WO2016131396A1 - 玻璃表面应力检测装置 - Google Patents

玻璃表面应力检测装置 Download PDF

Info

Publication number
WO2016131396A1
WO2016131396A1 PCT/CN2016/073599 CN2016073599W WO2016131396A1 WO 2016131396 A1 WO2016131396 A1 WO 2016131396A1 CN 2016073599 W CN2016073599 W CN 2016073599W WO 2016131396 A1 WO2016131396 A1 WO 2016131396A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
glass
light
unit
prism
Prior art date
Application number
PCT/CN2016/073599
Other languages
English (en)
French (fr)
Inventor
李俊峰
Original Assignee
南通杰福光学仪器科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通杰福光学仪器科技有限公司 filed Critical 南通杰福光学仪器科技有限公司
Publication of WO2016131396A1 publication Critical patent/WO2016131396A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Definitions

  • the present invention relates to an optical detecting device, and more particularly to a detecting device for detecting surface stress of glass.
  • Glass is a common material in daily life and industrial production.
  • tempered glass is widely used in construction, automobiles, glass curtain walls, household glass products, and the like.
  • a chemical or physical method is usually used in the manufacturing process to form a compressive stress of a certain size on the surface of the glass, and the surface stress is first offset when the glass is subjected to an external force, thereby improving the bearing capacity.
  • stress will remain in the glass plate due to various process effects during processing. If the stress exceeds a certain range, the performance of the glass will be significantly lost and constitute a defect, so the stress level is usually a measure of glass. An important indicator of the quality of the board, involving the safety of the use of glass sheets.
  • the surface stress of the glass is measured by means of birefringence in a standard such as the national standard to characterize the stress level inside the glass.
  • a standard such as the national standard to characterize the stress level inside the glass.
  • the methods for determining the surface stress of glass can be summarized into two types: differential surface refractometry (DSR) and surface grazing angle polarizing method (GASP).
  • DSR differential surface refractometry
  • GASP surface grazing angle polarizing method
  • the DSR method uses a small number of optical components, and the price of the testing instrument is relatively low, and is widely used by various testing institutions.
  • the existing DSR method glass surface stress detector is relatively bulky, and most of them rely on manual measurement of the stress through the micrometer eyepiece, and then calculate the stress value according to the formula. Such a method is obviously limited by the accuracy of the measurement by the naked eye of the measurer, and is not conducive to Electronic data processing.
  • the invention provides a glass surface stress detecting device by providing a small inside a hood
  • the size optical system acquires the birefringent light returned from the surface of the glass to be tested, and cooperates with the image capturing device for electrophotography to obtain a highly accurate detection result, thereby avoiding the influence of stray light.
  • a glass surface stress detecting device includes a light shielding cover, a lighting unit, a detecting prism and an image forming unit, wherein the lighting unit, the detecting prism and the image forming unit are both located inside the light shielding cover; wherein the light shielding cover is used for shielding The influence of the external stray light on the detection and defining the outer dimensions of the detecting device; the detecting prism is in contact with the surface of the detected glass by the refractive liquid, so that the light incident from the illumination unit into the detecting prism can be totally reflected on the contact surface.
  • the imaging unit comprising at least two mirrors, the position of one of the at least two mirrors being achievable by the user Make adjustments.
  • the illumination unit includes an LED light source and a filter for filtering the light emitted from the light source disposed on the optical path after the light source.
  • the detecting prism is a square prism, and the manner of adjusting the position of the first mirror is screw adjustment.
  • the imaging unit includes a first mirror, a lens group, a second mirror, an analysis mirror and a photosensitive element in sequence along the optical path;
  • the first mirror is a mirror whose position can be adjusted by a user.
  • the photosensitive element is one of CCD, CMOS or PMT
  • the analysis mirror is a splicing of two mutually perpendicular polarizing plates or one or more polarization beam splitting prisms.
  • the imaging unit may further include a third mirror located in the optical path direction behind the second mirror and opposite to the reflective surface of the second mirror.
  • the third mirror is rotatable, and the analysis mirror is located between the second mirror and the third mirror, the imaging unit further comprising a visual observation unit, the visual observation unit being opposite to the photosensitive element Conjugated to the third mirror.
  • the photosensitive element is electrically connected to the data processing unit, and the data processing unit is a small data processor disposed in the light shielding cover, and the light shielding cover has a display unit for displaying a graphic image interface including at least the detection result.
  • the glass shard detecting device of the present invention since the light shielding cover is used, the influence of stray light during detection is avoided, and the mirror is used for multiple reflections to shorten the space occupied by the entire optical path, and only one mirror is used, which reduces the use of the mirror.
  • the difficulty of use, the detection of the device The miniaturization of the device improves the quality of the test.
  • Figure 1 is a schematic view of a glass surface stress detecting device in accordance with the present invention.
  • Fig. 2 is a view showing an image on a photosensitive member in a glass surface stress detecting device according to the present invention.
  • Figure 3 is a schematic view of a display unit in a glass surface stress detecting device according to the present invention.
  • FIG. 4 is a schematic view of another embodiment of a glass surface stress detecting device according to the present invention.
  • FIG. 1 is a schematic view of a glass surface stress detecting device in accordance with the present invention.
  • the glass surface stress detecting device 100 of the present invention comprises a light shielding cover 1, a lighting unit 2, a detecting prism 3 and an imaging unit 4, and the light shielding cover is used for shielding the influence of external stray light on the detection and defining the detecting device.
  • the external dimensions, the illumination source, the detecting prism and the imaging unit are all located inside the light-shielding cover, wherein the detecting prism is in contact with the surface of the detected glass 5 through the refractive liquid, so that the light incident from the illumination source into the detecting prism can be detected and detected in the prism Total reflection on the contact surface of the glass, thereby introducing information containing the ability of the glass birefringence into the totally reflected light, and then entering the imaging unit for imaging.
  • the light source 21 used by the illumination unit is preferably an LED light source, and the light emitted by the light source is purified by using a filter such as the interference filter 22 in the vicinity of the light exit of the light source or the light path adjacent to the light exit port,
  • the detection prism 3 is again incident, and in order to reduce the overall volume of the apparatus, a mirror 23 is disposed between the detection prisms of the light source 21.
  • the detecting prism 3 may be a triangular prism, a rectangular prism whose incident surface is a circular arc shape, a trapezoidal prism, or the like.
  • the detecting prism 3 is a square prism.
  • the light incident on the detecting prism becomes a light source with good monochromaticity, which reduces the adverse effect of the spectral width of the light source on the measurement after the detection light is emitted from the glass-prism interface.
  • the incident angle of the light source is determined by scientific calculation, and the use of the square prism with the corresponding parameters avoids the operator at multiple steps. The choice is selected to affect the measurement accuracy.
  • the imaging unit includes a lens group 41, an analysis mirror 42 and a photosensitive element 43 which are sequentially disposed according to the optical path. Further, the imaging unit further includes at least two mirrors. As shown in FIG. 1, the imaging unit includes a first mirror a, and a second a mirror b and a third mirror c, wherein the first mirror a is placed between the detecting prism 3 and the lens group 41, and adjacent to the detecting prism to reflect the light emitted from the detecting prism 3 into the lens group 41; The reflecting surfaces of the mirror b and the third mirror c are oppositely disposed, and are disposed between the lens group 41 and the analysis mirror 42 for guiding the light focused by the lens group 41 to the analysis mirror 42 and then entering through the analysis mirror.
  • a photosensitive element 43 such as CCD/CMOS/PMT is imaged, and a step difference image such as that of FIG. 2 is presented on the photosensitive element.
  • the position of the first mirror adjacent to the detecting prism can be adjusted by the user to adjust the angle of the light entering the lens group 41, so that the critical angle of light passes through the lens group and is irradiated onto the photosensitive element, exhibiting high quality.
  • the adjustment method is preferably screw d adjustment to improve the usability and adjustment accuracy.
  • the analysis mirror 42 can be realized by splicing two mutually perpendicular polarizing plates or by using one or more polarization beam splitting prisms.
  • a data processing unit (not shown) electrically connected to the photosensitive element 43 processes the step image to obtain the surface stress of the glass.
  • the data processing unit can be implemented by a general-purpose computer having data processing software, or by using a dedicated small data processor, for example, a single chip microcomputer, an FPGA, a CPLD, etc., and a small data processor can be integrated in the photosensitive element 43 in order to be able to Intuitively letting the user know the detection result, the display unit 44 is disposed on the surface of the light shielding cover or protruding from the surface of the cover. As shown in FIG.
  • the display unit 44 may include a graphic image interface for displaying the detection result, and controlling a small data processor built in the detecting device to perform physical or virtual keys such as initialization, clearing, calibration, fault detection, etc., corresponding
  • the display unit can be a touch display.
  • the third mirror c may be omitted, or the third mirror c may be a rotatable mirror.
  • the imaging device further includes a visual observation unit 45, and the analysis mirror 42 is located at the second mirror b and the third mirror c.
  • the visual observation unit 45 and the photosensitive unit 43 are conjugate with respect to the third mirror c, and the user can select to rotate the third mirror c out of the optical path, thereby observing and manually calculating the result by the visual observation unit 45.
  • the third mirror c is rotated and moved into the optical path, so that the photosensitive element 43 performs image recording to realize electronic measurement, similar to the working mode of the DSLR camera.
  • a built-in small data processor and a display unit (not shown in FIG. 4) on the cover as shown in the embodiment shown in FIG.
  • the hood unit is used to avoid the influence of stray light, and the space occupied by the entire optical path is shortened by using the mirror, thereby achieving miniaturization, and further, by dividing the first mirror
  • the other components are fixedly mounted, thereby avoiding the adjustment of the plurality of components, affecting the detection accuracy, reducing the difficulty of the user, and using the recording of the photosensitive component to obtain an accurate detection result that does not depend on the operator's visual operation skill.

Abstract

一种对玻璃的表面应力进行检测的检测装置,包括遮光外罩(1),以及在遮光外罩(1)内的照明单元(2)、检测棱镜(3)和成像单元(4),检测棱镜(3)通过折射液与被检测玻璃(5)的表面接触,使从照明单元(2)射入检测棱镜(3)的光能够在接触表面上全反射,从而利用光经过玻璃表面全反射而引起的双折射来表征玻璃的应力水平,后继光路通过折返设计以减少装置体积,并以电子照相设备进行记录,实现了微型化和电子化的高精度测量。

Description

玻璃表面应力检测装置 技术领域
本发明涉及一种光学检测装置,尤其涉及一种对玻璃的表面应力进行检测的检测装置。
背景技术
玻璃是日常生活和工业生产中都常见的材料,诸如钢化玻璃作为被人们熟知的安全玻璃的一种,广泛应用在建筑、汽车、玻璃幕墙、家用玻璃制品等领域。对于钢化玻璃而言,为提高玻璃的强度,通常在制作过程中使用化学或物理的方法,在玻璃表面形成一定大小的压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力。对于普通玻璃而言,由于加工过程中的各种工艺影响,玻璃板中也会残留应力,如果应力超出一定范围,则对玻璃的使用性能造成明显损失,构成缺陷,因此应力水平通常是衡量玻璃板质量的重要指标,涉及玻璃板的使用安全。
为获得这一指标,在国标等标准规定,采用双折射的方式测量玻璃的表面应力,以表征玻璃内部的应力水平。目前,在实际使用中,测定玻璃表面应力的方法可归纳为两种:微分表面折射法DSR(Differential Surface Refractometry)和表面掠角偏光法GASP(Grazing Angle Surface Polarimetry)。其中DSR方式由于使用的光学件较少,检测仪器的价格相对较低,被各种检测机构广为采用。现有的DSR方式玻璃表面应力检测仪体积较为庞大,大多依赖人工通过测微目镜对应力进行目测,然后根据公式计算出应力值,这样的方法显然受到测量者肉眼观测精度的限制,也不利于电子化的数据处理。
发明内容
本发明提供一种玻璃表面应力检测装置,通过提供遮光罩内的小 尺寸光学系统获取从待测玻璃表面返回的双折射光,配合电子照相用的图像捕获装置,可获得高精度的检测结果,避免了杂光的影响。
根据本发明的一种玻璃表面应力检测装置,包括遮光外罩,照明单元,检测棱镜和成像单元,所述照明单元、检测棱镜和成像单元均位于遮光外罩内部;其中,所述遮光外罩用以屏蔽外界杂散光对检测的影响并界定检测装置的外形尺寸;所述检测棱镜通过折射液与被检测玻璃的表面接触,使从所述照明单元射入检测棱镜的光能够在接触表面上全反射,从而在全反射后的光中引入包含玻璃双折射能力的信息,进入成像单元进行成像;所述成像单元包括至少两个反射镜,所述至少两个反射镜中的一个的位置可以由使用者进行调节。
进一步的,照明单元包括LED光源以及置于光源后光路上用于对光源出射光进行过滤的滤光器。
优选的,检测棱镜为方形棱镜,调节第一反射镜位置的方式为螺丝调节。
具体的,成像单元沿光路方向依次包括第一反射镜,透镜组,第二反射镜,分析镜和感光元件;第一反射镜为位置可以由使用者进行调节的反射镜。
感光元件为CCD,CMOS或PMT中的一种,分析镜为两片互相垂直的偏振片拼接或者采用一个或者多个偏振分光棱镜。
成像单元可进一步包括第三反射镜,沿光路方向上所述第三反射镜位于第二反射镜之后,且与第二反射镜的反射面相对。
第三反射镜可旋转,将分析镜位于所述第二反射镜与所述第三反射镜之间,所述成像单元进一步包括目视观察单元,所述目视观察单元与所述感光元件相对于所述第三反射镜共轭。
感光元件与数据处理单元电连接,所述数据处理单元为置于遮光外罩内的小型数据处理器,所述遮光外罩上具有显示单元,用以显示至少包括检测结果的图形图像界面。
根据本发明的玻璃碎片检测装置,由于使用了遮光外罩,避免了检测时杂散光的影响,又利用反射镜多次反射以缩短整体光路所占据的空间,仅调节一个反射镜的使用,降低了使用难度,实现了检测装 置的小型化,提高了检测质量。
附图说明
图1为根据本发明的玻璃表面应力检测装置示意图。
图2为根据本发明的玻璃表面应力检测装置中感光元件上的图像示意图。
图3为根据本发明的玻璃表面应力检测装置中显示单元示意图。
图4为根据本发明的玻璃表面应力检测装置的另一实施方式示意图。
具体实施方式
以下,参照附图对于本发明的实施例进行详细的说明。在以下的说明中,为便于理解和描述,相同的部件使用了相同的数字标号。
图1为根据本发明的玻璃表面应力检测装置示意图。如图1所示,本发明的玻璃表面应力检测装置100,包括遮光外罩1、照明单元2,检测棱镜3和成像单元4,遮光外罩用以屏蔽外界杂散光对检测的影响并界定检测装置的外形尺寸,照明光源、检测棱镜和成像单元均位于遮光外罩内部,其中检测棱镜通过折射液与被检测玻璃5的表面接触,以使由照明光源射入检测棱镜的光能够在检测棱镜与被检测玻璃的接触表面上全反射,从而在全反射后的光中引入包含玻璃双折射能力的信息,再进入成像单元进行成像。
为节能和供电电压的便利考虑,照明单元使用的光源21优选为LED光源,在光源出光口或临近出光口的光路附近使用诸如干涉滤光片22的滤光器对光源出射的光进行提纯,再射入检测棱镜3,为了减小装置的整体体积,在光源21检测棱镜之间设置反射镜23。检测棱镜3可以为三角棱镜、入射面为圆弧型的矩形棱镜和梯形棱镜等,优选的,检测棱镜3为方形棱镜。由于对光源出射的光进行了滤光,入射检测棱镜的光成为单色性好的光源,减少了检测光从玻璃-棱镜界面出射后光源光谱宽度对测量的不利影响。光源的入射角通过科学计算确定,配合相应参数的方形棱镜的使用,避免了操作人员在多个台阶 中选择而影响测量精度。
成像单元包括依光路依次设置的透镜组41、分析镜42和感光元件43,进一步的,成像单元还包括至少两个反射镜,如图1所示,成像单元包括第一反射镜a,第二反射镜b和第三反射镜c,其中第一反射镜a置于检测棱镜3和透镜组41之间,且临近检测棱镜,以将从检测棱镜3出射的光反射进入透镜组41;第二反射镜b和第三反射镜c的反射面相对设置,且均置于透镜组41和分析镜42之间,用以将由透镜组41聚焦的光导向分析镜42,再经由分析镜后射入诸如CCD/CMOS/PMT等的感光元件43成像,在感光元件上呈现出诸如图2的台阶差图像。进一步的,临近检测棱镜的第一反光镜的位置可以由使用者进行调节,从而调节进入透镜组41的光的角度,使得临界角度的光经过透镜组后照射到感光元件上,呈现高质量的台阶差图像,调节方式优选为螺丝d调节,以提高易用性和调节的精度。分析镜42可以采用两片互相垂直的偏振片拼接或者采用一个或者多个偏振分光棱镜实现。
与感光元件43电连接的数据处理单元(未图示)对台阶差图像进行处理,从而得到玻璃的表面应力。数据处理单元可以通过具有数据处理软件的通用计算机实现,或者使用专用的小型数据处理器实现,例如,单片机,FPGA,CPLD等,小型的数据处理器可以集成在感光元件43中,此时为了能够直观让使用者了解检测结果,在遮光外罩表面上或突出于外罩表面设置有显示单元44。如图3所示,显示单元44可以包括显示检测结果的图形图像界面,以及控制内置于检测装置内的小型数据处理器进行诸如初始化、清零、校准、故障检测等实体或虚拟按键,相应的,显示单元可以为触摸显示屏。
可选择的,第三反射镜c可以省略,或者第三反射镜c为可旋转的反射镜。对于第三发射镜为可旋转的反射镜时,如图4所示,成像装置还进一步包括目视观察单元45,此时所述分析镜42位于第二反射镜b与第三反射镜c之间的光路上,目视观察单元45与感光单元43相对于第三反射镜c共轭,用户可以选择将第三反射镜c旋转移出光路,从而以目视观察单元45观测并人工计算结果,或者以目视观察 单元45观测后将第三反射镜c旋转移入光路,使感光元件43进行图像记录实现电子测量,类似于DSLR相机的工作方式。当使用感光元件实现电子测量时,优选的,具备如图3所示实施例的内置小型数据处理器和外罩上的显示单元(图4中未图示)。
根据实施例的玻璃表面应力检测装置,使用了遮光罩单元避免了杂散光的影响,并通过使用反射镜缩短整体光路所占据的空间,实现了小型化,进一步的,通过将除第一反射镜之外的其它元件均固定安装,从而避免对多个元件的调节影响检测精度,降低了用户使用的难度,同时利用感光元件的记录获得不依赖于操作者目视操作技能的准确检测结果,实现了高精度的电子检测。
本发明不限于上述实施例,说明书中的各种实施方式仅用于进行说明,其并不对本发明的保护范围起到限定作用。在不脱离本发明范围的情况下,可以进行各种变形和修改。在本领域技术人员所具备的知识范围内,在本发明公开的实施方式基础上所做的任何省略、替换或修改将落入本发明的保护范围。

Claims (9)

  1. 一种玻璃表面应力检测装置,包括遮光外罩,照明单元,检测棱镜和成像单元,所述照明单元、检测棱镜和成像单元均位于遮光外罩内部;其中,
    所述遮光外罩用以屏蔽外界杂散光对检测的影响并界定检测装置的外形尺寸;
    所述检测棱镜通过折射液与被检测玻璃的表面接触,使从所述照明单元射入检测棱镜的光能够在接触表面上全反射,从而在全反射后的光中引入包含玻璃双折射能力的信息,进入成像单元进行成像;
    所述成像单元包括至少两个反射镜,所述至少两个反射镜中的一个的位置可以由使用者进行调节。
  2. 根据权利要求1所述的玻璃表面应力检测装置,其中,所述的照明单元包括LED光源,置于光源后光路上用于对光源出射光进行过滤的滤光器,以及反射镜。
  3. 根据权利要求1所述的玻璃表面应力检测装置,其中,所述检测棱镜为方形棱镜。
  4. 根据权利要求1所述的玻璃表面应力检测装置,其中,所述成像单元沿光路方向依次包括第一反射镜,透镜组,第二反射镜,分析镜和感光元件;所述第一反射镜为位置可以由使用者进行调节的反射镜。
  5. 根据权利要求4所述的玻璃表面应力检测装置,所述感光元件为CCD,CMOS或PMT中的一种,所述分析镜为两片互相垂直的偏振片拼接或者采用一个或者多个偏振分光棱镜。
  6. 根据权利要求4或5所述的玻璃表面应力检测装置,其中,所述成像单元进一步包括第三反射镜,沿光路方向上所述第三反射镜位于第 二反射镜之后,且与第二反射镜的反射面相对。
  7. 根据权利要求6所述的玻璃表面应力检测装置,其中,所述第三反射镜可旋转,所述分析镜位于所述第二反射镜与所述第三反射镜之间,所述成像单元进一步包括目视观察单元,所述目视观察单元与所述感光元件相对于所述第三反射镜共轭。
  8. 根据权利要求4或7所述的玻璃表面应力检测装置,其中,所述感光元件与数据处理单元电连接,所述数据处理单元为置于遮光外罩内的小型数据处理器,所述遮光外罩表面上或者突出表面具有显示单元,用以显示至少包括检测结果的图形图像界面。
  9. 根据权利要求4所述的玻璃表面应力检测装置,所述调节第一反射镜位置的方式为螺丝调节。
PCT/CN2016/073599 2015-02-17 2016-02-05 玻璃表面应力检测装置 WO2016131396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520114835.XU CN204535899U (zh) 2015-02-17 2015-02-17 玻璃表面应力检测装置
CN201520114835.X 2015-02-17

Publications (1)

Publication Number Publication Date
WO2016131396A1 true WO2016131396A1 (zh) 2016-08-25

Family

ID=53749888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073599 WO2016131396A1 (zh) 2015-02-17 2016-02-05 玻璃表面应力检测装置

Country Status (2)

Country Link
CN (1) CN204535899U (zh)
WO (1) WO2016131396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141699A (zh) * 2018-08-01 2019-01-04 福建师范大学 基于双折射效应的物体表面拉压应力测量方法
CN114838759A (zh) * 2022-04-08 2022-08-02 彩虹集团(邵阳)特种玻璃有限公司 一种玻璃样块品质检测装置和方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置
WO2017054773A1 (zh) * 2015-09-30 2017-04-06 苏州精创光学仪器有限公司 玻璃表面应力仪和多次钢化玻璃表面应力仪
CN105241593A (zh) * 2015-10-30 2016-01-13 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
CN105424241B (zh) * 2015-12-08 2018-07-20 北京杰福科技有限公司 玻璃表面应力检测装置
CN106932130A (zh) * 2015-12-29 2017-07-07 北京杰福科技有限公司 玻璃表面应力仪
CN105758566B (zh) * 2016-04-11 2024-02-02 北京杰福科技有限公司 玻璃表面应力仪
WO2018050114A1 (zh) * 2016-09-18 2018-03-22 北京杰福科技有限公司 玻璃表面应力检测装置
WO2018050113A1 (zh) * 2016-09-18 2018-03-22 北京杰福科技有限公司 棱镜以及玻璃表面应力检测装置
CN106500891B (zh) * 2016-11-29 2022-08-16 北京杰福科技有限公司 玻璃表面应力检测装置以及用于其的检测棱镜
CN106680075A (zh) * 2017-03-01 2017-05-17 中国建材检验认证集团股份有限公司 一种钢化玻璃碎片检测系统及检测方法
US10732059B2 (en) 2018-04-02 2020-08-04 Corning Incorporated Prism-coupling stress meter with wide metrology process window
CN114499681A (zh) * 2021-12-09 2022-05-13 武汉光迅科技股份有限公司 一种可调谐光滤波器和光滤波方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062656A (zh) * 2010-12-31 2011-05-18 肖天长 玻璃表面应力测试仪
CN103644990A (zh) * 2013-12-13 2014-03-19 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
CN203519217U (zh) * 2013-10-18 2014-04-02 苏州精创光学仪器有限公司 显微镜式玻璃表面应力仪
CN203587256U (zh) * 2013-12-13 2014-05-07 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
CN104316233A (zh) * 2014-11-03 2015-01-28 苏州精创光学仪器有限公司 表面应力测量装置
CN204128720U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 改进的全自动玻璃表面应力仪
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062656A (zh) * 2010-12-31 2011-05-18 肖天长 玻璃表面应力测试仪
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
CN203519217U (zh) * 2013-10-18 2014-04-02 苏州精创光学仪器有限公司 显微镜式玻璃表面应力仪
CN103644990A (zh) * 2013-12-13 2014-03-19 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
CN203587256U (zh) * 2013-12-13 2014-05-07 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
CN204128720U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 改进的全自动玻璃表面应力仪
CN104316233A (zh) * 2014-11-03 2015-01-28 苏州精创光学仪器有限公司 表面应力测量装置
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141699A (zh) * 2018-08-01 2019-01-04 福建师范大学 基于双折射效应的物体表面拉压应力测量方法
CN114838759A (zh) * 2022-04-08 2022-08-02 彩虹集团(邵阳)特种玻璃有限公司 一种玻璃样块品质检测装置和方法

Also Published As

Publication number Publication date
CN204535899U (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2016131396A1 (zh) 玻璃表面应力检测装置
CN112005091B (zh) 用于对光学材料的样品进行光学测试的设备和方法、以及操作性地连接至该设备的控制器
TWI596333B (zh) Means for measuring a film with a transparent substrate and a measuring method thereof
JP5520036B2 (ja) 光学式変位計
US9618325B2 (en) Optical coherence tomography imaging systems and methods
WO2014066579A1 (en) Systems and methods for measuring a profile characteristic of a glass sample
CN107561007B (zh) 一种薄膜测量装置和方法
JP2008076324A (ja) 光学異方性パラメータ測定装置
WO2017054773A1 (zh) 玻璃表面应力仪和多次钢化玻璃表面应力仪
CN105758566B (zh) 玻璃表面应力仪
JP2018028453A (ja) レンズメータ
CN203519219U (zh) 自动玻璃应力检测仪
CN112345549A (zh) 用于表面检查的成像系统
CN106441655A (zh) 玻璃表面应力检测装置
CN205449356U (zh) 玻璃表面应力仪
JP2014185960A (ja) 浸漬検査装置
KR101479970B1 (ko) 터치스크린 패널의 ito 패턴 검사용 현미경 및 이를 이용한 터치 스크린 패널의 ito 패턴 검사 방법
CN206019885U (zh) 玻璃表面应力检测装置
CN205642680U (zh) 玻璃表面应力仪
WO2017114122A1 (zh) 玻璃表面应力仪
CN205607856U (zh) 一种透明介质折射率检测装置
KR102517637B1 (ko) 렌즈 품질 검사용 편광 분석 장치 및 그 방법, 이를 이용한 편광 분석 시스템
RU2727779C1 (ru) Двойной интерференционный спектрометр
CN209727759U (zh) 一种光学玻璃折射率的快速测量仪器
WO2018050114A1 (zh) 玻璃表面应力检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16751927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (12.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16751927

Country of ref document: EP

Kind code of ref document: A1