WO2016132471A1 - 電力変換装置及びその初期充電方法 - Google Patents

電力変換装置及びその初期充電方法 Download PDF

Info

Publication number
WO2016132471A1
WO2016132471A1 PCT/JP2015/054398 JP2015054398W WO2016132471A1 WO 2016132471 A1 WO2016132471 A1 WO 2016132471A1 JP 2015054398 W JP2015054398 W JP 2015054398W WO 2016132471 A1 WO2016132471 A1 WO 2016132471A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
input
power
input transformer
Prior art date
Application number
PCT/JP2015/054398
Other languages
English (en)
French (fr)
Inventor
木下 真吾
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US15/551,815 priority Critical patent/US10122253B2/en
Priority to CN201580076372.5A priority patent/CN107343388B/zh
Priority to PCT/JP2015/054398 priority patent/WO2016132471A1/ja
Priority to EP15882574.5A priority patent/EP3261243B1/en
Priority to JP2017500187A priority patent/JP6470832B2/ja
Publication of WO2016132471A1 publication Critical patent/WO2016132471A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Embodiments of the present invention relate to a power conversion device and an initial charging method thereof.
  • the peak value of the input voltage is applied to the smoothing capacitor of the inverter due to the back electromotive force generated in the leakage inductance of the input transformer.
  • the above voltages were applied, and there was a problem that led to component damage.
  • the present invention has been made to solve the above-described problems.
  • a power converter includes an input transformer that converts a high-voltage power source into a power source required by an inverter device, the high-voltage power source and the input transformer, and the high-voltage power source.
  • a circuit breaker that turns on or off the electric circuit that supplies high-voltage power supplied from the input transformer to the input transformer, a converter unit that converts AC power converted by the input transformer to DC power, and is converted by the converter unit
  • a smoothing capacitor that smoothes the DC power
  • a synchronous switching control device that detects the phase of the high-voltage power supply and controls the circuit breaker to be turned on or off at a timing when the phase reaches a predetermined phase.
  • FIG. 1 The figure explaining the structure of the power converter device 100 which concerns on a present Example.
  • FIG. The figure explaining the initial charge of the inverter apparatus 20 of the power converter device 100 shown in FIG.
  • condenser C in "the first half wave peak voltage value of the capacitor voltage Vc the peak voltage value of the input voltage V2.”
  • FIG. 1 is a diagram illustrating a configuration of a power conversion apparatus 100 according to the present embodiment.
  • the power conversion device 100 includes a circuit breaker 1, an instrument transformer 2, a synchronous switching control device 3, an input transformer 10, an inverter device 20, and the like.
  • the high-voltage power source is connected to the input terminal of the circuit breaker 1, and the output terminal is connected to the primary side terminal of the input transformer 10.
  • the high-voltage power supply is a single-phase AC power supply.
  • the circuit breaker 1 turns on or cuts off the electric circuit that supplies the high voltage power supplied from the high voltage power source to the input transformer 10.
  • the secondary terminal of the input transformer 10 is connected to the input terminal of the inverter device 20 constituting the power conversion device 100 according to this embodiment.
  • the synchronous switching control device 3 detects the phase of the high-voltage power supply and controls the circuit breaker 1 to be turned on or off at the timing when it reaches a predetermined phase angle. As a result, the high-voltage power supplied from the high-voltage power supply is turned on or off to the inverter device 20 via the input transformer 10.
  • the input transformer 10 converts the high voltage power source into a low voltage power source such as a commercial power source.
  • the electric power converted in this way is supplied to the inverter device 20.
  • the inverter device 20 supplies necessary power to a load (not shown).
  • FIG. 2 shows a circuit configuration of the secondary equivalent circuit of the input transformer 10 and the inverter device 20 connected to the secondary terminal of the input transformer 10.
  • the inverter device 20 includes a converter unit 21, smoothing capacitors C1 and C2, and an inverter unit 22.
  • the converter unit 21 is composed of a plurality of switching elements, and converts AC power supplied from the secondary terminal of the input transformer 10 into DC power.
  • the gate terminal of each switching element constituting the converter unit 21 is connected to the control unit 30 and controlled by the control unit 30 to generate DC power.
  • Smoothing capacitors C1 and C2 are capacitors for smoothing the DC power generated by the converter unit 21, and capacitors having a large capacity are used. When the converter unit 21 converts AC power into DC power, harmonics are generated because a plurality of switching elements constituting the converter unit 21 are switched. The smoothing capacitors C1 and C2 are used to smooth the harmonics.
  • the inverter unit 22 is composed of a plurality of switching elements like the converter unit 21 and converts the DC power output from the converter unit 21 into AC power.
  • the gate terminal of each switching element constituting the inverter unit 22 is connected to the control unit 30 and controlled by the control unit 30 to generate an AC power source necessary for the load. Note that, by controlling the switching elements constituting the inverter unit 22, it is possible to basically generate an AC power source having an arbitrary frequency according to the load.
  • FIG. 3 is a diagram for explaining initial charging of the inverter device 20 of the power conversion device 100 shown in FIG.
  • FIG. 3A is a main circuit diagram of the secondary equivalent circuit of the input transformer 10 and the inverter device 20.
  • FIG. 3 (2) is an equivalent circuit diagram in the case of modeling the above FIG. 3 (1).
  • the secondary leakage impedance Z L of the input transformer 10 uses the primary side and the secondary side in terms of the total winding resistance R [Omega] and a total leakage inductance L of the primary and secondary [H] below It can be shown by the mathematical formula (1).
  • the converter unit 21 can be represented by using a diode bridge 21a.
  • FIG. 3 (3) is an equivalent circuit diagram when the diode bridge shown in FIG. 3 (2) is omitted and simplified. Using this equivalent circuit, the secondary winding end voltage V2 of the input transformer 10 can be expressed by the following mathematical formula (2).
  • Equation (3-1) The relationship between the electric charge q flowing through the capacitor C and the voltage Vc of the capacitor C is expressed by Equation (3-1). From the relationship, the current i flowing through the capacitor C is expressed by the following Equation (3-2).
  • Equation (4) shows a differential equation regarding the voltage Vc of the capacitor C when the resistor R, the inductance L, and the capacitor C are connected in series. The sum is obtained by the following formula (5).
  • the steady voltage Vc 1 indicates an oscillating voltage synchronized with the input voltage V2.
  • the transient voltage Vc2 is a voltage attenuated while oscillating.
  • the capacitor voltage Vc is expressed as a voltage obtained by adding the steady voltage Vc1 and the transient voltage Vc2, and is expressed by the following formula (6).
  • the equation (6) indicates the capacitor voltage Vc.
  • the capacitor voltage Vc is a power-on phase angle (hereinafter referred to as a “turn-on phase angle”) ⁇ described later. It is a function, and the capacitor voltage Vc changes by changing the input phase angle ⁇ . This is why the capacitor voltage Vc shows different voltage values depending on the input phase angle ⁇ in the description of FIGS.
  • FIG. 4 is a simulation waveform of the model shown in FIG.
  • the simulation conditions are as follows.
  • FIG. 4 (1) shows the voltage waveform of the capacitor voltage Vc shown in Equation (4) under the simulation conditions, and is a voltage waveform obtained by adding the steady voltage Vc1 and the transient voltage Vc2 as described above.
  • FIG. 4 (3) shows the transient voltage Vc2 shown in Equation (6) under the simulation conditions.
  • FIG. 4 (4) is an enlarged view of the voltage waveform immediately after the start of charging the capacitor voltage Vc shown in FIG. 4 (1). The description regarding this figure will be described later.
  • FIG. 5 is a diagram showing a relationship among the capacitor voltage Vc, the input voltage V2, and the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
  • the charging current flows at this time only during the initial charging, but does not flow thereafter (after t1) because the input voltage V2 becomes equal to or lower than the DC voltage Vdc of the capacitor C.
  • FIG. 6 is a diagram showing the relationship between the capacitor voltage Vc and the input voltage V2, and shows the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
  • First half-wave peak voltage value of capacitor voltage Vc phase in which peak voltage value of input voltage V2 coincides
  • DC voltage Vdc at the time of initial charging of capacitor C is determined by a rectifier diode that constitutes a diode bridge.
  • the input current i at this time flows only during the initial charging, but thereafter (after t2), the input voltage V2 does not flow because the input voltage V2 becomes equal to or less than the DC voltage Vdc of the capacitor C. .
  • FIG. 7 is a diagram showing the relationship between the capacitor voltage Vc and the input voltage V2, and shows the DC voltage Vdc when the capacitor C is initially charged under the following conditions.
  • DC voltage Vdc at the time of initial charging of capacitor C is once the first half-wave peak voltage value of capacitor voltage Vc ( It is charged until timing t3), but is charged again when the value of the input voltage V2 becomes equal to or higher than the DC voltage Vdc at the time of initial charging of the capacitor C (timing t3 to t4). Since this charging corresponds to the case where Vdc and Vc have initial voltages in FIG. 7, the DC voltage Vdc is eventually charged to the input voltage V2 or higher.
  • the input voltage V2 is a negative voltage between timings t3 and t4.
  • the capacitor C is always converted to a one-way voltage by the diode bridge described above, so the input voltage V2 When the absolute value exceeds the DC voltage Vdc, the capacitor C is charged by the input voltage V2.
  • FIG. 8 is a diagram illustrating how to determine the optimum input phase angle ⁇ 1 in the power conversion apparatus 100 according to the present embodiment.
  • the capacitor voltage Vc with respect to the input phase angle ⁇ [deg] of the input voltage V2 and the DC voltage Vdc at the time of initial charging of the capacitor C are calculated.
  • the DC voltage Vdc is lowest when the first half-wave peak voltage value of the capacitor voltage Vc shown in FIG. 6 is equal to the peak voltage value of the input voltage V2.
  • the first half-wave peak voltage value of the capacitor voltage Vc varies depending on the power-on phase ⁇ . Therefore, ⁇ when the first half-wave peak voltage value of the capacitor voltage Vc is equal to the peak voltage value of the input voltage V2 is the optimum input phase.
  • the input phase angle ⁇ is set to the value of the capacitor voltage Vc using the above equation (6) every 5 [deg].
  • the first half-wave peak voltage value is calculated, and the optimum input phase is obtained from the graph.
  • the simulation conditions are as follows.
  • the point (timing t5) at which the first half-wave peak voltage value of the capacitor voltage Vc and the peak voltage value of the input voltage V2 at each input phase calculated using the above formula (6) intersect is optimal.
  • the optimum input phase angle ⁇ 1 is 103 [deg].
  • FIG. 9 is a flowchart for explaining the operation for charging at the optimal charging phase angle ⁇ 1 set in this embodiment.
  • the peak voltage value V2m [V] of the input voltage V2, the secondary side converted total winding resistance R [ ⁇ ] of the primary side and secondary side of the input transformer 10, and the primary side And the total leakage inductance L [H] on the secondary side, capacitor C [F], and power supply frequency f [Hz] are substituted, and the input phase angle ⁇ [deg] is set to 0 to 180 [deg] and 5 to 10 [deg].
  • the first half-wave peak voltage value of the capacitor voltage Vc with respect to the input phase angle ⁇ [deg] is obtained (S1).
  • the input phase angle ⁇ [deg] is ⁇ [deg] in the equation (6).
  • the circuit breaker 1 connected to the primary side of the input transformer 10 at the optimum closing phase angle ⁇ 1 is turned on.
  • the synchronous switching control device 3 loads the circuit breaker 1 taking into account the delay time and the closing operation time from the state of the circuit breaker 1 such as temperature and control voltage (S3).
  • the circuit breaker 1 is closed at the optimum input phase angle ⁇ 1, and the input voltage V2 is supplied to the input transformer 10.
  • Example 1 demonstrated the case where the high voltage
  • the high-voltage power supply is a three-phase AC power supply composed of a U phase, a V phase, and a W phase, and the circuit breaker 1, the input transformer 10, the inverter device 20, and the synchronous switching control device 3 described in the first embodiment.
  • the control part 30 is applicable to the power converter device provided for every U phase, V phase, and W phase.
  • the synchronous switching control device 3 detects the phase of the high-voltage power supply for each of the U phase, the V phase, and the W phase, and for each phase, the circuit breaker 1 provided for each of the phases when reaching a predetermined phase. Control the turning on or off of.
  • the control method of the circuit breaker 1 is the same as that of the first embodiment. That is, for each phase, the circuit breaker 1 connected to the primary side of the input transformer 10 is turned on at the optimum closing phase angle ⁇ 1 described above.
  • the circuit breaker 1 is closed at the optimum input phase angle ⁇ 1, and the input voltage V2 is supplied to the input transformer 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

 電源投入時の投入位相を制御することにより直流電圧の過電圧を抑制し、過電圧に伴う過充電及び部品破壊を防止する電力変換装置及びその初期充電方法を提供する。 数式(6)に入力電圧V2のピーク電圧値V2m[V]、入力変圧器10の1次側及び2次側の2次側換算巻線抵抗R[Ω]並びに1次側及び2次側の合計漏れインダクタンスL[H]、コンデンサC[F]、電源周波数f[Hz]を代入し、投入位相角θ[deg]を0~180[deg]まで5~10[deg]間隔で可変して、投入位相角θに対するコンデンサ電圧Vcの最初の半波ピーク電圧値を求める(S1)。次に、横軸に投入位相角θ、縦軸にコンデンサ電圧Vcの最初の半波のピーク電圧値と、入力電圧V2のピーク電圧値との交点の位相角(最適投入位相角θ1)を求める(S2)。次に、同期開閉制御装置3を用いて、最適投入位相角θ1にて遮断器1を投入する(S3)。

Description

電力変換装置及びその初期充電方法
 本発明の実施形態は、電力変換装置及びその初期充電方法に関する。
 電源から入力変圧器を介してインバータを初期充電する方法について、従来は、限流抵抗または限流リアクトルを用いる方法が採用されていた。しかし、装置のコンパクト化・低価格化の観点から、これら初期充電用部品を用いず、直接電源を投入して充電する方法が採用されている。
特開2004-266978号公報
 しかしながら、上記初期充電用部品を用いず、直接電源を投入してインバータを初期充電する方法では、入力変圧器の漏れインダクタンスに発生する逆起電力により、インバータの平滑コンデンサに、入力電圧の波高値以上の電圧が印加され、部品破損につながる課題があった。
 本発明は、上述した課題を解決するためになされたもので、初期充電用部品を用いず、直接電源を投入してインバータを初期充電する方法において、電源投入時の投入位相を制御することにより、直流電圧の過電圧を抑制し、過電圧に伴う過充電を防止する充電方式を用いることができ、上記部品破壊につながる課題を解決することができる電力変換装置及びその初期充電方法を提供することを目的とする。
 上記目的を達成するために、本発明の電力変換装置は、高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、を備えたことを特徴とする。
本実施例に係る電力変換装置100の構成を説明する図。 入力変圧器10の2次側等価回路及び入力変圧器10の2次側端子に接続されたインバータ装置20の回路構成図。 図2に示す電力変換装置100のインバータ装置20の初期充電を説明する図 図3(3)に示すモデルのシミュレーション波形。 「コンデンサ電圧Vcの最初の半波ピーク電圧値>入力電圧V2のピーク電圧値」での、コンデンサ電圧Vc、入力電圧V2及びコンデンサCの初期充電時の直流電圧Vdcの関係を示す図。 「コンデンサ電圧Vcの最初の半波ピーク電圧値=入力電圧V2のピーク電圧値」での、コンデンサ電圧Vc、入力電圧V2及びコンデンサCの初期充電時の直流電圧Vdcの関係を示す図。 「コンデンサ電圧Vcの最初の半波ピーク電圧値<入力電圧V2のピーク電圧値」での、コンデンサ電圧Vc、入力電圧V2及びコンデンサCの初期充電時の直流電圧Vdcの関係を示す図。 本実施例に係る電力変換装置100において最適投入位相角θ1の求め方を示す図。 本実施例において設定した最適投入位相角θ1で投入するための動作を説明するフローチャート。
 以下、図面を参照して本実施例に係る電力変換装置100及びその充電方法の動作を説明する。
 図1は、本実施例に係る電力変換装置100の構成を説明する図である。電力変換装置100は、遮断器1、計器用変圧器2、同期開閉制御装置3、入力変圧器10及びインバータ装置20などで構成される。
 高圧電源は、遮断器1の入力端子に接続され、その出力端子は、入力変圧器10の1次側端子に接続される。なお、本実施例においては、高圧電源が単相交流電源である場合について以下説明する。
 遮断器1は、上記高圧電源から供給される高圧電力を入力変圧器10に供給する電路を投入又は遮断する。
 入力変圧器10の2次側端子は、本実施例に係る電力変換装置100を構成するインバータ装置20の入力端子に接続される。
 同期開閉制御装置3は、高圧電源の位相を検出して所定の位相角に到達したタイミングで遮断器1を投入又は遮断制御する。この結果、高圧電源から供給される高圧電力は、入力変圧器10を介してインバータ装置20に投入又は遮断される。
 入力変圧器10は、高圧電源を商用電源など低圧電源に変換する。このようにして変換された電力は、インバータ装置20に供給される。
 インバータ装置20は、図示しない負荷に必要な電力を供給する。
 図2は、入力変圧器10の2次側等価回路及び当該入力変圧器10の2次側端子に接続されたインバータ装置20の回路構成を示す。
 インバータ装置20は、コンバータ部21、平滑コンデンサC1・C2及びインバータ部22を有して構成される。
 コンバータ部21は、複数のスイッチング素子で構成され、入力変圧器10の2次側端子から供給された交流電力を直流電力に変換する。コンバータ部21を構成する各スイッチング素子のゲート端子は、制御部30に接続され、当該制御部30によって制御され、直流電力が生成される。
 平滑コンデンサC1・C2は、コンバータ部21で生成された直流電力を平滑するためのコンデンサで、容量の大きなコンデンサが用いられる。上記コンバータ部21は、交流電力を直流電力に変換する際、当該コンバータ部21を構成する複数のスイッチング素子がスイッチングされるため、高調波が発生する。この高調波を平滑するために当該平滑コンデンサC1・C2が用いられる。
 インバータ部22は、コンバータ部21と同様に複数のスイッチング素子で構成され、コンバータ部21から出力された直流電力を交流電力に変換する。インバータ部22を構成する各スイッチング素子のゲート端子は、制御部30に接続され、当該制御部30によって制御され、負荷に必要な交流電源が生成される。なお、当該インバータ部22を構成するスイッチング素子を制御することにより、負荷に応じて、基本的には任意の周波数の交流電源を生成することが可能になる。
 図3は、図2に示す電力変換装置100のインバータ装置20の初期充電を説明する図である。図3(1)は、入力変圧器10の2次側等価回路及びインバータ装置20の主要な回路図である。
 図3(2)は、上記図3(1)をモデル化した場合の等価回路図である。入力変圧器10の2次側漏れインピーダンスZは、1次側及び2次側換算合計巻線抵抗R[Ω]並びに1次側及び2次側の合計漏れインダクタンスL[H]を用いて下記数式(1)で示すことができる。
Figure JPOXMLDOC01-appb-M000002
 また、コンバータ部21は、ダイオードブリッジ21aを用いて表すことができる。
 図3(3)は、上記図3(2)で示したダイオードブリッジを省略し、単純化した場合の等価回路図である。この等価回路を用いて入力変圧器10の2次側巻線端電圧V2は下記数式(2)で示すことができる。
Figure JPOXMLDOC01-appb-M000003
 コンデンサCに流れる電荷qとコンデンサCの電圧Vcの関係は数式(3-1)で示され、当該関係式から、コンデンサCに流れる電流iは、下記数式(3-2)で示される。
Figure JPOXMLDOC01-appb-M000004
 数式(3-2)を数式(2)に代入すると下記数式(4)が得られる。
Figure JPOXMLDOC01-appb-M000005
 数式(4)は、抵抗R、インダクタンスL及びコンデンサCが直列に接続された場合のコンデンサCの電圧Vcに関する微分方程式を示しており、この微分方程式の解は、定常電圧Vc1及び過渡電圧Vc2を加算したものとなり、下記数式(5)で示される。
Figure JPOXMLDOC01-appb-M000006
 定常電圧Vcは、入力電圧V2に同期した振動電圧を示す。一方、過渡電圧Vc2は振動しながら減衰する電圧である。コンデンサ電圧Vcは、上記定常電圧Vc1と過渡電圧Vc2を加算した電圧で示され、下記数式(6)で示される。
Figure JPOXMLDOC01-appb-M000007
 数式(6)に示すA1、x、y、θ、α、βは、下記数式(7)で示される。
Figure JPOXMLDOC01-appb-M000008
 なお、数式(6)は、コンデンサ電圧Vcを示しているが、この数式(6)から明らかなように、コンデンサ電圧Vcは、後述する電源投入位相角(以下投入位相角と称する。)θの関数となっており、投入位相角θを可変することによりコンデンサ電圧Vcが変化する。後述する図5~図8などの説明において、投入位相角θによってコンデンサ電圧Vcが異なる電圧値を示すのはそのためである。
 図4は、図3(3)に示すモデルのシミュレーション波形である。シミュレーション条件は、下記の通りである。
V2=894[Vrms]
R=44.9[mΩ]
L=1.29[mH]
C=3200[μF]
f=50[Hz]
θ=0[deg]
 図4(1)は、上記シミュレーション条件時の数式(4)に示すコンデンサ電圧Vcの電圧波形であり、上述したように定常電圧Vc1と過渡電圧Vc2が加算された電圧波形となる。
 図4(2)は、上記シミュレーション条件時の数式(2)に示す入力電圧V2及び数式(6)に示す定常電圧Vcを示す。
 図4(3)は、上記シミュレーション条件時の数式(6)に示す過渡電圧Vc2を示す。
 図4(4)は、図4(1)に示すコンデンサ電圧Vcの充電開始直後の電圧波形の拡大図である。同図に関する説明は、後述する。
 図5は、下記条件時のコンデンサ電圧Vc、入力電圧V2及びコンデンサCの初期充電時の直流電圧Vdcの関係を示す図である。 
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値>入力電圧V2のピーク電圧値
 この場合のコンデンサCの初期充電時の直流電圧Vdcは、ダイオードブリッジを構成する整流ダイオードにより、初期充電時の直流電圧Vdc=Vcとなる最初の半波ピーク電圧値となり、そのまま保持されるため、入力電圧V2よりも大きな電圧になる。
 この時の入力電流iは、上記初期充電時のみ充電電流が流れるが、その後(t1以降)は、入力電圧V2がコンデンサCの直流電圧Vdc以下となるため流れない。
 図6は、コンデンサ電圧Vcと入力電圧V2の関係を示す図で、下記条件の場合のコンデンサCの初期充電時の直流電圧Vdcを示す。 
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値=入力電圧V2のピーク電圧値が一致する位相のとき
 この場合のコンデンサCの初期充電時の直流電圧Vdcは、ダイオードブリッジを構成する整流ダイオードにより、初期充電時の直流電圧Vdc=Vcとなる最初の半波ピーク電圧値となり、そのまま保持されるが、入力電圧V2を超えない。
 この時の入力電流iは、図5の場合と同様、上記初期充電時のみ充電電流が流れるが、その後(t2以降)は、入力電圧V2が、コンデンサCの直流電圧Vdc以下となるため流れない。
 図7は、コンデンサ電圧Vcと入力電圧V2の関係を示す図で、下記条件の場合のコンデンサCの初期充電時の直流電圧Vdcを示す。 
条件:コンデンサ電圧Vcの最初の半波ピーク電圧値<入力電圧V2のピーク電圧値
 この場合のコンデンサCの初期充電時の直流電圧Vdcは、一旦、コンデンサ電圧Vcの最初の半波ピーク電圧値(タイミングt3)まで充電されるが、入力電圧V2の値がコンデンサCの初期充電時の直流電圧Vdc以上になった時(タイミングt3~t4)に再び充電される。この充電は、図7において、Vdc及びVcが初期電圧を持った場合に相当するため、結局直流電圧Vdcは、入力電圧V2以上に充電される。
 なお、タイミングt3~t4の間は、入力電圧V2が負電圧を示しているが、上述したダイオードブリッジにより、コンデンサCに対しては、常に一方向の電圧に変換されるため、入力電圧V2の絶対値が直流電圧Vdcを超えたとき、当該入力電圧V2によってコンデンサCは充電されることになる。
 図8は、本実施例に係る電力変換装置100において最適投入位相角θ1の求め方を示す図である。ここでは、入力電圧V2の投入位相角θ[deg]に対するコンデンサ電圧Vc及びコンデンサCの初期充電時の直流電圧Vdcを算出した図である。
 以上から、直流電圧Vdcが最も低くなる場合は、図6に示すコンデンサ電圧Vcの最初の半波ピーク電圧値=入力電圧V2のピーク電圧値の場合であることがわかる。コンデンサ電圧Vcの最初の半波ピーク電圧値は、電源投入位相θによって変わる。よって、コンデンサ電圧Vcの最初の半波ピーク電圧値=入力電圧V2のピーク電圧値となる場合のθが最適投入位相となる。
 これを解析的に求めることは困難であるため、0[deg]≦θ≦180[deg]において、投入位相角θを5[deg]刻みごとに上記数式(6)を用いてコンデンサ電圧Vcの最初の半波ピーク電圧値を計算し、グラフから最適投入位相を求める。なお、シミュレーション条件は、下記の通りである。
V2=894[Vrms]
R=44.9[mΩ]
L=1.29[mH]
C=3200[μF]
f=50[Hz]
θ=0~180[deg]
 本実施例の場合、上記数式(6)を用いて計算した各投入位相におけるコンデンサ電圧Vcの最初の半波ピーク電圧値と、入力電圧V2のピーク電圧値が交差する点(タイミングt5)が最適投入位相角θ1となる。図示した例の場合は最適投入位相角θ1(=103[deg])となる。具体的には下記の通りである。
入力電圧V2のピーク電圧値=√2×V2=1264[V]
コンデンサ電圧Vcの最初の半波(θ=0~180[deg])でのピーク電圧値をプロットしたグラフとの交点(タイミングt5)の位相角θ1が最適投入位相角となる。本実施例の場合、上述したように最適投入位相角θ1は103[deg]となる。
 図9は、本実施例において設定した最適投入位相角θ1で投入するための動作を説明するフローチャートである。
 最初に、上記数式(6)に入力電圧V2のピーク電圧値V2m[V]、入力変圧器10の1次側及び2次側の2次側換算合計巻線抵抗R[Ω]並びに1次側及び2次側の合計漏れインダクタンスL[H]、コンデンサC[F]、電源周波数f[Hz]を代入し、投入位相角θ[deg]を0~180[deg]まで5~10[deg]間隔で可変し、投入位相角θ[deg]に対するコンデンサ電圧Vcの最初の半波ピーク電圧値を求める(S1)。なお、投入位相角θ[deg]とは、数式(6)におけるθ[deg]のことである。
 次に、横軸に投入位相角θ、縦軸にコンデンサ電圧Vcの最初の半波のピーク電圧値のグラフを描き、入力電圧V2のピーク電圧値との交点を求める。交点の投入位相角θが最適投入位相角θ1となる(S2)。
 次に、同期開閉制御装置3を用いて、最適投入位相角θ1にて入力変圧器10の1次側に接続された遮断器1を投入する。同期開閉制御装置3は投入指令を受けた後、遮断器1の温度・制御電圧などの状態から遅延時間・閉極動作時間を加味して遮断器1を投入する(S3)。
 以上の処理を経て、最適投入位相角θ1で遮断器1が閉じ入力変圧器10に入力電圧V2が供給される。
 以上説明したように、本実施例によれば、直流電圧Vdcが入力電圧V2を超えることによる過充電を防止することができ、「発明が解決しようとする課題」を解決することができる電力変換装置及びその初期充電方法を提供することができる。
 実施例1は、遮断器1に供給される高圧電源が単相交流の場合について説明した。しかしながら、上記高圧電源が、U相、V相、W相からなる3相交流電源であって、実施例1で説明した上記遮断器1、入力変圧器10、インバータ装置20、同期開閉制御装置3及び制御部30を、U相、V相、W相ごとに備えた電力変換装置に適用可能である。
 この場合、上記同期開閉制御装置3は、U相、V相、W相ごと高圧電源の位相を検出し、相ごとに、所定の位相に到達したタイミングで上記相ごとに備えられた遮断器1の投入又は遮断を制御する。
 遮断器1の制御方法は、実施例1同様である。すなわち、相ごと、上述した最適投入位相角θ1にて入力変圧器10の1次側に接続された遮断器1を投入する。
 以上の処理を経て、最適投入位相角θ1で遮断器1が閉じ入力変圧器10に入力電圧V2が供給される。
 以上説明したように、本実施例2によれば、直流電圧Vdcが入力電圧V2を超えることによる過充電を防止することができ、「発明が解決しようとする課題」を解決することができる電力変換装置及びその初期充電方法を提供することができる。
1 遮断器
2 計器用変圧器
3 同期開閉制御装置
10 入力変圧器
20 インバータ装置
21 コンバータ部
22 インバータ部
30 制御部
100 電力変換装置

Claims (6)

  1.  高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、
    前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、
    前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、
    前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、
    前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、
    を備えたことを特徴とする電力変換装置。
  2.  前記同期開閉制御装置は、
    前記所定の位相が前記平滑コンデンサの最初の半波ピーク電圧値と前記入力変圧器の入力電圧のピーク電圧値が一致する位相のときに、前記遮断器を投入制御することを特徴とする請求項1記載の電力変換装置。
  3.  前記高圧電源が単相交流電源であることを特徴とする請求項1記載の電力変換装置。
  4.  前記高圧電源がU相、V相、W相からなる3相交流電源であって、
    高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、
    前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、
    前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、
    前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、
    前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、を前記U相、V相、W相ごとに備え、
    前記同期開閉制御装置は、
    前記U相、V相、W相ごとに備えられた前記遮断器の投入又は遮断を制御することを特徴とする電力変換装置。
  5.  高圧電源をインバータ装置が要求する電源に変換する入力変圧器と、前記高圧電源と前記入力変圧器の間に配置され、当該高圧電源から供給される高圧電力を前記入力変圧器に供給する電路を投入または遮断する遮断器と、前記入力変圧器によって変換された交流電力を直流電力に変換するコンバータ部と、前記コンバータ部によって変換された前記直流電力を平滑する平滑コンデンサと、前記高圧電源の位相を検出し、所定の位相に到達したタイミングで、前記遮断器を投入又は遮断制御する同期開閉制御装置と、を備えた電力変換装置であって、
    前記入力変圧器の入力電圧V2、前記入力変圧器の1次側及び2次側の2次側換算巻線抵抗R[Ω]並びに1次側及び2次側の合計漏れインダクタンスL[H]、前記平滑コンデンサC[F]、電源周波数f[Hz]とするとき、所定の演算式に基づいて、投入位相角θをパラメータとして、0~180[deg]の間、所定の間隔で投入位相角θを変化させたときの前記平滑コンデンサCの電圧Vcを算出し、
    前記入力電圧V2のピーク電圧値と、前記平滑コンデンサCの電圧Vcが一致する投入位相角θ1を算出し、
    前記同期開閉制御装置は、前記算出された投入位相角θ1のタイミングで前記遮断器を投入することを特徴とする電力変換装置の初期充電方法。
  6.  前記所定の演算式は、下式(8)で与えられることを特徴とする請求項5記載の電力変換装置の初期充電方法。
    Figure JPOXMLDOC01-appb-M000001
PCT/JP2015/054398 2015-02-18 2015-02-18 電力変換装置及びその初期充電方法 WO2016132471A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/551,815 US10122253B2 (en) 2015-02-18 2015-02-18 Power conversion apparatus and initial charging method of the same
CN201580076372.5A CN107343388B (zh) 2015-02-18 2015-02-18 功率转换装置及其初始充电方法
PCT/JP2015/054398 WO2016132471A1 (ja) 2015-02-18 2015-02-18 電力変換装置及びその初期充電方法
EP15882574.5A EP3261243B1 (en) 2015-02-18 2015-02-18 Power conversion device and initial charging method therefor
JP2017500187A JP6470832B2 (ja) 2015-02-18 2015-02-18 電力変換装置及びその初期充電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054398 WO2016132471A1 (ja) 2015-02-18 2015-02-18 電力変換装置及びその初期充電方法

Publications (1)

Publication Number Publication Date
WO2016132471A1 true WO2016132471A1 (ja) 2016-08-25

Family

ID=56692648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054398 WO2016132471A1 (ja) 2015-02-18 2015-02-18 電力変換装置及びその初期充電方法

Country Status (5)

Country Link
US (1) US10122253B2 (ja)
EP (1) EP3261243B1 (ja)
JP (1) JP6470832B2 (ja)
CN (1) CN107343388B (ja)
WO (1) WO2016132471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824479B1 (ja) * 2020-02-25 2021-02-03 三菱電機株式会社 電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113799663B (zh) * 2021-11-19 2022-03-04 西南交通大学 一种动车供电传动系统、交直交牵引变流器及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198610A (ja) * 1997-09-22 1999-04-09 Toshiba Corp 交流電気車制御装置
JP2006350900A (ja) * 2005-06-20 2006-12-28 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013059153A (ja) * 2011-09-07 2013-03-28 Toshiba Mitsubishi-Electric Industrial System Corp インバータ装置及び当該装置用入力変圧器の突入電流低減方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496532B2 (ja) * 1998-08-18 2004-02-16 日立工機株式会社 遠心機用モータの制御装置
JP2006074965A (ja) * 2004-09-06 2006-03-16 Honda Motor Co Ltd 電源装置
RU2558944C2 (ru) * 2009-07-28 2015-08-10 ТиЭйчИкс ЛТД. Источник питания
CN102035424A (zh) * 2010-12-20 2011-04-27 青岛四方车辆研究所有限公司 动车组电源转换单相逆变器
JP5156149B1 (ja) * 2012-01-18 2013-03-06 三菱電機株式会社 電力変換装置
WO2014186933A1 (en) * 2013-05-20 2014-11-27 Ge Energy Power Conversion Technology Ltd. Input filter pre-charge fed by a medium-voltage grid supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198610A (ja) * 1997-09-22 1999-04-09 Toshiba Corp 交流電気車制御装置
JP2006350900A (ja) * 2005-06-20 2006-12-28 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013059153A (ja) * 2011-09-07 2013-03-28 Toshiba Mitsubishi-Electric Industrial System Corp インバータ装置及び当該装置用入力変圧器の突入電流低減方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824479B1 (ja) * 2020-02-25 2021-02-03 三菱電機株式会社 電力変換装置
WO2021171332A1 (ja) * 2020-02-25 2021-09-02 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP6470832B2 (ja) 2019-02-13
EP3261243A1 (en) 2017-12-27
EP3261243A4 (en) 2018-10-31
US20180034357A1 (en) 2018-02-01
CN107343388A (zh) 2017-11-10
US10122253B2 (en) 2018-11-06
JPWO2016132471A1 (ja) 2017-07-20
CN107343388B (zh) 2019-11-15
EP3261243B1 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US7804271B2 (en) Multiphase current supplying circuit, driving apparatus, compressor and air conditioner
You et al. Applying reduced general direct space vector modulation approach of AC–AC matrix converter theory to achieve direct power factor controlled three-phase AC–DC matrix rectifier
US11056979B2 (en) Power conversion apparatus
US20210152080A1 (en) Modular medium voltage fast chargers
US10044278B2 (en) Power conversion device
EP3041122A1 (en) Control circuit, switching circuit, power conversion device, charging device, vehicle, and control method
US20150124489A1 (en) Current Sensing Apparatus for Power Converters
EP2784925A1 (en) Power conversion device
Chen et al. Modified interleaved current sensorless control for three-level boost PFC converter with considering voltage imbalance and zero-crossing current distortion
JP2015144554A (ja) 電力変換装置
US20150333525A1 (en) High-voltage direct current transmission system control device
US9407133B1 (en) Active power conditioner
KR101442990B1 (ko) 고전압직류송전 사이리스터 밸브를 위한 합성시험회로
JP2013247722A (ja) 電力変換装置
KR20180014166A (ko) 배터리 충전기
KR20190115364A (ko) 단상 및 3상 겸용 충전기
JP2015070708A (ja) 電流共振型電源装置
JP2013192424A (ja) 電力変換装置
KR20180011327A (ko) 배터리 충전기
EP2975753A1 (en) A three-level converter
US11356029B2 (en) Rectifying circuit and switched-mode power supply incorporating rectifying circuit
EP2677651A1 (en) Synchronized isolated AC-AC converter with variable regulated output voltage
JP6470832B2 (ja) 電力変換装置及びその初期充電方法
EP2945246A1 (en) Voltage adjusting apparatus
KR20110135126A (ko) 캐스케이드 멀티레벨 고압인버터의 돌입전류 방지장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500187

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015882574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15551815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE