WO2016132471A1 - 電力変換装置及びその初期充電方法 - Google Patents
電力変換装置及びその初期充電方法 Download PDFInfo
- Publication number
- WO2016132471A1 WO2016132471A1 PCT/JP2015/054398 JP2015054398W WO2016132471A1 WO 2016132471 A1 WO2016132471 A1 WO 2016132471A1 JP 2015054398 W JP2015054398 W JP 2015054398W WO 2016132471 A1 WO2016132471 A1 WO 2016132471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- phase
- input
- power
- input transformer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/125—Avoiding or suppressing excessive transient voltages or currents
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- Embodiments of the present invention relate to a power conversion device and an initial charging method thereof.
- the peak value of the input voltage is applied to the smoothing capacitor of the inverter due to the back electromotive force generated in the leakage inductance of the input transformer.
- the above voltages were applied, and there was a problem that led to component damage.
- the present invention has been made to solve the above-described problems.
- a power converter includes an input transformer that converts a high-voltage power source into a power source required by an inverter device, the high-voltage power source and the input transformer, and the high-voltage power source.
- a circuit breaker that turns on or off the electric circuit that supplies high-voltage power supplied from the input transformer to the input transformer, a converter unit that converts AC power converted by the input transformer to DC power, and is converted by the converter unit
- a smoothing capacitor that smoothes the DC power
- a synchronous switching control device that detects the phase of the high-voltage power supply and controls the circuit breaker to be turned on or off at a timing when the phase reaches a predetermined phase.
- FIG. 1 The figure explaining the structure of the power converter device 100 which concerns on a present Example.
- FIG. The figure explaining the initial charge of the inverter apparatus 20 of the power converter device 100 shown in FIG.
- condenser C in "the first half wave peak voltage value of the capacitor voltage Vc the peak voltage value of the input voltage V2.”
- FIG. 1 is a diagram illustrating a configuration of a power conversion apparatus 100 according to the present embodiment.
- the power conversion device 100 includes a circuit breaker 1, an instrument transformer 2, a synchronous switching control device 3, an input transformer 10, an inverter device 20, and the like.
- the high-voltage power source is connected to the input terminal of the circuit breaker 1, and the output terminal is connected to the primary side terminal of the input transformer 10.
- the high-voltage power supply is a single-phase AC power supply.
- the circuit breaker 1 turns on or cuts off the electric circuit that supplies the high voltage power supplied from the high voltage power source to the input transformer 10.
- the secondary terminal of the input transformer 10 is connected to the input terminal of the inverter device 20 constituting the power conversion device 100 according to this embodiment.
- the synchronous switching control device 3 detects the phase of the high-voltage power supply and controls the circuit breaker 1 to be turned on or off at the timing when it reaches a predetermined phase angle. As a result, the high-voltage power supplied from the high-voltage power supply is turned on or off to the inverter device 20 via the input transformer 10.
- the input transformer 10 converts the high voltage power source into a low voltage power source such as a commercial power source.
- the electric power converted in this way is supplied to the inverter device 20.
- the inverter device 20 supplies necessary power to a load (not shown).
- FIG. 2 shows a circuit configuration of the secondary equivalent circuit of the input transformer 10 and the inverter device 20 connected to the secondary terminal of the input transformer 10.
- the inverter device 20 includes a converter unit 21, smoothing capacitors C1 and C2, and an inverter unit 22.
- the converter unit 21 is composed of a plurality of switching elements, and converts AC power supplied from the secondary terminal of the input transformer 10 into DC power.
- the gate terminal of each switching element constituting the converter unit 21 is connected to the control unit 30 and controlled by the control unit 30 to generate DC power.
- Smoothing capacitors C1 and C2 are capacitors for smoothing the DC power generated by the converter unit 21, and capacitors having a large capacity are used. When the converter unit 21 converts AC power into DC power, harmonics are generated because a plurality of switching elements constituting the converter unit 21 are switched. The smoothing capacitors C1 and C2 are used to smooth the harmonics.
- the inverter unit 22 is composed of a plurality of switching elements like the converter unit 21 and converts the DC power output from the converter unit 21 into AC power.
- the gate terminal of each switching element constituting the inverter unit 22 is connected to the control unit 30 and controlled by the control unit 30 to generate an AC power source necessary for the load. Note that, by controlling the switching elements constituting the inverter unit 22, it is possible to basically generate an AC power source having an arbitrary frequency according to the load.
- FIG. 3 is a diagram for explaining initial charging of the inverter device 20 of the power conversion device 100 shown in FIG.
- FIG. 3A is a main circuit diagram of the secondary equivalent circuit of the input transformer 10 and the inverter device 20.
- FIG. 3 (2) is an equivalent circuit diagram in the case of modeling the above FIG. 3 (1).
- the secondary leakage impedance Z L of the input transformer 10 uses the primary side and the secondary side in terms of the total winding resistance R [Omega] and a total leakage inductance L of the primary and secondary [H] below It can be shown by the mathematical formula (1).
- the converter unit 21 can be represented by using a diode bridge 21a.
- FIG. 3 (3) is an equivalent circuit diagram when the diode bridge shown in FIG. 3 (2) is omitted and simplified. Using this equivalent circuit, the secondary winding end voltage V2 of the input transformer 10 can be expressed by the following mathematical formula (2).
- Equation (3-1) The relationship between the electric charge q flowing through the capacitor C and the voltage Vc of the capacitor C is expressed by Equation (3-1). From the relationship, the current i flowing through the capacitor C is expressed by the following Equation (3-2).
- Equation (4) shows a differential equation regarding the voltage Vc of the capacitor C when the resistor R, the inductance L, and the capacitor C are connected in series. The sum is obtained by the following formula (5).
- the steady voltage Vc 1 indicates an oscillating voltage synchronized with the input voltage V2.
- the transient voltage Vc2 is a voltage attenuated while oscillating.
- the capacitor voltage Vc is expressed as a voltage obtained by adding the steady voltage Vc1 and the transient voltage Vc2, and is expressed by the following formula (6).
- the equation (6) indicates the capacitor voltage Vc.
- the capacitor voltage Vc is a power-on phase angle (hereinafter referred to as a “turn-on phase angle”) ⁇ described later. It is a function, and the capacitor voltage Vc changes by changing the input phase angle ⁇ . This is why the capacitor voltage Vc shows different voltage values depending on the input phase angle ⁇ in the description of FIGS.
- FIG. 4 is a simulation waveform of the model shown in FIG.
- the simulation conditions are as follows.
- FIG. 4 (1) shows the voltage waveform of the capacitor voltage Vc shown in Equation (4) under the simulation conditions, and is a voltage waveform obtained by adding the steady voltage Vc1 and the transient voltage Vc2 as described above.
- FIG. 4 (3) shows the transient voltage Vc2 shown in Equation (6) under the simulation conditions.
- FIG. 4 (4) is an enlarged view of the voltage waveform immediately after the start of charging the capacitor voltage Vc shown in FIG. 4 (1). The description regarding this figure will be described later.
- FIG. 5 is a diagram showing a relationship among the capacitor voltage Vc, the input voltage V2, and the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
- the charging current flows at this time only during the initial charging, but does not flow thereafter (after t1) because the input voltage V2 becomes equal to or lower than the DC voltage Vdc of the capacitor C.
- FIG. 6 is a diagram showing the relationship between the capacitor voltage Vc and the input voltage V2, and shows the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
- First half-wave peak voltage value of capacitor voltage Vc phase in which peak voltage value of input voltage V2 coincides
- DC voltage Vdc at the time of initial charging of capacitor C is determined by a rectifier diode that constitutes a diode bridge.
- the input current i at this time flows only during the initial charging, but thereafter (after t2), the input voltage V2 does not flow because the input voltage V2 becomes equal to or less than the DC voltage Vdc of the capacitor C. .
- FIG. 7 is a diagram showing the relationship between the capacitor voltage Vc and the input voltage V2, and shows the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
- DC voltage Vdc at the time of initial charging of capacitor C is once the first half-wave peak voltage value of capacitor voltage Vc ( It is charged until timing t3), but is charged again when the value of the input voltage V2 becomes equal to or higher than the DC voltage Vdc at the time of initial charging of the capacitor C (timing t3 to t4). Since this charging corresponds to the case where Vdc and Vc have initial voltages in FIG. 7, the DC voltage Vdc is eventually charged to the input voltage V2 or higher.
- the input voltage V2 is a negative voltage between timings t3 and t4.
- the capacitor C is always converted to a one-way voltage by the diode bridge described above, so the input voltage V2 When the absolute value exceeds the DC voltage Vdc, the capacitor C is charged by the input voltage V2.
- FIG. 8 is a diagram illustrating how to determine the optimum input phase angle ⁇ 1 in the power conversion apparatus 100 according to the present embodiment.
- the capacitor voltage Vc with respect to the input phase angle ⁇ [deg] of the input voltage V2 and the DC voltage Vdc at the time of initial charging of the capacitor C are calculated.
- the DC voltage Vdc is lowest when the first half-wave peak voltage value of the capacitor voltage Vc shown in FIG. 6 is equal to the peak voltage value of the input voltage V2.
