WO2016132555A1 - 懸濁質除去方法および懸濁質除去装置 - Google Patents

懸濁質除去方法および懸濁質除去装置 Download PDF

Info

Publication number
WO2016132555A1
WO2016132555A1 PCT/JP2015/054883 JP2015054883W WO2016132555A1 WO 2016132555 A1 WO2016132555 A1 WO 2016132555A1 JP 2015054883 W JP2015054883 W JP 2015054883W WO 2016132555 A1 WO2016132555 A1 WO 2016132555A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
water
filtration
filtration layer
filter medium
Prior art date
Application number
PCT/JP2015/054883
Other languages
English (en)
French (fr)
Inventor
田畑 雅之
古川 誠治
克憲 松井
英夫 鈴木
岳 近藤
茂 吉岡
真規 石黒
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/551,344 priority Critical patent/US20180036657A1/en
Priority to PCT/JP2015/054883 priority patent/WO2016132555A1/ja
Publication of WO2016132555A1 publication Critical patent/WO2016132555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/36Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed fluidised during the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/23Supported filter elements arranged for outward flow filtration
    • B01D29/25Supported filter elements arranged for outward flow filtration open-ended the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/22Directing the mixture to be filtered on to the filters in a manner to clean the filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]

Definitions

  • the present invention relates to a suspension removal method and a suspension removal apparatus.
  • the present invention relates to a suspended solid removal method and a suspended solid removal apparatus used particularly in a seawater desalination plant and a water treatment plant.
  • the suspended solids When removing suspended solids, the suspended solids are generally aggregated by continuously injecting a flocculant into seawater.
  • An iron salt is used as the flocculant.
  • the metal reacts with an alkaline component in water to form a metal hydroxide.
  • ⁇ Metal hydroxide acts as a binder and agglomerates due to collision and contact of suspended matter in seawater, producing flocs.
  • the amount of flocculant injected is increased or decreased according to the amount of suspended matter contained in the seawater. For example, when an iron salt is used as the flocculant, the iron salt is injected so that the amount of iron is 0.5 ppm to 10 ppm in seawater.
  • separating suspended solids include filter filtration, centrifugation, and filtration using a solid filter medium.
  • the method using a solid filter medium is advantageous in that it is cheaper and easier to maintain than filter filtration and centrifugation.
  • a solid filter medium having a diameter of 300 ⁇ m to 2500 ⁇ m is used.
  • ⁇ Washing wastewater generated during backwashing is highly turbid, and if discharged directly into the sea, the environment is adversely affected. Therefore, the washing wastewater is solid-liquid separated with a dehydrator or the like, and the remaining solids are disposed of as sludge outside the system. Sludge treatment equipment is required for sludge treatment. The method of continuously injecting the flocculant has a high environmental load.
  • Examples of the mechanism for removing suspended solids by filtration using solid filter media include, for example, sieving, removal by a blocking effect such as sedimentation in voids and gaps, or adhesion / adsorption (electrostatic, intermolecular force, adhesion) ), Etc., are considered, but the current situation is still unclear. Therefore, there are problems in improving the removal rate and stabilizing the water quality of the filtrate during load fluctuation or startup.
  • the specific surface area of the solid filter medium increases, so that the removal rate of fine suspended solids that can be trapped on the surface of the solid filter medium can be increased due to Brownian mobility.
  • the present invention has been made in view of such circumstances, and does not require a sludge treatment facility, and can obtain a filtrate that satisfies a desired water quality standard at a low cost while suppressing an increase in the differential pressure in the filtration layer.
  • An object of the present invention is to provide a suspension removal method and a suspension removal apparatus.
  • the present inventors have found that it is difficult to remove suspended solids of 0.1 ⁇ m to 10 ⁇ m in the conventional filtration method using a solid filter medium even when the size of the solid filter medium is reduced. I got new knowledge. Based on this, the inventors have invented a suspension removal method and a suspension removal apparatus for removing suspensions of 0.1 ⁇ m to 10 ⁇ m.
  • the present invention provides a filter layer filled with a solid filter medium, supplying a convex element to the surface of the solid filter medium by supplying a convex element, and supplying the convex element in the step of providing the convex section. It is determined whether or not a convex portion that satisfies a preset standard is applied to the surface of the solid filter medium, and when it is determined that the convex portion is applied, the supply amount of the convex element is reduced compared to when the convex portion is applied. And a step of passing water to be treated containing suspended solids through the filtration layer having the solid filter medium provided with the convex portions in a state where the supply amount of the convex elements is reduced.
  • a suspension removal method is provided.
  • a micro change is caused in the flow of the water to be treated in the filtration layer, so that a suspended solid having a size of 0.1 ⁇ m or more and 10 ⁇ m or less is obtained.
  • a suspended solid having a size of 0.1 ⁇ m or more and 10 ⁇ m or less is obtained.
  • size of 0.1 micrometer or more and 10 micrometers or less are contained, the water quality of a filtrate can be improved.
  • the water quality fluctuation (load fluctuation) of to-be-treated water is allowed, and the water quality of the filtrate can be stabilized.
  • the convex element is supplied to the filtration layer so as to impart the convex portion to the surface of the solid filter medium, the convex portion can be stably imparted in a short time.
  • the filtration layer filled with solid filter media with protrusions stably removes (captures) suspended solids with a high removal rate (capture rate) from the beginning of the process of removing suspended solids from the water to be treated. )it can. Thereby, the starting time of a filtration apparatus can be shortened compared with the past.
  • Sludge generation can be suppressed by reducing the supply of convex elements.
  • convex elements by continuing the supply of the convex elements, although there are few, even if the convex parts are peeled off, or even when the quality of the water to be treated is deteriorated, additional convex parts are formed. Water quality can be stabilized.
  • the supply of the convex element may be stopped in the step of reducing the supply amount of the convex element.
  • the method may further include a step of passing the water to be treated through the filtration layer in parallel with the step of providing the convex portion.
  • a convex part can be provided as needed while filtering the water to be treated.
  • the method includes a step of measuring a differential pressure between one side of the filtration layer and the other side of the filtration layer, and the measured differential pressure is a predetermined value in the step of providing the convex portion. You may supply the said convex element in the range used as less than.
  • the blocking effect is improved as in the case of using a small-diameter solid filter medium, but according to one aspect of the invention, the blocking effect is improved. Even if the flow path is not narrowed, suspended matter having a size of 0.1 ⁇ m or more and 10 ⁇ m or less can be captured by the convex portion.
  • the amount of the convex element measured includes a step of directly or indirectly measuring the amount of the convex element contained in the filtrate that has come out of the filtration layer in the step of providing the convex portion. May be determined that the convex portion has been imparted to the surface of the solid filter medium.
  • the convex element When the convex element is supplied to the filtration layer, the convex element adheres to the surface of the solid filter medium and becomes a convex portion. In the step of providing the convex portion, the decrease in the amount of the convex element contained in the filtrate is an indicator that the convex element has adhered to the surface of the solid filter medium. Therefore, according to the said one aspect
  • the total supply amount of the convex elements to the filtration layer in the step of providing the convex portion is counted, and when the total supply amount counted reaches a preset threshold, the solid You may determine with the said convex part having been provided to the surface of the filter medium.
  • a desired convex part can be easily provided by setting the total supply amount of convex elements to the filtration layer in advance.
  • the method includes a step of inspecting the water quality of the filtrate that has come out of the filtration layer in the step of passing the water to be treated, and when the inspection value of the filtrate exceeds a preset threshold value, It is determined that the convex portion satisfying a preset criterion is not provided on the surface of the solid filter medium, and the step of applying the convex portion is performed, and the inspection value of the filtrate is equal to or less than a preset threshold value In this case, it may be determined that the convex portion satisfying a preset criterion is provided on the surface of the solid filter medium, and the supply amount of the convex element may be reduced as compared with the provision of the convex portion.
  • the convex element Since the convex element is attached to the surface of the solid filter medium to form a convex portion, it may be peeled off. When a convex part peels, since the peeled convex part also becomes suspension quality, water quality deteriorates. Moreover, since the removal rate of the suspended solid in a filtration layer will also fall if a convex part peels, the water quality of a filtrate will deteriorate. According to the said one aspect
  • the water to be treated in the step of passing the water to be treated, is passed through a coarse grain separation part, and a suspended matter larger than 10 ⁇ m contained in the water to be treated is mainly separated.
  • the primary treated water may be passed through the filtration layer to remove suspended matter having a size of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the filtration unit is 0.1 ⁇ m or more and 10 ⁇ m or less in a state where the influence of the large particle size suspension is small. Can remove suspended solids. Therefore, the water quality of the filtrate discharged from the filtration unit can be stabilized, the differential pressure in the filtration layer is difficult to reach, and the backwash interval can be extended.
  • the height of the convex portion is preferably 4 ⁇ m or more. Thereby, suspended solids having a size of 10 ⁇ m or less can be captured by the convex portions. If the height of the convex portion is too low, it becomes difficult to generate micro-flow turbulence, and the suspended solid particles are not transported to the solid filter medium, so that the suspended solid particles are difficult to adhere.
  • the solid filter medium may have an average particle size of 300 ⁇ m or more and 2500 ⁇ m or less. Thereby, it can be set as the filtration layer from which the blocking effect is acquired, suppressing the differential pressure
  • the convex element can be kaolin. In one aspect of the invention, the convex element may be iron chloride. In one aspect of the invention, the convex element can be a high molecular polymer.
  • the convex portion can be formed at a low cost on the surface of the solid filter medium.
  • a filtration layer capable of capturing suspended solid particles having a size of 0.1 ⁇ m or more and 10 ⁇ m or less can be obtained without substantially increasing the differential pressure of the filtration layer.
  • the convex element is iron chloride
  • the convex element in the step of reducing the supply amount of the convex element, has a content of the convex element of less than 0.5 ppm as iron in the solution passing through the filtration layer. It is preferable to reduce the supply amount.
  • the amount of iron chloride to be injected in anticipation of the agglomeration effect is 1 ppm or more as iron.
  • the generation of sludge is suppressed even when the injection amount is less than the amount in which the agglomeration effect is expected. it can. This is because a convex portion is formed on the surface of the solid filter medium, and suspended matter is removed by the convex portion.
  • by continuing the supply of the convex elements although there are few, even if the convex parts are peeled off or the quality of the water to be treated is deteriorated, additional convex parts are formed. Therefore, the water quality of the filtrate can be stabilized.
  • the present invention relates to a filtration unit having a filtration layer filled with a solid filter medium, to-be-treated water supplied to one side of the filtration unit, and passing the treatment water to the filtration layer.
  • controlling the convex element supply unit to reduce the supply amount of the convex element when it is determined that the convex part is provided by the determination unit, compared with the case where it is determined that the convex part is not provided.
  • a suspended solids removal device is provided.
  • control unit may control the convex element supply unit to stop the supply of the convex element when the determination unit determines that the convex unit is provided.
  • a differential pressure measurement unit that measures a differential pressure between the one side and the other side of the filtration unit
  • the control unit is configured to measure the differential pressure measured by the differential pressure measurement unit.
  • the supply amount of the convex element from the convex element supply unit can be controlled to be less than a predetermined value.
  • the suspended solid removal method and suspended solid removal apparatus of the present invention filter the water to be treated with a filtration layer filled with a solid filter medium provided with convex portions, so that no sludge treatment facility is required, and the filtration layer A filtrate that satisfies the water quality standard can be obtained at a low cost while suppressing an increase in the differential pressure at the bottom.
  • FIG. 1 It is a schematic block diagram of the suspended solid removal apparatus which concerns on 1st Embodiment. It is a schematic block diagram of the suspended solid removal apparatus which concerns on 2nd Embodiment. It is a schematic block diagram of the suspended solid removal apparatus which concerns on 3rd Embodiment. It is a schematic view illustrating the flow path width d 0. It is a figure which shows the simulation result in examination 1. It is a schematic diagram explaining the flow of to-be-processed water. It is a figure which shows the simulation result in examination 2. FIG. It is a figure which shows the simulation result in examination 2. FIG. It is a figure which shows the simulation result in examination 2. FIG. It is a figure which shows the simulation result in examination 3. FIG.
  • FIG. It is a figure which shows the measurement result of the differential pressure
  • FIG. It is a figure which shows the measurement result of the differential pressure
  • FIG. It is a figure which shows the measurement result of SDI of the filtrate which came out from the filtration part (filtration layer) in examination.
  • FIG. 1 is a schematic configuration diagram of a suspended solid removal apparatus according to the present embodiment.
  • the suspended solid removal apparatus 1 includes a filtration unit 2, a treated water supply unit 3, a convex element supply unit 4, a determination unit 5, and a control unit 6.
  • the filtration part 2 has at least one filtration layer 2a, a first opening 2b provided on one side of the filtration layer 2a, and a second opening 2c provided on the other side of the filtration layer. ing.
  • the first opening 2b and the second opening 2c are liquid outlets of the filtration unit 2.
  • the first flow path 7 is connected to the first opening 2b.
  • a second flow path 8 is connected to the second opening 2c.
  • the filtration layer 2a is formed by filling a filtration medium with a solid filter medium.
  • the filling amount of the solid filter medium is appropriately set.
  • One filtration layer 2a is composed of a solid filter medium made of one kind of material.
  • a plurality of filtration layers 2a may be stacked in the filtration unit. For example, a sand filtration layer filled with sand and an anthracite filtration layer filled with anthracite may be laminated.
  • Solid filter media of different materials have different surface conditions. Combining filtration layers made of different materials can remove a wide range of suspended solids.
  • the solid filter medium is sand, anthracite, crushed activated carbon, fiber bundle, and the like. Since the crushed activated carbon has an effect of removing chlorine, if the solid filter medium is crushed activated carbon, chlorine contained in the water to be treated can be removed by the filtration unit. Thereby, even if it is a case where a RO film
  • the average particle size of the solid filter medium is selected from 300 ⁇ m to 2500 ⁇ m.
  • the definition of “average particle size of the solid filter medium” is based on AWWA B100-01 and JIS8801.
  • the to-be-processed water supply part 3 can supply to-be-processed water to the one side of the filtration part 2, and can flow to-be-processed water to the filtration layer 2a.
  • the to-be-processed water supply part 3 is comprised by the to-be-processed water tank 3a and the 1st supply means 3b.
  • the treated water supply unit 3 is connected to the first opening 2 b of the filtration unit 2 via the first flow path 7.
  • the treated water tank 3a is a container in which treated water is stored.
  • the treated water stored is seawater, sewage, industrial wastewater, or the like.
  • the first supply means 3b is a pump or the like.
  • the 1st supply means 3b can supply the to-be-processed water stored in the to-be-processed water tank 3a to the filtration part 2 via the 1st flow path 7.
  • the convex element supply unit 4 can supply a convex element to one side of the filtration unit 2.
  • the convex element supply part 4 is comprised by the convex element tank 4a and the 2nd supply means 4b.
  • the convex element supply unit 4 is connected to the first opening 2 b of the filtration unit 2 via the first flow path 7 on the downstream side of the treated water supply unit 3.
  • the convex element tank 4a is a container in which convex elements are accommodated.
  • the second supply unit 4b is a pump or the like.
  • the 2nd supply means 4b can supply the convex element accommodated in the convex element tank 4a to the filtration part 2 via the 1st flow path 7.
  • Convex elements include iron chloride, iron sulfate, polyaluminum chloride (PAC), aluminum sulfate, minerals, polymer polymers (cationic polymer polymers, anionic polymer polymers, and nonionic polymer polymers) and inorganic pigments.
  • the mineral is kaolin, for example.
  • As the cationic polymer polyacrylate, polymethacrylate and polyacrylamide are suitable.
  • the anionic polymer is preferably polyacrylamide or polyacrylic acid.
  • the nonionic polymer is preferably a polyacrylic acid ester system, a polymethacrylic acid ester system, or a polyacrylamide system.
  • Inorganic pigments are, for example, calcium carbonate, talc, and titanium oxide.
  • the convex element may be a powder or a liquid. In this embodiment, the convex element is accommodated in the convex element tank in the state of a solution (convex portion forming liquid) prepared at a predetermined concentration.
  • iron chloride turns into iron hydroxide in water, and a fine floc of iron hydroxide attaches to the surface of the solid filter medium to form a convex portion.
  • the fine flocs may contain fine particles in water.
  • kaolin physically adheres to the surface of the solid filter medium and becomes a convex portion.
  • the polymer polymer acts as an adhesive for particles contained in water to adhere to the solid filter medium, and adheres to the surface of the solid filter medium together with the particles to form a convex portion.
  • 1 type or 2 types or more may be sufficient as the convex element supplied to a filtration layer.
  • kaolin and polymer are supplied to the filtration layer, kaolin physically adheres to the surface of the solid filter medium, and particles and kaolin contained in water adhere to the surface of the solid filter medium due to the adhesive action of the polymer. And become convex.
  • the determination unit 5 can determine whether or not a convex portion that satisfies a preset criterion is provided on the surface of the solid filter medium based on a preset criterion.
  • the determination unit 5 includes a counting unit (not shown) that counts the total supply amount of the convex elements.
  • the counting means is connected to the second supply means 4b.
  • the counting means receives a power ON / OFF signal of the second supply means 4b, and determines the time during which the power supply of the second supply means 4b is ON and the concentration of the convex elements in the convex forming liquid. Based on this, the total supply amount of the convex elements can be counted.
  • the determination part 5 can determine that the convex part which satisfy
  • the determination unit 5 may be incorporated in the second supply unit 4 b or the control unit 6.
  • the control unit 6 projects the convex element so as to reduce the supply amount of the convex element when it is determined by the determination unit 5 that a convex portion satisfying a preset criterion is provided (abbreviated as having a convex portion).
  • the supply amount of the convex element from the element supply unit 4 can be controlled.
  • the control unit 6 has a convex portion on the surface of the solid filter medium. It is possible to control the supply amount of the convex element from the convex element supply unit so as to supply the convex element so that is given.
  • the supply amount of the convex element necessary for providing the convex portion on the surface of the solid filter medium is appropriately set according to the type of the convex element. “Reducing the supply amount of the convex element” means lowering the supply amount of the convex element than when the convex portion is provided.
  • the supply amount of the convex element is set so as to reduce at least an amount where the agglomeration effect cannot be expected. “Reducing the supply amount of the convex element” includes stopping the supply of the convex element.
  • the control unit 6 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the suspended solid removal device 1 may be provided with a water quality inspection means 9 for inspecting the water quality of the filtrate discharged from the other side of the filtration unit.
  • the water quality inspection means 9 is an SDI (silt density index) measuring instrument, a turbidity meter, a TOC meter, an SS meter, a UV meter, a COD meter, or the like.
  • the water quality inspection means 9 is connected to the second flow path and the determination unit 5.
  • the water quality inspection means 9 can inspect the water quality of the filtrate discharged from the filtration unit 2 to the second flow path, and can output the inspection result to the determination unit 5.
  • the determination unit 5 determines that the convex portion is not provided when the inspection value obtained by the water quality inspection unit 9 exceeds a preset threshold value, and the convex portion is determined when the inspection value is equal to or less than the threshold value. It can be determined that it has been granted.
  • the threshold is appropriately set according to the water quality item to be inspected.
  • the suspended solid removal apparatus 1 may include a reverse osmosis membrane treatment unit 10, an electrodialysis unit (not shown), an evaporator (not shown), or the like on the downstream side of the filtration unit 2.
  • the reverse osmosis membrane treatment unit 10 is, for example, a reverse osmosis membrane treatment device having a plurality of reverse osmosis membrane elements in a container.
  • the reverse osmosis membrane treatment apparatus can separate the water to be treated (filtrate) that has passed through the filtration unit 2 into concentrated water containing ions, salts, and the like and fresh water using a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • the suspended solid removal apparatus 1 may be provided with backwashing means for backwashing the filtration layer 2a (not shown).
  • the backwashing means is provided in the filtration unit 2 so that the cleaning liquid flows from the other side of the filtration unit 2a toward the one side.
  • the cleaning liquid is sent to the filtration unit 2 by liquid feeding means such as a pump.
  • the suspension removal method according to the present embodiment includes the following steps (S1) to (S3).
  • S1 The step of providing the convex portion
  • S2 The step of reducing the supply amount of the convex element as compared to the time of providing the convex portion
  • S3 The filtration layer having the solid filter medium provided with the convex portion includes the suspended matter.
  • a convex element is supplied to the filtration layer 2a to impart the convex portion to the surface of the solid filter medium.
  • Convex elements include iron chloride, iron sulfate, polyaluminum chloride (PAC), aluminum sulfate, minerals, polymer polymers (cationic polymer polymers, anionic polymer polymers, and nonionic polymer polymers) and inorganic pigments.
  • the mineral is kaolin, for example.
  • As the cationic polymer polyacrylate, polymethacrylate and polyacrylamide are suitable.
  • the anionic polymer is preferably polyacrylamide or polyacrylic acid.
  • the nonionic polymer is preferably a polyacrylic acid ester system, a polymethacrylic acid ester system, or a polyacrylamide system.
  • Inorganic pigments are, for example, calcium carbonate, talc, and titanium oxide.
  • the convex element itself adheres to the surface of the solid filter medium to form a convex section, or bonds particles in water and the solid filter medium.
  • iron chloride becomes iron hydroxide in water
  • a fine floc of iron hydroxide adheres to the surface of the solid filter medium to form a convex portion.
  • the fine flocs may contain fine particles in water.
  • kaolin physically adheres to the surface of the solid filter medium and becomes a convex portion.
  • the polymer polymer acts as an adhesive for particles contained in water to adhere to the solid filter medium, and adheres to the surface of the solid filter medium together with the particles to form a convex portion.
  • 1 type or 2 types or more may be sufficient as the convex element supplied to a filtration layer.
  • kaolin and polymer are supplied to the filtration layer, kaolin physically adheres to the surface of the solid filter medium, and particles and kaolin contained in water adhere to the surface of the solid filter medium due to the adhesive action of the polymer. And become convex.
  • the convex element may be a powder or a suspension containing fine particles.
  • a convex element is supplied in the state of the solution (convex part formation liquid) containing a convex element.
  • the solvent of the convex portion forming liquid is industrial water, seawater, fresh water, or the like.
  • the convex forming liquid may be adjusted with a solution containing particles (for example, seawater).
  • the concentration of the convex elements in the convex forming liquid is set so that a predetermined amount of convex elements are supplied when passing through the filtration layer 2a.
  • the supply amount of the convex element can be appropriately set according to the type of the convex element and the component of the water to be treated.
  • the convex portion is imparted by passing the convex portion forming liquid from one side of the filtration layer 2a to the other side. Thereby, a convex part is provided on the surface of the solid filter medium.
  • the filtration rate of the convex portion forming liquid is preferably the same as the filtration rate of the water to be treated.
  • the filtration speed can be adjusted by the first supply means 3b or the second supply means 4b. When the filtration speed is adjusted by the first supply means 3b, the water to be treated is passed through the filtration layer 2a in parallel with the step (S1) of providing the convex portion.
  • the supply amount of the convex element is reduced as compared with that when the convex part is provided (S2).
  • Whether or not a convex portion has been imparted to the surface of the solid filter medium is determined based on a preset criterion.
  • the “standard” can be set by conducting a preliminary test or the like. In the preliminary test, for example, a convex forming liquid containing convex elements at an arbitrary concentration is passed through the filtration layer, and the water quality of the filtrate is inspected. The supply amount of the convex element when the inspection value becomes a desired value is set as a threshold value (reference) of the supply amount of the convex element that gives the necessary amount of convex portions to the solid filter medium.
  • the total supply amount of the convex elements to the filtration layer 2a in the step (S1) of applying the convex portion is counted, and when the total supply amount counted reaches a preset threshold value, the solid filter medium It is determined that a convex portion that satisfies a preset criterion is provided on the surface of the surface. When it is determined that the convex portion is provided, the supply amount of the convex element is reduced. To what extent the supply amount of the convex element is reduced can be appropriately set according to the type of the convex element.
  • the supply amount of the convex element after the reduction is such an amount that the coagulation effect cannot be expected even when added to the water to be treated.
  • a convex element is iron chloride, it reduces to the grade which becomes less than 0.5 ppm as iron (Fe) with respect to the amount of solutions which let the filtration layer 2a pass.
  • the supply of the convex elements may be stopped and the supply amount of the convex elements may be set to zero.
  • Water flow (S3) of the water to be treated including suspended solids to the filtration layer 2a is performed in a state where the supply amount of the convex elements is reduced (or stopped). At this time, convex portions are provided on the surface of the solid filter medium filled in the filtration layer 2a.
  • the water quality of the filtrate from the filtration layer 2a may be inspected.
  • the convex element is supplied again to the filtration layer, and a convex portion is given to the surface of the solid filter medium (S2 ').
  • the inspection value of the filtrate falls below a preset threshold value, the supply of the convex element is reduced (or stopped) (S3 ').
  • (S3) “inspection of water quality” is performed with an SDI measuring instrument, a turbidimeter, a TOC meter, an SS meter, a UV meter, a COD meter, and the like.
  • the threshold is set according to the inspection method. For example, when the inspection method is SDI, the threshold value may be SDI ⁇ 4.
  • a convex element When a convex element is supplied to the filtration layer filled with the solid filter medium, the convex element comes into contact with the solid filter medium, and a convex portion is imparted to the surface of the solid filter medium.
  • a convex portion When removing suspended matter from the water to be treated, a convex portion can be imparted to the surface of the solid filter medium in a short time by passing the convex element through the filtration layer in the initial stage.
  • the filtration layer filled with the solid filter medium provided with the convex portions can stably remove suspended solids at a high removal rate from the beginning of the step of removing suspended solids from the water to be treated. Therefore, the start-up time of the suspended solids removal device can be shortened compared to the conventional case.
  • the filtration layer filled with the solid filter medium provided with the convex portions can capture the suspended solids of 0.1 ⁇ m or more and 10 ⁇ m or less, it contains many suspended solids having a size of 0.1 ⁇ m or more and 10 ⁇ m or less. Even if it is the to-be-processed water which is being processed, the water quality of a filtrate can be improved. That is, it becomes possible to cope with water quality fluctuations of the water to be treated.
  • a convex part is given to the surface of a solid filter medium of 300 ⁇ m or more and 2500 ⁇ m or less, an effect of removing suspended solids more than a blocking effect is obtained.
  • Sludge generation can be suppressed by reducing the supply amount of convex elements. As a result, an increase in the differential pressure in the filtration layer is suppressed, so that the interval between backwashing can be extended, and no sludge treatment facility is required.
  • the water quality of the filtrate in the step (S3) can be stabilized until the convex portions are peeled off. If the supply of the convex elements is continued even though there are few, the convex portions can be replenished. Therefore, even if a convex part peels, the water quality of a filtrate can be maintained stably. Further, when the supply of the convex elements is stopped, the amount of the convex elements used can be reduced, so that the processing cost can be reduced.
  • the process of providing the convex part of this embodiment (S1) the convex part is provided after filling the filter part with the solid filter medium, but the solid filter medium provided with the convex part in another container is filled in the filter part. The same effect can be obtained when the filter layer is used.
  • FIG. 2 is a schematic configuration diagram of the suspended solids removal apparatus according to the present embodiment.
  • the suspended solid removal device 11 includes a filtration unit 2, a treated water supply unit 3, a convex element supply unit 4, a differential pressure measurement unit 12, a determination unit 15, and a control unit 16.
  • the filtration part 2, the to-be-processed water supply part 3, and the convex element supply part 4 are the structures similar to 1st Embodiment.
  • the suspension removal device 11 may include a water quality inspection unit 9 as in the first embodiment.
  • the differential pressure measurement unit 12 can measure the differential pressure between one side (first opening side) and the other side (second opening side) of the filtration layer 2a (filtration unit 2).
  • the differential pressure measurement unit 12 is connected to one side of the filtration unit 2 and the other side.
  • the differential pressure measuring unit 12 is a water pressure gauge. The water pressure gauge detects the pressure on one side of the filtration unit 2 and the pressure on the other side, and measures the differential pressure.
  • the determination part 15 can determine whether the convex part was provided to the surface of the solid filter medium based on the preset reference
  • the determination unit 15 includes a convex element amount measuring unit that directly or indirectly measures the amount of the convex element contained in the filtrate that has exited from the other side (second opening side) of the filtration unit 2. (Not shown).
  • the convex element amount measuring means may be any means that can directly or indirectly measure the amount of convex elements. For example, when the convex element is iron chloride, the convex element can be directly measured using a water quality analyzer that can monitor the iron concentration as the convex element amount measuring means.
  • the convex element can be indirectly measured.
  • the convex element when the convex element is kaolin, the convex element can be indirectly measured by using a turbidimeter as the convex element amount measuring means.
  • the convex element amount measuring means can also serve as the water quality inspection means.
  • the convex element amount measuring means is an SDI measuring instrument and also serves as a water quality inspection means.
  • the determination part 15 can determine with the convex part having been provided to the surface of the solid filter medium, when the measured value of the convex element amount measuring means is not more than a preset threshold value.
  • the determination part 15 may determine with the convex part being provided to the surface of the solid filter medium, when a measured value becomes below a predetermined value and it confirms that the state was maintained for a fixed time.
  • the determination unit 15 may be incorporated in the control unit 16.
  • the control unit 16 is connected to the differential pressure measurement unit 12, the determination unit 15, and the second supply unit 4b.
  • the control unit 16 can control the supply amount of the convex elements from the convex element supply unit 4 so that the differential pressure measured by the differential pressure measurement unit 12 is less than a predetermined value.
  • the control unit 16 receives the differential pressure value measured by the differential pressure measurement unit 12 and automatically supplies the convex element supply amount from the convex element supply unit 4 so that the differential pressure value is maintained below a predetermined value. To control.
  • the control unit 16 supplies the convex element so that the convex portion is provided on the surface of the solid filter medium, and the determination unit 15 provides the convex portion.
  • the convex element supply unit 4 can be controlled so as to reduce the supply amount of the convex element when it is determined that the convex element has been supplied.
  • the suspended solid removal device 11 may include a reverse osmosis membrane treatment unit 10, an electrodialysis unit (not shown), an evaporator (not shown), or the like on the downstream side of the filtration unit 2.
  • the suspended solid removal device 11 may include backwashing means for backwashing the filtration layer 2a (not shown).
  • the suspension removal method includes the following steps (S11) to (S14).
  • (S11) A step of providing a convex portion (S12) A step of measuring a differential pressure between one side of the filtration layer and the other side of the filtration layer (S13) A supply amount of the convex element is reduced as compared with the case of providing the convex portion.
  • a convex element is supplied to the filtration layer 2a to provide the convex portion on the surface of the solid filter medium.
  • the procedure for supplying convex elements to the filtration layer 2a is the same as that in the first embodiment.
  • the convex element when the convex element is supplied to the filtration layer 2a, the differential pressure between one side and the other side of the filtration layer 2a is measured (S12).
  • the convex element is supplied to the filtration layer 2a in a range where the differential pressure measured in (S12) is less than a predetermined value.
  • the supply of the convex element is immediately stopped.
  • the “predetermined value” may be set based on the allowable pressure of the filtration unit, or may be set in advance by performing a preliminary test or the like.
  • a convex forming liquid containing convex elements at an arbitrary concentration is passed through the filtration layer, and the differential pressure of the filtration layer is measured and the water quality of the filtrate is inspected.
  • the differential pressure of the filtration layer when the inspection value of the filtrate reaches a desired value can be set to a predetermined value.
  • step (S13) the amount of convex elements contained in the filtrate that has come out of the filtration layer 2a in the step (S11) of imparting convex portions is measured directly or indirectly.
  • the amount of the measured convex element is equal to or less than a preset threshold value, it is determined that the convex portion is provided on the surface of the solid filter medium.
  • the supply amount of the convex element is reduced (or stopped) as in the step (S2) of the first embodiment.
  • Water flow (S14) of the water to be treated containing suspended solids to the filtration layer 2a is performed in a state where the supply amount of the convex elements is reduced (or stopped) as in the step (S3) of the first embodiment. .
  • the water quality of the filtrate discharged from the filtration layer may be inspected as in the step (S3) of the first embodiment.
  • the present embodiment by measuring the differential pressure between one side and the other side of the filtration layer, it is possible to reliably suppress an increase in the differential pressure due to the formation of the convex portion.
  • the convex element has not come out of the filtrate by measuring the amount of the convex element of the filtrate that is output when the convex element is supplied.
  • the convex part was formed in the surface of a solid filter medium.
  • FIG. 3 is a schematic configuration diagram of the suspended solid removal apparatus according to the present embodiment.
  • the suspended solid removal device 21 has the same configuration as that of the first embodiment except that it includes a coarse particle separation unit 22.
  • the coarse particle separation unit 22 is provided between the treated water supply unit 3 and the filtration unit 2 and before the convex element supply unit 4.
  • the coarse particle separation unit 22 mainly separates suspended matter larger than 10 ⁇ m contained in the water to be treated.
  • the coarse particle separation unit 22 is a sand filtration device or a floating separation device. In the case where the coarse particle separation unit 22 is a sand filtration device, the water to be treated may be passed through without adding a flocculant.
  • the coarse-grain separator 22 is a floating separator, solid-liquid separation is performed by mixing saturated pressurized water with the water to be treated, and attaching and floating a large amount of generated bubbles (micro air) to the SS (sludge and suspended solids). Do.
  • the water to be treated is passed through the coarse particle separation unit 22 so that the suspended solids larger than 10 ⁇ m are mainly separated from the water to be treated and used as the primary water to be treated. Thereafter, the primary treated water is guided to the filtration layer, and the suspended solids having a size of 0.1 ⁇ m or more and 10 ⁇ m or less are removed.
  • the convex element can be supplied to the filtration layer 2a at the same time when the primary treated water is introduced to the filtration layer.
  • Supply of the convex element to the filtration layer 2a may be performed before leading the primary treated water to the filtration layer 2a.
  • the supply amount of a convex element is reduced (or stopped).
  • the coarseness of the suspension having a large particle diameter of the water to be treated and the removal of the suspension having a medium particle diameter of 0.1 ⁇ m or more and 10 ⁇ m or less are separated, so that the eyes in the filtration layer can be separated.
  • An increase in differential pressure due to clogging or the like can be suppressed.
  • the water quality of the filtrate of the filtration layer can be stabilized, and the frequency of backwashing of the filtration layer can be reduced.
  • the solid filter medium was spherical, and the particle size was 100 ⁇ m, 300 ⁇ m (minimum diameter of sand used industrially for sand filtration) and 1200 ⁇ m (maximum diameter of sand industrially used for sand filtration).
  • the filtration speed was set to 25 m / h (corresponding to 50% of the cross-sectional porosity of a sand filtration tower with an empty column speed of 12.5 m / h).
  • the flow path width d 0 is the same as the solid filter medium particle size.
  • the horizontal axis represents the trapped particle diameter ( ⁇ m), and the vertical axis represents the trap rate (%).
  • the smaller the solid filter medium the higher the trapping rate of suspended solids having a size of about 10 ⁇ m.
  • suspended solids having a size of 0.1 ⁇ m to 5 ⁇ m could hardly be trapped even when using a solid filter medium having a minimum size of sand that is industrially used for sand filtration.
  • the present inventors have drawn a conclusion that it is sufficient to remove suspended solids having a size of 0.1 ⁇ m or more and 10 ⁇ m or less in order to cope with the load fluctuation and stabilize the water quality of the filtrate.
  • the reason why the suspended solid having a size of 0.1 ⁇ m or more and 10 ⁇ m or less is not removed in the filtration using the conventional solid filter medium is considered as follows.
  • FIG. 6 shows a schematic diagram of the flow of the water to be treated when the water to be treated is passed through the filtration layer filled with the solid filter medium.
  • symbol S is a solid filter medium
  • the line F extended to a paper surface up-down direction is a streamline of to-be-treated water.
  • the treated water flowing through the filtration layer is usually in a laminar flow state as shown in FIG. In the laminar flow state, it is known that the closer to the surface of the solid filter medium, the smaller the flow rate of the water to be treated, and the surface of the solid filter medium has a region where the flow rate is substantially zero (blocking layer region).
  • the coarse suspended matter contained in the water to be treated is captured without passing through the gaps of the solid filter medium. Even in the case of a suspension that is large enough to pass through the gap between the solid filter media, the relatively large suspension can be trapped by colliding with the solid filter media out of laminar flow due to the law of inertia.
  • fine suspended solids can be captured by the solid filter medium by diffusion due to Brownian motion.
  • medium-sized suspended solids particles having a diameter of 0.1 ⁇ m or more and 10 ⁇ m or less
  • the suspended solids contained in the water to be treated cannot be removed from the laminar flow by the law of inertia, etc. Pass through the filtration layer in a laminar flow.
  • the surface of the solid filter medium is assumed to have a convex portion having a height of 60 ⁇ m and a width of 60 ⁇ m, and the particle size of the suspended solid is 1 ⁇ m (suspended material S1) and 5 ⁇ m (suspended material S2). It is a condition that there is no blocking effect from the size of the suspended solids, the size of the projections, and the channel width.
  • FIGS. Paper longitudinal direction is the channel width d 0 in FIGS. 7-9, the treated water flows from the paper left to right.
  • FIG. 7 is a diagram showing the flow of suspended solids.
  • FIG. 8 is a diagram showing the state of the convex portion in the initial stage of passing the treated water, and FIG.
  • the flow path width d 0 is 600 ⁇ m corresponding to the solid filter medium diameter, the flow path length is 1200 ⁇ m, and the flow rate is 0.006 m / s (a value corresponding to 50% of the cross-sectional porosity of a sand filter tower with a superficial velocity of 10.8 m / h). It was.
  • the simulation result is shown in FIG. In the figure, the horizontal axis represents the trapped particle diameter ( ⁇ m), and the vertical axis represents the height of the convex portion ( ⁇ m).
  • the smaller suspended matter was captured as the size of the convex portion was larger.
  • 10 ⁇ m of suspended solids could be removed.
  • a rectangle (convex portion) having a height of 40 ⁇ m was necessary.
  • the filtration tower (tower diameter 5 cm) has a three-layer structure of an anthracite filtration layer, a sand filtration layer, and a gravel filtration layer.
  • the anthracite filtration layer, the sand filtration layer, and the gravel filtration layer are arranged in order from the upstream side in the water flow direction of the water to be treated.
  • the anthracite filtration layer is a filtration layer filled with anthracite having an average particle size of 700 ⁇ m.
  • the length of the anthracite filtration layer is 200 mm.
  • the sand filtration layer is a filtration layer filled with sand having an average particle size of 475 ⁇ m.
  • the length of the sand filtration layer is 500 mm.
  • the gravel filtration layer is a filtration layer filled with gravel having an average particle diameter of 2000 ⁇ m.
  • the length of the gravel filtration layer is 100 mm.
  • the convex element was iron chloride (FeCl 3 : Wako Pure Chemical Industries, Ltd.). Iron chloride reacts with an alkaline component in water as shown by the following formula (1) to generate iron hydroxide. It was thought that this iron hydroxide adhered to the filter medium and formed a convex portion.
  • FeCl 3 + 3HCO 3 ⁇ Fe (OH) 3 + 3CO 2 + 3Cl ⁇ (1)
  • the treated water was seawater.
  • the SDI of seawater before passing water was 6.14.
  • a convex forming liquid containing convex elements was prepared, and the convex forming liquid was passed through the filtration layer together with the water to be treated.
  • concentration of the convex element in a convex part formation liquid was made so that Fe density
  • the differential pressure of the filtration layer was measured with a differential pressure measuring instrument. Further, the Fe concentration and SDI of the liquid (filtrate) that passed through the filtration layer were continuously measured. The Fe concentration was measured by 2,4,6-tri-2-pyridyl-1,3,5-triazine absorptiometry (abbreviation: TPTZ absorptiometry) described in JIS B8224.
  • TPTZ absorptiometry 2,4,6-tri-2-pyridyl-1,3,5-triazine absorptiometry
  • SDI is obtained from the following formula (2) from the time required for filtration and collection at 206 kPa using a filter having a diameter of 47 mm and an average pore diameter of 0.45 ⁇ m.
  • SDI Tm (1 ⁇ t 1 / ⁇ t 2 ) ⁇ 100 / Tm (2)
  • ⁇ t 1 Time (seconds) required to filter / collect 500 ml at first
  • ⁇ t 2 Time (seconds) required to filter and collect 500 ml after Tm minutes
  • Tm t 1 time from the filtration and collection start time to t 2 filtration and collection start time (usually 15 minutes)
  • the upper limit of the SDI index is 6.67.
  • the decrease in SDI suggests that the proportion of suspended particles larger than 0.45 ⁇ m is decreasing.
  • FIG. 11 shows the measurement results of the differential pressure in the filtration layer.
  • the horizontal axis represents elapsed time (h) and the vertical axis represents the differential pressure (kPa) of the filtration layer.
  • the differential pressure of the filtration layer slightly increased by passing the convex forming liquid containing iron hydroxide, but after stopping the convex forming liquid passing, There was no increase in pressure.
  • Test B when the convex portion forming liquid was not passed, almost no change was observed in the differential pressure of the filtration layer within the same time.
  • FIG. 12 shows the SDI measurement results of Test A and Test B.
  • the horizontal axis represents elapsed time (h)
  • the vertical axis represents SDI ( ⁇ ).
  • the SDI of the filtrate decreased to about 4 in 2 to 3 hours.
  • the SDI of the filtrate was able to maintain about 4 even after stopping the flow of the convex portion forming liquid.
  • the Fe concentration in the filtrate reached 1 ⁇ g / L (detection lower limit) after 2 hours through the solution. Thereby, it turns out that the iron hydroxide contained in the convex portion forming liquid remains in the filtration layer. After stopping the passage of the convex portion forming liquid, the Fe concentration in the filtrate was maintained at 1 ⁇ g / L. Thereby, it was confirmed that the iron hydroxide remaining in the filtration layer was not peeled off by subsequent water flow.
  • the water quality of the filtrate can be improved quickly in 2 to 3 hours after the projection forming liquid is passed through the filtration layer.
  • the water quality of the filtrate was stable even after the passage of the convex portion forming liquid was stopped.
  • the flocculants are added continuously. Since the filtration layer is clogged by the sludge formed by the flocculant and the suspended solids contained in the water to be treated, the differential pressure increases as the filtration is continued. Therefore, in general, it is necessary to clean the filtration layer at a cleaning rate such that air cleaning (cleaning by collision between filter media by air bubbling) and the expansion rate of the filtration layer become 30%. On the other hand, in this filtration method in which the convex portion forming liquid is injected to make the solid filter medium surface convex, only the suspended solids contained in the water to be treated are captured. Can be reduced.
  • the coarse particle separation unit was a sand filtration device.
  • the sand filtration apparatus has a sand filtration layer (length: 1200 mm) filled with sand having an average particle diameter of 350 ⁇ m and a gravel filtration layer (length: 100 mm) filled with gravel having an average particle diameter of 2000 ⁇ m.
  • the sand filter layer is located upstream of the gravel filter layer in the direction of water flow.
  • the filtration part has a filtration layer.
  • the filtration layer includes an anthracite filtration layer (length: 200 mm) filled with anthracite having an average particle size of 700 ⁇ m, a sand filtration layer (length: 1000 mm) filled with sand having an average particle size of 350 ⁇ m, and an average particle It consists of a gravel filtration layer (length 100 mm) filled with gravel with a diameter of 2000 ⁇ m.
  • An anthracite filtration layer, a sand filtration layer, and a gravel filtration layer are arranged in this order from the upstream side in the water flow direction of the water to be treated.
  • the treated water was passed through the coarse grain separation unit by the treated water supply unit. Next, the filtrate (primary treated water) that came out of the coarse-grain separation part was passed through the filtration part.
  • the convex portion forming liquid was added to the primary treated water before entering the filtration portion, and the convex portion forming liquid and the primary treated water were simultaneously passed. The flow of the convex forming liquid was stopped 3 hours after the start of the liquid flow. Even after stopping the flow of the convex forming liquid, the flow of the primary treated water was continued for 3 hours.
  • the differential pressure of the coarse grain separation part and the filtration part was measured with a differential pressure measuring instrument. Moreover, the SDI of the liquid (filtrate) that passed through the filtration unit was continuously measured. The filtration speed was 10 m / h.
  • the convex element was iron chloride (FeCl 3 ), and the convex portion forming liquid was supplied so that the Fe concentration was 1 ppm with respect to the primary treated water.
  • the SDI of seawater before passing water is 6.28.
  • FIG. 13 shows the measurement results of the differential pressure in the coarse grain separation part and the filtration part (filtration layer).
  • the horizontal axis represents elapsed time (h), and the vertical axis represents differential pressure (kPa).
  • h elapsed time
  • kPa differential pressure
  • FIG. 14 shows the SDI measurement results of the filtrate from the filtration section.
  • the horizontal axis represents elapsed time (h), and the vertical axis represents SDI ( ⁇ ).
  • the SDI of seawater before passing water was 6 or more, but when the projecting part forming liquid was passed for 2 to 3 hours, the SDI of the filtrate of the filtering part decreased to less than 4.
  • the SDI of the filtrate of the filtration part was able to maintain less than 4 even after the flow of the convex part forming liquid was stopped.
  • the standard for the turbidity concentration required for the feed water to the RO (reverse osmosis) membrane was generally SDI ⁇ 4, and the filtrate for 2 to 3 hours through the liquid met this water quality standard.
  • the suspension layer having a medium size is 0.1 ⁇ m or more and 10 ⁇ m or less in the filtration layer. It is thought that it was captured.
  • the suspension removal test was carried out using a suspension removal device equipped with a coarse particle separation section (column diameter 5 cm) and a filtration section (column diameter 5 cm).
  • the coarse particle separation unit was a sand filtration device.
  • the sand filtration apparatus has a sand filtration layer (length: 800 mm) filled with sand having an average particle diameter of 350 ⁇ m and a gravel filtration layer (length: 100 mm) filled with gravel having an average particle diameter of 2000 ⁇ m.
  • the sand filter layer is located upstream of the gravel filter layer in the direction of water flow.
  • the filtration part has a filtration layer.
  • the filtration layer includes an anthracite filtration layer (length: 200 mm) filled with anthracite having an average particle size of 700 ⁇ m, a sand filtration layer (length: 600 mm) filled with sand having an average particle size of 350 ⁇ m, and an average particle It consists of a gravel filtration layer (length 100 mm) filled with gravel with a diameter of 2000 ⁇ m.
  • An anthracite filtration layer, a sand filtration layer, and a gravel filtration layer are arranged in this order from the upstream side in the water flow direction of the water to be treated.
  • the treated water was passed through the coarse grain separation unit by the treated water supply unit. Next, the filtrate (primary treated water) that came out of the coarse-grain separation part was passed through the filtration part.
  • the convex portion forming liquid was added to the primary treated water before entering the filtration portion, and the convex portion forming liquid and the primary treated water were simultaneously passed. The flow of the convex forming liquid was stopped 3 hours after the start of the liquid flow. Even after the flow of the convex forming liquid was stopped, the flow of the primary treated water was continued for 3 hours.
  • the differential pressure of the coarse grain separation part and the filtration part was measured with a differential pressure measuring instrument. Moreover, the SDI of the liquid (filtrate) that passed through the filtration unit was continuously measured. The filtration speed was 10 m / h.
  • the convex element was kaolin.
  • kaolin powder having an average particle size of 10 ⁇ m to 15 ⁇ m was used (manufactured by Takehara Chemical Industry Co., Ltd.).
  • the convex forming liquid was supplied so that the kaolin concentration was 2 ppm with respect to the primary treated water.
  • the SDI of seawater before passing water is 5.2.
  • FIG. 15 shows the measurement results of the differential pressure in the coarse grain separation part and the filtration part (filtration layer).
  • the horizontal axis represents elapsed time (h), and the vertical axis represents differential pressure (kPa).
  • h elapsed time
  • kPa differential pressure
  • FIG. 16 shows the SDI measurement results of the filtrate discharged from the filtration unit.
  • the horizontal axis represents elapsed time (h)
  • the vertical axis represents SDI ( ⁇ ).
  • L / D is used as an index representing the performance of the filtration tower.
  • L / D is obtained by dividing the layer thickness L by the particle size D.
  • L / D is a value proportional to the total area of the filter medium per unit filtration area, and the larger the value, the greater the surface area of the filter medium per unit filtration area.
  • the L / D of this test apparatus was 4385. When L was calculated from the amount of kaolin charged and L / D was calculated using 12.5 ⁇ m (arithmetic mean of average particle diameter) as the particle diameter, it was 0.4. This indicates that SDI ⁇ 4 can be satisfied without increasing the surface area.
  • the solid filter medium and the filter layer are the same as described above (Study 6).
  • the convex forming liquid was supplied so that the polymer concentration was 0.5 ppm with respect to the primary treated water.
  • the treated water is seawater.
  • the SDI of the seawater before passing water was 5.2.
  • FIG. 17 shows the measurement results of the differential pressure in the coarse particle separation part and the filtration part (filtration layer).
  • the horizontal axis represents elapsed time (h) and the vertical axis represents the differential pressure (kPa) of the filtration layer.
  • h elapsed time
  • kPa differential pressure
  • FIG. 16 shows the SDI measurement results of the filtrate discharged from the filtration unit.
  • the SDI of seawater was 5.2, but when the projection forming liquid was passed for 2 to 3 hours, the SDI of the filtrate of the filtration unit was reduced to less than 4.
  • the SDI of the filtrate of the filtration part was able to maintain less than 4 even after the flow of the convex part forming liquid was stopped. It was thought that the SDI was reduced because the polymer used suspensions in seawater and formed convex portions on the surface of the solid filter medium. At this time, it was confirmed that the increase in the differential pressure between the coarse grain separation part and the filtration part was small.
  • the solid filter medium and the filter layer are the same as described above (Study 6).
  • kaolin powder having an average particle size of 10 ⁇ m to 15 ⁇ m was used (manufactured by Takehara Chemical Industry Co., Ltd.).
  • the convex forming liquid was supplied so that kaolin was 2 ppm and the high molecular polymer was 0.5 ppm with respect to the primary treated water.
  • the treated water is seawater.
  • the SDI of seawater before passing water was 5.6.
  • FIG. 18 shows the measurement results of the differential pressure between the coarse grain separation part and the filtration part (filtration layer).
  • the horizontal axis represents elapsed time (h) and the vertical axis represents the differential pressure (kPa) of the filtration layer.
  • FIG. 16 shows the SDI measurement results of the filtrate discharged from the filtration unit.
  • the SDI of seawater before passing water was 5.6 or more, but when the projecting part forming liquid was passed for 2 to 3 hours, the SDI of the filtrate of the filtering part was reduced to less than 4. .
  • the SDI of the filtrate of the filtration part was able to maintain less than 4 even after the flow of the convex part forming liquid was stopped. It is considered that SDI was reduced by the formation of convex portions on the surface of the solid filter medium by the kaolin and the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Abstract

スラッジ処理設備が不要であり、且つ水質基準を満たす濾液を安価に得られる懸濁質除去方法および懸濁質除去装置を提供することを目的とする。本発明の懸濁質除去方法は、固体濾材が充填されてなる濾過層(2a)に凸要素を供給し前記固体濾材の表面に凸部を付与する工程と、前記凸部を付与する工程で凸要素を供給した後、前記固体濾材の表面に、予め設定された基準を満たす凸部が付与されたか否かを判定し、凸部が付与されたと判定された場合に前記凸要素の供給量を凸部付与時よりも低減する工程と、前記凸要素の供給量が低減された状態で、前記凸部が付与された固体濾材を有する前記濾過層(2a)に、懸濁質を含む被処理水を通水する工程と、を備えている。

Description

懸濁質除去方法および懸濁質除去装置
 本発明は、懸濁質除去方法および懸濁質除去装置に関するものである。本発明は、特に海水淡水化プラントおよび水処理プラントで用いられる懸濁質除去方法および懸濁質除去装置に関するものである。
 近年、世界的な水不足から海水を淡水化する市場が拡大しており、海水淡水化プラントの建設が進められている。海水を淡水にする技術として、逆浸透膜(RO膜)により、海水中の塩分を除去して淡水を生成する方法が知られている。RO膜を用いた濾過装置では、前処置として懸濁質の除去が行われる。
 懸濁質を除去する際には、一般に海水に凝集剤を連続注入して懸濁質を凝集させる。凝集剤としては鉄塩が用いられる。該金属は、水中でアルカリ成分と反応して金属の水酸化物を生成する。
 金属の水酸化物はバインダーとして作用し、海水中の懸濁質が衝突・接触することにより集塊し、フロックを生じさせる。凝集剤の注入量は、海水中に含まれる懸濁質の量に応じて増減させる。例えば、凝集剤として鉄塩を用いる場合、海水中で鉄として0.5ppmから10ppmとなるように鉄塩が注入される。
 懸濁質を分離する別の方法として、フィルタ濾過、遠心分離および固体濾材を用いた濾過などがある。固体濾材を用いる方法は、フィルタ濾過や遠心分離と比べ安価で、メンテナンスが容易であるというメリットがある。通常、固体濾材には、直径300μmから2500μmの大きさのものが用いられる。除去したい懸濁質が小さい場合には、被処理水に凝集剤を添加し、フロックを形成させることで除去対象物を大きくした後、濾過する。この場合も、凝集剤が被処理水に連続注入される(特許文献1参照)。
 凝集剤を連続注入するとフロックが成長し、後流の濾過器により容易に捕捉されるようになる。しかしながら濾過器自体は定期的に洗浄し、内部に堆積したフロックを系外へ排出する必要がある。濾過器内に堆積したフロックは、逆洗浄により濾過器内から排出される。
特開2000-202460号公報
 逆洗浄の際に出る洗浄廃水は濁質が高く、そのまま海域に排出すると環境に悪影響を及ぼす。そのため、洗浄廃水は脱水機等で固液分離し、残った固体分はスラッジとして系外で廃棄処分する。スラッジの処理には、スラッジ処理設備が必要となる。凝集剤を連続注入する方法は、環境負荷が高い。
 固体濾材を用いた濾過において大量の凝集剤が使われた場合、フロックが濾過層で捕捉され、濾過層の差圧が上昇する。差圧が上昇すると被処理水が通りにくくなり除去効率が低下する。差圧を下げるためには、濾過層を逆洗浄する必要がある。逆洗浄した直後の濾過器は、懸濁質の除去率(捕捉率)が低く、濾液の水質が安定するまで長い時間(例えば5時間以上)を要し、濾液の水質悪化の要因となる。
 固体濾材を用いた濾過による懸濁質の除去メカニズムとしては、例えば、篩い分け、空隙内や隙間のよどみでの沈殿等のさえぎり効果による除去、または付着・吸着(静電、分子間力、粘着)など、様々なことが考えられるが、現状においてその全様は未解明である。そのため、除去率の向上、および、負荷変動または起動時における濾液の水質の安定化に課題がある。
 除去メカニズムのうち、さえぎりによる懸濁質の除去に着目すると、固体濾材の粒径が小さいほど流路が狭くなるため、より小さい懸濁質を除去できるようになる。また小さい固体濾材を用いると、固体濾材の比表面積が増大するため、ブラウン運度により固体濾材の表面に捕捉できる微細な懸濁質の除去率を上げることができる。
 しかしながら、小さい固体濾材を用いた場合、濾過器の圧損が大きく、送水ポンプの動力が上昇するため、運転量が増大する。また、運転圧が高いため、固体濾材を収容する容器の耐圧性を増す必要があり、装置費用が増大する。すなわち、固体濾材を小さくして除去率を向上させることは、費用とのトレードオフの関係にある。
 本発明は、このような事情に鑑みてなされたものであって、スラッジ処理設備が不要であり、濾過層での差圧の上昇を抑えながらも、所望の水質基準を満たす濾液を安価に得られる懸濁質除去方法および懸濁質除去装置を提供することを目的とする。
 本発明者らは、鋭意研究の結果、固体濾材を用いた従来の濾過方法では、固体濾材の大きさを小さくした場合であっても、0.1μmから10μmの懸濁質が除去され難いという新たな知見を得た。これに基づき、本発明者らは0.1μmから10μmの懸濁質を除去するための懸濁質除去方法および懸濁質除去装置を発明した。
 本発明は、固体濾材が充填されてなる濾過層に、凸要素を供給し前記固体濾材の表面に凸部を付与する工程と、前記凸部を付与する工程で凸要素を供給した後、前記固体濾材の表面に、予め設定された基準を満たす凸部が付与されたか否かを判定し、凸部が付与されたと判定された場合に前記凸要素の供給量を凸部付与時よりも低減する工程と、前記凸要素の供給量が低減された状態で、前記凸部が付与された固体濾材を有する前記濾過層に、懸濁質を含む被処理水を通水する工程と、を備えている懸濁質除去方法を提供する。
 上記発明では、固体濾材の表面に凸部を付与することにより、濾過層内での被処理水の流れにミクロな変化を生じさせて、0.1μm以上10μm以下の大きさの懸濁質を捕捉する。これにより0.1μm以上10μm以下の大きさの懸濁質が多く含まれている被処理水であっても、濾液の水質を向上させることができる。被処理水の水質変動(負荷変動)を許容し、濾液の水質を安定にできる。
 上記発明では、固体濾材の表面に凸部を付与するべく濾過層に凸要素を供給するため、短時間で安定的に凸部を付与できる。凸部が付与された固体濾材が充填されてなる濾過層は、被処理水から懸濁質を除去する工程の開始初期から高い除去率(捕捉率)で安定的に懸濁質を除去(捕捉)できる。これにより、従来と比較して濾過装置の起動時間を短縮できる。
 凸要素の供給を低減することで、スラッジの生成を抑制できる。一方、少ないながらも凸要素の供給を継続することで、凸部が剥がれ落ちた場合、または、被処理水の水質が悪化した場合であっても追加で凸部が形成されるため、濾液の水質を安定化できる。
 上記発明では、凸要素の供給量を低減した状態で被処理水から懸濁質を除去するため、凸要素を連続供給した場合と比較してスラッジの生成量を少なくできる。それにより、濾過層での差圧の上昇が抑制されるため逆洗浄の間隔を延ばすことができる。
 上記発明の一態様では、前記凸要素の供給量を低減する工程において、前記凸要素の供給を停止するとよい。
 凸要素の供給を停止することで、スラッジの生成を防止できるため、スラッジの処理設備も必要でなくなる。
 上記発明の一態様では、前記凸部を付与する工程と並行して前記被処理水を前記濾過層に通水する工程を更に備えていてもよい。それにより被処理水の濾過をしながら、必要に応じて凸部を付与できる。
 上記発明の一態様では、前記濾過層の一方の側と前記濾過層の他方の側との差圧を計測する工程を備え、前記凸部を付与する工程において、計測した前記差圧が所定値未満となる範囲で前記凸要素を供給してもよい。
 凸部を過剰に形成して被処理水の流路を狭くすれば小径の固体濾材を用いたときと同様にさえぎり効果が向上するが、上記発明の一態様によればさえぎり効果が向上するほど流路を狭くしなくても、凸部により0.1μm以上10μm以下の大きさの懸濁質を捕捉できる。凸部を付与することにより生じる濾過層の差圧を所定値未満とすることで、初期差圧を低く抑え、メンテナンス間隔を長くすることができる。
 上記発明の一態様では、前記凸部を付与する工程で前記濾過層から出た濾液に含まれる凸要素の量を、直接的または間接的に計測する工程を備え、計測した前記凸要素の量が予め設定された閾値以下になった場合に、前記固体濾材の表面に前記凸部が付与されたと判定してもよい。
 凸要素が濾過層に供給されると、凸要素が固体濾材の表面に付着して凸部となる。凸部を付与する工程において、濾液に含まれる凸要素の量の減少は、凸要素が固体濾材の表面に付着したことの指標となる。よって、上記一態様によれば、0.1μm以上10μm以下の大きさの懸濁質を捕捉するのに必要な凸部を付与できる。
 上記発明の一態様では、前記凸部を付与する工程における前記濾過層への前記凸要素の総供給量をカウントし、カウントした総供給量が予め設定された閾値に達した場合に、前記固体濾材の表面に前記凸部が付与されたと判定してもよい。
 濾過層への凸要素の総供給量を予め設定しておくことで、容易に所望の凸部を付与できる。
 上記発明の一態様では、前記被処理水を通水する工程で前記濾過層から出た濾液の水質を検査する工程を備え、前記濾液の検査値が予め設定された閾値を超えた場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されていないと判定して前記凸部を付与する工程を実施し、前記濾液の検査値が予め設定された閾値以下である場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されたと判定して前記凸要素の供給量を凸部付与時よりも低減するとよい。
 凸要素は固体濾材の表面に付着して凸部となっているため、剥れることもあり得る。凸部が剥れると、剥れた凸部も懸濁質となるため、水質が悪化する。また凸部が剥れると濾過層での懸濁質の除去率も低下するため、濾液の水質が悪化する。上記一態様によれば、濾液の水質に応じて凸部を付与するため、濾液の水質をより安定にできる。
 上記発明の一態様では、前記被処理水を通水する工程において、前記被処理水を粗粒分離部に通水し、前記被処理水に含まれる10μmよりも大きな懸濁質を主として分離した一次被処理水とした後、前記一次被処理水を前記濾過層に通水し、0.1μm以上10μm以下の大きさの懸濁質を除去するとよい。
 粒径の大きな懸濁質を多く含む被処理水では、さえぎり効果により早期に目詰まりすることがある。上記一態様によれば、粗粒分離部により大粒径の懸濁質を粗取りしているため、濾過部では大粒径の懸濁質の影響が少ない状態で0.1μm以上10μm以下の大きさの懸濁質を除去できる。よって、濾過部から出た濾液の水質を安定化できるとともに、濾過層での差圧がたちにくくなり、逆洗浄の間隔を延長できる。
 上記発明の一態様では、前記凸部の高さを4μm以上とするとよい。それにより、凸部で10μm以下の大きさの懸濁質を捕捉できる。凸部の高さが低すぎると、ミクロな流れの乱れを生成しにくくなり、固体濾材への懸濁質粒子が輸送されないため、懸濁質粒子が付着しにくくなる。
 上記発明の一態様では、前記固体濾材の平均粒径を300μm以上2500μm以下にするとよい。それにより、濾過層の差圧を抑えつつ、さえぎり効果が得られる濾過層にできる。
 上記発明の一態様では、前記凸要素をカオリンとすることができる。上記発明の一態様では、前記凸要素を塩化鉄とすることができる。上記発明の一態様では、前記凸要素を高分子ポリマーとすることができる。
 凸要素を上記材料とすることで、固体濾材の表面に安価に凸部を形成できる。凸要素を上記材料とすることで、濾過層の差圧をほとんど上げずに、0.1μm以上10μm以下の大きさの懸濁質粒子を捕捉できる濾過層にできる。
 凸要素を塩化鉄とした場合、前記凸要素の供給量を低減する工程において、前記濾過層を通過する溶液中で前記凸要素の含有量が鉄として0.5ppm未満となるよう前記凸要素の供給量を低減するとよい。
 一般に凝集効果を期待して注入される塩化鉄量は、鉄として1ppm以上であるが、上記発明の一態様では、凝集効果が期待される量より少ない注入量であってもスラッジの生成を抑制できる。これは固体濾材の表面に凸部が形成され、該凸部により懸濁質が除去されるからである。上記発明の一態様では、少ないながらも凸要素の供給を継続することで、凸部が剥がれ落ちた場合、または、被処理水の水質が悪化した場合であっても追加で凸部が形成されるため、濾液の水質を安定化できる。
 本発明は、固体濾材が充填されてなる濾過層を有する濾過部と、前記濾過部の一方の側に被処理水を供給して、前記濾過層に前記被処理水を通水する被処理水供給部と、前記濾過部の一方の側に凸要素を供給する凸要素供給部と、予め設定された基準に基づき、前記固体濾材の表面に凸部が付与されたか否かを判定する判定部と、前記判定部で凸部が付与されたと判定された場合に、前記凸部が付与されていないと判定された場合よりも前記凸要素の供給量を低減するよう前記凸要素供給部を制御する制御部と、を備えている懸濁質除去装置を提供する。
 上記発明の一態様では、前記制御部は、前記判定部で凸部が付与されたと判定された場合に、前記凸要素の供給を停止するよう前記凸要素供給部を制御してもよい。
 上記発明の一態様では、前記濾過部の前記一方の側と他方の側との差圧を計測する差圧計測部を備え、前記制御部は、前記差圧計測部で計測された差圧が所定値未満となるよう前記凸要素供給部からの前記凸要素の供給量を制御できる。
 本発明の懸濁質除去方法および懸濁質除去装置は、凸部を付与した固体濾材が充填されてなる濾過層で被処理水を濾過することで、スラッジ処理設備が不要であり、濾過層での差圧の上昇を抑えながらも、水質基準を満たす濾液を安価に得られる。
第1実施形態に係る懸濁質除去装置の概略構成図である。 第2実施形態に係る懸濁質除去装置の概略構成図である。 第3実施形態に係る懸濁質除去装置の概略構成図である。 流路幅dを説明する模式図である。 検討1におけるシミュレーション結果を示す図である。 被処理水の流れを説明する模式図である。 検討2におけるシミュレーション結果を示す図である。 検討2におけるシミュレーション結果を示す図である。 検討2におけるシミュレーション結果を示す図である。 検討3におけるシミュレーション結果を示す図である。 検討4における濾過層の差圧の計測結果を示す図である。 検討4における試験Aおよび試験BのSDIの測定結果を示す図である。 検討5における濾過部(濾過層)の差圧の計測結果を示す図である。 検討5における濾過部(濾過層)から出た濾液のSDIの測定結果を示す図である。 検討6における粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す図である。 検討6,7,8における濾過部(濾過層)から出た濾液のSDIの測定結果を示す図である。 検討7における粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す図である。 検討8における粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す図である。
 以下に、本発明に係る懸濁質除去方法および懸濁質除去装置の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 図1は、本実施形態に係る懸濁質除去装置の概略構成図である。懸濁質除去装置1は、濾過部2、被処理水供給部3、凸要素供給部4、判定部5および制御部6を備えている。
 濾過部2は、少なくとも1つの濾過層2aと、濾過層2aの一方の側に設けられた第1開口部2bと、濾過層の他方の側に設けられた第2開口部2cとを有している。第1開口部2bおよび第2開口部2cは濾過部2の液体の流出入口である。第1開口部2bには、第1流路7が接続されている。第2開口部2cには、第2流路8が接続されている。
 濾過層2aは、濾過部内に固体濾材が充填されてなるものである。固体濾材の充填量は、適宜設定される。1つの濾過層2aは1種類の材質からなる固体濾材で構成されている。濾過層2aは、濾過部内に複数積層されていてもよい。例えば、砂が充填された砂濾過層と、アンスラサイトが充填されてなるアンスラサイト濾過層とが積層されていてもよい。異なる材質の固体濾材は表面の状態が異なる。異なる材質で構成された濾過層を組み合わせると、広範な大きさの懸濁質を除去できる。
 固体濾材は粒状または繊維状のものを用いる。例えば、固体濾材は砂、アンスラサイト、破砕活性炭、および繊維束などである。破砕活性炭は塩素を除去する効果を有しているため、固体濾材を破砕活性炭とすると、濾過部で被処理水に含まれる塩素を除去できる。それにより後段にRO膜が設けられた場合であっても、RO膜の劣化を抑制できる。
 固体濾材の平均粒径は300μm以上2500μm以下から選択される。「固体濾材の平均粒径」の定義は、AWWA B100-01、JIS8801に準拠する。
 被処理水供給部3は、濾過部2の一方の側に被処理水を供給して、濾過層2aに被処理水を通水できる。本実施形態において、被処理水供給部3は、被処理水タンク3aおよび第1供給手段3bで構成されている。被処理水供給部3は、第1流路7を介して濾過部2の第1開口部2bに接続されている。被処理水タンク3aは、被処理水が貯留される容器である。貯留される被処理水は、海水、汚水、工業廃水などである。第1供給手段3bは、ポンプなどである。第1供給手段3bは、被処理水タンク3aに貯留された被処理水を、第1流路7を介して濾過部2に供給できる。
 凸要素供給部4は、濾過部2の一方の側に凸要素を供給できる。本実施形態において、凸要素供給部4は、凸要素タンク4aおよび第2供給手段4bで構成されている。凸要素供給部4は、被処理水供給部3よりも下流側で、第1流路7を介して濾過部2の第1開口部2bに接続されている。凸要素タンク4aは、凸要素が収容される容器である。第2供給手段4bは、ポンプなどである。第2供給手段4bは、凸要素タンク4aに収容された凸要素を、第1流路7を介して濾過部2に供給できる。
 凸要素は、塩化鉄、硫酸鉄、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、鉱物、高分子ポリマー(カチオン系高分子ポリマー、アニオン系高分子ポリマー、およびノニオン系高分子ポリマー)および無機顔料などである。鉱物は、例えばカオリンである。カチオン系高分子ポリマーは、ポリアクリル酸エステル系、ポリメタクリル酸エステル系およびポリアクリルアミド系が適している。アニオン系高分子ポリマーは、ポリアクリルアミド系、ポリアクリル酸系が好適である。ノニオン系高分子ポリマーは、ポリアクリル酸エステル系、ポリメタクリル酸エステル系、およびポリアクリルアミド系が好適である。無機顔料は、例えば炭酸カルシウム、タルク、および酸化チタンである。凸要素は、粉末または液体であってよい。本実施形態において凸要素は、所定濃度に調製された溶液(凸部形成液)の状態で凸要素タンク内に収容されている。
 例えば、塩化鉄は水中で水酸化鉄となり、水酸化鉄の微小フロックが固体濾材の表面に付着して凸部となる。微小フロックには水中の微粒子が巻き込まれていてもよい。例えば、カオリンは固体濾材の表面に物理的に付着して凸部となる。例えば、高分子ポリマーは水中に含まれる粒子が固体濾材に付着するための接着剤として作用し、粒子とともに固体濾材の表面に付着して凸部となる。
 濾過層に供給される凸要素は、1種類または2種類以上であってもよい。例えば、カオリンと高分子ポリマーを濾過層に供給すると、カオリンが固体濾材の表面に物理的に付着するとともに、水中に含まれる粒子およびカオリンが高分子ポリマーの接着剤作用により固体濾材の表面に付着して凸部となる。
 判定部5は、予め設定された基準に基づき、固体濾材の表面に予め設定された基準を満たす凸部が付与されたか否かを判定できる。本実施形態において判定部5は、凸要素の総供給量をカウントするカウント手段を備えている(不図示)。例えば、カウント手段は、第2供給手段4bに接続されている。例えば、カウント手段は、第2供給手段4bの電源のON/OFFの信号を受信し、第2供給手段4bの電源がONになっている時間と、凸部形成液中の凸要素の濃度に基づき、凸要素の総供給量をカウントできる。判定部5は、カウントした凸要素の総供給量が予め設定された閾値に達した場合に、固体濾材の表面に予め設定された基準を満たす凸部が付与されたと判定できる。判定部5は、第2供給手段4bまたは制御部6に組み込まれていてもよい。
 制御部6は、判定部5で予め設定された基準を満たす凸部が付与された(凸部が付与されていると略称する)と判定された場合に凸要素の供給量を低減するよう凸要素供給部4からの凸要素の供給量を制御できる。制御部6は、判定部5で予め設定された基準を満たす凸部が付与されていない(以降、凸部が付与されていないと略す)と判定された場合に、固体濾材の表面に凸部が付与されるよう凸要素を供給するよう凸要素供給部からの凸要素の供給量を制御できる。固体濾材の表面に凸部を付与するために必要な凸要素の供給量は、凸要素の種類に応じて適宜設定されている。「凸要素の供給量を低減する」とは、凸部付与時よりも凸要素の供給量を低くすることを意味する。
 塩化鉄および高分子ポリマー等の凝集効果が得られる凸要素を使用する場合、凸要素の供給量は、少なくとも凝集効果を期待できない量まで低減するよう設定される。「凸要素の供給量を低減する」には、凸要素の供給を停止することも含まれる。
 制御部6は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 懸濁質除去装置1は、濾過部の他方の側から出た濾液の水質を検査する水質検査手段9を備えているとよい。例えば水質検査手段9は、SDI(シルト密度指数)計測器、濁度計、TOC計、SS計、UV計、およびCOD計などである。図1において水質検査手段9は第2流路および判定部5に接続されている。水質検査手段9は、濾過部2から第2流路へ排出された濾液の水質を検査し、検査結果を判定部5へと出力できる。判定部5は、水質検査手段9で得られた検査値が予め設定された閾値を超えた場合に凸部が付与されていないと判定し、検査値が閾値以下になった場合に凸部が付与されたと判定できる。閾値は、検査する水質項目に応じて適宜設定される。
 懸濁質除去装置1は、濾過部2の下流側に逆浸透膜処理部10、電気透析部(不図示)、または蒸発器(不図示)などを備えていてもよい。逆浸透膜処理部10は、例えば、複数の逆浸透膜エレメントを容器内に有する逆浸透膜処理装置である。逆浸透膜処理装置は、濾過部2を通過した被処理水(濾液)を逆浸透膜(RO膜)によってイオンや塩類などを含む濃縮水と、淡水とに分けることができる。
 懸濁質除去装置1は、濾過層2aを逆洗浄するための逆洗手段を備えていてもよい(不図示)。逆洗手段は、濾過部2aの他方の側から一方の側に向けて洗浄液が流れるよう濾過部2に設けられる。洗浄液はポンプ等の送液手段によって濾過部2に送られる。
 次に、本実施形態に係る懸濁質除去方法について説明する。本実施形態に係る懸濁質除去方法は、以下の(S1)から(S3)の工程を備えている。
(S1)凸部を付与する工程
(S2)凸要素の供給量を凸部付与時よりも低減する工程
(S3)凸部が付与された固体濾材を有する濾過層に、懸濁質を含む被処理水を通水する工程
 凸部を付与する工程(S1)では、濾過層2aに凸要素を供給して、固体濾材の表面に凸部を付与する。
 凸要素は、塩化鉄、硫酸鉄、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、鉱物、高分子ポリマー(カチオン系高分子ポリマー、アニオン系高分子ポリマー、およびノニオン系高分子ポリマー)および無機顔料などである。鉱物は、例えばカオリンである。カチオン系高分子ポリマーは、ポリアクリル酸エステル系、ポリメタクリル酸エステル系およびポリアクリルアミド系が適している。アニオン系高分子ポリマーは、ポリアクリルアミド系、ポリアクリル酸系が好適である。ノニオン系高分子ポリマーは、ポリアクリル酸エステル系、ポリメタクリル酸エステル系、およびポリアクリルアミド系が好適である。無機顔料は、例えば炭酸カルシウム、タルク、および酸化チタンである。
 凸要素は、それ自身が固体濾材の表面に付着して凸部となる、または、水中の粒子と固体濾材とを接着するものである。例えば、塩化鉄は水中で水酸化鉄となり、水酸化鉄の微小フロックが固体濾材の表面に付着して凸部となる。微小フロックには水中の微粒子が巻き込まれていてもよい。例えば、カオリンは固体濾材の表面に物理的に付着して凸部となる。例えば、高分子ポリマーは水中に含まれる粒子が固体濾材に付着するための接着剤として作用し、粒子とともに固体濾材の表面に付着して凸部となる。
 濾過層に供給する凸要素は、1種類または2種類以上であってもよい。例えば、カオリンと高分子ポリマーを濾過層に供給すると、カオリンが固体濾材の表面に物理的に付着するとともに、水中に含まれる粒子およびカオリンが高分子ポリマーの接着剤作用により固体濾材の表面に付着して凸部となる。
 凸要素は、粉末または微粒子を含む懸濁液であってよい。本実施形態では、凸要素を、凸要素を含む溶液(凸部形成液)の状態で供給する。凸部形成液の溶媒は、工業用水、海水、清水などである。凸要素が高分子ポリマーの場合、凸部形成液は、粒子を含む溶液(例えば海水)で調整されるとよい。
 凸部形成液中の凸要素の濃度は、濾過層2aを通過する際に所定量の凸要素が供給されるよう設定する。凸要素の供給量は、凸要素の種類および被処理水の成分などに応じて適宜設定され得る。
 凸部の付与は、凸部形成液を濾過層2aの一方の側から他方の側へと通液することで行う。これにより固体濾材の表面に凸部が付与される。凸部形成液の濾過速度は、被処理水の濾過速度と同じにするとよい。濾過速度の調整は、第1供給手段3bまたは第2供給手段4bで行うことができる。第1供給手段3bで濾過速度を調整する場合、凸部を付与する工程(S1)と並行して被処理水を濾過層2aに通水する。
 濾過層2aに凸要素を供給して固体濾材の表面に凸部が付与された後、凸要素の供給量を凸部付与時よりも低減する(S2)。
 固体濾材の表面に凸部が付与されたか否かは、予め設定された基準に基づいて判定する。「基準」は、予備試験などを行うことで設定できる。予備試験では、例えば、任意の濃度で凸要素を含む凸部形成液を濾過層に通液し、濾液の水質を検査する。検査値が所望の値となったときの凸要素の供給量を、固体濾材に必要量の凸部を付与する凸要素の供給量の閾値(基準)とする。
 (S2)工程では、凸部を付与する工程(S1)における濾過層2aへの凸要素の総供給量をカウントし、カウントした総供給量が予め設定された閾値に達した場合に、固体濾材の表面に予め設定された基準を満たす凸部が付与されたと判定する。凸部が付与されたと判定された場合、凸要素の供給量を低減する。凸要素の供給量をどの程度まで低減するかは、凸要素の種類に応じて適宜設定され得る。供給量に応じて凝集効果を得られる凸用途を使用する場合、低減後の凸要素の供給量は、被処理水に添加されても凝集効果が期待できない程度の量である。例えば、凸要素が塩化鉄である場合には、濾過層2aを通過させる溶液量に対し鉄(Fe)として0.5ppm未満となる程度まで低減する。(S2)工程では、凸要素の供給を停止して、凸要素の供給量を0にしてもよい。
 懸濁質を含む被処理水の濾過層2aへの通水(S3)は、凸要素の供給量を低減した(または停止した)状態で行う。このとき濾過層2aに充填された固体濾材の表面には凸部が付与されている。
 懸濁質を含む被処理水を通水する工程(S3)では、濾過層2aから出た濾液の水質を検査するとよい。濾液の検査値が予め設定された閾値を超えた場合に、濾過層に再度凸要素を供給し、固体濾材の表面に凸部を付与する(S2’)。そして、濾液の検査値が予め設定された閾値以下になったら凸要素の供給を低減(または停止)する(S3’)。
 (S3)において「水質の検査」は、SDI計測器、濁度計、TOC計、SS計、UV計、およびCOD計などで行う。閾値は検査方法に応じて設定する。例えば、検査方法がSDIである場合、閾値はSDI<4などとすることができる。
 固体濾材が充填された濾過層に凸要素を供給すると、凸要素が固体濾材に接触し、固体濾材の表面に凸部が付与される。被処理水から懸濁質を除去する際に、初期段階で濾過層に凸要素を通液することにより、短時間で固体濾材の表面に凸部を付与できる。凸部が付与された固体濾材が充填されてなる濾過層は、被処理水から懸濁質を除去する工程の開始初期から高い除去率で安定的に懸濁質を除去できる。そのため、従来と比較して懸濁質除去装置の起動時間を短縮できる。また、凸部が付与された固体濾材が充填された濾過層は、0.1μm以上10μm以下の懸濁質を捕捉できるため、0.1μm以上10μm以下の大きさの懸濁質が多く含まれている被処理水であっても、濾液の水質を向上させることができる。すなわち、被処理水の水質変動への対応が可能となる。300μm以上2500μm以下の固体濾材の表面に凸部が付与されると、さえぎり効果以上の懸濁質除去効果が得られる。
 凸要素の供給量を低減することで、スラッジの生成を抑制できる。これにより濾過層での差圧の上昇が抑制されるため逆洗浄の間隔を延ばすことができ、スラッジの処理設備も必要でなくなる。
 凸要素の供給を停止したとしても、一旦、固体濾材の表面に凸部を付与されていれば、凸部が剥がれ落ちるまで、上記(S3)の工程における濾液の水質を安定化できる。少ないながらも凸要素の供給を継続すると、凸部の補充ができる。そのため凸部が剥れたとしても濾液の水質を安定に維持できる。また、凸要素の供給を停止した場合には凸要素の使用量を少なくできるため、処理コストを低減できる。
 上記(S3)の工程において濾液の水質を検査することで、濾液の水質が低下した場合に固体濾材の表面に再度凸部を付与できる。それにより、濾液の水質をより安定にできる。
 なお、本実施形態の凸部を付与する工程(S1)、濾過部に固体濾材を充填した後に凸部を付与するが、別の容器内で凸部を付与した固体濾材を、濾過部に充填して濾過層とした場合にも同様の効果を得られる。
〔第2実施形態〕
 図2は、本実施形態に係る懸濁質除去装置の概略構成図である。懸濁質除去装置11は、濾過部2、被処理水供給部3、凸要素供給部4、差圧計測部12、判定部15および制御部16を備えている。濾過部2、被処理水供給部3および凸要素供給部4は、第1実施形態と同様の構成である。懸濁質除去装置11は、第1実施形態と同様に水質検査手段9を備えていてもよい。
 差圧計測部12は、濾過層2a(濾過部2)の一方の側(第1開口部側)と他方の側(第2開口部側)との差圧を計測できる。本実施形態において、差圧計測部12は濾過部2の一方の側と、他方の側とに接続されている。例えば、差圧計測部12は、水圧計である。水圧計は、濾過部2の一方の側の圧力と他方の側の圧力とを検知し、差圧を計測する。
 判定部15は、予め設定された基準に基づき、固体濾材の表面に凸部が付与されたか否かを判定できる。本実施形態において判定部15は、濾過部2の他方の側(第2開口部側)から出た濾液に含まれる凸要素の量を直接的または間接的に計測する凸要素量計測手段を備えている(不図示)。凸要素量計測手段は、凸要素の量を直接的または間接的に計測できるものであればよい。例えば、凸要素が塩化鉄である場合、凸要素量計測手段として鉄濃度をモニターできる水質分析計を用いて凸要素を直接的に計測できる。例えば、凸要素量計測手段としてSDI測定器を用いると、凸要素を間接的に計測できる。例えば、凸要素がカオリンである場合、凸要素量計測手段として濁度計を用いると凸要素を間接的に計測できる。
 凸要素を間接的に計測する場合には、凸要素量計測手段が水質検査手段を兼ねることもできる。本実施形態において、凸要素量計測手段はSDI計測器であり、水質検査手段を兼ねている。
 判定部15は、凸要素量計測手段の計測値が予め設定された閾値以下になった場合に固体濾材の表面に凸部が付与されたと判定できる。判定部15は、計測値が所定値以下となり、その状態が一定時間維持されたことを確認した場合に固体濾材の表面に凸部が付与されたと判定してもよい。判定部15は、制御部16に組み込まれていてもよい。
 制御部16は、差圧計測部12、判定部15および第2供給手段4bに接続されている。制御部16は、差圧計測部12で計測された差圧が所定値未満となるよう凸要素供給部4からの凸要素の供給量を制御できる。制御部16は、差圧計測部12で計測された差圧値を受信して、該差圧値が所定値未満に維持されるよう自動的に凸要素供給部4からの凸要素の供給量を制御する。
 制御部16は、判定部15で凸部が付与されていないと判定された場合に、固体濾材の表面に凸部が付与されるよう凸要素を供給し、判定部15で凸部が付与されたと判定された場合に凸要素の供給量を低減するよう凸要素供給部4を制御できる。
 懸濁質除去装置11は、濾過部2の下流側に逆浸透膜処理部10、電気透析部(不図示)、または蒸発器(不図示)などを備えていてもよい。懸濁質除去装置11は、濾過層2aを逆洗するための逆洗手段を備えていてもよい(不図示)。
 本実施形態に係る懸濁質除去方法は、以下の(S11)から(S14)の工程を備えている。
(S11)凸部を付与する工程
(S12)濾過層の一方の側と濾過層の他方の側との差圧を計測する工程
(S13)凸要素の供給量を凸部付与時よりも低減する工程
(S14)凸部が付与された固体濾材を有する濾過層に、懸濁質を含む被処理水を通水する工程
 凸部を付与する工程(S11)では、濾過層2aに凸要素を供給して、固体濾材の表面に凸部を付与する。濾過層2aに凸要素を供給する手順は第1実施形態と同様である。
 本実施形態では、濾過層2aに凸要素を供給している際に、濾過層2aの一方の側と他方の側との差圧を計測する(S12)。上記凸部を付与する工程(S11)では、(S12)で計測した差圧が所定値未満となる範囲で凸要素を濾過層2aに供給する。計測した差圧が所定値以上になったら、速やかに凸要素の供給を停止する。「所定値」は、濾過部の許容圧力に基づいて設定されてもよく、予備試験などを行い予め設定してもよい。予備試験では、例えば、任意の濃度で凸要素を含む凸部形成液を濾過層に通液し、濾過層の差圧を計測するとともに濾液の水質を検査する。濾液の検査値が所望の値となったときの濾過層の差圧を所定値とすることができる。
 (S13)工程では、凸部を付与する工程(S11)で濾過層2aから出た濾液に含まれる凸要素の量を直接的または間接的に計測する。計測した凸要素の量が予め設定された閾値以下になった場合に、固体濾材の表面に凸部が付与されたと判定する。凸部が付与されたと判定された場合、第1実施形態の(S2)の工程と同様に凸要素の供給量を低減(または停止)する。
 懸濁質を含む被処理水の濾過層2aへの通水(S14)は、第1実施形態の(S3)の工程と同様に凸要素の供給量を低減した(または停止した)状態で行う。
 懸濁質を含む被処理水を通水する工程(S14)では、第1実施形態の工程(S3)と同様に濾過層から出た濾液の水質を検査するとよい。
 本実施形態によれば、濾過層の一方の側と他方の側との差圧を計測することで、凸部形成による差圧上昇を確実に抑制できる。
 本実施形態によれば、凸要素を供給した際に出る濾液の凸要素の量を計測することで、凸要素が濾液に出てきていないことを確認できる。それにより、間接的ではあるが固体濾材の表面に凸部が形成されたことを確認できる。
〔第3実施形態〕
 図3は、本実施形態に係る懸濁質除去装置の概略構成図である。懸濁質除去装置21は、粗粒分離部22を備えている以外は、第1実施形態と同様の構成である。
 粗粒分離部22は、被処理水供給部3と濾過部2との間で且つ凸要素供給部4よりも前段に設けられている。粗粒分離部22は、被処理水に含まれる10μmよりも大きな懸濁質を主として分離する。粗粒分離部22は、砂濾過装置、または浮上分離装置などである。粗粒分離部22が砂濾過装置の場合、凝集剤を添加することなく被処理水を通水してもよい。粗粒分離部22が浮上分離装置の場合、被処理水に飽和加圧水を混ぜ、発生させた大量の気泡(マイクロエアー)をSS(汚泥や浮遊物)に付着・浮上させる事で固液分離を行う。
 本実施形態では、被処理水を粗粒分離部22に通水することで、被処理水から主に10μmよりも大きな懸濁質を分離し、一次被処理水とする。その後、一次被処理水を濾過層へと導き、0.1μm以上10μm以下の大きさの懸濁質を除去する。
 濾過層2aへの凸要素の供給は、一次被処理水を濾過層に導くと同時に行うことができる。濾過層2aへの凸要素の供給は、一次被処理水を濾過層2aに導く前に行われてもよい。いずれの場合も、第1実施形態または第2実施形態に従って、固体濾材の表面に凸部を付与した後、凸要素の供給量を低減(または停止)する。
 本実施形態によれば、被処理水の大粒径の懸濁質の粗取りと、0.1μm以上10μm以下の中粒径の懸濁質の除去とを分けることで、濾過層での目詰まり等による差圧の上昇を抑えることができる。それにより、濾過層の濾液の水質を安定化できるとともに、濾過層の逆洗浄の頻度を減らすことができる。
 次に、第1実施形態から第3実施形態に到る根拠および作用効果について説明する。
(検討1)
 シミュレーションにより、固体濾材が充填されてなる濾過層に懸濁質を含む被処理水を通水した場合における、濾過層で捕捉される懸濁質の大きさ(捕捉粒子径)と捕捉率との関係について検討した。シミュレーションはブラウン運動による拡散と、さえぎり効果を考慮した濾過における収支式を作成して実施した。流路幅dは、互いに接触した3つの固体濾材で囲まれた領域内にある、3つの固体濾材に接する小円の直径に相当する(図4参照)。表面の凹凸により生じる流れの乱れに起因する懸濁質の拡散は考慮していない。固体濾材は球状とし、その粒径は、100μm、300μm(工業的に砂濾過で用いられる砂の最小径)、1200μm(工業的に砂濾過で用いられる砂の最大径)、とした。濾過速度を25m/h(空塔速度12.5m/hの砂濾過塔の断面空隙率50%相当)とした。本シミュレーションでは、流路幅dは固体濾材粒径と同じとした。
 シミュレーション結果を図5に示す。同図において、横軸が捕捉粒子径(μm)、縦軸が捕捉率(%)である。図5によれば、固体濾材は小さいほど、10μm程度大きさの懸濁質の捕捉率が上昇した。しかしながら、工業的に砂濾過で使用される砂の最小径の大きさの固体濾材を用いた場合も0.1μmから5μmの大きさの懸濁質をほとんど捕捉できないことが確認された。
 上記(検討1)の結果によれば、固体濾材を用いた濾過では、0.1μm以上10μm以下の懸濁質をほとんど除去できていない。この結果から、従来は、同じ固体濾材を用いて濾過した場合であっても、0.1μm以上10μm以下の懸濁質を多く含む被処理水ほど、濾液の水質が悪化していたと示唆される。
 以上より、本発明者らは、負荷変動に対応し、濾液の水質を安定させるためには0.1μm以上10μm以下の大きさの懸濁質を除去すればよいとの結論を導き出した。従来の固体濾材を用いた濾過において0.1μm以上10μm以下の大きさの懸濁質が除去されない理由は以下のように考えられる。
 固体濾材が充填されてなる濾過層に被処理水を通水した際の、被処理水の流れの模式図を図6に示す。同図において、符号Sは固体濾材であり、紙面上下方向に延びる線Fは被処理水の流線である。濾過層を流れる被処理水は、通常、図6のような層流状態にある。層流状態において、固体濾材の表面に近づくほど、被処理水の流速は小さくなり、固体濾材の表面には流速が略ゼロになる領域(阻止層領域)があることが知られている。
 固体濾材が充填されてなる濾過層に被処理水を通水すると、被処理水に含まれる粗大な懸濁質は、固体濾材の隙間を通過できずに捕捉される。固体濾材の固体濾材の隙間を通過できる大きさの懸濁質であっても、そのうち比較的大きな懸濁質は慣性の法則により層流から外れて固体濾材に衝突して捕捉され得る。被処理水に含まれる懸濁質のうち微細な懸濁質(直径が0.1μmを下回るコロイド粒子)はブラウン運動による拡散により固体濾材で捕捉され得る。
 一方、被処理水に含まれる懸濁質のうち中程度の大きさの懸濁質(直径が0.1μm以上10μm以下の粒子)は、慣性の法則等では層流から外れることができず、層流にのって濾過層を通過する。
 以上の考えに基づき、中程度の大きさの懸濁質(粒径が0.1μm以上10μm以下の粒子)を意図的に層流から外す方法について検討した。
(検討2)
 シミュレーションにより、凸部を付与した固体濾材が充填されてなる濾過層に、懸濁質を含む被処理水を通水した場合における懸濁質の挙動について検討した。シミュレーションは格子ボルツマン法(流体の流れを分子運動論を用いて、懸濁質の動きを運動方程式を用いて解析する方法)で行った。ブラウン運動による拡散は考慮してない。流路幅dは固体濾材径相当の600μm、流路長さは1.5mm、流速は25m/h(空塔速度12.5m/hの砂濾過塔の断面空隙率50%相当)とした。固体濾材表面に高さ60μm、幅60μmの凸部があるとし、懸濁質の粒径は、1μm(懸濁質S1)、5μm(懸濁質S2)とした。懸濁質の大きさと凸部の大きさ、流路幅からさえぎり効果はない条件となっている。
シミュレーション結果を図7から図9に示す。図7から図9において紙面縦方向が流路幅dであり、被処理水は紙面左から右へ向けて流れる。図7は、懸濁質の流れを示す図である。図8は被処理水の通水初期、図9は被処理水の通水後期における凸部の様子を示す図である。
 図7によれば、凸部Cがあることにより懸濁質Mの流れ方向にミクロな変化が生じていることが確認できた。これにより、中程度の大きさの懸濁質が層流からはずれ、該外れた中程度の大きさの懸濁質が阻止領域に入り込みやすくなり、中程度の大きさの懸濁質の捕捉率を上げられることが確認された。
 図8および図9によれば、表面に凸部が形成された固体濾材が充填されてなる濾過層に被処理水を通水すると、凸部Cに懸濁質Mが付着することが確認された。懸濁質Mが付着する位置は、被処理水の通水方向上流側を向く角部であった。通水初期(図8)に懸濁質が凸部に付着し、通水後期(図9)には通水初期に凸部に付着した懸濁質を核として他の懸濁質が付着し、凸部が成長することが確認された。
 図示しないが、表面に凸部が形成されていない固体濾材が充填された濾過層に被処理水を通水しても、固体濾材の表面に懸濁質が付着することはなかった。
 上記(検討2)の結果によれば、濾過層に凸要素を供給して予め設定された基準を満たす凸部を付与しておけば、その後凸要素の供給量を低減または停止したとしても、被処理水に含まれる懸濁質が凸部に付着して凸部を成長させられ得ることが示唆される。
(検討3)
 格子ボルツマン法を用いて、海水中の0.45μm(SDI測定用フィルタの平均細孔径)から10μmの懸濁質が付着するために必要な固体濾材表面の凸部の最小サイズについて検討した。ブラウン運動による拡散は考慮していない。凸部は矩形、固体濾材表面から凸部の最高部までの垂直長さを高さと定義した。懸濁質の粒径は0.45μm、2μm、5μm、10μmとし、それぞれについて計算を行った。流路幅dは固体濾材径相当の600μm、流路長さは1200μm、流速は0.006m/s(空塔速度10.8m/hの砂濾過塔の断面空隙率50%相当の値)とした。シミュレーション結果を図10に示す。同図において、横軸が捕捉粒子径(μm)、縦軸が凸部の高さ(μm)である。
 図10によれば、凸部のサイズが大きいほど小さな懸濁質を捕捉できた。4μmの矩体(凸部)を設置することで、10μmの懸濁質が除去できた。図10によれば、0.45μmの懸濁質を除去するためには、高さ40μmの矩形(凸部)が必要であった。
(検討4)
<試験A>
 固体濾材が充填されてなる濾過層に、凸要素を含む凸部形成液を3時間通液して固体濾材の表面に凸部を付与した。その後、凸部形成液の通液を停止し、その状態で濾過層に被処理水を3時間通水した。濾過速度は10m/hとした。
 濾過塔(塔径5cm)は、アンスラサイト濾過層、砂濾過層、および砂利濾過層の3層構成とした。アンスラサイト濾過層、砂濾過層、および砂利濾過層は被処理水の通水方向上流側から順に並んでいる。アンスラサイト濾過層は、平均粒径700μmのアンスラサイトが充填されてなる濾過層である。アンスラサイト濾過層の長さは200mmである。砂濾過層は、平均粒径475μmの砂が充填されてなる濾過層である。砂濾過層の長さは500mmである。砂利濾過層は、平均粒径2000μmの砂利が充填されてなる濾過層である。砂利濾過層の長さは100mmである。
 凸要素は、塩化鉄(FeCl:和光純薬(株))とした。塩化鉄は、次式(1)のように水中のアルカリ成分と反応して鉄の水酸化物を生成する。この鉄の水酸化物が濾材に付着し、凸部を形成すると考えた。
 
FeCl+3HCO =Fe(OH)+3CO+3Cl・・・(1)
 
 被処理水は海水とした。通水前の海水のSDIは6.14であった。凸要素を含む凸部形成液を調製し、凸部形成液は被処理水とともに濾過層に通液した。凸部形成液中の凸要素の濃度は、通水量に対してFe濃度が1ppmとなるようにした。
 被処理水を通水している間、差圧計測器にて濾過層の差圧を計測した。また、濾過層を通過した液体(濾液)のFe濃度およびSDIを継続的に測定した。Fe濃度は、JIS B8224に記載の2,4,6-トリ-2-ピリジル-1,3,5-トリアジン吸光光度法(略称:TPTZ吸光光度法)で測定した。
 SDIは、直径47mm、平均細孔径0.45μmのフィルタを用い、206kPaにて濾過・採取するのに要した時間より、下記式(2)から求める。
SDITm=(1-Δt/Δt)×100/Tm・・・(2)
Δt:最初に500mlを、濾過・採取するのに要した時間(秒)
Δt:Tm分後に500mlを、濾過・採取するのに要した時間(秒)
Tm:t濾過・採取開始時間からt濾過・採取開始時間までの時間(通常は15分)
 SDI指数の上限値は6.67である。SDIが低下することから、0.45μmより大きな懸濁質の粒子の割合が減っていることが示唆される。
<試験B>
 比較として、濾過層に凸部形成液を通液せず、海水のみ通水し、試験Aと同様に測定を行った。
 図11に、濾過層の差圧の計測結果を示す。同図において、横軸は経過時間(h)、縦軸が濾過層の差圧(kPa)である。図11によれば、試験Aにおいて、水酸化鉄を含む凸部形成液を通液することにより濾過層の差圧はわずかに上昇したが、凸部形成液の通液を停止した後、差圧の上昇はみられなかった。試験B(凸部形成液を通液しない場合)では、同時間内において濾過層の差圧にほとんど変化はみられなかった。
図12に試験Aおよび試験BのSDIの測定結果を示す。同図において、横軸が経過時間(h)、縦軸がSDI(-)である。
 図12によれば、試験Aでは通液2時間から3時間で濾液のSDIは4程度まで低下した。凸部形成液の通液を停止した後も濾液のSDIは、4程度を維持できた。
 図12には示さないが、試験Aにおいて、通液2時間後には濾液のFe濃度は1μg/L(検出下限)に達した。これにより、凸部形成液に含まれる鉄の水酸化物が濾過層に留まっていることがわかる。凸部形成液の通液を停止した後、濾液のFe濃度は1μg/Lを維持していた。これにより、濾過層に留まっている鉄の水酸化物が、その後の通水で剥れていないことを確認できた。
 被処理水に対してFe濃度が1ppmとなるよう凸部形成液を3時間通液すれば、濾液の水質を安定にするために必要な凸部を固体濾材の表面に付与できることが確認された。濾過層から鉄の水酸化物が抜けない限り、懸濁質の除去能を維持できると考えられる。
 図12によれば、試験Bのように凸部形成液を通液せずに、被処理水のみを通水した場合、濾液のSDIは5.21と高いままであった。試験Bでは、主にさえぎり効果とブラウン運動による拡散により懸濁質は除去されるが、中程度(0.1μmから10μm)の懸濁質が除去できていないためSDIが十分下がらなかったと考えられる。SDIが高止まりしした原因は、中程度の懸濁質が除去できていないためと考えられる。
 本検討の結果によれば、濾過層に凸部形成液を通液した後、2時間から3時間で速やかに濾液の水質を改善できる。凸部形成液の通液を停止した後も濾液の水質は安定していた。
 通常の凝集剤を使用した砂濾過では、凝集剤を連続添加する。凝集剤および被処理水中に含まれる懸濁質により形成される汚泥によって濾過層が目詰まりを起こすため、濾過を継続するに従い差圧が上昇する。そのため、一般に空気洗浄(空気バブリングによる濾材同士の衝突による洗浄)と濾過層の展開率が30%となるような洗浄速度で濾過層を洗浄する必要がある。一方、凸部形成液を注入し固体濾材表面に凸をつける本濾過方法では、被処理水中に含まれる懸濁質を捕捉するだけなので、差圧が上昇せず、固体濾材層の洗浄頻度を低減させることができる。
(検討5)
 粗粒分離部(塔径5cm)および濾過部(塔径5cm)を備えた懸濁質除去装置を用いて、懸濁質除去試験を実施した。
 粗粒分離部は、砂濾過装置とした。砂濾過装置は、平均粒径350μmの砂が充填されてなる砂濾過層(長さ1200mm)と、平均粒径2000μmの砂利が充填されてなる砂利濾過層(長さ100mm)とを有する。砂濾過層は砂利濾過層よりも被処理水の通水方向上流側にある。
 濾過部は濾過層を有する。濾過層は、平均粒径700μmのアンスラサイトが充填されてなるアンスラサイト濾過層(長さ200mm)と、平均粒径350μmの砂が充填されてなる砂濾過層(長さ1000mm)と、平均粒径2000μmの砂利が充填されてなる砂利濾過層(長さ100mm)とで構成されている。被処理水の通水方向上流側から、アンスラサイト濾過層、砂濾過層および砂利濾過層の順に配置されている。
 被処理水供給部により、粗粒分離部に被処理水を通水した。次いで粗粒分離部から出た濾液(一次処理水)を濾過部に通水した。濾過部に入る前の一次処理水に凸部形成液を添加し、凸部形成液の通液と一次処理水の通水とを同時に実施した。通液開始後3時間で凸形成液の通液を停止した。凸形成液の通液を停止した後も、一次被処理水の通水を3時間続けた。
 被処理水、一次処理水を通水している間、差圧計測器にて粗粒分離部および濾過部の差圧を計測した。また、濾過部を通過した液体(濾液)のSDIを継続的に測定した。濾過速度は10m/hとした。
 凸要素は、塩化鉄(FeCl)とし、一次処理水に対してFe濃度が1ppmとなるよう凸部形成液を供給した。通水前の海水のSDIは6.28である。
 図13に、粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す。同図において、横軸が経過時間(h)、縦軸が差圧(kPa)である。図13によれば、被処理水を通水している間、粗粒分離部において濾過部の差圧にほとんど変化はみられなかった。図13によれば、凸部形成液を通液している間、濾過部の差圧はわずかに上昇したが、凸部形成液の通液を停止した後で一次処理水のみを通水している間に差圧の上昇はみられなかった。
 図14に、濾過部から出た濾液のSDIの測定結果を示す。同図において、横軸が経過時間(h)、縦軸がSDI(-)である。図14によれば、通水前の海水のSDIは、6以上であったが、凸部形成液を2時間から3時間通液すると、濾過部の濾液のSDIは4未満まで低下した。濾過部の濾液のSDIは、凸部形成液の通液を停止した後も4未満を維持できた。RO(逆浸透)膜への供給水に必要な濁質濃度の基準は一般にSDI<4であり、通液2時間から3時間の濾液はこの水質基準を満たしていた。
 検討1から検討3の結果によれば、粗粒分離部では主に0.1μmよりも小さい懸濁質、および10μmよりも大きな懸濁質が主に捕捉されると考えられる。粗粒が除かれた一次処理水を濾過部(濾過層)に通水してSIDが低下していることから、濾過層では0.1μm以上10μm以下の中程度の大きさの懸濁質が捕捉されていると考えられる。
(検討6)
 粗粒分離部(塔径5cm)および濾過部(塔径5cm)を備えた懸濁質除去装置を用いて、懸濁質除去試験を実施した。粗粒分離部は、砂濾過装置とした。砂濾過装置は、平均粒径350μmの砂が充填されてなる砂濾過層(長さ800mm)と、平均粒径2000μmの砂利が充填されてなる砂利濾過層(長さ100mm)とを有する。砂濾過層は砂利濾過層よりも被処理水の通水方向上流側にある。
 濾過部は濾過層を有する。濾過層は、平均粒径700μmのアンスラサイトが充填されてなるアンスラサイト濾過層(長さ200mm)と、平均粒径350μmの砂が充填されてなる砂濾過層(長さ600mm)と、平均粒径2000μmの砂利が充填されてなる砂利濾過層(長さ100mm)とで構成されている。被処理水の通水方向上流側から、アンスラサイト濾過層、砂濾過層および砂利濾過層の順に配置されている。
 被処理水供給部により、粗粒分離部に被処理水を通水した。次いで粗粒分離部から出た濾液(一次処理水)を濾過部に通水した。濾過部に入る前の一次処理水に凸部形成液を添加し、凸部形成液の通液と一次処理水の通水とを同時に実施した。通液開始後3時間で凸形成液の通液を停止した。凸形成液の通液を停止した後も、一次処理水の通水を3時間続けた。
 被処理水、一次処理水を通水している間、差圧計測器にて粗粒分離部および濾過部の差圧を計測した。また、濾過部を通過した液体(濾液)のSDIを継続的に測定した。濾過速度は10m/hとした。
 凸要素は、カオリンとした。カオリンは、平均粒径10μmから15μmの粉末を用いた(竹原化学工業社製)。一次処理水に対してカオリン濃度が2ppmとなるよう凸部形成液を供給した。通水前の海水のSDIは5.2である。
 図15に、粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す。同図において、横軸が経過時間(h)、縦軸が差圧(kPa)である。図15によれば、被処理水を通水している間、粗粒分離部および濾過部の差圧にほとんど変化はみられなかった。
 図16に、濾過部から出た濾液のSDIの測定結果を示す。同図において、横軸が経過時間(h)、縦軸がSDI(-)である。図16によれば、濾過層に凸部形成液を通液した後、濾液のSDIは速やかに4を下回った。カオリンが捕捉され凸部となり、その凸部により中程度の大きさの懸濁質が除去されていると考えられる。この時、粗粒分離部、および濾過部の差圧の上昇が小さいことを確認した。
濾過塔の性能を表す指標としてL/Dが用いられる。L/Dとは、層厚Lを粒径Dで除したものである。L/Dは、単位濾過面積当たりの濾材総面積に比例する値であり、同値が大きい程単位濾過面積当たりの濾材表面積が大きいことになる。本試験装置のL/Dは4385であった。カオリンの投入量からLを算出、粒径として12.5μm(平均粒径の算術平均)を用いてL/Dを算出すると0.4であった。このことから、表面積を上げることなくSDI<4を満たすことができることが分かった。
(検討7)
 凸要素として高分子ポリマーを含む凸部形成液を一次処理水に供給し、上記(検討6)と同様に濾過部の差圧、濾過部の濾液のSDIを測定した。濾過速度は10m/hとした。
 固体濾材および濾過層は、上記(検討6)と同様である。高分子ポリマーは、ハイモ株式会社製のハイモロックQ707(ポリアミド系、分子量(推定)=7万、比重=1.15)を用いた。一次処理水に対して高分子ポリマー濃度が0.5ppmとなるよう凸部形成液を供給した。被処理水は海水である。通水前の海水のSDIは5.2であった。
 図17に、粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す。同図において、横軸は経過時間(h)、縦軸が濾過層の差圧(kPa)である。図17によれば、被処理水を通水している間、粗粒分離部および濾過部の差圧にほとんど変化はみられなかった。
 図16に、濾過部から出た濾液のSDIの測定結果を示す。図16によれば、海水のSDIは、5.2であったが、凸部形成液を2時間から3時間通液すると、濾過部の濾液のSDIは4未満に低下した。濾過部の濾液のSDIは、凸部形成液の通液を停止した後も4未満を維持できた。高分子ポリマーが海水中の懸濁質を利用し、固体濾材表面に凸部を形成したことでSDIが低減されたと考えられた。この時、粗粒分離部、および濾過部の差圧の上昇が小さいことを確認した。
(検討8)
 凸要素としてカオリンおよび高分子ポリマーを含む凸部形成液を一次処理水に供給し、上記(検討6)と同様に濾過部の差圧、濾過部の濾液のSDIを測定した。濾過速度は10m/hとした。
 固体濾材および濾過層は、上記(検討6)と同様である。カオリンは、平均粒径10μmから15μmの粉末を用いた(竹原化学工業社製)。高分子ポリマーは、ハイモ株式会社製のハイモロックQ707(ポリアミド系、分子量(推定)=7万、比重=1.15)を用いた。一次処理水に対してカオリンが2ppm、高分子ポリマーが0.5ppmとなるよう凸部形成液を供給した。被処理水は海水である。通水前の海水のSDIは5.6であった。
 図18に、粗粒分離部および濾過部(濾過層)の差圧の計測結果を示す。同図において、横軸は経過時間(h)、縦軸が濾過層の差圧(kPa)である。図18によれば、被処理水を通水している間、粗粒分離部において濾過部の差圧にほとんど変化はみられなかった。図18によれば、凸部形成液を通液している間、濾過部の差圧は上昇せず、凸部形成液の通液を停止した後も、濾過部の差圧は上昇しなかった。
 図16に、濾過部から出た濾液のSDIの測定結果を示す。図16によれば、通水前の海水のSDIは、5.6以上であったが、凸部形成液を2時間から3時間通液すると、濾過部の濾液のSDIは4未満に低下した。濾過部の濾液のSDIは、凸部形成液の通液を停止した後も4未満を維持できた。カオリン、および高分子ポリマーにより、固体濾材表面に凸部が形成されたことでSDIが低減されたと考えられる。
1,11,21 懸濁質除去装置
2 濾過部
2a 濾過層
2b 第1開口部
2c 第2開口部
3 被処理水供給部
3a 被処理水タンク
3b 第1供給手段
4 凸要素供給部
4a 凸要素タンク
4b 第2供給手段
5,15 判定部
6,16 制御部
7 第1流路
8 第2流路
9 水質検査手段
10 逆浸透膜処理部
12 差圧計測部
22 粗粒分離部

Claims (17)

  1.  固体濾材が充填されてなる濾過層に、凸要素を供給し前記固体濾材の表面に凸部を付与する工程と、
     前記凸部を付与する工程で前記凸要素を供給した後、前記固体濾材の表面に、予め設定された基準を満たす凸部が付与されたか否かを判定し、凸部が付与されたと判定された場合に前記凸要素の供給量を凸部付与時よりも低減する工程と、
     前記凸要素の供給量が低減された状態で、前記凸部が付与された固体濾材を有する前記濾過層に、懸濁質を含む被処理水を通水する工程と、
    を備えている懸濁質除去方法。
  2.  前記凸要素の供給量を低減する工程において、前記凸要素の供給を停止する請求項1に記載の懸濁質除去方法。
  3.  前記凸部を付与する工程と並行して前記被処理水を前記濾過層に通水する工程を更に備えている請求項1または請求項2に記載の懸濁質除去方法。
  4.  前記濾過層の一方の側と前記濾過層の他方の側との差圧を計測する工程を備え、
     前記凸部を付与する工程において、計測した前記差圧が所定値未満となる範囲で前記凸要素を供給する請求項1から請求項3のいずれかに記載の懸濁質除去方法。
  5.  前記凸部を付与する工程で前記濾過層から出た濾液に含まれる凸要素の量を、直接的または間接的に計測する工程を備え、計測した前記凸要素の量が予め設定された閾値以下になった場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されたと判定する請求項1から請求項4のいずれかに記載の懸濁質除去方法。
  6.  前記凸部を付与する工程における前記濾過層への前記凸要素の総供給量をカウントし、カウントした総供給量が予め設定された閾値に達した場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されたと判定する請求項1から請求項3のいずれかに記載の懸濁質除去方法。
  7.  前記被処理水を通水する工程で前記濾過層から出た濾液の水質を検査する工程を備え、
     前記濾液の検査値が予め設定された閾値を超えた場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されていないと判定して前記凸部を付与する工程を実施し、前記濾液の検査値が予め設定された閾値以下である場合に、前記固体濾材の表面に予め設定された基準を満たす前記凸部が付与されたと判定して前記凸要素の供給量を凸部付与時よりも低減する請求項1から請求項6のいずれかに記載の懸濁質除去方法。
  8.  前記被処理水を通水する工程において、
     前記被処理水を粗粒分離部に通水し、前記被処理水に含まれる10μmよりも大きな懸濁質を主として分離した一次被処理水とした後、
     前記一次被処理水を前記濾過層に通水し、0.1μm以上10μm以下の大きさの懸濁質を除去する請求項1から請求項7のいずれかに記載の懸濁質除去方法。
  9.  前記凸部の高さを4μm以上とする請求項1から請求項8のいずれかに記載の懸濁質除去方法。
  10.  前記固体濾材の平均粒径を300μm以上2500μm以下にする請求項1から請求項9のいずれかに記載の懸濁質除去方法。
  11.  前記凸要素をカオリンとする請求項1から請求項10のいずれかに記載の懸濁質除去方法。
  12.  前記凸要素を塩化鉄とする請求項1から請求項10のいずれかに記載の懸濁質除去方法。
  13.  前記凸要素の供給量を凸部付与時よりも低減する工程において、前記濾過層を通過する溶液中で前記凸要素の含有量が鉄として0.5ppm未満となるよう前記凸要素の供給量を低減する請求項12に記載の懸濁質除去方法。
  14.  前記凸要素を高分子ポリマーとする請求項1から請求項13のいずれかに記載の懸濁質除去方法。
  15.  固体濾材が充填されてなる濾過層を有する濾過部と、
     前記濾過部の一方の側に被処理水を供給して、前記濾過層に前記被処理水を通水する被処理水供給部と、
     前記濾過部の一方の側に凸要素を供給する凸要素供給部と、
     予め設定された基準に基づき、前記固体濾材の表面に凸部が付与されたか否かを判定する判定部と、
     前記判定部で凸部が付与されたと判定された場合に、前記凸部が付与されていないと判定された場合よりも前記凸要素の供給量を低減するよう前記凸要素供給部を制御する制御部と、
    を備えている懸濁質除去装置。
  16.  前記制御部は、前記判定部で凸部が付与されたと判定された場合に、前記凸要素の供給を停止するよう前記凸要素供給部を制御するよう設定されている請求項15に記載の懸濁質除去装置。
  17.  前記濾過部の前記一方の側と他方の側との差圧を計測する差圧計測部を備え、
     前記制御部は、前記差圧計測部で計測された差圧が所定値未満となるよう前記凸要素供給部からの前記凸要素の供給量を制御するよう設定されている請求項15または請求項16に記載の懸濁質除去装置。
PCT/JP2015/054883 2015-02-20 2015-02-20 懸濁質除去方法および懸濁質除去装置 WO2016132555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/551,344 US20180036657A1 (en) 2015-02-20 2015-02-20 Suspended-matter removing method and suspended-matter removing apparatus
PCT/JP2015/054883 WO2016132555A1 (ja) 2015-02-20 2015-02-20 懸濁質除去方法および懸濁質除去装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054883 WO2016132555A1 (ja) 2015-02-20 2015-02-20 懸濁質除去方法および懸濁質除去装置

Publications (1)

Publication Number Publication Date
WO2016132555A1 true WO2016132555A1 (ja) 2016-08-25

Family

ID=56688770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054883 WO2016132555A1 (ja) 2015-02-20 2015-02-20 懸濁質除去方法および懸濁質除去装置

Country Status (2)

Country Link
US (1) US20180036657A1 (ja)
WO (1) WO2016132555A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS63143917A (ja) * 1986-12-09 1988-06-16 Houjiyou Tsushin Kk プ−ル水の濾過方法
JPS63294917A (ja) * 1987-05-27 1988-12-01 Daicel Chem Ind Ltd 濾過方法
JPH0263510A (ja) * 1988-08-31 1990-03-02 Mitsubishi Rayon Co Ltd プール水の浄化方法
JPH0871334A (ja) * 1994-09-01 1996-03-19 Ooshita Sangyo Kk 濾過用充填材
JP2004130197A (ja) * 2002-10-09 2004-04-30 Fuji Electric Systems Co Ltd 水処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376544A (en) * 1976-12-20 1978-07-07 Shigeru Obiyama Filter
JPS63143917A (ja) * 1986-12-09 1988-06-16 Houjiyou Tsushin Kk プ−ル水の濾過方法
JPS63294917A (ja) * 1987-05-27 1988-12-01 Daicel Chem Ind Ltd 濾過方法
JPH0263510A (ja) * 1988-08-31 1990-03-02 Mitsubishi Rayon Co Ltd プール水の浄化方法
JPH0871334A (ja) * 1994-09-01 1996-03-19 Ooshita Sangyo Kk 濾過用充填材
JP2004130197A (ja) * 2002-10-09 2004-04-30 Fuji Electric Systems Co Ltd 水処理方法

Also Published As

Publication number Publication date
US20180036657A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2016132557A1 (ja) 濾過装置の再生方法、濾過装置および水処理装置
JP6381412B2 (ja) 海水淡水化装置及びその方法
Peleka et al. Removal of phosphates from water by a hybrid flotation–membrane filtration cell
JP4519878B2 (ja) ろ過装置
TW200914382A (en) Filtering device and water treatment method
JP5492243B2 (ja) 水処理方法及び水処理装置
WO2010053051A1 (ja) ろ過装置及び水処理装置
WO2009087921A1 (ja) 油分含有廃水の処理方法および処理装置
WO2016132555A1 (ja) 懸濁質除去方法および懸濁質除去装置
TWI711588B (zh) 高硬度排水之處理方法
EP2485981B1 (en) Use of a multi layered particulate filter for reducing the turbidity and sdi of water
Guerra et al. High-speed filtration using highly porous fiber media for advanced and compact particle removal
US10308525B2 (en) Suspended-matter removing method utilizing biofilm and suspended-matter removing apparatus utilizing biofilm
WO2016038726A1 (ja) 水処理装置及び水処理方法
KR101705555B1 (ko) 고-액 분리방법
JP4763670B2 (ja) ろ過装置
US4810389A (en) Filtration system
JP4001490B2 (ja) ろ過装置、それを用いた海水処理方法および凝集剤の再生方法
England et al. Continuous‐backwash upflow filtration for primary effluent
JP5349288B2 (ja) ろ過装置及び排水処理システム
JP5649749B2 (ja) 水処理方法
JP5502924B2 (ja) 水処理方法
JP7356108B2 (ja) 水処理方法
Isabel Assessment of causes of irreversible fouling in powdered activated carbon/Ultrafiltration membrane (PAC/UF) systems
JP6967466B2 (ja) 溶存性アルミニウムの除去方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15551344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP