220-3は、等化・回転除去部220-1において行われる処理と同様の処理を行うことで、シンボル列s203-2及びs203-3に対してPTS位相回転の打ち消しと等化とを行い、シンボル列s204-2及びs204-3を出力する。
 また、第2の実施形態における無線通信装置100Aと無線通信装置200とを備える無線通信システムは、PTSによる位相回転をSPに対しても与えているため、PAPRの低減性能を向上できる。OFDM方式を用いた無線通信では、SPが配置されるサブキャリアの数は全サブキャリア数の数%を占める。リファレンスシンボルは、セグメントごとに一つ配置されればよい。なお、複数のリファレンスシンボルが各セグメントに配置されてもよい。しかし、各セグメントにおいて、リファレンスシンボルの数はSPの数に比べ少ないため、SPが配置されたサブキャリアのシンボルに対してPTSの位相回転を与える第2の実施形態の構成は、第1の実施形態の構成に比べてPAPRをより低減できる可能性が高い。
(第3の実施形態)
 第3の実施形態における無線通信装置の送信に関する構成は、図10に示した無線通信装置100Aにおける送信に関する構成と同じである。第3の実施形態における無線通信装置の受信に関する構成は、図2に示した無線通信装置200における受信に関する構成と同じである。
 図14は、第3の実施形態におけるパイロットシンボルの配置例を示す図である。同図において、横軸は周波数を示し、縦軸は時間を示す。同図において、周波数方向と時間方向とで区切られた各領域は無線リソースを表す。各無線リソースには、データとSPとリファレンスシンボル(PTS ref)とのいずれかが配置される。図8に示した配置例と同様に、太い線で囲まれる複数の無線リソースは、PTSにより同じ位相回転が与えられる無線リソースである。第3の実施形態におけるパイロットシンボルの配置では、SPは、前述のように、周波数方向及び時間方向に周期的に無線リソースに配置される。また、セグメントの境界に隣接する2つのサブキャリアの同じ時刻の無線リソースに、PSとリファレンスシンボルとが配置される。SPが配置されたサブキャリアの一部の無線リソースに対して、時間方向に隣接する1OFDMシンボル前又は1OFDMシンボル後の同じサブキャリアの無線リソースにリファレンスシンボルが配置される。第3の実施形態では、位相処理部205は、予め定められたOFDMシンボル数のOFDM信号ごとに、PTS位相回転の打ち消しと等化とを含む位相処理を行う。
 図15は、第3の実施形態におけるPTS位相回転の付与及び打ち消しと等化の過程を示す図である。同図には、送信側の無線通信装置100A、伝送路、受信側の無線通信装置200のそれぞれにおける位相変化が示されている。送信側の無線通信装置100Aにおいて、部分波形形成部126-1、126-2及び126-3それぞれは、PAPRを低減させるために、セグメント内の全てのサブキャリアのシンボルに対して位相θ分の位相回転を与える。部分波形形成部126-1、126-2及び126-3それぞれから出力される乗算結果からOFDM信号が生成される。
 伝送路において、OFDM信号は、全てのサブキャリアの成分に対して、周波数に応じた位相回転量φ(n)(n=1,2,…,Nsc)で表される位相回転を受ける。また、OFDM信号は、全てのサブキャリアの成分に対して、周波数に応じた振幅の変化a(n)も受ける。サブキャリア番号nの伝送路応答は、a(n)exp(jφ(n))で表される。
 受信側の無線通信装置200において、位相処理部205は、各セグメントのシンボル列s203-1、s203-2及びs203-3を所定のOFDMシンボル分記憶する。換言すると、位相処理部205は、所定の期間ごとに、各セグメントのシンボル列s203-1、s203-2及びs203-3を記憶する。位相処理部205は、所定の期間に亘る各セグメントのシンボル列s203-1、s203-2及びs203-3を1回あたりの位相処理対象として、PTS位相回転の付与及び打ち消しと等化とを行う。
 位相処理部205は、異なるセグメントに配置され、セグメント境界に隣接したSPとリファレンスシンボルとが配置されたサブキャリアの受信信号に基づいて、セグメント間の位相差を算出する。各セグメントにおいて生じている位相回転は、第1及び第2の実施形態において説明した手法と同じ手法を用いて算出する。位相処理部205は、同時刻のOFDM信号に含まれる各セグメント間の位相差と、所定の期間に亘るセグメント間の時間方向の位相差とを算出し、算出した位相差を記憶する。位相処理部205は、位相処理対象に含まれるいずれかのセグメントにおいて生じた位相回転を基準として、他のセグメントにおいて生じた位相回転を基準とするセグメントの位相に合わせる。位相処理部205は、基準としたセグメントにおいて生じた位相回転を打ち消す位相回転を、位相処理対象に含まれる全てのセグメントに対して与えることで、PTS位相回転の付与及び打ち消しと等化とを行う。
 図16は、位相処理部205が行うPTS位相回転の付与及び打ち消しと等化と処理例を示す図である。図16に示す例では、所定の期間が3OFDMシンボル分であり、複数のサブキャリアが第1、第2及び第3のセグメントに分割される場合を示している。図16におけるセグメントは、図14において太線で囲まれる複数の無線リソースを含むセグメントに対応する。図16における各セグメントを示す矩形内に記載されている値は、送信側で与えられたPST位相回転量を示している。時刻t1における第1、第2及び第3のセグメントに対して与えられた位相回転量は、それぞれπ/2、3π/2及びπである。時刻t2における第1、第2及び第3のセグメントに対して与えられた位相回転量は、全てπである。時刻t3における第1、第2及び第3のセグメントに対して与えられた位相回転量は、3π/2、3π/2及び0である。図16に示す例では、時刻t1における第1のセグメントの位相回転が基準である。
 まず、位相処理部205は、第1、第2及び第3のセグメントごとに、セグメントに含まれるパイロットシンボルが配置されたサブキャリアの受信信号と既知のパイロットシンボルとに基づいて位相回転量を算出する。位相処理部205は、算出した各セグメントの位相回転量を用いて、時間方向に隣接するセグメント間の位相差を算出する(ステップS1)。各セグメントの位相の算出には、図14において示した、時間方向において隣接し同じサブキャリアに配置されたパイロットシンボルが用いられる。位相処理部205は、第1、第2及び第3のセグメントそれぞれの時間方向の位相差に基づいて、位相差を打ち消す(ステップS2)。位相処理部205は、位相差に対応する複素数のスカラー値の複素共役をセグメントの信号に対して乗算することにより、位相差を打ち消す。
 ステップS1の状態からステップS2の状態に至る際の処理を具体的に説明する。ステップS1の状態において、時刻t1からt3における第1のセグメントの位相回転量は、π/2、π及び3π/2である。時刻t1における位相回転量π/2と時刻t2における位相回転量πとの位相差はπ/2であるので、時刻t2における第1のセグメントに対して(π-π/2)=π/2の位相差を打ち消す処理が行われる。また、時刻t2における位相回転量πと時刻t3における位相回転量3π/2との位相差はπ/であるので、時刻t1の位相回転量π/2を基準とすると時刻t3の位相回転量には(π/2+π/2)の位相差がある。したがって、時刻t3における位相回転量3π/2に対して時刻t1における位相回転量を基準とした累積位相差(π/2+π/2)が算出され、時刻t3における位相回転量の位相差が打ち消される。
 時刻t1からt3における第2及び第3のセグメントの位相回転量に関しても、位相処理部205が前述の処理と同様の処理を行うことにより、ステップS1に示す状態はステップS2に示す状態に変化する。ステップS2における位相差の打ち消しにより、第1、第2及び第3のセグメントの位相回転量それぞれは、時間方向において一致した値となる。
 位相処理部205は、第1、第2及び第3のセグメントごとに、セグメントに含まれるパイロットシンボルが配置されたサブキャリアの受信信号と既知のパイロットシンボルとに基づいて位相回転量を算出する。位相処理部205は、算出した各セグメントの位相回転量を用いて、周波数方向に隣接するセグメント間の位相差を算出する(ステップS3)。位相処理部205は、第1、第2及び第3のセグメント間の位相差に基づいて、位相差を打ち消す(ステップS4)。
 ステップS2の状態からステップS4の状態に至る際の処理を具体的に説明する。ステップS2の状態において、第1のセグメントの位相回転量π/2と第2のセグメントの位相回転量3π/2との位相差は(3π/2-π/2)=πであるので、第2のセグメントに対してπの位相差を打ち消す処理が行われる。第2のセグメントの位相回転量3π/2と第3のセグメントの位相回転量πとの位相差は(π-(3π/2))=3π/2であるので、第1のセグメントの位相回転量π/2を基準とすると第3のセグメントの位相回転量πには(π+3π/2)=π/2の位相差がある。したがって、第3のセグメントの位相回転量πに対して第1のセグメントの位相回転量π/2を基準とした累積位相差(π+3π/2)=π/2が算出され、第3のセグメントの位相回転量の位相差が打ち消される。この処理は、各時刻における第1、第2及び第3のセグメントそれぞれに対して一括して行われる。
 ステップS1からステップS4の処理が行われることにより、各時刻における各セグメントの位相回転量がπ/2に統一される。すなわち、時間方向と周波数方向とのいずれにおいても位相の不連続がキャンセルされ、時間方向に隣接するセグメント間における伝送路応答の補間と、周波数方向に隣接するセグメント間における伝送路応答の補間とが可能となる。なお、各セグメントにおける位相回転量π/2は、伝送路応答により生じた位相回転とみなすことができ、等化の処理で打ち消される。図16における処理例では、時間方向におけるセグメント間の位相差を打ち消した後に、周波数方向におけるセグメント間の位相差を打ち消す場合について説明した。しかし、周波数方向におけるセグメント間の位相差を打ち消した後に、時間方向におけるセグメント間の位相差を打ち消すことも可能である。
 図17は、第3の実施形態における部分波形形成部126-1、126-2及び126-3の詳細な構成を示すブロック図である。第3の実施形態の部分波形形成部126-1は、データとSPとリファレンスシンボルとが配置される全てのサブキャリアのシンボルに対してPTS位相回転を与える構成である。そのため、第1及び第2の実施形態における部分波形形成部に比べ、第3の実施形態における部分波形形成部の構成は簡易な構成である。
 図18は、第3の実施形態における位相処理部205の構成を示すブロック図である。同図に示すように、位相処理部205は、記憶部231と、位相回転量算出部232と、第1の位相差除去部233と、第2の位相差除去部234と、等化部235と、出力部236とを備える。記憶部231は、所定の期間における第1、第2及び第3のセグメントのシンボル列s203-1、s203-2及びs203-3を記憶する。位相回転量算出部232は、各時刻それぞれの第1、第2及び第3のセグメントのシンボルを記憶部231から読み出す。位相回転量算出部232は、読み出したシンボルのうちパイロットシンボルが配置されたサブキャリアのシンボルと既知のパイロットシンボルとに基づいて、各セグメントにおける位相回転量を算出する。
 第1の位相差除去部233は、位相回転量算出部232が算出した各セグメントの位相回転量に基づいて、予め定められたセグメントの位相回転量を基準とした他の時刻における同じセグメントに対する累積位相差を算出する。第1の位相差除去部233は、他の時刻におけるセグメントのシンボル列を記憶部231からセグメントごとに読み出し、読み出したセグメントのシンボル列に対する累積位相差を打ち消す。第1の位相差除去部233は、累積位相差を打ち消したセグメントのシンボル列を記憶部231に書き戻して当該セグメントのシンボル列を更新する。
 第2の位相差除去部234は、位相回転量算出部232が算出した各セグメントの位相回転量に基づいて、予め定められたセグメントの位相回転量を基準とした同時刻における他のセグメントに対する累積位相差を算出する。第2の位相差除去部234は、同時刻における他のセグメントのシンボル列を記憶部231からセグメントごとに読み出し、読み出したセグメントのシンボル列に対する累積位相差を打ち消す。第2の位相差除去部234は、累積位相差を打ち消したセグメントシンボル列を記憶部231に書き戻して当該セグメントのシンボル列を更新する。
 等化部235は、位相回転量算出部232が算出する位相回転量に基づいて、記憶部231に記憶されている各セグメントの位相回転量を等化する。等化部235は、第1の位相差除去部233及び第2の位相差除去部234による累積位相差の打ち消しが行われた後に、各セグメントに対する等化を行う。出力部236は、等化部235による等化が行われた後に、第1、第2及び第3のセグメントのシンボル列を記憶部231から時刻順に読み出し、読み出したシンボル列をシンボル列s204-1、s204-2及びs204-3として出力する。
 第3の実施形態では、他のセグメントにおけるPTSによる位相回転量に代えて、予め定められたセグメントにおける位相回転量を基準とした位相差が算出される。無線伝送路における位相回転量に代えて、伝送路応答による位相回転量とPTSによる位相回転量とを含む位相回転量として、基準としたセグメントの位相回転量が算出される。このように、第3の実施形態における無線通信装置200は、PTSによる位相回転量と無線伝送路における位相回転量とを間接的に取得して各位相回転を打ち消すことで、PTSが適用された受信信号から送信されたデータを取得することができる。
(第4の実施形態)
 図19、図20及び図21は、第4の実施形態における無線通信装置の外観図である。図19に示す無線通信装置は、ノートブック型コンピュータ501であり、通信モジュール505を備えている。通信モジュール505は、第1、第2及び第3の実施形態における無線通信装置100、100Aと無線通信装置200が備える構成要素を含み構成される。通信モジュール505は、例えば第1の実施形態における無線通信装置100(図1)が備える、誤り訂正符号化部101とコンスタレーションマッパ102とシリアル・パラレル変換部103とパイロット挿入部104とセグメント分割部105と部分波形形成部106-1、106-2及び106-3と加算部109と位相回転パターン生成部110とPAPR評価部111とGI挿入部112とを実装した一つの集積回路を含み構成される。なお、通信モジュール505は、図1に示した無線通信装置100又は図10に示した無線通信装置100Aと図2に示した無線通信装置200とに備えられた各構成要素が実装された集積回路を含み構成されてもよい。
 また、通信モジュール505は、RF処理部113を実装したアナログIC、及び、誤り訂正符号化部101とコンスタレーションマッパ102とシリアル・パラレル変換部103とパイロット挿入部104とセグメント分割部105と部分波形形成部106-1、106-2及び106-3と加算部109と位相回転パターン生成部110とPAPR評価部111とGI挿入部112とを実装したベースバンド信号処理用の集積回路を含み構成されてもよい。
 図20に示す無線通信装置は、移動体端末511であり、通信モジュール505を備えている。なお、通信モジュール505を備える無線通信装置は、図19及び図20に示したノートブック型コンピュータ501及び移動体端末511に限定されない。例えば、無線通信装置は、スマートフォン、タブレット型端末、テレビ受像機、デジタルカメラ、ウェアラブルデバイス、ゲーム機などであってもよい。また、無線通信装置は、ナビゲーション装置などの車両に搭載される装置などであってもよい。また、無線通信装置は、持ち運びが容易な携帯型と据え置き型とのいずれであってもよい。また、図21に示すように、通信モジュール505を備えるメモリカード521が無線通信装置であってもよい。メモリカード521を装着した装置は、メモリカード521が備える通信モジュール505により取得したデータを利用したり、通信モジュール505を介してデータを送信したりすることが可能となる。
(第5の実施形態)
 図22は、第5の実施形態における無線通信装置の概要を示す図である。同図に示す無線通信装置は、アンテナ装置611とRF装置612とベースバンド装置613とを備え、建築物601に設置されている。アンテナ装置611は、第1の実施形態における無線通信装置100(図1)に接続するアンテナを備える。RF装置612は、無線通信装置100に備えられたRF処理部113を備える。ベースバンド装置613は、無線通信装置100に備えられた、誤り訂正符号化部101とコンスタレーションマッパ102とシリアル・パラレル変換部103とパイロット挿入部104とセグメント分割部105と部分波形形成部106-1、106-2及び106-3と加算部109と位相回転パターン生成部110とPAPR評価部111とGI挿入部112とを備える。すなわち、第5の実施形態における無線通信装置は、アンテナ装置611とRF装置612とベースバンド装置613との3つの装置によって構成され、無線通信装置100と同様の処理を行う。
 なお、第5の実施形態における無線通信装置は、第1の実施形態における無線通信装置200や、第2又は第3の実施形態における無線通信装置100Aと同様の処理を行ってもよい。また、RF装置612は、第1、第2又は第3の実施形態における無線通信装置200が備えるRF処理部201を備えてもよい。
 図22に示すように、アンテナ装置611は建築物601の高所に備え付けられる。なお、建築物601は、壁や屋根を有する構造であってもよいし、壁や屋根を有していない鉄骨構造であってもよい。RF装置612は、建築物601においてアンテナ装置611に近い位置に設置され、アンテナ装置611が備えるアンテナから送出するOFDM信号を供給する。ベースバンド装置613は、建築物601のいずれかの位置に設置され、RF装置612へOFDM信号を供給する。
 ベースバンド装置613は、一つ又は複数のFPGAを含み構成されていてもよい。この場合、FPGAは、ベースバンド装置613に備えられる非一時的な記憶媒体に記憶されたコンフィギュレーションを読み込むことにより、誤り訂正符号化部101とコンスタレーションマッパ102とシリアル・パラレル変換部103とパイロット挿入部104とセグメント分割部105と部分波形形成部106-1、106-2及び106-3と加算部109と位相回転パターン生成部110とPAPR評価部111とGI挿入部112との動作を実行する。また、第5の実施形態における無線通信装置が、第1の実施形態における無線通信装置200と同様の処理を行う場合には、FPGAは、GI除去部202と、FFT処理部203と、セグメント分割部204と、位相処理部205と、セグメント合成部206と、パラレル・シリアル変換部207と、コンスタレーションデマッパ208と、誤り訂正復号部209との動作を実行する。
 また、ベースバンド装置613は、送信するデータを受け付けるインタフェース部を更に備えてもよい。また、ベースバンド装置613は、電源装置を更に備えてもよい。また、ベースバンド装置613は、非一時的な記憶媒体に記憶されているFPGAのコンフィギュレーションを更新するデータ更新部を更に備えてもよい。
 また、前述の各実施形態において、無線通信装置がアンテナを備える構成を説明した。しかし、無線通信装置はアンテナを備えていなくてもよい。この場合、無線通信装置に接続されたアンテナを介して送信及び受信を行うことになる。
(第6の実施形態)
 第6の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、バス、プロセッサ部、記憶部及び外部インタフェース部を備える。プロセッサ部及び外部インタフェース部は、バスを介して各構成要素と接続される。プロセッサ部は、記憶部に記憶されているファームウエアを実行することにより、各構成要素を制御する。このように、無線通信装置がファームウエアを記憶した記憶部を含むことにより、ファームウエアを書き換えることによって無線通信装置の機能の変更を容易に行うことが可能となる。
(第7の実施形態)
 第7の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、クロック生成部を備える。クロック生成部は、クロック信号を生成して出力端子より無線通信装置の外部にクロック信号を出力する。このように、無線通信装置の内部で生成されたクロック信号を外部に出力し、外部に出力されたクロック信号によってホスト側を動作させることにより、ホスト側と無線通信装置側とを同期させて動作させることが可能となる。
(第8の実施形態)
 第8の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、電源部、電源制御部及び無線電力供給部を備える。電源制御部は、電源部と無線電力給電部とに接続され、無線通信装置に供給する電源を選択する制御を行う。このように、電源を無線通信装置に備える構成とすることにより、電源を制御した低消費電力化動作が可能となる。
(第9の実施形態)
 第9の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、SIMカードと制御部とを備える。制御部は、例えばSIMカードに記憶されている識別情報を用いた認証を行い、承認結果に応じて無線通信装置において送信又は受信が行われないように制御する。このように、無線通信装置がSIMカードと制御部とを備えることにより、認証結果に基づいた動作を行うことが可能となる。
(第10の実施形態)
 第10の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、動画像圧縮・伸長部を備える。動画像圧縮・伸長部は、バスと接続される。このように、動画像圧縮・伸長部を無線通信装置に備える構成とすることにより、圧縮した動画像の伝送と受信した圧縮動画像の伸長とを容易に行うことが可能となる。
(第11の実施形態)
 第11の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、LED部と制御部とを備える。制御部は、各構成要素が動作しているか否か、送信又は受信しているデータ量などを取得する。制御部は、各構成要素の動作状況又は処理しているデータ量に応じて、LED部が有するLEDを点灯又は点滅させる。無線通信装置の動作状態に応じてLEDを点灯又は点滅させることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第12の実施形態)
 第12の実施形態における無線通信装置は、前述の各実施形態に係る無線通信装置いずれかが備える構成要素に加えて、バイブレータ部と制御部と含む。制御部は、各構成要素が動作しているか否か、送信又は受信しているデータ量などを取得する。制御部は、各構成要素の動作状況又は処理しているデータ量に応じて、バイブレータ部を動作させる。例えば、制御部は、バイブレータ部を動作させる際に、バイブレータ部が発生させる振動の大きさや間隔を制御する。バイブレータ部を動作させることにより、無線通信装置の動作状態をユーザに容易に通知することが可能となる。
(第13の実施形態)
 第13の実施形態における無線通信装置は、各実施形態における無線通信装置100、100Aが備える送信に関する構成要素を備え、受信に関する構成要素を備えない。第13の実施形態における無線通信装置は、専らデータの送信を行う。
(第14の実施形態)
 第14の実施形態における無線通信装置は、各実施形態における無線通信装置200が備える受信に関する構成要素を備え、送信に関する構成要素を備えない。第14の実施形態における無線通信装置は、専らデータの受信を行う。
(第15の実施形態)
 第15の実施形態における無線通信装置は、各実施形態における無線通信装置100、100Aが備える送信に関する構成要素と、各実施形態における無線通信装置200が備える受信に関する構成要素とを備える。第15の実施形態における無線通信装置は、データの送信とデータの受信とを行う。
 なお、前述の各実施形態において、IFFT処理部108-1、108-2、108-3、127-1、127-2及び127-3がIFFTを行い、FFT処理部203がFFTを行う構成を説明した。IFFT処理部108-1、108-2、108-3、127-1、127-2及び127-3は、IFFT(逆高速フーリエ変換)に代えて、逆フーリエ変換又は逆離散フーリエ変換を行うことで、各サブキャリアの変調シンボルを時間領域信号に変換してもよい。また、FFT処理部203は、FFT(高速フーリエ変換)に代えて、フーリエ変換又は離散フーリエ変換を行うことで、受信信号から得られた信号を周波数領域の信号に変換してもよい。
 また、各実施形態において、無線通信装置がアンテナを備える構成を説明した。しかし、無線通信装置はアンテナを備えていなくてもよい。この場合、無線通信装置に接続されたアンテナを介して送信及び受信を行うことになる。
 また、前述の各実施形態において説明した無線通信装置は、例えば一つ又は複数のプロセッサを含むハードウェアで実現することが可能である。無線通信装置が備える各構成要素は、無線通信装置が備えるハードウェアに含まれるプロセッサがプログラムを実行することにより実現される。このプログラムは、ハードウェアに含まれる非一時的な記憶媒体であってプロセッサが読み出し可能な記憶媒体に予めインストールされていてもよい。また、ハードウェアは、ネットワークを介して配布されているプログラムを取得し、ハードウェアが備える非一時的な記憶媒体にインストールしてもよい。
 例えば、プロセッサは、プログラムを実行することにより、無線通信装置100が備える、誤り訂正符号化部101とコンスタレーションマッパ102とシリアル・パラレル変換部103とパイロット挿入部104とセグメント分割部105と部分波形形成部106-1、106-2及び106-3と加算部109と位相回転パターン生成部110とPAPR評価部111とGI挿入部112として動作する。この場合、プロセッサを含むハードウェアは、送信対象のデータを入力し、OFDM信号を生成する。このハードウェアは、生成したOFDM信号に対する送信信号処理を行い、送信信号処理により得られた信号を接続されたアンテナから送出する。
 また、一つ又は複数のプロセッサと非一時的な記憶媒体とを含む集積回路が、前述の各実施形態において説明した無線通信装置が備える構成要素として動作してもよい。例えば集積回路のプロセッサが非一時的な記憶媒体に記憶されたプログラムを実行することにより、プロセッサが無線通信装置100に備えられる各構成要素として動作する。この場合、集積回路は、送信対象のデータを入力し、当該データからOFDM信号を生成する。この集積回路は、ガードインターバルを挿入したOFDM信号に対する送信信号処理を行う。集積回路は、接続されたアンテナから、送信信号処理により得られた信号を送出する。
 以上説明した少なくともひとつの実施形態によれば、各セグメントに含まれるサブキャリアのうち、SP又はリファレンスシンボルのいずれかが配置されたサブキャリアのシンボルに対してPTSによる位相回転を与えない乗算部を持つことにより、位相回転が与えられていないSP又はリファレンスシンボルのサブキャリアの信号から無線伝送路における位相回転量又はPTSによる位相回転量を受信側において取得することができる。また、位相回転が与えられたSP又はリファレンスシンボルのサブキャリアの信号と、取得した位相回転量とから、無線伝送路における位相回転量又はPTSによる位相回転量を取得することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (22)

  1.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入部と、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割するセグメント分割部と、
     前記セグメントごとに、前記第1および第2のパイロットシンボルのいずれか一方と前記セグメントに含まれる前記シンボル列とに位相回転を与え、前記第1および前記第2のパイロットシンボルの他方に位相回転を与えない位相回転付与部と、
     前記位相回転付与部により位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算部と、
     を備える無線通信装置。
  2.  前記第1のパイロットシンボルは、前記複数のサブキャリアにおいて周期的に配置され、
     前記第2のパイロットシンボルは、前記セグメントごとに少なくとも1つ配置される、
     請求項1に記載の無線通信装置。
  3.  前記パイロット挿入部は、前記第1のパイロットシンボルが割り当てられる前記サブキャリアに隣接するサブキャリアに前記第2のパイロットシンボルを挿入する、
     請求項1に記載の無線通信装置。
  4.  前記セグメントごとに、前記位相回転付与部により位相回転を与えられた前記セグメントの信号を、逆フーリエ変換で時間領域の信号に変換する逆フーリエ変換部を更に備え、
     前記第1の加算部は、前記逆フーリエ変換部により時間領域の信号に変換された前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して前記送信信号を生成する、
     請求項1に記載の無線通信装置。
  5.  前記セグメントそれぞれにおいて、前記第2のパイロットシンボルが配置された前記サブキャリアの周波数に応じた正弦波信号を、前記逆フーリエ変換部により時間領域の信号に変換された前記セグメントに含まれる前記サブキャリアに対応する信号に加算する第2の加算部を更に備え、
     前記第1の加算部は、前記第2の加算部により前記正弦波信号が加算された前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して前記送信信号を生成し、
     前記パイロット挿入部は、前記第2のパイロットシンボルとして0を前記シンボル列に挿入する、
     請求項4に記載の無線通信装置。
  6.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入部と、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割するセグメント分割部と、
     前記セグメントごとに、前記セグメントに含まれる全てのシンボルに位相回転を与える位相回転付与部と、
     前記位相回転付与部により位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算部と、
     を備える無線通信装置。
  7.  前記第1のパイロットシンボルは、前記複数のサブキャリアにおいて周期的に配置され、
     前記第2のパイロットシンボルは、前記セグメントに含まれるサブキャリアのいずれかに少なくとも1つ配置され、
     前記セグメント間の境界におけるサブキャリアに前記第1のパイロットシンボル又は前記第2のパイロットシンボルが配置され、
     前記第2のパイロットシンボルは、前記第1のパイロットシンボルに対して時間方向に隣接して配置される、
     請求項6に記載の無線通信装置。
  8.  前記セグメントごとに、前記位相回転付与部により位相回転を与えられた前記セグメントの信号を、逆フーリエ変換で時間領域の信号に変換する逆フーリエ変換部を更に備え、
     前記第1の加算部は、前記逆フーリエ変換部により時間領域の信号に変換された前記複数のセグメントの信号を加算して前記送信信号を生成する
     請求項6に記載の無線通信装置。
  9.  接続されたアンテナから前記送信信号を送出するRF処理部を更に備える、
     請求項1に記載の無線通信装置。
  10.  複数のサブキャリアを複数のセグメントに分割するセグメント分割部と、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントに含まれるシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理部と、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成部と、
     を備え、
     前記第1および第2のパイロットシンボルのいずれか一方には、前記送信側において前記第1の位相回転量が与えられていない、
     無線通信装置。
  11.  前記第1のパイロットシンボルは、前記複数のサブキャリアにおいて周期的に配置され、
     前記第2のパイロットシンボルは、前記セグメントごとに少なくとも1つ配置される、
     請求項10に記載の無線通信装置。
  12.  前記第2のパイロットシンボルは、前記第1のパイロットシンボルが配置される前記サブキャリアに隣接するサブキャリアに配置されている、
     請求項10に記載の無線通信装置。
  13.  複数のサブキャリアを複数のセグメントに分割するセグメント分割部と、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントのシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理部と、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成部と、
     を備え、
     前記位相処理部は、
     ある期間における前記複数のセグメントそれぞれに含まれるシンボルを記憶する記憶部と、
     前記記憶部に記憶される前記セグメントごとに含まれるシンボルのうち前記第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、前記複数のセグメントの位相回転量を算出する位相回転量算出部と、
     前記複数のセグメントのうちいずれか一つのセグメントを基準セグメントとし、前記基準セグメントと時間方向に異なり前記基準セグメントと同じサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第1の位相差を算出し、他の前記セグメントのシンボルから前記第1の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第1の位相差除去部と、
     前記基準セグメントと同じ時間において前記基準セグメントと異なるサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第2の位相差を算出し、他の前記セグメントのシンボルから前記第2の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第2の位相差除去部と、
     前記第1の位相差除去部と前記第2の位相差除去部とによる位相差の打ち消しが行われた後に、前記記憶部に記憶される前記セグメントそれぞれのシンボルに前記基準セグメントの位相回転量に対して逆の位相回転を与えてシンボルを等化する等化部と、
     を備える、
     無線通信装置。
  14.  接続されたアンテナで受信された受信信号を取得するRF処理部を更に備え、
     前記セグメント分割部は、前記受信信号に含まれる前記複数のサブキャリアを前記複数のセグメントに分割する
     請求項10に記載の無線通信装置。
  15.  請求項1に記載の無線通信装置を含む集積回路。
  16.  請求項15に記載の集積回路と、
     アンテナと、
     を備えた無線通信装置。
  17.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入ステップと、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割するセグメント分割ステップと、
     前記セグメントごとに、前記第1および第2のパイロットシンボルのいずれか一方と前記セグメントに含まれる前記シンボル列とに位相回転を与え、前記第1および前記第2のパイロットシンボルの他方に位相回転を与えない位相回転付与ステップと、
     前記位相回転付与ステップにおいて位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算ステップと、
     を有する送信方法。
  18.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入ステップと、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割するセグメント分割ステップと、
     前記セグメントごとに、前記セグメントに含まれる全てのシンボルに位相回転を与える位相回転付与ステップと、
     前記位相回転付与ステップにおいて位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算ステップと
     を有する送信方法。
  19.  複数のサブキャリアを複数のセグメントに分割するセグメント分割ステップと、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントに含まれるシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理ステップと、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成ステップと、
     を有し、
     前記第1および第2のパイロットシンボルのいずれか一方には、前記送信側において前記第1の位相回転量が与えられていない、
     受信方法。
  20.  複数のサブキャリアを複数のセグメントに分割するセグメント分割ステップと、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントのシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理ステップと、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成ステップと、
     を有し、
     前記位相処理ステップは、
     ある期間における前記複数のセグメントそれぞれに含まれるシンボルを記憶する記憶部に記憶される前記セグメントごとに含まれるシンボルのうち前記第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、前記複数のセグメントの位相回転量を算出する位相回転量算出ステップと、
     前記複数のセグメントのうちいずれか一つのセグメントを基準セグメントとし、前記基準セグメントと時間方向に異なり前記基準セグメントと同じサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第1の位相差を算出し、他の前記セグメントのシンボルから前記第1の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第1の位相差除去ステップと、
     前記基準セグメントと同じ時間において前記基準セグメントと異なるサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第2の位相差を算出し、他の前記セグメントのシンボルから前記第2の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第2の位相差除去ステップと、
     前記第1の位相差除去ステップと前記第2の位相差除去ステップとによる位相差の打ち消しが行われた後に、前記記憶部に記憶される前記セグメントそれぞれのシンボルに前記基準セグメントの位相回転量に対して逆の位相回転を与えてシンボルを等化する等化ステップとを含む、
     受信方法。
  21.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入ステップと、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割する第1のセグメント分割ステップと、
     前記セグメントごとに、前記第1および第2のパイロットシンボルのいずれか一方と前記セグメントに含まれる前記シンボル列とに位相回転を与え、前記第1および前記第2のパイロットシンボルの他方に位相回転を与えない位相回転付与ステップと、
     前記位相回転付与ステップにおいて位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算ステップと、
     受信した前記送信信号に含まれる前記複数のサブキャリアを前記複数のセグメントに分割する第2のセグメント分割ステップと、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントに含まれるシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理ステップと、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成ステップと、
     を有する通信方法。
  22.  シンボル列に第1および第2のパイロットシンボルを挿入するパイロット挿入ステップと、
     前記第1および第2のパイロットシンボルが挿入された前記シンボル列に含まれる各シンボルが割り当てられた複数のサブキャリアを、複数のセグメントに分割する第1のセグメント分割ステップと、
     前記セグメントごとに、前記セグメントに含まれる全てのシンボルに位相回転を与える位相回転付与ステップと、
     前記位相回転付与ステップにおいて位相回転を与えられた前記複数のセグメントに含まれる前記サブキャリアに対応する信号同士を加算して送信信号を生成する第1の加算ステップと、
     受信した前記送信信号に含まれる複数のサブキャリアを複数のセグメントに分割する第2のセグメント分割ステップと、
     前記セグメントごとに含まれる前記サブキャリアのうち第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、送信側で前記セグメントのシンボルに与えられた第1の位相回転量と伝送路において受けた第2の位相回転量とを推定し、前記セグメントに含まれるシンボルから前記第1および第2の位相回転量を打ち消す位相処理ステップと、
     前記第1および第2の位相回転量が打ち消された前記複数のセグメントの信号を合成するセグメント合成ステップと、
     を有し、
     前記位相処理ステップは、
     ある期間における前記複数のセグメントそれぞれに含まれるシンボルを記憶する記憶部に記憶される前記セグメントごとに含まれるシンボルのうち前記第1および第2のパイロットシンボルが配置されたサブキャリアのシンボルに基づいて、前記複数のセグメントの位相回転量を算出する位相回転量算出ステップと、
     前記複数のセグメントのうちいずれか一つのセグメントを基準セグメントとし、前記基準セグメントと時間方向に異なり前記基準セグメントと同じサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第1の位相差を算出し、他の前記セグメントのシンボルから前記第1の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第1の位相差除去ステップと、
     前記基準セグメントと同じ時間において前記基準セグメントと異なるサブキャリアを含む他の前記セグメントの位相回転量と前記基準セグメントの位相回転量とから第2の位相差を算出し、他の前記セグメントのシンボルから前記第2の位相差を打ち消して、前記記憶部に記憶されている他の前記セグメントのシンボルを更新する第2の位相差除去ステップと、
     前記第1の位相差除去ステップと前記第2の位相差除去ステップとによる位相差の打ち消しが行われた後に、前記記憶部に記憶される前記セグメントそれぞれのシンボルに前記基準セグメントの位相回転量に対して逆の位相回転を与えてシンボルを等化する等化ステップとを含む、
     通信方法。
PCT/JP2015/084912 2015-02-23 2015-12-14 無線通信装置、集積回路、送信方法、受信方法及び通信方法 WO2016136096A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017501871A JP6290506B2 (ja) 2015-02-23 2015-12-14 無線通信装置、集積回路、送信方法、受信方法及び通信方法
US15/441,439 US10270636B2 (en) 2015-02-23 2017-02-24 Wireless communication apparatus, integrated circuit, transmission method, reception method, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015033100 2015-02-23
JP2015-033100 2015-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/441,439 Continuation US10270636B2 (en) 2015-02-23 2017-02-24 Wireless communication apparatus, integrated circuit, transmission method, reception method, and communication method

Publications (1)

Publication Number Publication Date
WO2016136096A1 true WO2016136096A1 (ja) 2016-09-01

Family

ID=56788119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084912 WO2016136096A1 (ja) 2015-02-23 2015-12-14 無線通信装置、集積回路、送信方法、受信方法及び通信方法

Country Status (3)

Country Link
US (1) US10270636B2 (ja)
JP (1) JP6290506B2 (ja)
WO (1) WO2016136096A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107516A (ja) * 2016-12-22 2018-07-05 株式会社東芝 送信装置、受信装置、および送信方法
KR20190039601A (ko) * 2016-09-19 2019-04-12 후아웨이 테크놀러지 컴퍼니 리미티드 변조 방법, 복조 방법, 관련 장치 및 시스템

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865858B (zh) * 2019-04-30 2022-01-11 华为技术有限公司 一种基于部分传输序列技术的边信息传输方法和装置
FR3113805A1 (fr) * 2020-09-01 2022-03-04 Orange Procédé de télécommunication avec constellation polaire déphasée pour diminution du PAPR et dispositifs correspondant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341056A (ja) * 2004-05-25 2005-12-08 Ntt Docomo Inc 送信装置及び受信装置
US20080285673A1 (en) * 2007-05-15 2008-11-20 Samsung Electronics Co., Ltd. Apparatus and method for reducing peak to average power ratio based on tile structure in broadband wireless communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401801B1 (ko) * 2001-03-27 2003-10-17 (주)텔레시스테크놀로지 데이터 전송 성능을 개선하기 위한 직교주파수 분할 다중통신 시스템 및 방법
KR100754721B1 (ko) 2002-04-26 2007-09-03 삼성전자주식회사 직교주파수분할다중화 통신시스템에서 다중화 데이터 송수신 장치 및 방법
US7583586B2 (en) * 2004-07-02 2009-09-01 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving pilot signal in communication system using OFDM scheme
RU2007144498A (ru) * 2005-05-30 2009-06-10 Мацусита Электрик Индастриал Ко., Лтд. (Jp) Устройство базовой станции в системе беспроводной связи и способ беспроводной связи в передаче на множестве несущих частот
KR100751098B1 (ko) * 2006-02-16 2007-08-22 주식회사 팬택앤큐리텔 직교 주파수 분할 다중화 기반 통신 시스템에서의 파일럿심볼 전송 방법 및 장치, 그 수신방법 및 장치
JP2007259445A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd Ofdm通信システムにおける送信装置及び方法
US20080028567A1 (en) * 2006-08-03 2008-02-07 The United States Of America As Represented By The Secretary Of The Navy Cleaning device for fiber optic connectors
EP2120377A1 (en) * 2007-02-09 2009-11-18 Sharp Kabushiki Kaisha Ofdm transmitter and ofdm receiver
JP4932641B2 (ja) 2007-08-28 2012-05-16 ソフトバンクモバイル株式会社 通信装置におけるピーク電力低減装置
US8571000B2 (en) * 2008-08-08 2013-10-29 Qualcomm Incorporated Peak-to-average power ratio (PAPR) reduction scheme for wireless communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341056A (ja) * 2004-05-25 2005-12-08 Ntt Docomo Inc 送信装置及び受信装置
US20080285673A1 (en) * 2007-05-15 2008-11-20 Samsung Electronics Co., Ltd. Apparatus and method for reducing peak to average power ratio based on tile structure in broadband wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN, TAE-YOUNG ET AL.: "A PTS-OFDM phase- superimposed over pilot symbols", ADVANCED COMMUNICATION TECHNOLOGY, 2008 . ICACT 2008. 10TH INTERNATIONAL CONFERENCE ON, vol. 2, 2008, pages 1027 - 1031 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190039601A (ko) * 2016-09-19 2019-04-12 후아웨이 테크놀러지 컴퍼니 리미티드 변조 방법, 복조 방법, 관련 장치 및 시스템
EP3503489A4 (en) * 2016-09-19 2019-08-14 Huawei Technologies Co., Ltd. MODULATION PROCEDURE, DEMODULATION PROCESS, ASSOCIATED DEVICE AND SYSTEM
JP2019537853A (ja) * 2016-09-19 2019-12-26 華為技術有限公司Huawei Technologies Co.,Ltd. 変調方法、復調方法、関連装置、及びシステム
US10536319B2 (en) 2016-09-19 2020-01-14 Huawei Technologies Co., Ltd. Modulation method, demodulation method, related device, and system
KR102205934B1 (ko) 2016-09-19 2021-01-20 후아웨이 테크놀러지 컴퍼니 리미티드 변조 방법, 복조 방법, 관련 장치 및 시스템
JP2018107516A (ja) * 2016-12-22 2018-07-05 株式会社東芝 送信装置、受信装置、および送信方法
JP2021106435A (ja) * 2016-12-22 2021-07-26 株式会社東芝 受信装置
JP7250062B2 (ja) 2016-12-22 2023-03-31 株式会社東芝 受信装置

Also Published As

Publication number Publication date
JPWO2016136096A1 (ja) 2017-06-01
JP6290506B2 (ja) 2018-03-07
US20170163459A1 (en) 2017-06-08
US10270636B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6657277B2 (ja) 送信装置
US9866419B2 (en) Transmission apparatus, reception apparatus, and communication system
JP6290506B2 (ja) 無線通信装置、集積回路、送信方法、受信方法及び通信方法
CA3101685C (en) Method for determining reserved tones and transmitter for performing papr reduction using tone reservation
JP2017530611A (ja) 周波数分割マルチ波形信号を生成及び処理する方法、並びに装置
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
JP6302092B2 (ja) 無線通信装置、集積回路、送信方法、受信方法及び通信方法
US20170048094A1 (en) Channel equalization apparatus and method based on pilot signals for docsis down stream system
JP2016208518A (ja) 信号処理装置、信号送信装置及び受信機
WO2014166164A1 (en) Method of channel estimation by phase rotation iν orthogonal frequency division multiplexing (ofdm) system
JPWO2008099572A1 (ja) 受信装置及び受信方法
US20150319011A1 (en) Orthogonal frequency division multiplexing (ofdm) channel estimation to improve the smoothing process
CN107211456A (zh) 数据发送的方法和发射机
US20130195227A1 (en) Removal of a Band-Limited Distributed Pilot from an OFDM Signal
EP2768176A1 (en) Orthogonal frequency division multiplexing (ofdm) channel estimation to improve the smoothing process
WO2015151950A1 (ja) 受信装置および方法
JP2016119603A (ja) 無線通信装置、集積回路、送信信号生成方法、受信方法及び無線通信方法
KR20210080161A (ko) 신호 전송 및 수신 방법 및 장치
JP2008199626A (ja) マルチキャリア受信信号における狭帯域干渉を検出する受信装置、送信装置及び通信システム
JP2011166329A (ja) 等化処理装置及び受信装置
JP2010200043A (ja) 受信装置及びベースバンド信号の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883386

Country of ref document: EP

Kind code of ref document: A1