WO2016135842A1 - 冷凍装置 - Google Patents
冷凍装置 Download PDFInfo
- Publication number
- WO2016135842A1 WO2016135842A1 PCT/JP2015/055171 JP2015055171W WO2016135842A1 WO 2016135842 A1 WO2016135842 A1 WO 2016135842A1 JP 2015055171 W JP2015055171 W JP 2015055171W WO 2016135842 A1 WO2016135842 A1 WO 2016135842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacity
- closing
- open
- opening
- evaporator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
Definitions
- the present invention relates to a refrigeration apparatus and relates to a refrigeration apparatus that suppresses a decrease in refrigeration capacity.
- a conventional refrigeration apparatus in order to suppress a decrease in refrigeration capacity or a decrease in low-pressure pressure in a region where the refrigerant flow rate decreases, for example, the degree of superheat of the refrigerant is set as a control target, and the flow rate of the refrigerant is adjusted by various decompression apparatuses Is used (see, for example, Patent Document 1).
- Patent Document 1 even when the suction pressure of the compressor is smaller than a set value indicating a freezing abnormality, when the refrigerant superheat degree is larger than the predetermined superheat degree, it is identified that the refrigerant side heat transfer performance is deteriorated due to insufficient refrigerant supply. And the technique of reducing the capacity
- Patent Document 1 adjusts the excessive refrigerant flow rate by decompression processing using an expansion valve or the like, there is a problem that the operation in an area where the refrigerant flow rate itself is too small cannot be performed. is there.
- the refrigerant flow rate is insufficient, the flow rate of the refrigerant is lowered due to the fact that the capacity of the evaporator is unchanged, and the distribution function in the evaporator is deteriorated. For this reason, even if it is a situation which can be drive
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration apparatus that secures a refrigerant flow rate in a region where the refrigerant flow rate is insufficient and suppresses a decrease in refrigeration capacity. To do.
- a refrigeration apparatus includes a compressor, a condenser connected to a discharge side of the compressor, a function of fully closing, a plurality of decompression apparatuses connected to the condenser, and a plurality of decompression apparatuses.
- a plurality of evaporators connected to each other, a detection unit for detecting state information indicating states of the condenser and the plurality of evaporators, and a reference for opening / closing operations of the plurality of decompression devices from the state information detected by the detection unit
- a reference specifying unit that specifies open / close reference information
- an open / close control unit that controls the operation of the decompression device that is fully closed or opened according to the open / close reference information specified by the reference specifying unit.
- the present invention has a plurality of decompression devices downstream of the condenser, and the control unit individually individually closes or opens the plurality of decompression devices based on state information indicating the states of the condenser and the plurality of evaporators. Since it is comprised so that it may be in a state, the flow rate of the refrigerant
- FIG. 2 is an explanatory diagram illustrating an example of a reference table referred to by a control unit in the refrigeration apparatus of FIG. 1. It is a schematic diagram which shows the structure provided with 3 systems among the refrigeration apparatuses which concern on Embodiment 1 of this invention. It is a schematic diagram which illustrates opening / closing control of the decompression device by the control part of the freezing apparatus of FIG. It is a flowchart which shows operation
- FIG. 1 shows an explanatory diagram illustrating an example of a reference table referred to by a control unit in the refrigeration apparatus of FIG. 1. It is a schematic diagram which shows the structure provided with 3 systems among the refrigeration apparatuses which concern on Embodiment 1 of this invention. It is a schematic diagram which illustrates opening / closing control of the decompression device by the control part of the freezing apparatus of FIG. It is a flowchart which
- FIG. 7 is an explanatory diagram illustrating a maximum capacity table referred to by a control unit in the refrigeration apparatus of FIG. 6.
- FIG. 7 is an explanatory diagram illustrating a minimum capacity table referred to by a control unit in the refrigeration apparatus of FIG. 6.
- It is a schematic diagram which illustrates the opening / closing control of the decompression device by the control part of the freezing apparatus of FIG.
- It is the schematic which shows the three evaporators from which the refrigeration apparatus which concerns on this Embodiment 2 differs in heat exchange capacity
- surface which shows the relationship between the combination of the three evaporators of FIG. 10, and the sum total of a heat-transfer area.
- FIG. 1 is a schematic diagram illustrating a configuration including two systems in the refrigeration apparatus according to Embodiment 1 of the present invention.
- the refrigeration apparatus 100 includes a compressor 10, a condenser 20 connected to the discharge side of the compressor 10, and an expansion valve having a function of closing a refrigerant flow path, for example.
- the evaporator 41a and the evaporator 41b have the same heat exchange capacity, and specifically have the same heat transfer area.
- the refrigerating apparatus 100 includes a check valve 50a that prevents the refrigerant from flowing into the evaporator 41a and a check valve 50b that prevents the refrigerant from flowing into the evaporator 41b.
- the check valves 50a and 50b also function to prevent a phenomenon that the refrigerant accumulates in a specific place of the refrigerant pipe (so-called stagnation).
- the compressor 10, the condenser 20, the plurality of decompression devices 30a and 30b, the plurality of evaporators 41a and 41b, and the check valves 50a and 50b constitute a refrigerant circuit sequentially connected by a refrigerant pipe, In the refrigerant pipe, the refrigerant is configured to circulate.
- the flow path of the refrigeration apparatus 100 is branched into two systems upstream of the decompression apparatuses 30a and 30b. That is, the refrigeration apparatus 100 includes a first system that is a flow path in which the decompression device 30a, the evaporator 41a, and the check valve 50a are connected in series downstream of the compressor 10 and the condenser 20, and the decompression device 30b.
- the decompression device 30a, the evaporator 41a, and the check valve 50a configuring the first system, and the decompression device 30b, the evaporator 41b, and the check valve 50b configuring the second system are parallel to each other. It is connected to the.
- the decompression device 30a has a function of decompressing and expanding the refrigerant and a function of closing the first system to prevent the refrigerant from flowing
- the decompression device 30b is a function of decompressing and expanding the coolant and the second system. And has a function of preventing the refrigerant from flowing.
- the refrigeration apparatus 100 includes a detection unit 60 that detects state information indicating the states of the condenser 20 and the plurality of evaporators 41a and 41b, and a plurality of decompression devices 30a and 30a based on the state information detected by the detection unit 60.
- a control unit 71 for individually closing or opening 30b and a storage unit 81 for storing a reference table (operation capacity table) that associates state information with the operation capacity (for example, operation frequency) of the compressor 10 are provided. is doing.
- the detection unit 60 includes a condensation temperature sensor 61 that detects the condensation temperature of the condenser 20 as state information, and evaporation temperature sensors 62a and 62b that detect the evaporation temperatures of the plurality of evaporators 41a and 41b as state information. ing.
- the control unit 71 controls the opening degree of each of the plurality of decompression devices 30a and 30b so as to be in a fully closed state or an open state. Specifically, from the state information detected by the detection unit 60, A reference specifying unit 71A that specifies opening / closing reference information that is a reference for the opening / closing operation of the plurality of pressure reducing devices 30a and 30b, and a pressure reducing device that is fully closed or opened according to the opening / closing reference information specified by the reference specifying unit 71A And an open / close control unit 71B for controlling the operation of 30a or 30b.
- the operating capacity threshold value that is the open / close reference information in the first embodiment is stored in association with the state information (condensation temperature and evaporation temperature). That is, the reference table has an operation capacity threshold corresponding to a temperature range depending on each condensation temperature and evaporation temperature. That is, the reference specifying unit 71A specifies the operating capacity threshold value as the open / close reference information by referring to the reference table with the condensation temperature detected by the condensation temperature sensor 61 and the evaporation temperature detected by the evaporation temperature sensors 62a and 62b.
- the opening / closing control unit 71B controls the opening / closing operations of the plurality of decompression devices 30a and 30b based on the magnitude relationship between the operating capacity threshold specified by the reference specifying unit 71A and the current operating capacity of the compressor 10. To do.
- the configuration of the control unit 71 as shown in FIG. 1 is realized by executing a control program read into the auxiliary storage device on a microcomputer or a computer (for example, a personal computer).
- the control program is stored in an information storage medium such as a CD-ROM or distributed via a network such as the Internet and installed in a computer.
- the operating capacity threshold value as the opening / closing reference information is determined according to the physical properties of the refrigerant circulating in the refrigerant pipe. Then, the reference table is set so as to have a certain degree of proportional correlation between the operating capacity and the number of operating systems in each temperature range (a relationship in which the operating system number increases as the operating capacity increases).
- the number of operating systems refers to the number of systems in which the decompression device is open and the refrigerant is flowing through the corresponding evaporator.
- the condensation temperature sensor 61 detects the condensation temperature of the condenser 20 and outputs the detected condensation temperature to the reference specifying unit 71A.
- the evaporation temperature sensor 62a and the evaporation temperature sensor 62b detect the evaporation temperatures of the evaporator 41a and the evaporator 41b, respectively, and output the detected evaporation temperatures to the reference specifying unit 71A. Therefore, the reference specifying unit 71A can input the condensing temperature and the evaporating temperature every predetermined time (for example, 5 minutes), and can grasp changes with time of the condensing temperature and the evaporating temperature.
- the open / close control unit 71B sets one of the plurality of decompression devices 30a and 30b in the open state to a fully closed state. Has the function of reducing the number of operating systems by one.
- the open / close control unit 71B is one of the plurality of decompression devices 30a and 30b that is open. For example, it has a function of maintaining the open / closed state of the plurality of decompression devices 30a and 30b (maintaining the number of operating systems).
- the open / close control unit 71B has a fully closed state among the plurality of decompression devices 30a and 30b. It has a function of opening one of the decompression devices 30a and 30b in the fully closed state (increasing the number of operating systems by one).
- the open / close control unit 71B refers to a closing time reference table that is referred to when one of the plurality of decompression devices 30a and 30b is fully closed, and the plurality of decompression devices 30a. And an open time reference table that is referred to when one of the switches 30b is opened.
- a closed time threshold value that is a reference for the closing operation of the decompression devices 30a and 30b is stored in association with the condensation temperature and the evaporation temperature as the operating capacity threshold value.
- the open time reference table stores open time threshold values that serve as a reference for the open operation of the decompression devices 30a and 30b in association with the condensation temperature and the evaporation temperature.
- FIG. 2 is an explanatory diagram illustrating an example of a reference table referred to by the control unit 71 in the refrigeration apparatus 100, and specifically illustrates a closed-time reference table.
- the reference table is information for specifying whether or not the number of operating systems is to be changed.
- the closed-time reference table illustrated in FIG. 2 is configured so that the control unit 71 changes from two-system operation to one-system operation. It has an operating capacity threshold value as a reference for switching. For example, if the evaporation temperature is ⁇ 13 ° C. and the condensation temperature is 38 ° C., the evaporation temperature is from ⁇ 15 ° C. to less than ⁇ 10 ° C., and the condensation temperature is from 35 ° C. to less than 40 ° C.
- the reference specifying unit 71A reads 50% as the closing threshold value and transmits it to the open / close control unit 71B. If the current operating capacity is less than 50%, the opening / closing control unit 71B controls one of the decompression devices 30a or 30b to be in a fully closed state and switching from two-system operation to one-system operation.
- the reference specifying unit 71A reads the operation capacity threshold value in the temperature range to which the condensation temperature and the evaporation temperature detected by the detection unit 60 belong from the reference table, and transmits the operation capacity threshold value to the open / close control unit 71B.
- the open / close control unit 71B switches the number of operating systems based on the magnitude relationship between the current operating capacity and the operating capacity threshold specified by the reference specifying unit 71A.
- FIG. 3 is a schematic diagram illustrating a configuration including three systems in the refrigeration apparatus according to the first embodiment.
- the flow path formed by the refrigerant piping of the refrigeration apparatus 110 is branched into three systems upstream of the decompression apparatuses 30a to 30c. That is, the refrigeration apparatus 110 includes a first system that is a flow path in which a decompression device 30a, an evaporator 41a, and a check valve 50a are connected in series downstream of the compressor 10 and the condenser 20, and a decompression device 30b.
- the second system that is a flow path in which the evaporator 41b and the check valve 50b are connected in series
- the third system that is a flow path in which the pressure reducing device 30c, the evaporator 41c, and the check valve 50c are connected in series.
- the plurality of evaporators 41a to 41c have the same heat exchange capacity, and specifically have the same heat transfer area.
- the detection unit 60 detects a condensation temperature sensor 61 that detects the condensation temperature of the condenser 20 as state information, and evaporation temperature sensors 62a to 62c that detects the evaporation temperatures of the plurality of evaporators 41a to 41c as state information. And have.
- an operation capacity threshold value that serves as a reference for the opening / closing operation of the decompression devices 30a to 30c is stored in association with the condensation temperature and the evaporation temperature.
- the storage unit 81 stores, as a reference table, a closed reference table that stores therein a switching reference from three-system operation to two-system operation and a switching reference from two-system operation to one-system operation, and one-system operation. And an open time reference table that stores therein a switching reference from 2 to 3 system operation and a switching reference from 2 to 3 system operation.
- the control unit 71 individually sets the plurality of decompression devices 30a to 30c to the fully closed or open state based on the state information detected by the detection unit 60. That is, the open / close control unit 71B controls the open / close operations of the plurality of pressure reducing devices 30a to 30c based on the magnitude relationship between the operating capacity threshold specified by the reference specifying unit 71A and the current operating capacity of the compressor 10. It is.