- the first half-wave peak voltage value of the capacitor voltage Vc varies depending on the power-on phase ⁇ . Therefore, ⁇ when the first half-wave peak voltage value of the capacitor voltage Vc is equal to the peak voltage value of the input voltage V2 is the optimum input phase.
- the input phase angle ⁇ is set to the value of the capacitor voltage Vc using the above equation (6) every 5 [deg].
- the first half-wave peak voltage value is calculated, and the optimum input phase is obtained from the graph.
- the simulation conditions are as follows.
- the point (timing t5) at which the first half-wave peak voltage value of the capacitor voltage Vc and the peak voltage value of the input voltage V2 at each input phase calculated using the above formula (6) intersect is optimal.
- the optimum input phase angle ⁇ 1 is 103 [deg].
- FIG. 9 is a flowchart for explaining the operation for charging at the optimal charging phase angle ⁇ 1 set in this embodiment.
- the peak voltage value V2m [V] of the input voltage V2, the secondary side converted total winding resistance R [ ⁇ ] of the primary side and secondary side of the input transformer 10, and the primary side And the total leakage inductance L [H] on the secondary side, capacitor C [F], and power supply frequency f [Hz] are substituted, and the input phase angle ⁇ [deg] is set to 0 to 180 [deg] and 5 to 10 [deg].
- the first half-wave peak voltage value of the capacitor voltage Vc with respect to the input phase angle ⁇ [deg] is obtained (S1).
- the input phase angle ⁇ [deg] is ⁇ [deg] in the equation (6).
- the circuit breaker 1 connected to the primary side of the input transformer 10 at the optimum closing phase angle ⁇ 1 is turned on.
- the synchronous switching control device 3 loads the circuit breaker 1 taking into account the delay time and the closing operation time from the state of the circuit breaker 1 such as temperature and control voltage (S3).
- the circuit breaker 1 is closed at the optimum input phase angle ⁇ 1, and the input voltage V2 is supplied to the input transformer 10.
- Example 1 demonstrated the case where the high voltage
- the high-voltage power supply is a three-phase AC power supply composed of a U phase, a V phase, and a W phase, and the circuit breaker 1, the input transformer 10, the inverter device 20, and the synchronous switching control device 3 described in the first embodiment.
- the control part 30 is applicable to the power converter device provided for every U phase, V phase, and W phase.
- the synchronous switching control device 3 detects the phase of the high-voltage power supply for each of the U phase, the V phase, and the W phase, and for each phase, the circuit breaker 1 provided for each of the phases when reaching a predetermined phase. Control the turning on or off of.
- the control method of the circuit breaker 1 is the same as that of the first embodiment. That is, for each phase, the circuit breaker 1 connected to the primary side of the input transformer 10 is turned on at the optimum closing phase angle ⁇ 1 described above.
- the circuit breaker 1 is closed at the optimum input phase angle ⁇ 1, and the input voltage V2 is supplied to the input transformer 10.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
- Ac-Ac Conversion (AREA)
Abstract
Description
R=44.9[mΩ]
L=1.29[mH]
C=3200[μF]
f=50[Hz]
θ=0[deg]
図4(1)は、上記シミュレーション条件時の数式(4)に示すコンデンサ電圧Vcの電圧波形であり、上述したように定常電圧Vc1と過渡電圧Vc2が加算された電圧波形となる。
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値>入力電圧V2のピーク電圧値
この場合のコンデンサCの初期充電時の直流電圧Vdcは、ダイオードブリッジを構成する整流ダイオードにより、初期充電時の直流電圧Vdc=Vcとなる最初の半波ピーク電圧値となり、そのまま保持されるため、入力電圧V2よりも大きな電圧になる。
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値=入力電圧V2のピーク電圧値が一致する位相のとき
この場合のコンデンサCの初期充電時の直流電圧Vdcは、ダイオードブリッジを構成する整流ダイオードにより、初期充電時の直流電圧Vdc=Vcとなる最初の半波ピーク電圧値となり、そのまま保持されるが、入力電圧V2を超えない。
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値<入力電圧V2のピーク電圧値
この場合のコンデンサCの初期充電時の直流電圧Vdcは、一旦、コンデンサ電圧Vcの最初の半波ピーク電圧値(タイミングt3)まで充電されるが、入力電圧V2の値がコンデンサCの初期充電時の直流電圧Vdc以上になった時(タイミングt3~t4)に再び充電される。この充電は、図7において、Vdc及びVcが初期電圧を持った場合に相当するため、結局直流電圧Vdcは、入力電圧V2以上に充電される。
R=44.9[mΩ]
L=1.29[mH]
C=3200[μF]
f=50[Hz]
θ=0~180[deg]
本実施例の場合、上記数式(6)を用いて計算した各投入位相におけるコンデンサ電圧Vcの最初の半波ピーク電圧値と、入力電圧V2のピーク電圧値が交差する点(タイミングt5)が最適投入位相角θ1となる。図示した例の場合は最適投入位相角θ1(=103[deg])となる。具体的には下記の通りである。
コンデンサ電圧Vcの最初の半波(θ=0~180[deg])でのピーク電圧値をプロットしたグラフとの交点(タイミングt5)の位相角θ1が最適投入位相角となる。本実施例の場合、上述したように最適投入位相角θ1は103[deg]となる。
2 計器用変圧器
3 同期開閉制御装置
10 入力変圧器
20 インバータ装置
21 コンバータ部
22 インバータ部
30 制御部
100 電力変換装置
Claims (6)
- 高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、
前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、
前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、
前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、
前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、
を備えたことを特徴とする電力変換装置。 - 前記同期開閉制御装置は、
前記所定の位相が前記平滑コンデンサの最初の半波ピーク電圧値と前記入力変圧器の入力電圧のピーク電圧値が一致する位相のときに、前記遮断器を投入制御することを特徴とする請求項1記載の電力変換装置。 - 前記高圧電源が単相交流電源であることを特徴とする請求項1記載の電力変換装置。
- 前記高圧電源がU相、V相、W相からなる3相交流電源であって、
高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、
前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、
前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、
前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、
前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、を前記U相、V相、W相ごとに備え、
前記同期開閉制御装置は、
前記U相、V相、W相ごとに備えられた前記遮断器の投入又は遮断を制御することを特徴とする電力変換装置。 - 高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、を備えた電力変換装置であって、
前記入力変圧器の入力電圧V2、前記入力変圧器の1次側及び2次側の2次側換算巻線抵抗R[Ω]並びに1次側及び2次側の合計漏れインダクタンスL[H]、前記平滑コンデンサC[F]、電源周波数f[Hz]とするとき、所定の演算式に基づいて、投入位相角θをパラメータとして、0~180[deg]の間、所定の間隔で投入位相角θを変化させたときの前記平滑コンデンサCの電圧Vcを算出し、
前記入力電圧V2のピーク電圧値と、前記平滑コンデンサCの電圧Vcが一致する投入位相角θ1を算出し、
前記同期開閉制御装置は、前記算出された投入位相角θ1のタイミングで前記遮断器を投入することを特徴とする電力変換装置の初期充電方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/551,815 US10122253B2 (en) | 2015-02-18 | 2015-02-18 | Power conversion apparatus and initial charging method of the same |
CN201580076372.5A CN107343388B (zh) | 2015-02-18 | 2015-02-18 | 功率转换装置及其初始充电方法 |
PCT/JP2015/054398 WO2016132471A1 (ja) | 2015-02-18 | 2015-02-18 | 電力変換装置及びその初期充電方法 |
EP15882574.5A EP3261243B1 (en) | 2015-02-18 | 2015-02-18 | Power conversion device and initial charging method therefor |
JP2017500187A JP6470832B2 (ja) | 2015-02-18 | 2015-02-18 | 電力変換装置及びその初期充電方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054398 WO2016132471A1 (ja) | 2015-02-18 | 2015-02-18 | 電力変換装置及びその初期充電方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132471A1 true WO2016132471A1 (ja) | 2016-08-25 |
Family
ID=56692648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054398 WO2016132471A1 (ja) | 2015-02-18 | 2015-02-18 | 電力変換装置及びその初期充電方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10122253B2 (ja) |
EP (1) | EP3261243B1 (ja) |
JP (1) | JP6470832B2 (ja) |
CN (1) | CN107343388B (ja) |
WO (1) | WO2016132471A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6824479B1 (ja) * | 2020-02-25 | 2021-02-03 | 三菱電機株式会社 | 電力変換装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113799663B (zh) * | 2021-11-19 | 2022-03-04 | 西南交通大学 | 一种动车供电传动系统、交直交牵引变流器及其控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198610A (ja) * | 1997-09-22 | 1999-04-09 | Toshiba Corp | 交流電気車制御装置 |
JP2006350900A (ja) * | 2005-06-20 | 2006-12-28 | Toshiba Mitsubishi-Electric Industrial System Corp | 電力変換装置 |
JP2013059153A (ja) * | 2011-09-07 | 2013-03-28 | Toshiba Mitsubishi-Electric Industrial System Corp | インバータ装置及び当該装置用入力変圧器の突入電流低減方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3496532B2 (ja) * | 1998-08-18 | 2004-02-16 | 日立工機株式会社 | 遠心機用モータの制御装置 |
JP2006074965A (ja) * | 2004-09-06 | 2006-03-16 | Honda Motor Co Ltd | 電源装置 |
RU2558944C2 (ru) * | 2009-07-28 | 2015-08-10 | ТиЭйчИкс ЛТД. | Источник питания |
CN102035424A (zh) * | 2010-12-20 | 2011-04-27 | 青岛四方车辆研究所有限公司 | 动车组电源转换单相逆变器 |
JP5156149B1 (ja) * | 2012-01-18 | 2013-03-06 | 三菱電機株式会社 | 電力変換装置 |
WO2014186933A1 (en) * | 2013-05-20 | 2014-11-27 | Ge Energy Power Conversion Technology Ltd. | Input filter pre-charge fed by a medium-voltage grid supply |
-
2015
- 2015-02-18 EP EP15882574.5A patent/EP3261243B1/en active Active
- 2015-02-18 CN CN201580076372.5A patent/CN107343388B/zh active Active
- 2015-02-18 JP JP2017500187A patent/JP6470832B2/ja active Active
- 2015-02-18 US US15/551,815 patent/US10122253B2/en active Active
- 2015-02-18 WO PCT/JP2015/054398 patent/WO2016132471A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198610A (ja) * | 1997-09-22 | 1999-04-09 | Toshiba Corp | 交流電気車制御装置 |
JP2006350900A (ja) * | 2005-06-20 | 2006-12-28 | Toshiba Mitsubishi-Electric Industrial System Corp | 電力変換装置 |
JP2013059153A (ja) * | 2011-09-07 | 2013-03-28 | Toshiba Mitsubishi-Electric Industrial System Corp | インバータ装置及び当該装置用入力変圧器の突入電流低減方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6824479B1 (ja) * | 2020-02-25 | 2021-02-03 | 三菱電機株式会社 | 電力変換装置 |
WO2021171332A1 (ja) * | 2020-02-25 | 2021-09-02 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6470832B2 (ja) | 2019-02-13 |
EP3261243A1 (en) | 2017-12-27 |
EP3261243A4 (en) | 2018-10-31 |
US20180034357A1 (en) | 2018-02-01 |
CN107343388A (zh) | 2017-11-10 |
US10122253B2 (en) | 2018-11-06 |
JPWO2016132471A1 (ja) | 2017-07-20 |
CN107343388B (zh) | 2019-11-15 |
EP3261243B1 (en) | 2020-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7804271B2 (en) | Multiphase current supplying circuit, driving apparatus, compressor and air conditioner | |
You et al. | Applying reduced general direct space vector modulation approach of AC–AC matrix converter theory to achieve direct power factor controlled three-phase AC–DC matrix rectifier | |
US11056979B2 (en) | Power conversion apparatus | |
US20210152080A1 (en) | Modular medium voltage fast chargers | |
US10044278B2 (en) | Power conversion device | |
EP3041122A1 (en) | Control circuit, switching circuit, power conversion device, charging device, vehicle, and control method | |
US20150124489A1 (en) | Current Sensing Apparatus for Power Converters | |
EP2784925A1 (en) | Power conversion device | |
Chen et al. | Modified interleaved current sensorless control for three-level boost PFC converter with considering voltage imbalance and zero-crossing current distortion | |
JP2015144554A (ja) | 電力変換装置 | |
US20150333525A1 (en) | High-voltage direct current transmission system control device | |
US9407133B1 (en) | Active power conditioner | |
KR101442990B1 (ko) | 고전압직류송전 사이리스터 밸브를 위한 합성시험회로 | |
JP2013247722A (ja) | 電力変換装置 | |
KR20180014166A (ko) | 배터리 충전기 | |
KR20190115364A (ko) | 단상 및 3상 겸용 충전기 | |
JP2015070708A (ja) | 電流共振型電源装置 | |
JP2013192424A (ja) | 電力変換装置 | |
KR20180011327A (ko) | 배터리 충전기 | |
EP2975753A1 (en) | A three-level converter | |
US11356029B2 (en) | Rectifying circuit and switched-mode power supply incorporating rectifying circuit | |
EP2677651A1 (en) | Synchronized isolated AC-AC converter with variable regulated output voltage | |
JP6470832B2 (ja) | 電力変換装置及びその初期充電方法 | |
EP2945246A1 (en) | Voltage adjusting apparatus | |
KR20110135126A (ko) | 캐스케이드 멀티레벨 고압인버터의 돌입전류 방지장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882574 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500187 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015882574 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15551815 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |