WO2016132441A1 - 電源装置の駆動制御装置、電源装置及び放電加工機 - Google Patents

電源装置の駆動制御装置、電源装置及び放電加工機 Download PDF

Info

Publication number
WO2016132441A1
WO2016132441A1 PCT/JP2015/054163 JP2015054163W WO2016132441A1 WO 2016132441 A1 WO2016132441 A1 WO 2016132441A1 JP 2015054163 W JP2015054163 W JP 2015054163W WO 2016132441 A1 WO2016132441 A1 WO 2016132441A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching
supply device
drive control
mode
Prior art date
Application number
PCT/JP2015/054163
Other languages
English (en)
French (fr)
Inventor
安泰 関本
彰 畑井
森田 一成
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580017705.7A priority Critical patent/CN106165285B/zh
Priority to JP2016535736A priority patent/JP6009133B1/ja
Priority to PCT/JP2015/054163 priority patent/WO2016132441A1/ja
Publication of WO2016132441A1 publication Critical patent/WO2016132441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a drive control device for a power supply device that converts direct current into high-frequency alternating current and outputs the power, a power supply device including the drive control device, and an electric discharge machine to which power is supplied from the power supply device.
  • power supply devices that convert direct current into alternating current are known.
  • Such a power supply device is provided with a plurality of semiconductor elements, and converts the direct current into alternating current by driving the plurality of semiconductor elements in parallel.
  • current may concentrate on some semiconductor elements depending on operating conditions or mounting conditions, and thermal destruction may occur.
  • the impedance of wiring can be illustrated as a mounting condition.
  • Various developments are underway to prevent such thermal destruction.
  • switching loss is reduced by driving any one or a plurality of voltage-driven elements selected in accordance with a command of a control unit that controls the switching operation of the multiphase inverter in a predetermined cycle. Although it is distributed, the conduction loss of one or more voltage-driven elements is increased compared with the case where all of the voltage-driven elements connected in parallel are turned on and off simultaneously.
  • the switching loss is larger than the steady loss, the voltage driven elements are alternately driven, and when the switching loss is not larger than the steady loss, the voltage driven elements are simultaneously driven. . This operation is shown in the flowcharts shown in FIGS.
  • the switching loss and the steady loss are determined to be large and small, and an IGBT (Insulated Gate Bipolar Transistor), which is a voltage-driven element, is alternately driven according to the result of the large or small determination. Decide what to do. Therefore, depending on the result of the size determination, there is a problem in that the number of times of driving each IGBT varies, resulting in uneven heat generation. Further, the above conventional technique is a multi-phase inverter including an IGBT for driving an electric motor, and has a lower carrier frequency than a power supply device of an electric discharge machine, and is driven by a high carrier frequency like an electric discharge machine. It is difficult to apply to the power supply apparatus.
  • IGBT Insulated Gate Bipolar Transistor
  • the present invention has been made in view of the above, and obtains a drive control device for a power supply device that can stably supply current while making the heat generation of a high-frequency power supply device uniform without performing a determination operation. For the purpose.
  • the present invention provides a plurality of pairs of switching arms configured by a plurality of switching elements connected in parallel, and gate signals to each of the plurality of switching elements in accordance with an on / off command.
  • a drive control device for a power supply device that outputs alternating current from a circuit in which the plurality of pairs of switching arms are bridge-connected, and sets operating conditions in accordance with input processing conditions
  • a setting unit that sets operating conditions in accordance with input processing conditions
  • an oscillator that outputs the on / off command according to the operating condition, wherein each of the switching arms is driven with a first mode in which all the switching elements in the driven switching arm are simultaneously turned on / off.
  • a second mode in which all switching elements in the switching arm are not turned on / off simultaneously.
  • the number of ON times of all the switching elements in the plurality of pairs of switching arms is made equal, and the driving is performed in one of the first mode and the second mode.
  • the drive control device of the power supply device according to the present invention has an effect that it is possible to stably supply a current while making the heat of the high-frequency power supply device uniform without performing a determination operation.
  • FIG. 1 is a diagram illustrating an example of the configuration of a power supply device, a drive control device for the power supply device, and an electric discharge machine according to an embodiment of the present invention.
  • FIG. 1 shows a power supply device 1, a drive control device 2 of the power supply device 1, and an electric discharge machine 5 that is an example of a device to which the power supply device 1 is connected.
  • the power supply device 1 includes a DC power supply 10, switching arms 11 and 13 connected to the positive electrode side of the DC power supply 10, and switching arms 12 and 14 connected to the negative electrode side of the DC power supply 10.
  • the switching arm 12 is connected in series, and the switching arm 13 and the switching arm 14 are connected in series.
  • the switching arm 11 includes drivers 21 and 22, a switching element 31 that receives a gate signal from the driver 21, and a switching element 32 that is connected in parallel to the switching element 31 and receives a gate signal from the driver 22.
  • the switching arm 12 includes drivers 23 and 24, a switching element 33 to which a gate signal is input from the driver 23, and a switching element 34 that is connected in parallel to the switching element 33 and receives a gate signal from the driver 24.
  • the The switching arm 13 includes drivers 25 and 26, a switching element 35 to which a gate signal is input from the driver 25, and a switching element 36 that is connected in parallel to the switching element 35 and receives a gate signal from the driver 26.
  • the switching arm 14 includes drivers 27 and 28, a switching element 37 to which a gate signal is input from the driver 27, and a switching element 38 that is connected in parallel to the switching element 37 and to which a gate signal is input from the driver 28.
  • independent gate signals are output from the drivers 21, 22, 23, 24, 25, 26, 27, and 28 to the switching elements 31, 32, 33, 34, 35, 36, 37, and 38.
  • the drive control device 2 of the power supply device 1 includes a setting unit 4 that sets operation conditions according to the input machining conditions, and each of the drivers 21, 22, 23, 24, 25, 26, 27, and 28 according to the operation conditions. And an oscillator 3 that independently outputs ON / OFF commands of the switching elements 31, 32, 33, 34, 35, 36, 37, and 38.
  • an example of the machining condition is workpiece shape data input from the outside by an input device.
  • the electric discharge machine 5 shows a workpiece 6 to be processed and an electrode 7 which is an electrode for electric discharge machining.
  • the electrode 7 is electrically connected between the switching arm 11 and the switching arm 12 of the power supply device 1
  • the workpiece 6 is electrically connected between the switching arm 13 and the switching arm 14 of the power supply device 1
  • the alternating current output from the power supply device 1 causes discharge between the workpiece 6 and the electrode 7, and the workpiece 6 is processed into a shape according to the processing conditions.
  • FIG. 2 is an example of an on / off command timing chart output from the oscillator 3.
  • the machining time t4 includes a pulse output time t2 that repeats on / off and an off time t3 for switching the driving switching arm, and the pulse output time t2 turns on the switching element indicated by the pulse width t1. Multiple times are included.
  • a pulse having a reverse polarity is output in the next pulse output time. That is, the pulse output time next to the positive pulse output time is a negative pulse output time, and the pulse output time next to the negative pulse output time is a positive pulse output time.
  • FIG. 3 is an example of a timing chart of the switching element and the driver that drives the switching element in the embodiment of the present invention.
  • the gate signals V 21 , V 22 , V 23 , V 24 , V 25 , V output from the drivers 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 during the pulse output times T 1 to T 4 are shown.
  • 26 , V 27 , V 28 , and the switching element 31, 32, 33, 34, 35, 36, 37, 38 are turned on when the output current I out output from the electric discharge machine power supply device 1 and the switching elements 31, 32, 33, 34, 35, 36, 37, 38 are turned on.
  • the flowing currents I 31 , I 32 , I 33 , I 34 , I 35 , I 36 , I 37 , I 38 are shown.
  • the current shown in FIG. 3 is an absolute value.
  • the pulse output times T1, T2, T3, and T4 shown in FIG. 3 correspond to the sum of the pulse output time t2 and the off time t3 shown in FIG. 2, and are determined according to the machining conditions.
  • the pulse output times T1, T2, T3, and T4 are a set, and only one of them is not performed. That is, when the pulse output time T1 is processed, the pulse output time T2 is also processed. When the pulse output time T2 is processed, the pulse output time T3 is also processed, and the pulse output time T3 is processed. In some cases, processing is also performed with a pulse output time T4.
  • the driving mode at the pulse output times T1 and T2 is the first mode
  • the driving mode at the pulse output times T3 and T4 is the second mode.
  • Driving in the first mode involves driving in the second mode.
  • the driving in the second mode is accompanied by driving in the first mode.
  • the number of ON times of all the switching elements driven in the driving in the first mode is equal
  • the number of ON times of all the switching elements driven in the driving in the second mode is equal.
  • the switching arms 11 and 14 are driven. Specifically, at the pulse output time T1, the switching elements 31, 32, 37, and 38 that are all the switching elements of the switching arms 11 and 14 are simultaneously turned on and off. Here, the switching element 31 and the switching element 37 are turned on and off at the same time, and the switching element 32 and the switching element 38 are turned on and off at the same time, and this is alternately repeated.
  • the present invention is not limited to this.
  • one or more of the switching elements of each of the switching arms 11 and 14 are turned on at the time of output from the switching arms 11 and 14, that is, when the switching arms 11 and 14 are driven, and one or more switchings are performed. What is necessary is just to turn off an element. That is, in the pulse output time T3, one or more switching elements are simultaneously turned on in each switching arm and less than the total number of switching elements in the switching arm.
  • the switching arms 12 and 13 are driven. Specifically, at the pulse output time T2, the switching elements 33, 34, 35, and 36 that are all the switching elements of the switching arms 12 and 13 are simultaneously turned on and off. Here, the switching element 33 and the switching element 35 are turned on and off at the same time, and the switching element 34 and the switching element 36 are turned on and off at the same time, and this is alternately repeated.
  • the present invention is not limited to this.
  • at the time of output from the switching arms 12 and 13, that is, when the switching arms 12 and 13 are driven at least one of the switching elements of the switching arms 12 and 13 is turned on, and at least one switching is performed. What is necessary is just to turn off an element. That is, in the pulse output time T4, one or more switching elements are simultaneously turned on in each switching arm and less than the total number of switching elements in the switching arm.
  • the number of on / off times in the pulse output time T1 is equal to the number of on / off times in the pulse output time T2, and the pulse width of the on time and the pulse width of the off time are also equal in the pulse output times T1 and T2.
  • the number of on / off times in the pulse output time T3 is equal to the number of on / off times in the pulse output time T4, and the pulse width of the on-time of the energized switching element is constant in the pulse output times T3 and T4. Furthermore, the number of on / off times of each switching element is made equal in each of the pulse output times T3 and T4.
  • the current when the switching element is on during the pulse output times T1 and T2 is made smaller than the current when the switching element is on during the pulse output times T3 and T4. Suppresses fever.
  • the peak of the output current Iout at the time of output is made equal in the entire period from T1 to T4, and the time integration value obtained by integrating the output current Iout at the time of output is also made equal.
  • the current when the switching element is on during the pulse output times T1 and T2 is 1 ⁇ 2 of the current when the switching element is on during the pulse output times T3 and T4.
  • the peak of the output current I out is equal throughout the period, and the switching element 31 and the switching element 32 are simultaneously turned on during the pulse output time T1 to share the output current. Since the switching element 31 and the switching element 32 are alternately turned on without sharing the output current in the pulse output time T3, the current flowing in the switching elements 31 and 32 in the pulse output time T1 is the switching element in the pulse output time T3. This is because it becomes 1/2 of the current flowing through 31 and 32.
  • the pulse output time T1 is paired with the pulse output time T2, and the pulse output time T3 is paired with the pulse output time T4. That is, the pulse output time T2 passes after the pulse output time T1, and the pulse output time T4 passes after the pulse output time T3.
  • each period of the pulse output times T1, T2, T3, and T4 may be repeated the same number of times depending on the processing conditions, the cooling capacity of the power supply device, the breakdown voltage of the switching element, or the breakdown voltage of the driver. That is, T2 may be performed twice after T1 is performed twice, and then T4 may be performed twice after T3 is performed twice.
  • the output currents I out in the respective periods T1, T2, T3, and T4 can be equalized, and can be made uniform while suppressing heat generation.
  • the drive control device 2 of the power supply device 1 of the present embodiment described above includes a plurality of pairs of switching arms configured by a plurality of switching elements connected in parallel, and gate signals to each of the plurality of switching elements in accordance with an on / off command. And a drive control device 2 of the power supply device 1 that outputs an alternating current from a circuit in which a plurality of pairs of switching arms are bridge-connected, and sets operation conditions according to the input machining conditions.
  • the switching unit 11, 12, 13, 14 includes a setting unit 4 and an oscillator 3 that outputs an on / off command according to operating conditions, and the switching arms 11, 12, 13, and 14 are configured to have a first mode in which all switching elements in the driven switching arm are simultaneously turned on / off.
  • the second switching element does not simultaneously turn on and off all the switching elements in the driven switching arm.
  • the first mode and the second mode are set so that all the switching elements in the pairs of switching arms 11, 12, 13, and 14 are turned on in the first and second modes. When driving by one of these, driving by the other mode is also performed. Further, in all the switching elements in the switching arms 11, 12, 13, and 14, the product of the time integral value of the on-time current in the first mode and the number of times of on-time, and the time of the on-time current in the second mode. When the product of the integrated value and the number of ON times is made equal, and driving in one of the first mode and the second mode is performed, driving in the other mode is also performed.
  • the first mode corresponds to pulse output times T1 and T2
  • the second mode corresponds to pulse output times T3 and T4.
  • the peak value of the output current Iout output from the power supply device 1 for an electric discharge machine is constant, and when the pulse width t1 is constant, the output current Iout Since the time integration value is also constant, thermal destruction can be prevented by uniformly suppressing the heat generation of the switching element and the driver while stably supplying current. Further, since the heat generation is suppressed, the cooling mechanism of the power supply device can be simplified, and the size and cost can be reduced. Furthermore, since the heat generation of the switching element and the driver is suppressed, it is possible to increase the carrier frequency and not only enable the discharge phenomenon in a short time, but also the machining accuracy and surface roughness of the electric discharge machine. Improvements are also possible.
  • heat generation can be suppressed uniformly without performing a determination operation.
  • the power supply device connected to the electric discharge machine has been described as an example, but the present invention is not limited to this.
  • the SiC MOSFET Since the gate threshold voltage of the SiC MOSFET is lower than the gate threshold voltage of the Si MOSFET, the SiC MOSFET is used as a switching element of a circuit that controls current by switching as in the power supply device of the present embodiment. Is used, the switching element is erroneously fired due to the influence of noise during the off period of the gate signal. Therefore, in order to prevent this, it is necessary to apply a reverse bias to the gate of the switching element. For this reason, when a SiC MOSFET is used as a switching element of a circuit that controls current by switching, heat generation of the switching element and the driver that drives the switching element is increased as compared with the case where a Si MOSFET is used. According to the present embodiment, since the heat generation of the switching element and the driver that drives the switching element can be suppressed, the effect of the present invention is particularly remarkable when the switching element provided in the power supply device is a SiC MOSFET. It is.
  • FIG. 1 two switching elements are connected per switching arm, but the present invention is not limited to this, and there may be two or more switching elements per switching arm. .
  • the power supply device 1 and the drive control device 2 are provided separately, but in the present invention, the drive control device 2 may be included in the power supply device 1.
  • the DC power supply 10 is connected to the switching arms 11, 12, 13, and 14.
  • the DC power supply 10 is not limited to a specific form.
  • the DC power supply 10 can be exemplified by a configuration in which AC is converted to DC via a diode converter and then smoothed by an electric field capacitor.
  • the drivers 21, 22, 23, 24, 25, 26, 27, and 28 are included in the switching arms 11, 12, 13, and 14, respectively, but the present invention is not limited thereto. is not.
  • the drivers 21, 22, 23, 24, 25, 26, 27, and 28 may be disposed between the oscillator 3 and the switching elements 31, 32, 33, 34, 35, 36, 37, and 38.
  • the switching element is not limited to a specific form as long as it can operate at high speed and can generate high-frequency alternating current output to the electric discharge machine.
  • the switching element may be a wide band gap semiconductor MOSFET such as a SiC MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) formed of silicon carbide or a GaN MOSFET formed of gallium nitride. .
  • a Si MOSFET formed of silicon may be used.
  • FIG. 3 illustrates a case where the pulse output time T2 is arranged after the pulse output time T1, the pulse output time T3 is arranged after the pulse output time T2, and the pulse output time T4 is arranged after the pulse output time T3.
  • the pulse output time T3 may be arranged after the pulse output time T4
  • the pulse output time T2 may be arranged after the pulse output time T3, or the pulse output
  • the pulse output time T1 may be arranged after the time T2.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

 判定動作を行うことなく、高周波数の電源装置の発熱を均一にしつつ電流を安定供給することを目的とし、スイッチングアーム11,12,13,14がブリッジ接続された回路で交流を出力する電源装置1の駆動制御装置2が、加工条件に従って動作条件を設定する設定部4と、オンオフ指令を出力する発振器3とを備え、スイッチングアーム11,12,13,14は、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフする第1のモードと、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフしない第2のモードとにより駆動され、第1及び第2のモードの各々では全てのスイッチング素子のオン回数を等しくし、第1のモードと第2のモードの一方による駆動を行った際には他方のモードによる駆動も行う。

Description

電源装置の駆動制御装置、電源装置及び放電加工機
 本発明は、直流を高周波数の交流に変換して出力する電源装置の駆動制御装置、該駆動制御装置を含む電源装置及び該電源装置から電力が供給される放電加工機に関する。
 従来、直流を交流に変換する電源装置が知られている。このような電源装置には複数の半導体素子が設けられており、該複数の半導体素子を並列駆動することで直流を交流に変換する。しかしながら、複数の半導体素子を並列駆動する回路又は装置では、運転条件又は実装条件によっては一部の半導体素子に電流が集中し、熱破壊が起こることがある。なお、実装条件には、配線のインピーダンスを例示することができる。このような熱破壊を防止するために様々な開発が進められている。
 一例である特許文献1では、予め定めた周期で、多相インバータのスイッチング動作を制御する制御部の指令に従って選択されたいずれか1つ又は複数の電圧駆動型素子を駆動することによってスイッチング損失を分散させているが、並列接続された電圧駆動型素子を全て同時にオンオフする場合よりも、1つ又は複数の電圧駆動型素子の導通損失であるが増加するので、スイッチング損失と定常損失の大きさを比較してスイッチング損失が定常損失よりも大きい場合には電圧駆動型素子を交互に駆動し、スイッチング損失が定常損失よりも大きくない場合には電圧駆動型素子を同時に駆動するように切り替えている。当該動作は、特許文献1の図3,4に示すフローチャートに示されている。
特開2007-74771号公報
 しかしながら、上記従来の技術によれば、スイッチング損失と定常損失の大小判定を行い、該大小判定の結果に従って電圧駆動型素子であるIGBT(Insulated Gate Bipolar Transistor)を交互駆動とするか、同時駆動とするかを決定している。そのため、大小判定の結果によっては、各IGBTの駆動回数にばらつきを生じ、発熱にむらを生じる、という問題があった。また、上記従来の技術は電動機を駆動するIGBTを含む多相インバータであり、放電加工機の電源装置と比較するとキャリア周波数が低く、放電加工機のように高周波数のキャリア周波数で駆動される装置の電源装置に適用することは困難である。
 本発明は、上記に鑑みてなされたものであって、判定動作を行うことなく、高周波数の電源装置の発熱を均一にしつつ電流を安定供給することが可能な電源装置の駆動制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、並列接続された複数のスイッチング素子により構成された複数対のスイッチングアームと、オンオフ指令に従って前記複数のスイッチング素子の各々にゲート信号を出力する複数のドライバと、を有し、前記複数対のスイッチングアームがブリッジ接続された回路から交流を出力する電源装置の駆動制御装置であって、入力された加工条件に従って動作条件を設定する設定部と、前記動作条件に従って前記オンオフ指令を出力する発振器とを備え、前記スイッチングアームの各々は、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフする第1のモードと、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフしない第2のモードとにより駆動され、前記第1及び第2のモードの各々において前記複数対のスイッチングアーム内の全てのスイッチング素子のオン回数を等しくし、前記第1のモードと前記第2のモードの一方による駆動を行った際には他方のモードによる駆動も行うことを特徴とする。
 本発明にかかる電源装置の駆動制御装置は、判定動作を行うことなく、高周波数の電源装置の発熱を均一にしつつ電流を安定供給することが可能であるという効果を奏する。
実施の形態にかかる電源装置、該電源装置の駆動制御装置及び放電加工機の構成の一例を示す図 実施の形態における駆動制御装置内の発振器から出力されるオンオフ指令のタイミングチャートの一例 実施の形態におけるスイッチング素子及び該スイッチング素子を駆動するドライバのタイミングチャートの一例
 以下に、本発明の実施の形態にかかる電源装置の駆動制御装置、電源装置及び放電加工機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態にかかる電源装置、該電源装置の駆動制御装置及び放電加工機の構成の一例を示す図である。図1には、電源装置1、電源装置1の駆動制御装置2及び電源装置1が接続される機器の一例である放電加工機5が示されている。
 電源装置1は、直流電源10と、直流電源10の正極側に接続されたスイッチングアーム11,13と、直流電源10の負極側に接続されたスイッチングアーム12,14とを備え、スイッチングアーム11とスイッチングアーム12は直列接続され、スイッチングアーム13とスイッチングアーム14は直列接続されている。スイッチングアーム11は、ドライバ21,22と、ドライバ21からゲート信号が入力されるスイッチング素子31と、スイッチング素子31に並列接続されておりドライバ22からゲート信号が入力されるスイッチング素子32とによって構成される。スイッチングアーム12は、ドライバ23,24と、ドライバ23からゲート信号が入力されるスイッチング素子33と、スイッチング素子33に並列接続されておりドライバ24からゲート信号が入力されるスイッチング素子34とによって構成される。スイッチングアーム13は、ドライバ25,26と、ドライバ25からゲート信号が入力されるスイッチング素子35と、スイッチング素子35に並列接続されておりドライバ26からゲート信号が入力されるスイッチング素子36とによって構成される。スイッチングアーム14は、ドライバ27,28と、ドライバ27からゲート信号が入力されるスイッチング素子37と、スイッチング素子37に並列接続されておりドライバ28からゲート信号が入力されるスイッチング素子38とによって構成される。なお、スイッチング素子31,32,33,34,35,36,37,38には、ドライバ21,22,23,24,25,26,27,28から各々独立したゲート信号が出力される。
 電源装置1の駆動制御装置2は、入力された加工条件に従って動作条件を設定する設定部4と、該動作条件に従って、ドライバ21,22,23,24,25,26,27,28の各々にスイッチング素子31,32,33,34,35,36,37,38のオンオフ指令を各々独立して出力する発振器3とを備える。ここで、加工条件の一例は、外部から入力装置によって入力される被加工物の形状データである。
 放電加工機5には、加工される被加工物6及び放電加工用の電極である電極7が示されている。電極7は電源装置1のスイッチングアーム11とスイッチングアーム12との間に電気的に接続され、被加工物6は電源装置1のスイッチングアーム13とスイッチングアーム14との間に電気的に接続され、電源装置1から出力される交流によって被加工物6と電極7との間で放電を生じさせ、被加工物6は加工条件に従った形状へと加工される。
 図2は、発振器3から出力されるオンオフ指令のタイミングチャートの一例である。図2に示すように、加工時間t4にはオンオフを繰り返すパルス出力時間t2及び駆動するスイッチングアームを切り替えるオフ時間t3が含まれ、パルス出力時間t2にはパルス幅t1で示されるスイッチング素子をオンする時間が複数含まれる。なお、図2に示すように、次のパルス出力時間においては逆極性のパルスを出力する。すなわち、正のパルス出力時間の次のパルス出力時間は負のパルス出力時間とし、負のパルス出力時間の次のパルス出力時間は正のパルス出力時間とする。
 図3は、本発明の実施の形態におけるスイッチング素子及び該スイッチング素子を駆動するドライバのタイミングチャートの一例である。図3には、パルス出力時間T1からT4において、ドライバ21,22,23,24,25,26,27,28が出力するゲート信号V21,V22,V23,V24,V25,V26,V27,V28、このときに放電加工機用電源装置1から出力される出力電流Iout及びスイッチング素子31,32,33,34,35,36,37,38のオン時にスイッチング素子に流れる電流I31,I32,I33,I34,I35,I36,I37,I38が示されている。なお、図3に示されている電流は絶対値である。
 図3に示すパルス出力時間T1,T2,T3,T4は、図2に示すパルス出力時間t2とオフ時間t3を合わせた時間に相当し、加工条件に従って決定され、加工時間t4においてT1=T2=T3=T4である。パルス出力時間T1,T2,T3,T4は一組であっていずれかのみを行うことはない。すなわち、パルス出力時間T1の加工を行う際にはパルス出力時間T2の加工も行い、パルス出力時間T2の加工を行う際にはパルス出力時間T3による加工も行い、パルス出力時間T3の加工を行う際にはパルス出力時間T4による加工も行う。パルス出力時間T1,T2における駆動モードを第1のモードとし、パルス出力時間T3,T4における駆動モードを第2のモードとして換言すると、第1のモードによる駆動には第2のモードによる駆動が伴い、第2のモードによる駆動には第1のモードによる駆動が伴う。また、第1のモードによる駆動において駆動されている全てのスイッチング素子のオン回数は等しく、第2のモードによる駆動において駆動されている全てのスイッチング素子のオン回数は等しい。
 パルス出力時間T1,T3においてはスイッチングアーム11,14が駆動される。具体的には、パルス出力時間T1においてはスイッチングアーム11,14の全てのスイッチング素子であるスイッチング素子31,32,37,38を同時にオンオフさせる。ここでは、スイッチング素子31とスイッチング素子37とを同時にオンオフさせ、スイッチング素子32とスイッチング素子38とを同時にオンオフさせ、これを交互に繰り返しているがこれに限定されるものではない。パルス出力時間T3においては、スイッチングアーム11,14からの出力時すなわちスイッチングアーム11,14の駆動時にスイッチングアーム11,14の各々のスイッチング素子のうち1つ以上をオンし、且つ1つ以上のスイッチング素子をオフすればよい。すなわち、パルス出力時間T3においては、各スイッチングアーム内において同時にオンするスイッチング素子は1つ以上且つスイッチングアーム内のスイッチング素子の総数未満である。
 パルス出力時間T2,T4においてはスイッチングアーム12,13が駆動される。具体的には、パルス出力時間T2においてはスイッチングアーム12,13の全てのスイッチング素子であるスイッチング素子33,34,35,36を同時にオンオフさせる。ここでは、スイッチング素子33とスイッチング素子35とを同時にオンオフさせ、スイッチング素子34とスイッチング素子36とを同時にオンオフさせ、これを交互に繰り返しているがこれに限定されるものではない。パルス出力時間T4においては、スイッチングアーム12,13からの出力時すなわちスイッチングアーム12,13の駆動時にスイッチングアーム12,13の各々のスイッチング素子のうち1つ以上をオンし、且つ1つ以上のスイッチング素子をオフすればよい。すなわち、パルス出力時間T4においては、各スイッチングアーム内において同時にオンするスイッチング素子は1つ以上且つスイッチングアーム内のスイッチング素子の総数未満である。
 なお、パルス出力時間T1におけるオンオフ回数とパルス出力時間T2におけるオンオフ回数は等しくし、パルス出力時間T1,T2において、オン時間のパルス幅とオフ時間のパルス幅も等しくする。
 また、パルス出力時間T3におけるオンオフ回数とパルス出力時間T4におけるオンオフ回数は等しくし、パルス出力時間T3,T4において、通電されるスイッチング素子のオン時間のパルス幅も一定とする。さらには、パルス出力時間T3,T4の各々においても、各スイッチング素子のオンオフ回数は等しくする。
 また、パルス出力時間T1,T2におけるスイッチング素子のオン時の電流は、パルス出力時間T3,T4におけるスイッチング素子のオン時の電流よりも小さくすることで、パルス出力時間T1,T2においてはスイッチング素子の発熱を抑制する。具体的には、図3に示すように、T1からT4の全期間において出力時における出力電流Ioutのピークを等しくし、出力時における出力電流Ioutを時間で積分した時間積分値も等しくする。なお、図3においては、パルス出力時間T1,T2におけるスイッチング素子のオン時の電流は、パルス出力時間T3,T4におけるスイッチング素子のオン時の電流の1/2である。これは、一例としてスイッチングアーム11に着目すると、出力電流Ioutのピークは全期間で等しくし、パルス出力時間T1においてはスイッチング素子31とスイッチング素子32が同時にオンすることで出力電流を分担する一方、パルス出力時間T3においては出力電流を分担することなくスイッチング素子31とスイッチング素子32が交互にオンするため、パルス出力時間T1においてスイッチング素子31,32に流れる電流は、パルス出力時間T3においてスイッチング素子31,32に流れる電流の1/2となるからである。
 このようにして、パルス出力時間T1,T2における各スイッチング素子の発熱を抑制することが可能であるが、各スイッチング素子にゲート信号を出力する各ドライバの発熱は大きい。そして、パルス出力時間T3,T4においては各スイッチング素子の発熱は大きくなるものの各スイッチング素子にゲート信号を出力する各ドライバの発熱は抑制される。
 また、パルス出力時間T1はパルス出力時間T2と対にし、パルス出力時間T3はパルス出力時間T4と対にする。すなわち、パルス出力時間T1を経た後にはパルス出力時間T2を経るし、パルス出力時間T3を経た後にはパルス出力時間T4を経る。
 上記のように駆動することで、パルス出力時間T1,T2では電源装置1の出力電流が駆動されているスイッチングアーム内の並列接続されたスイッチング素子の全てにより出力されるため、スイッチング素子の1つあたりの発熱を抑制することができる。パルス出力時間T3,T4では、駆動されているスイッチングアーム内の並列接続されたスイッチング素子の一部のみが電源装置1の出力電流を出力するため、ドライバの発熱を抑制することができる。
 なお、加工条件、電源装置の冷却能力、スイッチング素子の耐圧又はドライバの耐圧によっては、パルス出力時間T1,T2,T3,T4の各々の期間を同じ回数だけ繰り返して駆動してもよい。すなわち、T1を2回行った後にT2を2回行い、その後T3を2回行った後にT4を2回行ってもよい。
 上記のようにスイッチングの制御を行うことで、T1,T2,T3,T4の各々の期間における出力電流Ioutを等しくすることができ、発熱を抑制しつつ均一にすることができる。
 以上説明した本実施の形態の電源装置1の駆動制御装置2は、並列接続された複数のスイッチング素子により構成された複数対のスイッチングアームと、オンオフ指令に従って複数のスイッチング素子の各々にゲート信号を出力する複数のドライバと、を有し、複数対のスイッチングアームがブリッジ接続された回路から交流を出力する電源装置1の駆動制御装置2であって、入力された加工条件に従って動作条件を設定する設定部4と、動作条件に従ってオンオフ指令を出力する発振器3とを備え、スイッチングアーム11,12,13,14は、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフする第1のモードと、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフしない第2のモードとにより駆動され、第1及び第2のモードの各々において複数対のスイッチングアーム11,12,13,14内の全てのスイッチング素子のオン回数を等しくし、第1のモードと第2のモードの一方による駆動を行った際には他方のモードによる駆動も行う。また、スイッチングアーム11,12,13,14内の全てのスイッチング素子では、第1のモードにおけるオン時の電流の時間積分値とオン回数の積と、第2のモードにおけるオン時の電流の時間積分値とオン回数の積とを等しくし、第1のモードと第2のモードの一方による駆動を行った際には他方のモードによる駆動も行う。ここで、第1のモードは、パルス出力時間T1,T2に相当し、第2のモードは、パルス出力時間T3,T4に相当する。
 以上説明した本実施の形態により、図3に示すように放電加工機用電源装置1から出力される出力電流Ioutのピーク値は一定であり、パルス幅t1を一定とすると出力電流Ioutの時間積分値も一定となるので、電流を安定供給しつつ、スイッチング素子及びドライバの発熱を均一に抑制することで、熱破壊を防止することができる。また、発熱が抑制されることで電源装置の冷却機構の簡素化が可能となり、小型化及び低コスト化が可能となる。さらには、スイッチング素子及びドライバの発熱が抑制されるため、キャリア周波数を高くすることが可能となり、短時間での放電現象を可能とするのみならず、放電加工機の加工精度及び面粗度の向上も可能である。
 以上説明した本実施の形態により、判定動作を行うことなく、発熱を均一に抑制することができる。また、放電加工機の電源装置のように500kHz以上の高周波数の電源装置にも適用可能である。なお、本実施の形態においては、放電加工機に接続される電源装置を例示して説明したが、本発明はこれに限定されるものではない。
 なお、SiCのMOSFETのゲートしきい値電圧はSiのMOSFETのゲートしきい値電圧よりも低いため、本実施の形態の電源装置のようにスイッチングにより電流を制御する回路のスイッチング素子にSiCのMOSFETを使用すると、ゲート信号のオフ期間中にノイズの影響によりスイッチング素子が誤点弧してしまう。そのため、これを防止するためにスイッチング素子のゲートに逆バイアスを印加することを要する。このため、スイッチングにより電流を制御する回路のスイッチング素子にSiCのMOSFETを使用すると、SiのMOSFETを使用する場合よりも、スイッチング素子及び該スイッチング素子を駆動するドライバの発熱が増加する。本実施の形態によればスイッチング素子及び該スイッチング素子を駆動するドライバの発熱を抑制することができるため、電源装置に設けられるスイッチング素子をSiCのMOSFETとした場合には本発明の効果が特に顕著である。
 なお、図1においては、1つのスイッチングアームあたりに2つのスイッチング素子が接続されているが、本発明はこれに限定されず、1つのスイッチングアームあたりのスイッチング素子は2つ以上であってもよい。
 なお、図1においては、電源装置1と駆動制御装置2が別個に設けられているが、本発明において、駆動制御装置2は電源装置1に含まれていてもよい。
 なお、図1においては、スイッチングアーム11,12,13,14に直流電源10が接続されているが、直流電源10は特定の形態に限定されるものではない。直流電源10には、ダイオードコンバータを介して交流を直流に変換した後に電界コンデンサで平滑する構成を例示することができる。
 なお、図1においては、ドライバ21,22,23,24,25,26,27,28は、各々スイッチングアーム11,12,13,14に含まれているが本発明はこれに限定されるものではない。ドライバ21,22,23,24,25,26,27,28は、発振器3とスイッチング素子31,32,33,34,35,36,37,38との間に配されていればよい。
 なお、本実施の形態においては、スイッチング素子は高速動作が可能であり、放電加工機に出力する高周波数の交流を生成することが可能であればよく、特定の形態に限定されるものではない。スイッチング素子には、シリコンカーバイドにより形成されたSiCのMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)又は窒化ガリウムにより形成されたGaNのMOSFETをはじめとするワイドバンドギャップ半導体のMOSFETを用いてもよい。又は、シリコンにより形成されたSiのMOSFETを用いてもよい。
 なお、図3では、パルス出力時間T1の後にパルス出力時間T2を配し、パルス出力時間T2の後にパルス出力時間T3を配し、パルス出力時間T3の後にパルス出力時間T4を配した場合を説明したが、本発明はこれに限定されず、パルス出力時間T4の後にパルス出力時間T3を配してもよいし、パルス出力時間T3の後にパルス出力時間T2を配してもよいし、パルス出力時間T2の後にパルス出力時間T1を配してもよい。
 なお、本実施の形態においてはすべてのパルス幅を一定として説明したが本発明はこれに限定されない。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 電源装置、2 駆動制御装置、3 発振器、4 設定部、5 放電加工機、6 被加工物、7 電極、10 直流電源、11,12,13,14 スイッチングアーム、21,22,23,24,25,26,27,28 ドライバ、31,32,33,34,35,36,37,38 スイッチング素子。

Claims (8)

  1.  並列接続された複数のスイッチング素子により構成された複数対のスイッチングアームと、オンオフ指令に従って前記複数のスイッチング素子の各々にゲート信号を出力する複数のドライバと、を有し、前記複数対のスイッチングアームがブリッジ接続された回路から交流を出力する電源装置の駆動制御装置であって、
     入力された加工条件に従って動作条件を設定する設定部と、
     前記動作条件に従って前記オンオフ指令を出力する発振器とを備え、
     前記スイッチングアームの各々は、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフする第1のモードと、駆動されるスイッチングアーム内の全てのスイッチング素子を同時にオンオフしない第2のモードとにより駆動され、
     前記第1及び第2のモードの各々において、前記複数対のスイッチングアーム内の全てのスイッチング素子のオン回数を等しくし、
     前記第1のモードと前記第2のモードの一方による駆動を行った際には他方のモードによる駆動も行うことを特徴とする電源装置の駆動制御装置。
  2.  前記複数対のスイッチングアーム内の全てのスイッチング素子では、前記第1のモードにおけるオン時の電流の時間積分値とオン回数の積と、前記第2のモードにおけるオン時の電流の時間積分値とオン回数の積とを等しくすることを特徴とする請求項1に記載の電源装置の駆動制御装置。
  3.  前記第1のモードにおいて、オン時間のパルス幅とオフ時間のパルス幅とが等しいことを特徴とする請求項1に記載の電源装置の駆動制御装置。
  4.  前記第2のモードにおいて、通電されるスイッチング素子のオン時間のパルス幅が一定であることを特徴とする請求項1に記載の電源装置の駆動制御装置。
  5.  前記スイッチング素子がワイドバンドギャップ半導体のMOSFETであることを特徴とする請求項1から請求項4のいずれか一項に記載の電源装置の駆動制御装置。
  6.  前記ワイドバンドギャップ半導体がシリコンカーバイド又は窒化ガリウムであることを特徴とする請求項5に記載の電源装置の駆動制御装置。
  7.  請求項1から請求項6のいずれか一項に記載の電源装置の駆動制御装置を含むことを特徴とする電源装置。
  8.  請求項1から請求項6のいずれか一項に記載の電源装置の駆動制御装置によって駆動される電源装置から電力が供給されることを特徴とする放電加工機。
PCT/JP2015/054163 2015-02-16 2015-02-16 電源装置の駆動制御装置、電源装置及び放電加工機 WO2016132441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580017705.7A CN106165285B (zh) 2015-02-16 2015-02-16 电源装置的驱动控制装置、电源装置以及放电加工机
JP2016535736A JP6009133B1 (ja) 2015-02-16 2015-02-16 電源装置の駆動制御装置、電源装置及び放電加工機
PCT/JP2015/054163 WO2016132441A1 (ja) 2015-02-16 2015-02-16 電源装置の駆動制御装置、電源装置及び放電加工機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054163 WO2016132441A1 (ja) 2015-02-16 2015-02-16 電源装置の駆動制御装置、電源装置及び放電加工機

Publications (1)

Publication Number Publication Date
WO2016132441A1 true WO2016132441A1 (ja) 2016-08-25

Family

ID=56689333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054163 WO2016132441A1 (ja) 2015-02-16 2015-02-16 電源装置の駆動制御装置、電源装置及び放電加工機

Country Status (3)

Country Link
JP (1) JP6009133B1 (ja)
CN (1) CN106165285B (ja)
WO (1) WO2016132441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073875A1 (ja) * 2016-10-17 2018-04-26 三菱電機株式会社 電力変換装置、モータ駆動装置および空気調和機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128461A (ja) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd 電源装置
JP2007043795A (ja) * 2005-08-02 2007-02-15 Yaskawa Electric Corp マトリクスコンバータ装置
JP2014239636A (ja) * 2013-05-08 2014-12-18 株式会社東芝 電力変換装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439023C (zh) * 2004-04-19 2008-12-03 三菱电机株式会社 放电加工机的电源装置以及电源控制方法
JP5044898B2 (ja) * 2005-05-19 2012-10-10 三菱電機株式会社 放電加工機用電源装置及びワイヤ放電加工装置
JP2007074771A (ja) * 2005-09-05 2007-03-22 Nissan Motor Co Ltd 電圧駆動型スイッチング回路、多相インバータ装置、および、電圧駆動型スイッチング制御方法
JP4636337B2 (ja) * 2007-01-17 2011-02-23 株式会社デンソー 電力用半導体スイッチング回路
JP6161998B2 (ja) * 2013-03-21 2017-07-12 株式会社ダイヘン 電源装置及びアーク加工用電源装置
CN104065295B (zh) * 2014-06-16 2016-08-24 南京航空航天大学 适用于电压比为1:2的h桥混合级联逆变器的控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001128461A (ja) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd 電源装置
JP2007043795A (ja) * 2005-08-02 2007-02-15 Yaskawa Electric Corp マトリクスコンバータ装置
JP2014239636A (ja) * 2013-05-08 2014-12-18 株式会社東芝 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073875A1 (ja) * 2016-10-17 2018-04-26 三菱電機株式会社 電力変換装置、モータ駆動装置および空気調和機
JPWO2018073875A1 (ja) * 2016-10-17 2019-04-04 三菱電機株式会社 電力変換装置、モータ駆動装置および空気調和機

Also Published As

Publication number Publication date
CN106165285A (zh) 2016-11-23
CN106165285B (zh) 2017-11-21
JPWO2016132441A1 (ja) 2017-04-27
JP6009133B1 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5178799B2 (ja) モータ制御装置
JP5260957B2 (ja) 電力変換装置
US10366935B2 (en) Architecture of drive unit employing gallium nitride switches
KR101806731B1 (ko) 게이트 구동 장치
US9912279B2 (en) Circuit with current sharing alternately switched parallel transistors
US20160079904A1 (en) Drive unit employing gallium nitride switches
JP2008236932A (ja) モータ駆動装置及びこれを用いた電気機器
WO2016103328A1 (ja) スイッチング装置、モータ駆動装置、電力変換装置およびスイッチング方法
WO2019059292A1 (ja) 駆動電源装置
JP2016208633A (ja) モータ駆動装置
EP1503492B1 (en) Control of current in an inductance with pulse width modulation at controlled frequency
CN107710580B (zh) 用于转换器的快速开关的电路装置
JP6009133B1 (ja) 電源装置の駆動制御装置、電源装置及び放電加工機
JP2008271612A (ja) モータ制御回路
US10432128B2 (en) Frequency converter
US10477629B2 (en) Induction heat cooking apparatus and method for driving the same
US10892741B2 (en) Power device driving apparatus
US10517148B2 (en) Induction heat cooking apparatus and method for driving the same
US20180076752A1 (en) Motor control system and method for implementing a direct on-off communication control routine
JP6045203B2 (ja) モータ駆動装置
JP6561794B2 (ja) スイッチング回路
JP2017093239A (ja) ワイドギャップ半導体からなるスイッチ素子を備えた電力変換装置
JP6969480B2 (ja) 電力変換装置
US20200212824A1 (en) Power conversion device and inverter circuit
WO2013099060A1 (ja) インバータ装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882545

Country of ref document: EP

Kind code of ref document: A1