- the opening / closing control unit 71B has a function of fully closing one of the plurality of decompression devices 30a to 30c when the current operation capacity is less than the operation capacity threshold specified by the reference specifying unit 71A.
- the open / close control unit 71B may be one of the plurality of decompression devices 30a to 30c that is open when the current operation capacity is less than the operation capacity threshold specified by the reference specifying unit 71A. For example, it has a function of maintaining the open / closed state of the plurality of decompression devices 30a to 30c.
- the opening / closing control unit 71B has a fully closed state among the plurality of decompression devices 30a to 30c when the current operation capacity is equal to or greater than the operation capacity threshold specified by the reference specifying unit 71A. It has a function of opening one of the decompression devices 30a to 30c in the fully closed state.
- FIG. 4 is a schematic view illustrating the opening / closing control of the decompression devices 30a to 30c by the control unit 71 of the refrigeration apparatus 110.
- the control unit 71 optimizes the number of systems through which the refrigerant flows by opening / closing control of the decompression devices 30a to 30c according to the operation conditions and the operation capacity.
- the optimization of the number of systems through which the refrigerant flows means that the evaporator is in a state where it can sufficiently exhibit the heat exchange capability.
- the control unit 71 performs control so that all of the plurality of decompression devices 30a to 30c are in an open state when the refrigeration apparatus 110 is started (operation time is 0 minute). Next, when a certain time has elapsed (operation time 5 minutes), the control unit 71 determines whether or not the current operation capacity is appropriate.
- the control unit 71 since the actual number of operating systems is 3, which is different from the appropriate number of operating systems 1, the control unit 71 is in the open state among the plurality of decompression devices 30a to 30c. One is fully closed. That is, even when the actual number of operating systems is two or more larger than the appropriate number of operating systems, the control unit 71 does not fully close two or more decompression devices, but only closes one decompression device. State.
- the actual number of operating systems is 1, which is different from the appropriate number 3 of operating systems.
- one in the fully closed state is set to the open state. That is, even when the actual number of operating systems is two or more smaller than the appropriate number of operating systems, the control unit 71 does not open the two or more decompression devices, and opens only one decompression device. To do.
- the control unit 71 places only one decompression device in a fully closed or open state, Control to maintain until a certain time elapses. Moreover, even if each detection value output from the detection unit 60 changes due to a change in the operating capacity of the compressor 10 and the appropriate operating capacity changes, the current state is not changed until a certain time elapses. It is configured to maintain the number of systems. For this reason, a sudden change in the operating state of the refrigeration apparatus 110 can be prevented, and a stable operation of the refrigeration apparatus 110 can be realized.
- the refrigeration apparatus 100 and 110 in this Embodiment 1 is provided with two or more decompression apparatuses and evaporators downstream of the compressor 10 and the condenser 20, and the several decompression apparatus by the control part 71 is provided.
- the number of evaporators through which the refrigerant flows can be freely changed. For this reason, even in a region where the refrigerant flow rate is lower, the flow rate of the refrigerant can be secured, and an efficient low-capacity operation can be realized.
- the configuration example is described in which the control unit 71 compares the operating capacity threshold value with the current operating capacity and executes opening / closing control of a plurality of decompression devices.
- the reference specifying unit 71A derives the appropriate number of operating systems from the reference table as the opening / closing reference information
- the opening / closing control unit 71B determines the appropriate number of operating systems and the current number of operating systems derived in the reference specifying unit 71A.
- opening / closing control of a plurality of decompression devices may be executed according to the result of the comparison.
- the storage unit 81 stores another reference table in which the state information is associated with the appropriate number of operating systems, and the reference specifying unit 71A refers to the other reference table as appropriate as the open / close reference information. You may make it derive
- the condensing temperature sensor 61 and the evaporating temperature sensors 62a and 62b are illustrated as the detecting unit 60.
- the present invention is not limited to this, and various types that can be related to the condensing temperature or the evaporating temperature.
- Other sensors that detect the information may be used. That is, for example, a low pressure sensor (not shown) provided at the suction port of the compressor 10 and a high pressure sensor (not shown) provided at the discharge port of the compressor 10 are employed as the detection unit 60. May be.
- another reference table for storing the operating capacity threshold value corresponding to each low pressure and the pressure range due to the high pressure is stored in the storage unit 81, and the reference specifying unit 71A refers to the other reference table.
- the operating capacity threshold value may be specified.
- the operating capacity threshold is determined according to the physical properties of the refrigerant circulating in the refrigerant pipe.
- FIG. 5 is a flowchart showing the operation of the refrigeration apparatuses 100 and 110. Since the operations of the refrigeration apparatuses 100 and 110 are the same, the following description focuses on the operation of the refrigeration apparatus 110 having three systems.
- the opening / closing control unit 71B opens all the decompression apparatuses 30a to 30c. That is, the refrigeration apparatus 110 starts operation by opening all the decompression apparatuses 30a to 30c (FIG. 5: step S101).
- the reference specifying unit 71A inputs the condensation temperature, which is a detection value of the condensation temperature sensor 61, and the evaporation temperature, which is a detection value of the evaporation temperature sensors 62a to 62c (FIG. 5: Step S102).
- the reference specifying unit 71A compares the condensing temperature detected by the condensing temperature sensor 61 and the evaporating temperatures detected by the evaporating temperature sensors 62a to 62c with the closing reference table stored in the storage unit 81. Then, the closing threshold value is read (FIG. 5: Step S103).
- the opening / closing control unit 71B compares the current operating capacity with the closing threshold value read by the reference specifying unit 71A (FIG. 5: Step S104).
- the open / close control unit 71B maintains the decompression devices 30a to 30c in the open state when the current operating capacity is equal to or greater than the closing threshold (FIG. 5: step S104 / No). That is, the refrigeration apparatus 110 continues the operation with the current number of operation systems (FIG. 5: Step S105). Then, after a predetermined time (for example, 5 minutes) elapses, the control unit 71 executes the operations after step S102.
- a predetermined time for example, 5 minutes
- Step S104 when the current operating capacity is less than the closing threshold (FIG. 5: Step S104 / Yes), the opening / closing control unit 71B sets one of the decompression devices 30a to 30c to a fully closed state, One system is closed (FIG. 5: Step S106).
- the reference specifying unit 71A inputs the condensation temperature and the evaporation temperature from the condensation temperature sensor 61 and the evaporation temperature sensors 62a to 62c ( FIG. 5: Step S107), the open-time threshold value is read based on the input condensing temperature and evaporation temperature against the open-time reference table (FIG. 5: Step S108).
- the opening / closing control unit 71B compares the current operating capacity with the opening threshold value read by the reference specifying unit 71A (FIG. 5: step S109), and when the current operating capacity is equal to or greater than the opening threshold value. (FIG. 5: Step S109 / Yes), one of the decompression devices 30a to 30c in the fully closed state is opened to open one system (FIG. 5: Step S110). And the control part 71 performs operation
- the open / close control unit 71B closes the condensation temperature and evaporation temperature input in Step S107.
- the closing threshold value is read in light of the time reference table (FIG. 5: Step S111).
- the opening / closing control unit 71B compares the current operating capacity with the closing threshold value read by the reference specifying unit 71A (FIG. 5: step S112), and when the current operating capacity is equal to or greater than the closing threshold value.
- FIG. 5: Step S112 / No maintains the current open / close state of the decompression devices 30a to 30c. That is, the refrigeration apparatus 110 continues the operation with the current number of operation systems (FIG. 5: Step S113). And when fixed time (for example, 5 minutes) passes, the control part 71 performs operation
- the open / close control unit 71B determines that the number of systems in which the decompression devices 30a to 30c are open is not one (FIG. 5: Step S114 / No), the decompression device 30a in the open state.
- One system is closed by setting one of ⁇ 30c to a fully closed state (FIG. 5: step S115). And when fixed time passes, the control part 71 performs operation
- control unit 71 specifies the operating capacity threshold value at regular intervals by checking the condensation temperature and the evaporation temperature acquired from the condensation temperature sensor 61 and the plurality of evaporation temperature sensors 62a to 62c with reference to the reference table.
- the opening / closing control of the decompression devices 30a to 30c is continuously executed based on the magnitude relationship between the operating capacity and the operating capacity threshold value.
- the operation of the refrigeration apparatus 100 is similar to the operation of the refrigeration apparatus 110 described above, but in the case of the refrigeration apparatus 100 shown in FIG. 1, in step S112 of FIG. 5, either the decompression apparatus 30a or 30b. One is fully closed and the number of operating systems is one. Therefore, in the case of the refrigeration apparatus 100 having two systems, when the current operating capacity is less than the open-time threshold value (FIG. 5: Step S109 / No), the open / close control unit 71B is one of the decompression devices 30a and 30b. May be controlled so as to maintain the current state that is open and the other is fully closed (the process proceeds to step S113).
- the refrigeration apparatuses 100 and 110 of the first embodiment adopt a configuration in which a decompression device and an evaporator having a closing function are arranged in each system where the flow path after the condenser 20 is branched. Yes. And since the control part 71 is comprised so that the opening / closing operation
- the heat transfer area of the evaporator required according to the operating conditions can be ensured, the flow rate of the refrigerant in the region where the refrigerant flow rate is insufficient, and the refrigerating capacity can be prevented from decreasing. Further, even in a region where the refrigerant flow rate is insufficient, stable operation can be realized without changing the unit configuration or the like.
- control unit 71 is in a state in which only one decompression device is fully closed or opened even when there are two or more openings between the actual number of operating systems and the appropriate number of operating systems. And is configured to control such a state to be maintained until a predetermined time elapses. Therefore, according to the refrigeration apparatuses 100 and 110, it is possible to prevent an abrupt change in the operation state, and thus it is possible to prevent a sudden change in the brine temperature, the low pressure, the refrigerant discharge temperature, and the operation capacity due to the sudden change in the operation state. it can.
- the refrigeration apparatus 100 having two systems and the refrigeration apparatus 110 having three systems have been described as examples.
- the refrigeration apparatus according to the first embodiment has two or more arbitrary systems.
- the reference table one or more open reference tables corresponding to the increase control of the number of systems and one or more closed reference tables corresponding to the decrease control of the number of systems are adopted. Is shown.
- the storage unit 81 may store one or a plurality of both-time reference tables corresponding to both the increase control and the decrease control of the number of systems as the reference table.
- Embodiment 2 Next, a refrigeration apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS.
- the refrigeration apparatus according to Embodiment 2 is characterized in that the sizes (heat exchange capacities) of a plurality of evaporators are different from each other.
- description is abbreviate
- FIG. 6 is a schematic diagram showing a schematic configuration of the refrigeration apparatus 120 according to the second embodiment.
- the refrigeration apparatus 120 includes a compressor 10, a condenser 20, a plurality of decompression devices 30a and 30b, a plurality of evaporators 42a and 42b, a check valve 50a and a check valve 50b. ,have.
- the heat transfer area of the evaporator 42a is larger than the heat transfer area of the evaporator 42b.
- the evaporator 42b has a heat transfer area twice that of the evaporator 42a will be described.
- the flow path of the refrigeration apparatus 120 includes a first system that is a flow path in which a decompression device 30a, an evaporator 42a, and a check valve 50a are connected in series, a decompression device 30b, an evaporator 42b, and a check valve 50b. And a second system that is a flow path connected in series.
- the detection unit 60 of the refrigeration apparatus 110 includes a condensation temperature sensor 61 and evaporation temperature sensors 62a and 62b that detect the evaporation temperatures of the plurality of evaporators 42a and 42b as state information.
- the refrigeration apparatus 110 stores a control unit 72 that controls the operation of the plurality of decompression apparatuses 30a and 30b based on the state information, and a capacity table (evaporator capacity table) that associates the state information with the evaporator capacity.
- a storage unit 82 is provided.
- FIG. 7 is an explanatory diagram illustrating a maximum capacity table referred to by the control unit 72 in the refrigeration apparatus 120.
- FIG. 8 is an explanatory diagram illustrating a minimum capacity table referred to by the control unit 72 in the refrigeration apparatus 120.
- the maximum capacity table stores the proper evaporator capacity at the maximum operating capacity of the compressor 10 corresponding to the temperature range depending on each condensation temperature and evaporation temperature.
- the minimum capacity table stores an appropriate evaporator capacity at the time of the minimum operating capacity of the compressor 10 in the temperature range depending on each condensation temperature and evaporation temperature. That is, the capacity table stores an appropriate evaporator capacity at the maximum operating capacity and the minimum operating capacity.
- a plurality of evaporator capacities formed in stages by a combination of the plurality of evaporators 41a and 41b are associated with the open / closed states (flow path patterns) of the plurality of decompression devices 30a and 30b. Opening / closing state specifying data is stored.
- the plurality of evaporator capacities in the open / close state specifying data are a plurality of evaporator capacities that can be realized by the opening / closing control of the plurality of decompression devices 30a and 30b by the control unit 72.
- the control unit 72 includes a reference specifying unit 72A that specifies opening / closing reference information serving as a reference for opening / closing operations of the plurality of decompression devices 30a and 30b from the state information detected by the detection unit 60, and an opening / closing specified by the reference specifying unit 71A. And an open / close control unit 71B that controls the operation of the decompression device 30a or 30b that is fully closed or opened according to the reference information.
- the reference specifying unit 72A obtains an appropriate evaporator capacity by comparing the state information detected by the detector 60 with the capacity table, and a plurality of evaporators formed in stages by a combination of the plurality of evaporators 41a and 41b.
- a capacity close to the determined proper evaporator capacity is specified as the reference evaporator capacity as the switching reference information.
- the open / close control unit 72B controls the open / close operations of the plurality of decompression devices 30a and 30b based on the reference evaporator capacity that is the open / close reference information specified by the reference specifying unit 72A.
- the reference specifying unit 72A reads the proper evaporator capacity at the maximum operating capacity and the minimum operating capacity of the compressor 10, and the appropriate evaporator at the read maximum operating capacity and the minimum operating capacity. Based on the capacity, it has a function of calculating an appropriate evaporator capacity according to the current operating capacity of the compressor 10, for example, by interpolation at a capacity ratio.
- the reference specifying unit 72A specifies the reference evaporator capacity closest to the proper evaporator capacity calculated as described above with reference to each evaporator capacity of the open / close state specifying data.
- the open / close control unit 72B has a function of determining whether or not the current evaporator capacity matches the reference evaporator capacity. Thus, the open / close control unit 72B determines whether or not the current evaporator capacity, that is, the current flow path pattern is appropriate.
- the open / close control unit 72B has a function of maintaining the current open / close state of the plurality of decompression devices 30a and 30b when it is determined that the current evaporator capacity and the reference evaporator capacity match. Further, the open / close control unit 72B has a function of controlling the open / close operation of the plurality of decompression devices 30a and 30b to reduce the evaporator capacity by one step when the current evaporator capacity is larger than the reference evaporator capacity. Further, the opening / closing control unit 72B has a function of increasing the evaporator capacity by one step by controlling the opening / closing operations of the plurality of decompression devices 30a and 30b when the current evaporator capacity is smaller than the reference evaporator capacity.
- the open / close control unit 72B compares the current number of operating systems with the number of operating systems associated with the reference evaporator capacity specified by the reference specifying unit 72A, and a plurality of decompression devices according to the comparison result. You may make it perform opening / closing control of 30a and 30b. That is, the opening / closing control unit 72B may perform control to reduce the evaporator capacity by one step when the current number of operating systems is larger than the appropriate number of operating systems. Moreover, when the current number of operating systems is smaller than the appropriate number of operating systems, the open / close control unit 72B may execute control to increase the evaporator capacity by one step.
- the appropriate number of operating systems is stored in the storage unit 82 in association with the reference evaporator capacity. Moreover, it is good to take the structure that the control part 71 calculates
- the proper evaporator capacity at the minimum operating capacity of the compressor 10 is the minimum value of the reference evaporator capacity, and as shown in FIG.
- the evaporator capacity will not be 0%.
- the open / close control unit 72B is configured not to execute the control for maintaining the state in which at least one system is open as employed in the first embodiment.
- the open / close control unit 72B refers to the open / close state identification data, derives a flow path pattern corresponding to the reference evaporator capacity and a flow path pattern corresponding to the current evaporator capacity, and derives the derived flow path pattern. You may make it determine the system
- the opening / closing control unit 72B performs opening / closing control of the decompression apparatuses 30a and 30b, whereby the decompression apparatuses 30a and 30b.
- the decompression device 30a is fully closed and the decompression device 30b is open
- the decompression device 30a is open and the decompression device 30b is fully closed
- Four flow path patterns are formed when both the decompression devices 30a and 30b are in a fully closed state.
- heat transfer areas heat transfer areas
- FIG. 9 is a schematic view illustrating the opening / closing control of the decompression devices 30a and 30b by the control unit 72 of the refrigeration apparatus 120.
- the state in which both the decompression devices 30a and 30b are open corresponds to the evaporator capacity 100%
- the state in which the decompression device 30a is fully closed and the decompression device 30b is open is the evaporator capacity 66.
- the decompression device 30a is open and the decompression device 30b is fully closed corresponds to the evaporator capacity of 33%.
- the control unit 72 performs control so that the plurality of decompression devices 30a and 30b, which are all decompression devices, are in an open state when the refrigeration apparatus 120 is activated (operating time 0 minutes).
- the opening / closing control unit 72B determines whether or not the current operation capacity is appropriate.
- the actual evaporator capacity is the reference evaporator capacity (the current flow path pattern is an appropriate flow path pattern). Whether or not there is).
- the actual evaporator capacity is 100% (both decompression devices 30a and 30b are open), and the reference evaporator capacity specified in the reference specifying unit 72A is 33%.
- the opening / closing control unit 72B brings the decompression device 30a into a fully closed state.
- the open / close control unit 72B fully closes the decompression device 30b (the actual evaporator capacity is 33). %)), Control is performed to bring it closer to the proper evaporator capacity by one step.
- the actual evaporator capacity is 33% (the decompression device 30a is open and the decompression device 30b is fully closed). Since the reference evaporator capacity specified in the specifying unit 72A is 33%, the open / close control unit 72B maintains the current open / close state of the decompression devices 30a and 30b.
- the open / close control unit 72B opens the decompression device 30a and fully closes the decompression device 30b. That is, even when there are two or more steps between the actual evaporator capacity and the reference evaporator capacity, the open / close control unit 72B opens both the decompression devices 30a and 30b (actual evaporator). The control is performed so as to approach the appropriate evaporator capacity by one step without performing the control (with the capacity of 100%).
- the control unit 72 allows the decompression devices 30a and 30b to operate even when there are two or more stages between the actual evaporator capacity and the reference evaporator capacity (open / close reference information).
- the opening / closing control is performed for one stage, and the opening / closing state of the decompression devices 30a and 30b after the control is maintained until a predetermined time elapses.
- the pressure is reduced until a certain time elapses. It is configured to maintain the current open / closed state of devices 30a and 30b. For this reason, a sudden change in the operating state of the refrigeration apparatus 120 can be prevented, and a stable operation of the refrigeration apparatus 120 can be realized.
- FIG. 6 a configuration having two evaporators 42a and 42b is illustrated, but an arbitrary number of evaporators of two or more may be provided.
- FIG. 10 is a schematic diagram showing three evaporators having different heat exchange capacities constituting the refrigeration apparatus according to the second embodiment.
- FIG. 11 is a table showing the relationship between the combination of the three evaporators of FIG. 10 and the total heat transfer area.
- the evaporators 42a to 42c are configured such that the ratio of the heat transfer areas is “1: 2: 3”.
- decompressors are connected in series to the evaporators 42a to 42c, respectively.
- FIG. 10 is a schematic diagram showing three evaporators having different heat exchange capacities constituting the refrigeration apparatus according to the second embodiment.
- FIG. 11 is a table showing the relationship between the combination of the three evaporators of FIG. 10 and the total heat transfer area.
- the evaporators 42a to 42c are configured such that the ratio of the heat transfer areas is “1: 2: 3”.
- decompressors are connected in series to the evaporators 42a to 42c, respectively.
- the opening / closing control unit 72B performs opening / closing control of each decompression device, so that as shown in FIG. 6 evaporator capacities having different heat transfer areas can be formed by the three evaporators 42a to 42c.
- the open / close control unit 72B may form only one flow path pattern when performing open / close control of each decompression device so that the heat transfer area is 3.
- the opening / closing control unit 72B may appropriately use two flow path patterns having a heat transfer area of 3.
- FIG. 12 is a schematic diagram showing four evaporators having different heat exchange capacities constituting the refrigeration apparatus according to the second embodiment.
- FIG. 13 is a table showing the relationship between the combination of the four evaporators of FIG. 12 and the total heat transfer area.
- the evaporators 42a to 42d are configured such that the ratio of heat transfer areas is “1: 2: 3: 4” as shown in parentheses in FIG.
- the evaporators 42a to 42d are respectively connected in series with decompression devices.
- the decompression devices corresponding to the evaporators 42a to 42d are provided.
- the open state is indicated by “ ⁇ ”, and the fully closed state is indicated by “X”. It is written.
- the heat transfer area of the smallest evaporator 42a is set to 1, and the total heat transfer area that changes according to the open / close state of the decompression device corresponding to each of the evaporators 42a to 42d is 1 to 10. Shown in numbers.
- the opening / closing control unit 72B performs opening / closing control of each decompression device, so that there are 15 flow path patterns as shown in FIG. 10 evaporator capacities can be formed by the difference in the heat transfer area of the four evaporators 42a to 42d (except when the decompression devices are all fully closed). Even if the heat transfer area on the notation in FIG. 13 is the same, the actual heat transfer area is assumed to be different if the flow path pattern is different. For this reason, when there are a plurality of flow path patterns having the same heat transfer area, the open / close control unit 72B may form only one flow path pattern. Further, the open / close control unit 72B may be configured to appropriately use two flow path patterns having the same heat transfer area in order to realize finer capacity division.
- FIG. 14 is a flowchart showing the operation of the refrigeration apparatus 110.
- the opening / closing control unit 72B opens both the decompression apparatuses 30a and 30b. That is, the refrigeration apparatus 120 starts operation with all of the decompression apparatuses 30a and 30b being open (FIG. 14: Step S201).
- the reference specifying unit 72A inputs the condensation temperature that is the detection value of the condensation temperature sensor 61 and the evaporation temperature that is the detection value of the evaporation temperature sensors 62a and 62b (FIG. 14: Step S202), and the input condensation
- the appropriate evaporator capacity at the time of the maximum operation capacity and the minimum operation capacity of the compressor 10 is read in light of the temperature and the condensation temperature in the capacity table (FIG. 14: step S203).
- the reference specifying unit 72A for example, by the interpolation method using the capacity ratio, the current operating capacity of the compressor 10
- the proper evaporator capacity at is calculated (FIG. 14: Step S204).
- the reference specifying unit 72A refers to a plurality of evaporator capacities stored stepwise in the open / close state specifying data, and specifies the evaporator capacity closest to the calculated proper evaporator capacity as the reference evaporator capacity. (FIG. 14: Step S205).
- the open / close control unit 72B determines whether or not the current evaporator capacity matches the reference evaporator capacity (FIG. 14: step S206).
- the open / close control unit 72B maintains the current open / close states of the plurality of decompression devices 30a and 30b. That is, the refrigeration apparatus 120 continues the current operation (FIG. 14: step S207). And control part 72 performs operation after Step S202 after fixed time (for example, 5 minutes) progress.
- the open / close control unit 72B controls the open / close operation of the decompression devices 30a and 30b to thereby adjust the evaporator capacity.
- the open / close control unit 72B executes control to reduce the evaporator capacity by one step, and the current evaporator capacity is the reference evaporator capacity. If it is smaller than that, control for increasing the evaporator capacity by one step is executed (FIG. 14: step S208).
- the open / close control unit 72B has a plurality of plural pressure reduction devices 30a and 30b so that the heat transfer area is reduced by one step.
- the opening / closing control of the decompression devices 30a and 30b is executed.
- the open / close control unit 72B has a plurality of plural pressure reduction devices 30a and 30b so that the heat transfer area is increased by one step.
- the opening / closing control of the decompression devices 30a and 30b is executed (FIG. 14: Step S208).
- control part 72 performs operation after Step S202 after fixed time (for example, 5 minutes) progress.
- the decompression device and the evaporator having the closing function are arranged in each system where the flow path after the condenser 20 is branched, and the control unit 72 includes the detection unit. Since the operation of a plurality of decompression devices is controlled based on the state information detected in 60, the required heat transfer area of the evaporator can be ensured according to the operating conditions, and in the region where the refrigerant flow rate is insufficient While ensuring the flow rate of a refrigerant
- the control unit 72 can form a plurality of evaporator capacities in stages. That is, according to the refrigeration apparatus in the second embodiment, even when a small number of evaporators are mounted, the capacity can be divided finely and the accuracy of optimization of the refrigerant system can be improved. .
- a low pressure sensor provided at the suction port of the compressor 10 and a high pressure sensor provided at the discharge port of the compressor 10 may be employed as the detection unit 60.
- the storage unit 82 stores another capacity table for storing proper evaporator capacities at the time of a plurality of operating capacities of the compressor 10 corresponding to the low pressure and the pressure range due to the high pressure.
- 72A may specify the reference evaporator capacity with reference to the other reference table.
- a plurality of evaporators having the same size may be applied as the configuration of the refrigeration apparatus of the second embodiment. For example, “1: 1: 2” is different from the evaporator having the same size. You may make it apply combining with an evaporator.
- the capacity table referred to by the standard specifying unit 72A is not limited to the capacity table corresponding to the maximum operating capacity and the minimum operating capacity of the compressor 10, and shows, for example, the optimum evaporator capacity corresponding to two different operating capacities. It may be a thing.
- the third embodiment is characterized in that a plurality of pressure reducing parts that do not have a closing function are employed, and a flow path closing part made of, for example, an electromagnetic valve is provided upstream of each pressure reducing part. That is, the refrigeration apparatus of the third embodiment employs a configuration in which opening and closing of each system is realized without depending on, for example, a decompression unit including an expansion valve.
- a decompression unit including an expansion valve is abbreviate
- FIG. 15 is a schematic view illustrating a configuration in which a plurality of evaporators having the same heat exchange capacity are employed in the refrigeration apparatus according to the third embodiment.
- the refrigeration apparatus 130 includes a first system that is a flow path in which a decompression device 31a, an evaporator 41a, and a check valve 50a are connected in series downstream of the compressor 10 and the condenser 20, a decompression device 31b, and an evaporator. 41b, and a second system that is a flow path in which the check valve 50b is connected in series.
- the decompression device 31a includes a decompression unit 90a that decompresses the refrigerant, and a flow path closing unit 91a disposed upstream of the decompression unit 90a.
- the decompression device 31b includes a decompression unit 90b that decompresses the refrigerant, and a flow path closing unit 91b disposed upstream of the decompression unit 90b.
- the control unit 73 controls the opening / closing operations of the plurality of decompression units 90a and 90b and the opening / closing operations of the flow path closing units 91a and 91b based on the state information input from the detection unit 60.
- the decompression units 90a and 90b do not have a function of closing the refrigerant and are not fully closed. Therefore, the open / close control unit 73B determines whether the first system or the second system is based on the magnitude relationship between the operating capacity threshold as the reference evaporator capacity specified by the reference specifying part 71A and the current operating capacity of the compressor 10. When any of the systems is closed (fully closed), control is performed to close the flow path closing portion 91a or the flow path closing portion 91b.
- FIG. 16 is a schematic view illustrating a configuration employing a plurality of evaporators having different heat exchange capacities in the refrigeration apparatus according to the third embodiment.
- the refrigeration apparatus 140 is a flow path in which a decompression device 31a having a decompression section 90a and a flow path closing section 91a, an evaporator 42a, and a check valve 50a are connected in series on the downstream side of the compressor 10 and the condenser 20.
- the first system has a second system that is a flow path in which a decompression device 31b having a decompression section 90b and a flow path closing section 91b, an evaporator 42b, and a check valve 50b are connected in series. That is, the difference from the refrigeration apparatus 130 shown in FIG. 15 is that the heat exchange capacities of the evaporators are different from each other.
- the control unit 74 controls the opening / closing operations of the plurality of decompression units 90a and 90b and the opening / closing operations of the flow path closing units 91a and 91b based on the state information input from the detection unit 60.
- the opening / closing control unit 74B when closing either the first system or the second system based on the reference evaporator capacity specified by the reference specifying unit 72A (to make the circuit fully closed), Control is performed to close the closing portion 91a or the flow path closing portion 91b.
- the refrigeration apparatuses 130 and 140 configured as described above, by closing the flow path closing part 91a or the flow path closing part 91b, even if the opening of the decompression part 90a or 90b is not in a fully closed state, Each system can be closed. Therefore, according to the refrigeration apparatuses 130 and 140, even when either the first system or the second system is closed, the openings of the plurality of decompression units 90a or 90b are maintained in a state that is not fully closed. Can do. That is, since the refrigeration apparatuses 130 and 140 have a configuration in which the opening degrees of the plurality of decompression units 90a or 90b are not fully closed, for example, a liquid shock generated when the decompression unit including the expansion valve is opened from the fully closed state. Can be suppressed.
- the opening-and-closing control part 73B or the opening-and-closing control part 74B does either of each system
- the opening degree of the plurality of decompression units 90a or 90b can be adjusted to the opening degree corresponding to the current operating conditions earlier.
- an electromagnetic valve is shown as an example of the flow path closing portion.
- the present invention is not limited to this, and a valve that can be manually closed may be adopted as the flow path closing portion.
- control unit 73 or the control unit 74 may be configured to control the opening / closing operation of the flow path closing units 91a and 91b and not to control the operation of the plurality of decompression units 90a and 90b.
- decompression units 90a and 90b expansion valves or the like having a closing function may be employed.
- the refrigeration apparatus has a configuration having an arbitrary number of evaporators and decompression devices of two or more, and the control unit performs operation control of the arbitrary number of decompression devices based on the state information. You may do it. That is, the refrigeration apparatus of each embodiment may include an arbitrary number of systems of two or more systems.
- 1, 3, 6, 15, and 16 exemplify the configuration having a plurality of check valves connected in series to each of the plurality of evaporators, the refrigeration apparatuses 100, 110, 120, 130 and 140 are good also as a structure which does not provide a check valve in each system
- the ratio of the heat transfer areas of the plurality of evaporators may be set to be “1: 2: 2 2 : 2 3 :.
- each control unit performs opening / closing control of a plurality of decompression devices in one step (one system) at regular time intervals.
- the above open / close control may be performed. That is, for example, in the configuration of the first embodiment, the number of systems to be opened and closed may be changed according to the difference between the current operating capacity and the operating capacity threshold.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Air Conditioning Control Device (AREA)
Abstract
圧縮機と、圧縮機の吐出側に接続された凝縮器と、全閉する機能を有し、凝縮器に接続された複数の減圧装置と、複数の減圧装置のそれぞれに接続された複数の蒸発器と、凝縮器及び複数の蒸発器の状態を示す状態情報を検出する検出部と、検出部において検出された状態情報から複数の減圧装置の開閉動作の基準となる開閉基準情報を特定する基準特定部と、基準特定部において特定された開閉基準情報に応じて全閉又は開の状態にする減圧装置の動作を制御する開閉制御部と、を有する冷凍装置によって、冷媒の流速を確保する。
Description
本発明は、冷凍装置に関し、冷凍能力の低下を抑制する冷凍装置に関する。
従来の冷凍装置では、冷媒流量が少なくなる領域における冷凍能力の低下又は低圧圧力の低下を抑制するために、例えば、冷媒の過熱度などを制御目標とし、各種減圧装置によって冷媒の流速を調整するという手法が用いられている(例えば特許文献1参照)。
特許文献1には、圧縮機の吸込圧力が凍結異常を示す設定値より小さい場合でも、冷媒過熱度が所定過熱度より大きいときは、冷媒供給不足による冷媒側伝熱性能の低下であると識別し、冷凍装置の運転を停止させることなく、圧縮機の容量を低減させるという技術が開示されている。
しかしながら、特許文献1の冷凍装置は、多すぎる冷媒流量を膨張弁による減圧処理等によって調整するものであるため、冷媒流量そのものが少なすぎて足りない領域での運転は行うことができないという課題がある。また、冷媒流量が不足すると、蒸発器の容量が不変であることも相まって冷媒の流速が低下し、蒸発器における分配機能が悪化する。このため、運転が可能な状況であっても、伝熱面積を十分に活かした熱交換が行われず、冷凍能力が低下するという課題がある。
本発明は、上記のような課題を解決するためになされたもので、冷媒流量が不足する領域での冷媒の流速を確保し、冷凍能力の低下を抑制する冷凍装置を提供することを目的とする。
本発明に係る冷凍装置は、圧縮機と、圧縮機の吐出側に接続された凝縮器と、全閉する機能を有し、凝縮器に接続された複数の減圧装置と、複数の減圧装置のそれぞれに接続された複数の蒸発器と、凝縮器及び複数の蒸発器の状態を示す状態情報を検出する検出部と、検出部において検出された状態情報から複数の減圧装置の開閉動作の基準となる開閉基準情報を特定する基準特定部と、基準特定部において特定された開閉基準情報に応じて全閉又は開の状態にする減圧装置の動作を制御する開閉制御部と、を有するものである。
本発明は、凝縮器の下流に複数の減圧装置を有すると共に、制御部が、凝縮器及び複数の蒸発器の状態を示す状態情報に基づいて、複数の減圧装置を個別に全閉又は開の状態とするように構成されているため、冷媒流量が不足する領域での冷媒の流速を確保し、冷凍能力の低下を抑制することができる。
[実施の形態1]
図1は、本発明の実施の形態1に係る冷凍装置のうち、2系統を備えた構成を示す模式図である。図1に示すように、冷凍装置100は、圧縮機10と、圧縮機10の吐出側に接続された凝縮器20と、例えば冷媒流路の閉止機能を有する膨張弁からなり、凝縮器20に接続された複数の減圧装置30a及び30bと、複数の減圧装置30a及び30bのそれぞれに接続された複数の蒸発器41a及び41bと、を有している。蒸発器41aと蒸発器41bとは、同じ熱交換容量であり、具体的には、同じ伝熱面積を有している。また、冷凍装置100は、蒸発器41aへの冷媒の流入を防止する逆止弁50aと、蒸発器41bへの冷媒の流入を防止する逆止弁50bと、を有している。逆止弁50a及び50bは、冷媒配管の特定の場所に冷媒が溜まる現象(いわゆる寝込み)を防ぐためにも機能する。
図1は、本発明の実施の形態1に係る冷凍装置のうち、2系統を備えた構成を示す模式図である。図1に示すように、冷凍装置100は、圧縮機10と、圧縮機10の吐出側に接続された凝縮器20と、例えば冷媒流路の閉止機能を有する膨張弁からなり、凝縮器20に接続された複数の減圧装置30a及び30bと、複数の減圧装置30a及び30bのそれぞれに接続された複数の蒸発器41a及び41bと、を有している。蒸発器41aと蒸発器41bとは、同じ熱交換容量であり、具体的には、同じ伝熱面積を有している。また、冷凍装置100は、蒸発器41aへの冷媒の流入を防止する逆止弁50aと、蒸発器41bへの冷媒の流入を防止する逆止弁50bと、を有している。逆止弁50a及び50bは、冷媒配管の特定の場所に冷媒が溜まる現象(いわゆる寝込み)を防ぐためにも機能する。
圧縮機10と、凝縮器20と、複数の減圧装置30a及び30bと、複数の蒸発器41a及び41bと、逆止弁50a及び50bとは、冷媒配管によって順次接続された冷媒回路を構成し、冷媒配管内では、冷媒が循環するように構成されている。冷凍装置100の流路は、減圧装置30a及び30bの上流において2系統に分岐されている。すなわち、冷凍装置100は、圧縮機10及び凝縮器20の下流に、減圧装置30aと蒸発器41aと逆止弁50aとが直列に接続された流路である第1系統と、減圧装置30bと蒸発器41bと逆止弁50bとが直列に接続された流路である第2系統とを有している。図1に示す通り、第1系統を構成する減圧装置30a、蒸発器41a、及び逆止弁50aと、第2系統を構成する減圧装置30b、蒸発器41b、及び逆止弁50bとは、並列に接続されている。減圧装置30aは、冷媒を減圧して膨張させる機能及び第1系統を閉鎖して冷媒が流れないようにする機能を有し、減圧装置30bは、冷媒を減圧して膨張させる機能及び第2系統を閉鎖して冷媒が流れないようにする機能を有している。
さらに、冷凍装置100は、凝縮器20及び複数の蒸発器41a及び41bの状態を示す状態情報を検出する検出部60と、検出部60において検出された状態情報に基づいて複数の減圧装置30a及び30bを個別に全閉又は開の状態とする制御部71と、状態情報と圧縮機10の運転容量(例えば運転周波数)とを関連づけた基準テーブル(運転容量テーブル)を記憶する記憶部81を有している。検出部60は、凝縮器20の凝縮温度を状態情報として検出する凝縮温度センサ61と、複数の蒸発器41a及び41bの蒸発温度を状態情報として検出する蒸発温度センサ62a及び62bと、を有している。
制御部71は、複数の減圧装置30a及び30bのそれぞれの開度が、全閉又は開の状態となるように制御するものであり、具体的には、検出部60において検出された状態情報から複数の減圧装置30a及び30bの開閉動作の基準となる開閉基準情報を特定する基準特定部71Aと、基準特定部71Aにおいて特定された開閉基準情報に応じて全閉又は開の状態にする減圧装置30a又は30bの動作を制御する開閉制御部71Bと、を有している。
記憶部81内の基準テーブルには、本実施の形態1における開閉基準情報である運転容量閾値が状態情報(凝縮温度及び蒸発温度)に関連づけられて記憶されている。すなわち、基準テーブルは、各凝縮温度及び蒸発温度による温度域に対応する運転容量閾値を有している。すなわち、基準特定部71Aは、凝縮温度センサ61において検出された凝縮温度及び蒸発温度センサ62a及び62bにおいて検出された蒸発温度を基準テーブルに照らして上記開閉基準情報としての運転容量閾値を特定するものであり、開閉制御部71Bは、基準特定部71Aにおいて特定された運転容量閾値と圧縮機10の現在の運転容量との大小関係をもとに、複数の減圧装置30a及び30bの開閉動作を制御するものである。
なお、図1のような制御部71の構成は、補助記憶装置に読み込まれた制御プログラムをマイコンもしくはコンピュータ(たとえばパーソナルコンピュータ等)上で実行することにより実現される。制御プログラムは、CD-ROM等の情報記憶媒体に記憶され、もしくはインターネット等のネットワークを介して配布され、コンピュータにインストールされることになる。
また、開閉基準情報としての運転容量閾値は、冷媒配管を循環する冷媒の物性に応じて決定されるものである。そして、基準テーブルは、各温度域における運転容量と運転系統数との間に、ある程度の比例相関(運転容量が高いほど運転系統数を増加させるといった関係)を持たせるように設定する。ここで、運転系統数とは、減圧装置が開の状態にあり、対応する蒸発器に冷媒が流れている系統の数をいう。
凝縮温度センサ61は、凝縮器20の凝縮温度を検出し、検出した凝縮温度を基準特定部71Aに出力するものである。また、蒸発温度センサ62aと蒸発温度センサ62bとは、それぞれ、蒸発器41aと蒸発器41bとの蒸発温度を検出し、検出した蒸発温度を基準特定部71Aに出力するものである。よって、基準特定部71Aは、凝縮温度及び蒸発温度を一定時間(例えば5分)ごとに入力し、凝縮温度及び蒸発温度の経時的変化を把握することができる。
開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値未満の場合に、開の状態にある複数の減圧装置30a及び30bのうちの1つを全閉の状態にする(運転系統数を1つだけ減らす)機能を有する。また、開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値未満の場合に、複数の減圧装置30a及び30bのうちで開の状態にあるものが1つであれば、複数の減圧装置30a及び30bの開閉状態を維持させる(運転系統数を維持する)機能を有する。さらに、開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値以上の場合に、複数の減圧装置30a及び30bのうちで全閉の状態にあるものがあれば、全閉の状態にある減圧装置30a及び30bのうちの1つを開の状態にする(運転系統数を1つだけ増やす)機能を有する。
記憶部81には、基準テーブルとして、開閉制御部71Bが、複数の減圧装置30a及び30bのうちの1つを全閉の状態とする際に参照する閉時基準テーブルと、複数の減圧装置30a及び30bのうちの1つを開の状態とする際に参照する開時基準テーブルとが格納されている。閉時基準テーブルには、運転容量閾値として、減圧装置30a及び30bの閉動作の基準となる閉時閾値が、凝縮温度及び蒸発温度に関連づけて記憶されている。また、開時基準テーブルは、減圧装置30a及び30bの開動作の基準となる開時閾値が、凝縮温度及び蒸発温度に関連づけて記憶されている。
図2は、冷凍装置100において、制御部71が参照する基準テーブルの例を示す説明図であり、具体的には、閉時基準テーブルを例示するものである。基準テーブルは、運転系統数を変化させるべき状態にあるか否かを特定するための情報であり、図2に例示する閉時基準テーブルは、制御部71が、2系統運転から1系統運転に切り替える際の基準となる運転容量閾値を有している。例えば、蒸発温度が-13℃であり、かつ凝縮温度が38℃であれば、蒸発温度が-15℃以上-10℃未満で、かつ凝縮温度が35℃以上40℃未満の温度域であるため、基準特定部71Aは、閉時閾値として50%を読み取って開閉制御部71Bに送信する。開閉制御部71Bは、現在の運転容量が50%未満であれば、減圧装置30a又は30bのうちの1つを全閉の状態とし、2系統運転から1系統運転に切り替えるように制御する。
すなわち、基準特定部71Aは、検出部60において検出された凝縮温度及び蒸発温度が属する温度域の運転容量閾値を基準テーブルから読み取って開閉制御部71Bに送信するものである。また、開閉制御部71Bは、現在の運転容量と基準特定部71Aにおいて特定された運転容量閾値との大小関係をもとに、運転系統数の切り替えを行うものである。
図3は、本実施の形態1に係る冷凍装置のうち、3系統を備えた構成を示す模式図である。冷凍装置100と同等の構成部材については、同一の符号を用いて詳細な説明を省略する。図3に示すように、冷凍装置110の冷媒配管による流路は、減圧装置30a~30cの上流において3系統に分岐されている。すなわち、冷凍装置110は、圧縮機10及び凝縮器20の下流側に、減圧装置30aと蒸発器41aと逆止弁50aとが直列に接続された流路である第1系統と、減圧装置30bと蒸発器41bと逆止弁50bとが直列に接続された流路である第2系統と、減圧装置30cと蒸発器41cと逆止弁50cとが直列に接続された流路である第3系統と、を有している。複数の蒸発器41a~41cは、同じ熱交換容量を有しており、具体的には、同じ伝熱面積を有している。
冷凍装置110において、検出部60は、凝縮器20の凝縮温度を状態情報として検出する凝縮温度センサ61と、複数の蒸発器41a~41cの蒸発温度を状態情報として検出する蒸発温度センサ62a~62cと、を有している。記憶部81内の基準テーブルには、減圧装置30a~30cの開閉動作の基準となる運転容量閾値が、凝縮温度及び蒸発温度に関連づけられて記憶されている。すなわち、記憶部81には、基準テーブルとして、3系統運転から2系統運転への切替基準と、2系統運転から1系統運転への切替基準とをそれぞれ格納した閉時基準テーブルと、1系統運転から2系統運転への切替基準と、2系統運転から3系統運転への切替基準とをそれぞれ格納した開時基準テーブルと、が記憶されている。
制御部71は、検出部60において検出された状態情報に基づいて、複数の減圧装置30a~30cを個別に全閉又は開の状態とするものである。すなわち、開閉制御部71Bは、基準特定部71Aにおいて特定された運転容量閾値と圧縮機10の現在の運転容量との大小関係をもとに複数の減圧装置30a~30cの開閉動作を制御するものである。
開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値未満の場合に、複数の減圧装置30a~30cのうちの1つを全閉の状態にする機能を有する。また、開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値未満の場合に、複数の減圧装置30a~30cのうちで開の状態にあるものが1つであれば、複数の減圧装置30a~30cの開閉状態を維持させる機能を有する。さらに、開閉制御部71Bは、現在の運転容量が基準特定部71Aにおいて特定された運転容量閾値以上の場合に、複数の減圧装置30a~30cのうちで全閉の状態にあるものがあれば、全閉の状態にある減圧装置30a~30cのうちの1つを開の状態にする機能を有する。
次に、図4を参照して、制御部71が運転状態の急変を防止するために行う減圧装置30a~30cの開閉制御を、運転系統数の観点から説明する。図4は、冷凍装置110の制御部71による減圧装置30a~30cの開閉制御を例示する模式図である。制御部71は、運転条件及び運転容量に応じた減圧装置30a~30cの開閉制御により、冷媒が流れる系統数を適正化する。ここで、冷媒が流れる系統数の適正化とは、蒸発器が熱交換能力を十分に発揮することができる状態にすることを意味する。
図4に示すように、制御部71は、冷凍装置110の起動時(運転時間0分)に、複数の減圧装置30a~30cの全てが開の状態となるように制御する。次いで、一定時間が経過した際(運転時間5分)に、制御部71は、現状の運転容量が適正であるか否かを判定する。ここで、図4では、実際の運転系統数が3であり、適正な運転系統数1とは異なるため、制御部71は、複数の減圧装置30a~30cのうちで、開の状態にある1つを全閉の状態とする。すなわち、実際の運転系統数が適正な運転系統数より2以上大きい場合でも、制御部71は、2以上の減圧装置を全閉の状態とはせずに、1つの減圧装置だけを全閉の状態とする。
続いて、図4では、一定時間が経過した際(運転時間10分)に、実際の運転系統数が2であり、適正な運転系統数1とは異なるため、制御部71は、複数の減圧装置30a~30cのうちで、開の状態にある1つを全閉の状態とする。
次いで、図4では、一定時間が経過した際(運転時間15分)に、実際の運転系統数が1であり、適正な運転系統数3とは異なるため、制御部71は、複数の減圧装置30a~30cのうちで、全閉の状態にある1つを開の状態とする。すなわち、制御部71は、実際の運転系統数が適正な運転系統数より2以上小さい場合でも、2以上の減圧装置を開の状態とはせずに、1つの減圧装置だけを開の状態とする。
続いて、図4では、一定時間が経過した際(運転時間20分)に、実際の運転系統数が2であり、適正な運転系統数3とは異なるため、制御部71は、複数の減圧装置30a~30cのうちで、全閉の状態にある1つを開の状態とする。
上記の通り、制御部71は、実際の運転系統数と適正な運転系統数との間に2以上の開きがある場合でも、1つの減圧装置だけを全閉又は開の状態とし、かかる状態を一定時間が経過するまで維持するように制御する。また、圧縮機10の運転容量そのものの変化に起因して、検出部60から出力される各検出値が変化し、適正な運転容量が変化した場合でも、一定時間が経過するまでは、現状の系統数を維持するように構成されている。このため、冷凍装置110の運転状態の急変を防止することができ、冷凍装置110の安定的な動作を実現することができる。すなわち、制御部71による上記制御により、運転系統数の急激な変化を抑制し、運転系統数の変化に伴って発生する運転状態の変化を緩和することができる。このため、運転状態の急変によるブライン温度、低圧圧力、冷媒の吐出温度、及び運転容量の急激な変化を防ぐことができる。
そして、本実施の形態1における冷凍装置100及び110は、上記の通り、圧縮機10及び凝縮器20の下流に、減圧装置及び蒸発器が複数設けられており、制御部71による複数の減圧装置の開閉制御により、冷媒が流れる蒸発器の数を自在に変更することができる。このため、より低冷媒流量となる領域においても、冷媒の流速を確保することができ、効率のよい低容量運転を実現することができる。
上記構成例では、制御部71が、運転容量閾値と現在の運転容量とを比較して、複数の減圧装置の開閉制御を実行する構成例を説明している。しかし、基準特定部71Aが、基準テーブルから適正な運転系統数を開閉基準情報として導出し、開閉制御部71Bが、基準特定部71Aにおいて導出された適正な運転系統数と現在の運転系統数とを比較して、当該比較の結果に応じて複数の減圧装置の開閉制御を実行するようにしてもよい。また、記憶部81に、状態情報と適正な運転系統数とを関連づけた他の基準テーブルを格納しておき、基準特定部71Aが、当該他の基準テーブルを参照して開閉基準情報としての適正な運転系統数を導出するようにしてもよい。現在の運転系統数は、開閉制御部71Bが、各減圧装置30a及び30bが全閉となっているか否かを検出することにより求めるという構成を採るとよい。
なお、本実施の形態1では、検出部60として、凝縮温度センサ61と蒸発温度センサ62a及び62bとを例示しているが、これに限定されず、凝縮温度又は蒸発温度に関連づけが可能な種々の情報を検出する他のセンサ等を採用してもよい。すなわち、検出部60として、例えば、圧縮機10の吸込み口に設ける低圧用圧力センサ(図示せず)と、圧縮機10の吐出し口に設ける高圧用圧力センサ(図示せず)とを採用してもよい。そして、記憶部81に、各低圧圧力及び高圧圧力による圧力域に対応する運転容量閾値を記憶する別の基準テーブルを格納しておき、基準特定部71Aが、当該別の基準テーブルを参照して運転容量閾値を特定するようにしてもよい。なお、運転容量閾値は、冷媒配管を循環する冷媒の物性に応じて決定される。
次に、図5を参照して、冷凍装置100及び110の動作を説明する。図5は、冷凍装置100及び110の動作を示すフローチャートである。冷凍装置100及び110の動作は同様であるため、以下では、3系統を備えた冷凍装置110の動作を中心に説明する。
まず、冷凍装置110の起動時において、開閉制御部71Bは、全ての減圧装置30a~30cを開の状態とする。すなわち、冷凍装置110は、減圧装置30a~30cの全てを開にして運転を開始する(図5:ステップS101)。次いで、基準特定部71Aは、凝縮温度センサ61の検出値である凝縮温度と、蒸発温度センサ62a~62cの検出値である蒸発温度とを入力する(図5:ステップS102)。次に、基準特定部71Aは、凝縮温度センサ61において検出された凝縮温度と、蒸発温度センサ62a~62cにおいて検出された蒸発温度とを、記憶部81に記憶されている閉時基準テーブルに照らして、閉時閾値を読み取る(図5:ステップS103)。
続いて、開閉制御部71Bは、現在の運転容量と基準特定部71Aにおいて読み取られた閉時閾値とを比較する(図5:ステップS104)。開閉制御部71Bは、現在の運転容量が閉時閾値以上の場合(図5:ステップS104/No)、減圧装置30a~30cを開の状態で維持させる。すなわち、冷凍装置110は、現状の運転系統数での運転を続行する(図5:ステップS105)。そして、一定時間(例えば5分)経過後に、制御部71は、ステップS102以降の動作を実行する。
一方、開閉制御部71Bは、現在の運転容量が閉時閾値未満である場合(図5:ステップS104/Yes)、減圧装置30a~30cのうちの1つを全閉の状態とすることで、一系統を閉鎖する(図5:ステップS106)。
前回の処理(ステップS102~S106)から一定時間(例えば5分)が経過すると、基準特定部71Aは、凝縮温度センサ61と蒸発温度センサ62a~62cとから凝縮温度と蒸発温度とを入力し(図5:ステップS107)、入力した凝縮温度及び蒸発温度を開時基準テーブルに照らして開時閾値を読み取る(図5:ステップS108)。
そして、開閉制御部71Bは、現在の運転容量と基準特定部71Aによって読み取られた開時閾値とを比較して(図5:ステップS109)、現在の運転容量が開時閾値以上である場合に(図5:ステップS109/Yes)、全閉の状態にある減圧装置30a~30cのうちの1つを開の状態とすることで、一系統を開放する(図5:ステップS110)。そして、制御部71は、一定時間(例えば5分)経過後に、ステップS102以降の動作を実行する。
一方、開閉制御部71Bは、現在の運転容量が開時閾値未満である場合に(図5:ステップS109/No)、基準特定部71Aは、上記ステップS107において入力した凝縮温度及び蒸発温度を閉時基準テーブルに照らして閉時閾値を読み取る(図5:ステップS111)。そして、開閉制御部71Bは、現在の運転容量と基準特定部71Aによって読み取られた閉時閾値とを比較して(図5:ステップS112)、現在の運転容量が閉時閾値以上である場合には(図5:ステップS112/No)、減圧装置30a~30cの現在の開閉状態を維持させる。すなわち、冷凍装置110は、現状の運転系統数での運転を続行する(図5:ステップS113)。そして、一定時間(例えば5分)が経過した際に、制御部71は、ステップS107以降の動作を実行する。
また、現在の運転容量が閉時閾値未満である場合に(図5:ステップS112/Yes)、開閉制御部71Bは、減圧装置30a~30cが開の状態にある系統数が1つ(運転系統数=1)であるか否かを判定する(図5:ステップS114)。開閉制御部71Bは、減圧装置30a~30cが開の状態にある系統数が1つであると判定した場合(図5:ステップS114/Yes)、減圧装置30a~30cの現在の開閉状態を維持させる。すなわち、冷凍装置110は、現状の運転系統数での運転を続行する(図5:ステップS113)。そして、一定時間が経過した際に、制御部71は、ステップS107以降の動作を実行する。
これに対し、開閉制御部71Bは、減圧装置30a~30cが開の状態にある系統数が1つではないと判定した場合(図5:ステップS114/No)、開の状態にある減圧装置30a~30cのうちの1つを全閉の状態とすることで、一系統を閉鎖する(図5:ステップS115)。そして、一定時間が経過した際に、制御部71は、ステップS107以降の動作を実行する。
すなわち、制御部71は、一定時間ごとに、凝縮温度センサ61と複数の蒸発温度センサ62a~62cとから取得した凝縮温度と蒸発温度とを基準テーブルに照らして運転容量閾値を特定すると共に、現在の運転容量と運転容量閾値との大小関係に基づいて減圧装置30a~30cの開閉制御を継続的に実行する。
ところで、冷凍装置100の動作についても、上記において説明した冷凍装置110の動作と同様であるが、図1に示す冷凍装置100の場合、図5のステップS112では、減圧装置30a又は30bの何れか一方が全閉の状態にあり、運転系統数は1である。したがって、2系統を備えた冷凍装置100の場合には、現在の運転容量が開時閾値未満の場合に(図5:ステップS109/No)、開閉制御部71Bが、減圧装置30a及び30bの一方が開で他方が全閉という現状を維持する(ステップS113に移行する)ように制御してもよい。
以上のように、本実施の形態1の冷凍装置100及び110は、凝縮器20以降の流路を分岐させた各系統に、閉止機能を有する減圧装置及び蒸発器を配置するという構成を採っている。そして、制御部71が、凝縮器20及び複数の蒸発器の状態を示す状態情報に基づいて複数の減圧装置の開閉動作を制御するように構成されているため、冷凍装置100及び110によれば、運転条件に応じて必要となる蒸発器の伝熱面積を確保することができ、冷媒流量が不足する領域での冷媒の流速を確保すると共に、冷凍能力の低下を抑制することができる。また、冷媒流量が不足する領域においても、ユニットの構成等を変更することなく、安定した運転を実現することができる。
さらに、本実施の形態1において、制御部71は、実際の運転系統数と適正な運転系統数との間に2以上の開きがある場合でも、1つの減圧装置だけを全閉又は開の状態とし、かかる状態を一定時間が経過するまで維持するように制御するように構成されている。したがって、冷凍装置100及び110によれば、運転状態の急変を防止することができるため、運転状態の急変によるブライン温度、低圧圧力、冷媒の吐出温度、及び運転容量の急激な変化を防ぐことができる。
なお、上記においては、2系統を備えた冷凍装置100と、3系統を備えた冷凍装置110とを例示して説明を行ったが、本実施の形態1の冷凍装置は、2系統以上の任意の数の系統を備えていてもよい。すなわち、蒸発器と減圧装置とを有する系統が、2以上の任意の数だけ設けられた冷凍装置であってよく、記憶部81には、採用した系統数に対応づけた複数の基準テーブルを格納しておくようにしてもよい。また、上記の説明では、基準テーブルとして、系統数の増加制御に対応する一又は複数の開時基準テーブルと、系統数の減少制御に対応する一又は複数の閉時基準テーブルとを採用した例を示している。しかし、記憶部81には、基準テーブルとして、系統数の増加制御及び減少制御の双方に対応する一又は複数の両時基準テーブルを記憶しておくようにしてもよい。
[実施の形態2]
次に、本発明の実施の形態2に係る冷凍装置を図6~図14に基づいて説明する。本実施の形態2に係る冷凍装置は、複数の蒸発器のサイズ(熱交換容量)が相互に異なる点に特徴がある。前述した実施の形態1と同一の構成部材については、同一の符号を用いて説明を省略する。
次に、本発明の実施の形態2に係る冷凍装置を図6~図14に基づいて説明する。本実施の形態2に係る冷凍装置は、複数の蒸発器のサイズ(熱交換容量)が相互に異なる点に特徴がある。前述した実施の形態1と同一の構成部材については、同一の符号を用いて説明を省略する。
図6は、本実施の形態2に係る冷凍装置120の概略構成を示す模式図である。図6に示すように、冷凍装置120は、圧縮機10と、凝縮器20と、複数の減圧装置30a及び30bと、複数の蒸発器42a及び42bと、逆止弁50a及び逆止弁50bと、を有している。蒸発器42aの伝熱面積は、蒸発器42bの伝熱面積よりも大きくなっている。本実施の形態2では、蒸発器42bが、蒸発器42aの2倍の伝熱面積を有する例について説明する。
冷凍装置120の流路には、減圧装置30aと蒸発器42aと逆止弁50aとが直列に接続された流路である第1系統と、減圧装置30bと蒸発器42bと逆止弁50bとが直列に接続された流路である第2系統とが形成されている。また、冷凍装置110の検出部60は、凝縮温度センサ61と、複数の蒸発器42a及び42bの蒸発温度を状態情報として検出する蒸発温度センサ62a及び62bと、を有している。さらに、冷凍装置110は、状態情報に基づいて複数の減圧装置30a及び30bの動作を制御する制御部72と、状態情報と蒸発器容量とを関連づけた容量テーブル(蒸発器容量テーブル)を記憶する記憶部82を有している。
記憶部82には、容量テーブルとして、圧縮機10の最大運転容量時(最大運転周波数時)における適正な蒸発器容量を示す最大容量テーブルと、圧縮機10の最小運転容量時(最小運転周波数時)における適正な蒸発器容量を示す最小容量テーブルとが記憶されている。図7は、冷凍装置120において、制御部72が参照する最大容量テーブルを例示する説明図である。図8は、冷凍装置120において、制御部72が参照する最小容量テーブルを例示する説明図である。
より具体的に、最大容量テーブルは、各凝縮温度及び蒸発温度による温度域に対応する圧縮機10の最大運転容量時の適正な蒸発器容量を記憶するものである。また、最小容量テーブルは、各凝縮温度及び蒸発温度による温度域における圧縮機10の最小運転容量時の適正な蒸発器容量を記憶するものである。すなわち、容量テーブルは、最大運転容量時及び最小運転容量時における適正な蒸発器容量を記憶するものである。
また、記憶部82には、複数の蒸発器41a及び41bの組み合わせによって段階的に形成される複数の蒸発器容量が、複数の減圧装置30a及び30bの開閉状態(流路パターン)に関連づけられた開閉状態特定データが記憶されている。開閉状態特定データ内の複数の蒸発器容量は、制御部72による複数の減圧装置30a及び30bの開閉制御にて実現可能な複数の蒸発器容量である。
制御部72は、検出部60において検出された状態情報から複数の減圧装置30a及び30bの開閉動作の基準となる開閉基準情報を特定する基準特定部72Aと、基準特定部71Aにおいて特定された開閉基準情報に応じて全閉又は開の状態にする減圧装置30a又は30bの動作を制御する開閉制御部71Bと、を有している。基準特定部72Aは、検出部60において検出された状態情報を容量テーブルに照らして適正な蒸発器容量を求めると共に、複数の蒸発器41a及び41bの組み合わせによって段階的に形成される複数の蒸発器容量の中から、求めた適正な蒸発器容量に近いものを、上記開閉基準情報である基準蒸発器容量として特定するものである。また、開閉制御部72Bは、基準特定部72Aにおいて特定された上記開閉基準情報である基準蒸発器容量をもとに、複数の減圧装置30a及び30bの開閉動作を制御するものである。
より具体的に、基準特定部72Aは、圧縮機10の最大運転容量時及び最小運転容量時における適正な蒸発器容量を読み取ると共に、読み取った最大運転容量時及び最小運転容量時における適正な蒸発器容量をもとに、例えば容量比での内挿によって現在の圧縮機10の運転容量に応じた適正な蒸発器容量を算出する機能を有している。そして、基準特定部72Aは、開閉状態特定データの各蒸発器容量を参照し、上記により算出した適正な蒸発器容量に最も近い基準蒸発器容量を特定するものである。また、開閉制御部72Bは、現在の蒸発器容量と基準蒸発器容量とが一致するか否かを判定する機能を有している。これにより、開閉制御部72Bは、現在の蒸発器容量、すなわち、現在の流路パターンが適正であるか否かを判定する。
開閉制御部72Bは、現在の蒸発器容量と基準蒸発器容量とが一致すると判定した場合に、複数の減圧装置30a及び30bの現在の開閉状態を維持させる機能を有する。また、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量よりも大きい場合に、複数の減圧装置30a及び30bの開閉動作を制御して蒸発器容量を一段階だけ減らす機能を有する。さらに、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量よりも小さい場合に、複数の減圧装置30a及び30bの開閉動作を制御して蒸発器容量を一段階だけ増やす機能を有する。
また、開閉制御部72Bは、現在の運転系統数と、基準特定部72Aにおいて特定された基準蒸発器容量に関連づけられた運転系統数とを比較し、当該比較の結果に応じて複数の減圧装置30a及び30bの開閉制御を行うようにしてもよい。すなわち、開閉制御部72Bは、現在の運転系統数が適正な運転系統数よりも大きい場合に、蒸発器容量を一段階だけ減らす制御を行うようにしてもよい。また、開閉制御部72Bは、現在の運転系統数が適正な運転系統数よりも小さい場合に、蒸発器容量を一段階だけ増やす制御を実行するようにしてもよい。かかる構成の場合、適正な運転系統数は、基準蒸発器容量に関連づけて記憶部82内に記憶させておく。また、現在の運転系統数は、制御部71が、各減圧装置30a及び30bが全閉となっているか否かを検出することにより求めるという構成を採るとよい。
なお、本実施の形態2では、圧縮機10の最小運転容量時における適正な蒸発器容量が、基準蒸発器容量の最低値であり、図8にも示すように、最小運転容量時における適正な蒸発器容量は0%にはならない。このため、開閉制御部72Bは、前述した実施の形態1で採用したような、少なくとも一つの系統を開放している状態を維持するという制御を実行しない構成となっている。また、開閉制御部72Bは、開閉状態特定データを参照して、基準蒸発器容量に応じた流路パターンと、現在の蒸発器容量に応じた流路パターンとを導出し、導出した流路パターン同士を比較することにより、閉鎖又は開放する系統を決定するようにしてもよい。
図6のように、2台の蒸発器42a及び42bを有する2系統を備えた冷凍装置120では、開閉制御部72Bが、減圧装置30a及び30bの開閉制御を行うことにより、減圧装置30a及び30bの双方が開の状態にある場合、減圧装置30aが全閉の状態で減圧装置30bが開の状態である場合、減圧装置30aが開の状態で減圧装置30bが全閉の状態である場合、減圧装置30a及び30bの双方が全閉の状態にある場合の4通りの流路パターンが形成される。したがって、冷凍装置120によれば、減圧装置30aに接続された蒸発器42aと、減圧装置30bに接続された蒸発器42bとの組み合わせによる4通りの熱交換容量(伝熱面積)を実現することができる。
ここで、図9を参照して、運転状態の急変を防止するために本実施の形態2で採用した減圧装置30a及び30bの開閉制御を説明する。図9は、冷凍装置120の制御部72による減圧装置30a及び30bの開閉制御を例示する模式図である。以下では、簡単のために、減圧装置30a及び30bの双方が開の状態は蒸発器容量100%に対応し、減圧装置30aが全閉の状態で減圧装置30bが開の状態は蒸発器容量66%に対応し、減圧装置30aが開の状態で減圧装置30bが全閉の状態は蒸発器容量33%に対応するものとして説明する。図9に示すように、制御部72は、冷凍装置120の起動時(運転時間0分)に、全ての減圧装置である複数の減圧装置30a及び30bが開の状態となるように制御する。
次いで、一定時間が経過した際(運転時間5分)に、開閉制御部72Bは、現状の運転容量が適正であるか否かを判定する。本実施の形態2では、現状の運転容量が適正であるか否かの判定として、実際の蒸発器容量が基準蒸発器容量であるか否か(現在の流路パターンが適正な流路パターンであるか否か)の判定を行う。ここで、図9では、実際の蒸発器容量が100%(減圧装置30a及び30bの双方が開の状態)であり、基準特定部72Aにおいて特定された基準蒸発器容量が33%であるため、開閉制御部72Bは、減圧装置30aを全閉の状態にする。すなわち、実際の蒸発器容量と基準蒸発器容量との間に2段階以上の開きがある場合でも、開閉制御部72Bは、減圧装置30bを全閉の状態とする(実際の蒸発器容量を33%とする)制御を行わずに、適正な蒸発器容量に一段階だけ近づける制御を実行する。
続いて、図9では、一定時間が経過した際(運転時間10分)に、実際の蒸発器容量が66%(減圧装置30aが全閉の状態で減圧装置30bが開の状態)であり、基準特定部72Aにおいて特定された基準蒸発器容量が33%であるため、開閉制御部72Bは、減圧装置30aを開の状態にすると共に、減圧装置30bを全閉の状態にする。
次いで、図9では、一定時間が経過した際(運転時間15分)に、実際の蒸発器容量が33%(減圧装置30aが開の状態で減圧装置30bが全閉の状態)であり、基準特定部72Aにおいて特定された基準蒸発器容量が33%であるため、開閉制御部72Bは、減圧装置30a及び30bの現在の開閉状態を維持させる。
続いて、図9では、一定時間が経過した際(運転時間20分)に、実際の蒸発器容量が33%であり、基準特定部72Aにおいて特定された基準蒸発器容量が100%であるため、開閉制御部72Bは、減圧装置30aを開の状態にすると共に、減圧装置30bを全閉の状態にする。すなわち、実際の蒸発器容量と基準蒸発器容量との間に2段階以上の開きがある場合でも、開閉制御部72Bは、減圧装置30a及び30bの双方を開の状態とする(実際の蒸発器容量を100%とする)制御を行わずに、適正な蒸発器容量に一段階だけ近づける制御を実行する。
次いで、図9では、一定時間が経過した際(運転時間25分)に、実際の蒸発器容量が66%であり、基準特定部72Aにおいて特定された基準蒸発器容量が100%であるため、開閉制御部72Bは、減圧装置30bを開の状態にする。さらに、図9では、一定時間が経過した際(運転時間30分)に、実際の蒸発器容量が100%であり、基準特定部72Aにおいて特定された基準蒸発器容量が100%であるため、開閉制御部72Bは、減圧装置30a及び30bの現在の開閉状態を維持させる。
以上のように、冷凍装置120において、制御部72は、実際の蒸発器容量と基準蒸発器容量(開閉基準情報)との間に2段階以上の開きがある場合でも、減圧装置30a及び30bの開閉制御を一段階分だけ行い、当該制御後の減圧装置30a及び30bの開閉状態を一定時間が経過するまで維持するように構成されている。また、圧縮機10の運転容量そのものの変化に起因して、検出部60から出力される各検出値が変化し、適正な蒸発器容量が変化した場合でも、一定時間が経過するまでは、減圧装置30a及び30bの現在の開閉状態を維持するように構成されている。このため、冷凍装置120の運転状態の急変を防止することができ、冷凍装置120の安定的な動作を実現することができる。
すなわち、制御部72による上記制御により、運転系統数の急激な変化を抑制し、運転系統数の変化に伴って発生する運転状態の変化を緩和することができる。このため、運転状態の急変によるブライン温度、低圧圧力、冷媒の吐出温度、及び運転容量の急激な変化を防ぐことができる。
ところで、図6では、2台の蒸発器42a及び42bを有する構成を例示しているが、2台以上の任意の台数の蒸発器を設けるようにしてもよい。そして、各蒸発器のサイズ比については、各蒸発器の伝熱面積が、最も小さい蒸発器の伝熱面積のN倍(N=1、2、3・・・)となるように設定することが望ましい。
ここで、図10~図13を参照して、3台以上の蒸発器を有する場合の流路パターンについて説明する。図10は、本実施の形態2に係る冷凍装置を構成する、熱交換容量の異なる3台の蒸発器を示す概略図である。図11は、図10の3台の蒸発器の組み合わせと伝熱面積の総和との関係を示す表である。蒸発器42a~42cは、図10の括弧内に示すように、伝熱面積の比が「1:2:3」となるように構成されている。図示はしていないが、図6の場合と同様に、蒸発器42a~42cには、それぞれ、減圧装置が直列接続されている。図11では、各蒸発器42a~42cに対応する減圧装置が開の状態にある場合を「○」、全閉の状態にある場合を「×」として、蒸発器42a~42cの欄に表記している。また、図11では、最も小さい蒸発器42aの伝熱面積を便宜的に1とし、各蒸発器42a~42cに対応する減圧装置の開閉状態に応じて変化する伝熱面積の総和を1~6の数字で示している。
すなわち、図10のような3つの蒸発器42a~42cを有する冷凍装置では、開閉制御部72Bが各減圧装置の開閉制御を行うことで、図11に示すように、7通りの流路パターンを形成することができ(減圧装置が全て全閉の状態を除く)、3つの蒸発器42a~42cによって伝熱面積の異なる6通りの蒸発器容量を形成することができる。なお、厳密には、蒸発器42cに対応する減圧装置のみが開の状態における伝熱面積と、蒸発器42cに対応する減圧装置のみが全閉の状態における伝熱面積とは異なることが想定される。このため、開閉制御部72Bは、伝熱面積が3となるように各減圧装置の開閉制御を行う場合に、何れか1つの流路パターンのみを形成するようにしてもよい。また、より細かな容量分けのために、開閉制御部72Bが、伝熱面積が3となる2つの流路パターンを適宜使い分けるようにしてもよい。
図12は、本実施の形態2に係る冷凍装置を構成する、熱交換容量の異なる4台の蒸発器を示す概略図である。図13は、図12の4台の蒸発器の組み合わせと伝熱面積の総和との関係を示す表である。蒸発器42a~42dは、図13の括弧内に示すように、伝熱面積の比が「1:2:3:4」となるように構成されている。図示はしていないが、図6の場合と同様に、蒸発器42a~42dには、それぞれ、減圧装置が直列接続されており、図13では、各蒸発器42a~42dに対応する減圧装置が開の状態にある場合を「○」、全閉の状態にある場合を「×」として、蒸発器42a~42dの欄に表記している。表記している。また、図13においても便宜上、最も小さい蒸発器42aの伝熱面積を1とし、各蒸発器42a~42dに対応する減圧装置の開閉状態に応じて変化する伝熱面積の総和を1~10の数字で示している。
すなわち、図12のような4つの蒸発器42a~42dを有する冷凍装置では、開閉制御部72Bが各減圧装置の開閉制御を行うことで、図13に示すように、15通りの流路パターンを形成することができ(減圧装置が全て全閉の状態を除く)、4つの蒸発器42a~42dの伝熱面積の違いによって、10通りの蒸発器容量を形成することができる。なお、図13での表記上の伝熱面積が同一の場合であっても、流路パターンが異なれば、実際の伝熱面積は異なることが想定される。このため、伝熱面積が同一となる複数の流路パターンがある場合、開閉制御部72Bは、何れか1つの流路パターンのみを形成するようにしてもよい。また、開閉制御部72Bは、より細かな容量分けを実現するために、伝熱面積が同一となる2つの流路パターンを適宜使い分けるように構成してもよい。
次に、冷凍装置120の動作について、図14を参照して説明する。図14は、冷凍装置110の動作を示すフローチャートである。まず、冷凍装置120の起動時において、開閉制御部72Bは、減圧装置30a及び30bの双方を開の状態とする。すなわち、冷凍装置120は、全ての減圧装置である減圧装置30a及び30bが開の状態で運転を開始する(図14:ステップS201)。
次いで、基準特定部72Aは、凝縮温度センサ61の検出値である凝縮温度と、蒸発温度センサ62a及び62bの検出値である蒸発温度とを入力すると共に(図14:ステップS202)、入力した凝縮温度及び凝縮温度を容量テーブルに照らして、圧縮機10の最大運転容量時及び最小運転容量時における適正な蒸発器容量を読み取る(図14:ステップS203)。次に、基準特定部72Aは、読み取った最大運転容量時及び最小運転容量時における適正な蒸発器容量をもとに、例えば容量比を用いた内挿法によって、現在の圧縮機10の運転容量における適正な蒸発器容量を算出する(図14:ステップS204)。
続いて、基準特定部72Aは、開閉状態特定データに段階的に記憶された複数の蒸発器容量を参照し、算出した適正な蒸発器容量に最も近い蒸発器容量を基準蒸発器容量として特定する(図14:ステップS205)。次に、開閉制御部72Bは、現在の蒸発器容量と基準蒸発器容量とが一致するか否かを判定する(図14:ステップS206)。
開閉制御部72Bは、現在の蒸発器容量と基準蒸発器容量とが一致すると判定した場合に(図14:ステップS206/Yes)、複数の減圧装置30a及び30bの現在の開閉状態を維持させる。すなわち、冷凍装置120は、現状での運転を続行する(図14:ステップS207)。そして、一定時間(例えば5分)経過後に、制御部72は、ステップS202以降の動作を実行する。
一方、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量とは異なる場合に(図14:ステップS206/No)、減圧装置30a及び30bの開閉動作を制御することで、蒸発器容量を適正化する。より具体的に、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量よりも大きい場合に、蒸発器容量を一段階だけ減らす制御を実行し、現在の蒸発器容量が基準蒸発器容量よりも小さい場合に、蒸発器容量の一段階だけ増やす制御を実行する(図14:ステップS208)。
すなわち、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量よりも一段階以上大きい場合には、複数の減圧装置30a及び30bによる伝熱面積が一段階だけ小さくなるように、複数の減圧装置30a及び30bの開閉制御を実行する。また、開閉制御部72Bは、現在の蒸発器容量が基準蒸発器容量よりも一段階以上小さい場合には、複数の減圧装置30a及び30bによる伝熱面積が一段階だけ大きくなるように、複数の減圧装置30a及び30bの開閉制御を実行する(図14:ステップS208)。そして、一定時間(例えば5分)経過後に、制御部72は、ステップS202以降の動作を実行する。
以上のように、本実施の形態2における冷凍装置は、凝縮器20以降の流路を分岐させた各系統に、閉止機能を有する減圧装置及び蒸発器を配置し、制御部72が、検出部60において検出された状態情報に基づいて複数の減圧装置の動作を制御するため、運転条件に応じて必要となる蒸発器の伝熱面積を確保することができ、冷媒流量が不足する領域での冷媒の流速を確保すると共に、冷凍能力の低下を抑制することができる。さらに、本実施の形態2における冷凍装置は、異なるサイズの蒸発器を複数台有しているため、制御部72が、複数の蒸発器容量を段階的に形成することができる。すなわち、本実施の形態2における冷凍装置によれば、少ない台数の蒸発器を搭載する場合であっても、細かい容量分けを行うことができ、冷媒系統の適正化の精度を向上させることができる。
なお、本実施の形態2においても、検出部60として、例えば、圧縮機10の吸込み口に設ける低圧用圧力センサと、圧縮機10の吐出し口に設ける高圧用圧力センサとを採用してもよい。そして、記憶部82に、各低圧圧力及び高圧圧力による圧力域に対応する圧縮機10の複数の運転容量時における適正な蒸発器容量を記憶する別の容量テーブルを格納しておき、基準特定部72Aが、当該別の基準テーブルを参照して基準蒸発器容量を特定するようにしてもよい。また、本実施の形態2の冷凍装置の構成として、同サイズである複数の蒸発器を適用してもよく、例えば「1:1:2」といった具合に、同サイズの蒸発器と異なるサイズの蒸発器とを組み合わせて適用するようにしてもよい。さらに、基準特定部72Aが参照する容量テーブルは、圧縮機10の最大運転容量時及び最小運転容量時に対応するものに限定されず、例えば2つの異なる運転容量時に対応する最適な蒸発器容量を示すものであってよい。
[実施の形態3]
次に、図15及び図16を参照して、本実施の形態3に係る冷凍装置の構成を説明する。本実施の形態3では、閉止機能を有しない複数の減圧部を採用し、各減圧部の上流に、例えば電磁弁からなる流路閉止部を設けた点に特徴がある。すなわち、本実施の形態3の冷凍装置は、各系統の開閉を、例えば膨張弁からなる減圧部には依存せずに実現するという構成を採っている。前述した実施の形態1及び2と同一の構成部材については、同一の符号を用いて説明を省略する。
次に、図15及び図16を参照して、本実施の形態3に係る冷凍装置の構成を説明する。本実施の形態3では、閉止機能を有しない複数の減圧部を採用し、各減圧部の上流に、例えば電磁弁からなる流路閉止部を設けた点に特徴がある。すなわち、本実施の形態3の冷凍装置は、各系統の開閉を、例えば膨張弁からなる減圧部には依存せずに実現するという構成を採っている。前述した実施の形態1及び2と同一の構成部材については、同一の符号を用いて説明を省略する。
図15は、本実施の形態3に係る冷凍装置のうち、同じ熱交換容量である複数の蒸発器を採用した構成を例示する模式図である。冷凍装置130は、圧縮機10及び凝縮器20の下流側に、減圧装置31a、蒸発器41a、及び逆止弁50aが直列接続された流路である第1系統と、減圧装置31b、蒸発器41b、及び逆止弁50bが直列接続された流路である第2系統とを有している。減圧装置31aは、冷媒を減圧させる減圧部90aと、減圧部90aの上流に配置された流路閉止部91aと、を有している。減圧装置31bは、冷媒を減圧させる減圧部90bと、減圧部90bの上流に配置された流路閉止部91bと、を有している。
制御部73は、検出部60から入力された状態情報に基づいて、複数の減圧部90a及び90bの開閉動作と、流路閉止部91a及び91bの開閉動作とを制御するものである。上述した通り、減圧部90a及び90bは、冷媒を閉止する機能を有しておらず、全閉の状態とはならない。したがって、開閉制御部73Bは、基準特定部71Aによって特定された基準蒸発器容量としての運転容量閾値と、圧縮機10の現在の運転容量との大小関係をもとに、第1系統又は第2系統の何れかを閉鎖する(全閉の状態にする)場合には、流路閉止部91a又は流路閉止部91bを閉じる制御を行う。
図16は、本実施の形態3に係る冷凍装置のうち、異なる熱交換容量である複数の蒸発器を採用した構成を例示する模式図である。冷凍装置140は、圧縮機10及び凝縮器20の下流側に、減圧部90aと流路閉止部91aと有する減圧装置31a、蒸発器42a、及び逆止弁50aが直列接続された流路である第1系統と、減圧部90bと流路閉止部91bと有する減圧装置31b、蒸発器42b、及び逆止弁50bが直列接続された流路である第2系統とを有している。すなわち、図15に示す冷凍装置130との相違は、蒸発器の熱交換容量が相互に異なる点にある。
制御部74は、検出部60から入力された状態情報に基づいて、複数の減圧部90a及び90bの開閉動作と、流路閉止部91a及び91bの開閉動作とを制御するものである。開閉制御部74Bは、基準特定部72Aにおいて特定された基準蒸発器容量をもとに、第1系統又は第2系統の何れかを閉鎖する(全閉の状態にする)場合には、流路閉止部91a又は流路閉止部91bを閉じる制御を行う。
上記のように構成された冷凍装置130及び140によれば、減圧部90a又は90bの開度が全閉の状態ではなくても、流路閉止部91a又は流路閉止部91bを閉じることにより、各系統の閉鎖を実現することができる。したがって、冷凍装置130及び140によれば、第1系統又は第2系統の何れかが閉鎖された状態においても、複数の減圧部90a又は90bの開度を、全閉ではない状態で維持することができる。すなわち、冷凍装置130及び140は、複数の減圧部90a又は90bの開度を全閉としない構成を採っているため、例えば膨張弁からなる減圧部を全閉から開にする際に生じる液ショックを抑制することができる。
また、本実施の形態3では、複数の減圧部90a又は90bの開度を全閉ではない状態で維持する構成を採用したため、開閉制御部73B又は開閉制御部74Bが、各系統の何れかを開放する状況下において、複数の減圧部90a又は90bの開度を、より早く現在の運転条件に見合った開度へと調整することができる。本実施の形態3では、流路閉止部の例として電磁弁を示したが、これに限定されず、流路閉止部としては、手動による閉止が可能な弁等を採用してもよい。また、制御部73又は制御部74は、流路閉止部91a及び91bの開閉動作を制御し、複数の減圧部90a及び90bの動作制御を行わないように構成してもよい。もっとも、減圧部90a及び90bとしては、閉止機能を有する膨張弁等を採用してもよい。
なお、上述した各実施の形態は、冷凍装置における好適な具体例であり、本発明の技術的範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。例えば、各実施の形態に係る冷凍装置が、2以上の任意の数の蒸発器及び減圧装置を有する構成とし、制御部が、状態情報に基づいて任意の数の減圧装置の動作制御を実行するようにしてもよい。すなわち、各実施の形態の冷凍装置は、2系統以上の任意の数の系統を備えていてもよい。また、図1、図3、図6、図15、図16では、複数の蒸発器の各々に直列接続された複数の逆止弁を有する構成を例示したが、冷凍装置100、110、120、130、140は、各系統に逆止弁を設けない構成としてもよい。さらに、上記実施の形態2又は4では、複数の蒸発器の伝熱面積が、最も小さい蒸発器の伝熱面積のN倍(N=1、2、3・・・)となるように設定する例を説明したが、複数の蒸発器の伝熱面積が、最も小さい蒸発器の伝熱面積の2n倍(n=0、1、2、3・・・)となるように設定してもよい。すなわち、複数の蒸発器の伝熱面積の比が「1:2:22:23:・・・・」となるように設定してもよい。また、上記各実施の形態では、各制御部が、複数の減圧装置の開閉制御を、一定時間ごとに一段階(一系統)ずつ行う構成を説明したが、各制御部は、2段階(2系統)以上の開閉制御を行うように構成してもよい。すなわち、例えば実施の形態1の構成では、現在の運転容量と運転容量閾値との差分に応じて、開閉する系統数を変更するようにしてもよい。
10 圧縮機、20 凝縮器、30a~30c、31a、31b 減圧装置、41a~41c、42a~42d 蒸発器、50a~50c 逆止弁、60 検出部、61 凝縮温度センサ、62a~62c 蒸発温度センサ、71~74 制御部、71A、72A 基準特定部、71B、72B、73B、74B 開閉制御部、81、82 記憶部、90a、90b 減圧部、91a、91b 流路閉止部、100、110、120、130、140 冷凍装置。
Claims (11)
- 圧縮機と、
前記圧縮機の吐出側に接続された凝縮器と、
全閉する機能を有し、前記凝縮器に接続された複数の減圧装置と、
複数の前記減圧装置のそれぞれに接続された複数の蒸発器と、
前記凝縮器及び複数の前記蒸発器の状態を示す状態情報を検出する検出部と、
前記検出部において検出された前記状態情報から複数の前記減圧装置の開閉動作の基準となる開閉基準情報を特定する基準特定部と、
前記基準特定部において特定された前記開閉基準情報に応じて全閉又は開の状態にする前記減圧装置の動作を制御する開閉制御部と、を有する冷凍装置。 - 前記状態情報と前記開閉基準情報とを関連づけた基準テーブルを記憶する記憶部を有し、
前記基準特定部は、前記検出部において検出された前記状態情報を前記基準テーブルに照らして前記開閉基準情報を特定するものであり、
前記開閉制御部は、前記基準特定部において特定された前記開閉基準情報と前記圧縮機の現在の運転容量との大小関係をもとに、複数の前記減圧装置の開閉動作を制御するものである請求項1に記載の冷凍装置。 - 前記開閉制御部は、前記現在の運転容量が前記開閉基準情報未満の場合に、開の状態にある複数の前記減圧装置のうちの1つを全閉の状態とする請求項2に記載の冷凍装置。
- 前記開閉制御部は、前記現在の運転容量が前記開閉基準情報未満の場合に、開の状態にある前記減圧装置が1つであれば、複数の前記減圧装置の開閉状態を維持させる請求項2又は3に記載の冷凍装置。
- 前記開閉制御部は、前記現在の運転容量が前記開閉基準情報以上の場合に、全閉の状態にある前記減圧装置があれば、閉の状態にある前記減圧装置のうちの1つを開の状態にする請求項2~4の何れか一項に記載の冷凍装置。
- 前記状態情報と蒸発器容量とを関連づけた容量テーブルを記憶する記憶部を有し、
複数の前記蒸発器は、異なる熱交換容量を有し、
前記基準特定部は、前記検出部において検出された前記状態情報を前記容量テーブルに照らして適正な蒸発器容量を求めると共に、複数の前記蒸発器の組み合わせによって段階的に形成される複数の蒸発器容量の中から前記適正な蒸発器容量に近いものを前記開閉基準情報として特定するものである請求項1に記載の冷凍装置。 - 前記開閉制御部は、
現在の蒸発器容量が前記開閉基準情報よりも大きい場合に、複数の前記減圧装置の開閉動作を制御して蒸発器容量を一段階だけ減らす機能と、
現在の蒸発器容量が前記開閉基準情報よりも小さい場合に、複数の前記減圧装置の開閉動作を制御して蒸発器容量を一段階だけ増やす機能と、
を有する請求項6に記載の冷凍装置。 - 前記開閉制御部は、現在の蒸発器容量と前記開閉基準情報とが一致する場合に、複数の前記減圧装置の開閉状態を維持させる機能を有する請求項6又は7に記載の冷凍装置。
- 前記減圧装置は、
冷媒を減圧させる減圧部と、
前記減圧部の上流に直列接続された流路閉止部と、を有し、
前記開閉制御部は、前記検出部において検出された前記状態情報に基づいて複数の前記流路閉止部の開閉動作を制御する請求項1~8のいずれか一項に記載の冷凍装置。 - 前記検出部は、
前記凝縮器の凝縮温度を前記状態情報として検出する凝縮温度センサと、
複数の前記蒸発器の蒸発温度を前記状態情報として検出する蒸発温度センサと、を有する請求項1~9のいずれか一項に記載の冷凍装置。 - 複数の前記蒸発器の各々に直列接続された複数の逆止弁をさらに有する請求項1~10のいずれか一項に記載の冷凍装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017501590A JP6351824B2 (ja) | 2015-02-24 | 2015-02-24 | 冷凍装置 |
PCT/JP2015/055171 WO2016135842A1 (ja) | 2015-02-24 | 2015-02-24 | 冷凍装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/055171 WO2016135842A1 (ja) | 2015-02-24 | 2015-02-24 | 冷凍装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016135842A1 true WO2016135842A1 (ja) | 2016-09-01 |
Family
ID=56788071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/055171 WO2016135842A1 (ja) | 2015-02-24 | 2015-02-24 | 冷凍装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6351824B2 (ja) |
WO (1) | WO2016135842A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7546875B2 (ja) | 2019-10-31 | 2024-09-09 | 株式会社ツインバード | 位置検出装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052902B2 (ja) * | 1986-09-13 | 1993-01-13 | Daikin Ind Ltd | |
JPH05340623A (ja) * | 1992-06-10 | 1993-12-21 | Daikin Ind Ltd | 冷凍装置 |
JP2519299Y2 (ja) * | 1989-11-16 | 1996-12-04 | サンデン株式会社 | 農業用空調機 |
JP2004058951A (ja) * | 2002-07-31 | 2004-02-26 | Keihin Corp | 車両用空調装置 |
JP2005225329A (ja) * | 2004-02-12 | 2005-08-25 | Calsonic Kansei Corp | 空気調和装置 |
JP2012122670A (ja) * | 2010-12-08 | 2012-06-28 | Daikin Industries Ltd | 空気調和装置 |
JP2013231542A (ja) * | 2012-04-27 | 2013-11-14 | Mitsubishi Electric Corp | ヒートポンプ装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5748563B2 (ja) * | 2011-05-26 | 2015-07-15 | 三菱電機株式会社 | 冷凍装置 |
-
2015
- 2015-02-24 WO PCT/JP2015/055171 patent/WO2016135842A1/ja active Application Filing
- 2015-02-24 JP JP2017501590A patent/JP6351824B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052902B2 (ja) * | 1986-09-13 | 1993-01-13 | Daikin Ind Ltd | |
JP2519299Y2 (ja) * | 1989-11-16 | 1996-12-04 | サンデン株式会社 | 農業用空調機 |
JPH05340623A (ja) * | 1992-06-10 | 1993-12-21 | Daikin Ind Ltd | 冷凍装置 |
JP2004058951A (ja) * | 2002-07-31 | 2004-02-26 | Keihin Corp | 車両用空調装置 |
JP2005225329A (ja) * | 2004-02-12 | 2005-08-25 | Calsonic Kansei Corp | 空気調和装置 |
JP2012122670A (ja) * | 2010-12-08 | 2012-06-28 | Daikin Industries Ltd | 空気調和装置 |
JP2013231542A (ja) * | 2012-04-27 | 2013-11-14 | Mitsubishi Electric Corp | ヒートポンプ装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6351824B2 (ja) | 2018-07-04 |
JPWO2016135842A1 (ja) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2270405B1 (en) | Refrigerating device | |
KR101106383B1 (ko) | 냉동장치 | |
JP2007303818A (ja) | 冷却システムにおける凝縮器からの熱の除去を制御する方法及び装置 | |
EP3348932B1 (en) | Refrigeration cycle apparatus | |
JP5669642B2 (ja) | 冷凍装置 | |
EP3575712B1 (en) | Cooling system | |
JP6956791B2 (ja) | 冷凍サイクル装置および熱源ユニット | |
US10259086B2 (en) | Solenoid control methods for dual flow HVAC systems | |
US8776536B2 (en) | Control process for an expansion valve | |
US10704814B2 (en) | Expansion valve control | |
RU2640142C1 (ru) | Способ управления подачей холодильного агента в испаритель на основе измерений температуры | |
JP6351824B2 (ja) | 冷凍装置 | |
JP2015152266A (ja) | 空冷ヒートポンプユニット | |
EP3015798A1 (en) | Control device for refrigeration cycle, refrigeration cycle, and control method for refrigeration cycle | |
JP2012242053A (ja) | 冷凍空気調和システム | |
JPWO2015132951A1 (ja) | 冷凍装置 | |
JP2020026928A (ja) | 制御装置、冷凍機、制御方法及び異常検出方法 | |
KR102250880B1 (ko) | 냉장고의 스텝밸브 제어 방법 | |
JP2008190757A (ja) | 冷凍装置 | |
KR101911272B1 (ko) | 공기조화기 및 그 제어방법 | |
JP2018119707A (ja) | 冷媒回路システム及び制御方法 | |
JP5340348B2 (ja) | 冷凍装置 | |
JP6716037B2 (ja) | 空気調和システム | |
WO2018173854A1 (ja) | 冷却システム、冷却方法及びプログラム | |
JP7297162B1 (ja) | 冷凍サイクル装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15883140 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017501590 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15883140 Country of ref document: EP Kind code of ref document: A1 |