CN109141699A - 基于双折射效应的物体表面拉压应力测量方法 - Google Patents

基于双折射效应的物体表面拉压应力测量方法 Download PDF

Info

Publication number
CN109141699A
CN109141699A CN201810860801.3A CN201810860801A CN109141699A CN 109141699 A CN109141699 A CN 109141699A CN 201810860801 A CN201810860801 A CN 201810860801A CN 109141699 A CN109141699 A CN 109141699A
Authority
CN
China
Prior art keywords
birefringence
birefringent material
under test
object under
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810860801.3A
Other languages
English (en)
Other versions
CN109141699B (zh
Inventor
何友武
李志芳
李晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201810860801.3A priority Critical patent/CN109141699B/zh
Publication of CN109141699A publication Critical patent/CN109141699A/zh
Application granted granted Critical
Publication of CN109141699B publication Critical patent/CN109141699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种基于双折射效应的物体表面拉压应力测量方法。将具有双折射效应的双折射材料贴于待测物体表面,当待测物体受到拉力或者压力时,其表面形变会使应变材料随之发生形变,从而双折射率发生改变,通过测量双折射率的变化即可得到待测物体表面所受到的拉压力大小。本发明能够无损的进行物体特别是重要机械和工程构件表面应力测量。

Description

基于双折射效应的物体表面拉压应力测量方法
技术领域
本发明属于光学检测技术领域,具体涉及一种基于双折射效应的物体表面拉压应力测量方法。
背景技术
应力与应力集中在现代工业生产当中造成了越来越多的问题,应力集中是管道、压力容器、涡轮盘、压缩机叶片和飞机构件等重要承载结构件发生失效的重要原因之一,所以在许多领域需要进行应力测量。如在机械工程及制造设备如起重机、挖掘机、水泥泵车等工程机械的力臂等部位需要进行应变应力测试以确定性能是否符合要求,在大型钢结构桥梁和道路涵隧工程结构需要进行静载强度试验和应力测试以确保工程质量等。许多现有应力测量方法都是破坏性的,利用光学测量的方法测量双折射率变化可以在上述场合进行无损的拉压应力测量。
发明内容
本发明的目的在于提供一种基于双折射效应的物体表面拉压应力测量方法,能够无损的进行物体特别是重要机械和工程构件表面应力测量。
为实现上述目的,本发明的技术方案是:一种基于双折射效应的物体表面拉压应力测量方法,将具有双折射效应的双折射材料贴于待测物体表面,当待测物体受到外力时,其表面形变会使应变材料随之发生形变,从而双折射率发生改变,通过测量双折射率的变化即可得到待测物体表面所受到的拉压力大小。
在本发明一实施例中,该方法具体实现步骤如下:
步骤S1、将具有能够随着形变发生双折射率线性变化的双折射材料黏贴于待测物体表面;
步骤S2、对待测物体施加外力,此时待测物体发生形变带动黏贴于待测物体上的双折射材料也随之发生形变;
步骤S3、分别测量待测物体没有受到外力时双折射率材料的双折射率,以及待测物体受到外力时双折射材料的双折射率,建立待测物体所受外力大小与双折射材料的双折射率之间的关系曲线;
步骤S4、由步骤S3所建立的外力大小与双折射材料的双折射率之间的关系曲线,即可根据待测对象表面双折射材料的双折射率得到此时待测对象的表面应力大小。
在本发明一实施例中,所述外力包括拉力、压力。
在本发明一实施例中,所述双折射率的测量,通过双折射率测量光路实现;所述双折射率测量光路包括宽带光源、分束器、第一1/4波片、平面镜、扫描振镜、第二1/4波片、透镜、第一CCD、第二CCD、偏振分束器;宽带光源发射的光束经分束器后分成两路,一路光经过快轴方向与水平方向成22.5°角的第一1/4波片后经平面镜原路返回至分束器,一路光经过扫描振镜,再经过快轴方向与水平方向成45°角的第二1/4波片,经过透镜聚焦后入射到待测物体表面的双折射材料中,从双折射材料不同深度返回的光经过后向散射原路返回至分束器与另一路光发生干涉,干涉后的光经过偏振分束器分成两路分别被第一CCD、第二CCD探测,得到的光强分别记为Ah、Av
在本发明一实施例中,所述步骤S3具体实现如下:
步骤S31、对待测物体未受到外力作用时的双折射材料进行横向扫描,依据下式,对扫描范围内的双折射材料相位延迟进行成像,得到相位延迟图及相应的相位曲线:
δ为双折射材料对应的不同深度处的相位延迟;
步骤S32、根据所得的相位曲线,通过下式计算可得待测物体未受到外力作用时的双折射材料的双折射率:
式中,Δn为此时双折射材料的双折射率,Δφ为根据相位曲线所得的相位差,λ为宽带光源发射光束的中心波长,Δl为双折射材料厚度;
步骤S33、外力F作用于待测物体,当F变化时,依公式(1)、(2)可得相位延迟图及相应的相位延迟曲线,并计算得到双折射材料的双折射率线性变化;
步骤S34、根据步骤S31-S33,即可建立的外力大小与双折射材料的双折射率之间的关系曲线。
相较于现有技术,本发明具有以下有益效果:本发明方法能够无损的进行物体特别是重要机械和工程构件表面应力测量。
附图说明
图1为应力测量光路示意图。
图2为物体未受到应力时双折射材料的相位延迟图。
图3为图2对应的相位延迟曲线。
图4为物体受到100N拉力时双折射材料的相位延迟图。
图5为图4对应的相位延迟曲线。
图6为物体所受拉力与双折射材料双折射率关系曲线。
图中:1-宽带光源,2-分束器,3-1/4波片,4平面镜,5扫描振镜,6-1/4波片,7-透镜,8-双折射材料,9-待测物体,10-CCD,11-CCD,12-偏振分束器。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明提供了一种基于双折射效应的物体表面拉压应力测量方法,将具有双折射效应的双折射材料贴于待测物体表面,当待测物体受到外力(包括拉力、压力)时,其表面形变会使应变材料随之发生形变,从而双折射率发生改变,通过测量双折射率的变化即可得到待测物体表面所受到的拉压力大小。该方法具体实现步骤如下:
步骤S1、将具有能够随着形变发生双折射率线性变化的双折射材料黏贴于待测物体表面;
步骤S2、对待测物体施加外力,此时待测物体发生形变带动黏贴于待测物体上的双折射材料也随之发生形变;
步骤S3、分别测量待测物体没有受到外力时双折射率材料的双折射率,以及待测物体受到外力时双折射材料的双折射率,建立待测物体所受外力大小与双折射材料的双折射率之间的关系曲线;
步骤S4、由步骤S3所建立的外力大小与双折射材料的双折射率之间的关系曲线,即可根据待测对象表面双折射材料的双折射率得到此时待测对象的表面应力大小。
所述双折射率的测量,通过双折射率测量光路实现;所述双折射率测量光路包括宽带光源、分束器、第一1/4波片、平面镜、扫描振镜、第二1/4波片、透镜、第一CCD、第二CCD、偏振分束器;宽带光源发射的光束经分束器后分成两路,一路光经过快轴方向与水平方向成22.5°角的第一1/4波片后经平面镜原路返回至分束器,一路光经过扫描振镜,再经过快轴方向与水平方向成45°角的第二1/4波片,经过透镜聚焦后入射到待测物体表面的双折射材料中,从双折射材料不同深度返回的光经过后向散射原路返回至分束器与另一路光发生干涉,干涉后的光经过偏振分束器分成两路分别被第一CCD、第二CCD探测,得到的光强分别记为Ah、Av
所述步骤S3具体实现如下:
步骤S31、对待测物体未受到外力作用时的双折射材料进行横向扫描,依据下式,对扫描范围内的双折射材料相位延迟进行成像,得到相位延迟图及相应的相位曲线:
δ为双折射材料对应的不同深度处的相位延迟;
步骤S32、根据所得的相位曲线,通过下式计算可得待测物体未受到外力作用时的双折射材料的双折射率:
式中,Δn为此时双折射材料的双折射率,Δφ为根据相位曲线所得的相位差,λ为宽带光源发射光束的中心波长,Δl为双折射材料厚度;
步骤S33、外力F作用于待测物体,当F变化时,依公式(1)、(2)可得相位延迟图及相应的相位延迟曲线,并计算得到双折射材料的双折射率线性变化;
步骤S34、根据步骤S31-S33,即可建立的外力大小与双折射材料的双折射率之间的关系曲线。
以下为本发明的具体实现实例。
本实施例将双折射材料(低密度聚乙烯聚合物材料)黏贴于待测铝金属块表面(即待测物体9),然后对物体施加拉力F。随着拉力增大物体发生形变带动双折射材料也发生形变进而改变其双折射率。本发明需要测量双折射材料的双折射率,如图1所示:中心波长为1.31um的偏振宽带光1经过分束镜2后分成两路,一路光经过快轴方向与水平方向成22.5°角的1/4波片3后经反射镜4原路返回至分束器2,一路光经过扫描振镜5,再经过快轴方向与水平方向成45°角的1/4波片6,经过透镜7聚焦后入射到双折射材料8中,从材料不同深度返回的光经过后向散射原路返回至分束器2与另一路光发生干涉,干涉后的光经过偏振分束器12分成两路分别被两个CCD10,11探测。两个CCD探测到的光强分别记为Ah、Av
则对应的不同深度处的相位延迟为:
首先对物体未受到外力作用时的双折射材料进行横向扫描,对扫描范围内的双折射材料相位延迟进行成像,得到相位延迟图如图2所示,对应的相位延迟曲线如图3所示。
选取图3中所示范围内(0-1mm)的相位延迟信息来计算双折射率,相邻的波峰和波谷之间的相位差为图3范围内的实际总相位差为
根据可得此时的双折射率为:
当拉力F增加时所测量得到的相位延迟图的黑白条纹变密,计算得到的双折射率线性变大,以本实施例为例,当拉力增大到100N时,相位延迟图如图4所示,对应的相位延迟曲线如图5所示。
选取图5中所示范围内(0-1mm)的相位延迟信息来计算双折射率,相邻的波峰和波谷之间的相位差为图5范围内的实际总相位差为
根据可得此时的双折射率为:
渐增大拉力至800N,分别测量双折射材料的双折射率,可得下表1
由表1可得对应的曲线图如图6所示。
此后只需要测量该双折射材料的双折射率即可查表得到此时物体所受到的表面拉应力大小。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (5)

1.一种基于双折射效应的物体表面拉压应力测量方法,其特征在于,将具有双折射效应的双折射材料贴于待测物体表面,当待测物体受到外力时,其表面形变会使应变材料随之发生形变,从而双折射率发生改变,通过测量双折射率的变化即可得到待测物体表面所受到的拉压力大小。
2.根据权利要求1所述的基于双折射效应的物体表面拉压应力测量方法,其特征在于,该方法具体实现步骤如下:
步骤S1、将具有能够随着形变发生双折射率线性变化的双折射材料黏贴于待测物体表面;
步骤S2、对待测物体施加外力,此时待测物体发生形变带动黏贴于待测物体上的双折射材料也随之发生形变;
步骤S3、分别测量待测物体没有受到外力时双折射率材料的双折射率,以及待测物体受到外力时双折射材料的双折射率,建立待测物体所受外力大小与双折射材料的双折射率之间的关系曲线;
步骤S4、由步骤S3所建立的外力大小与双折射材料的双折射率之间的关系曲线,即可根据待测对象表面双折射材料的双折射率得到此时待测对象的表面应力大小。
3.根据权利要求1或2所述的基于双折射效应的物体表面拉压应力测量方法,其特征在于,所述外力包括拉力、压力。
4.根据权利要求1或2所述的基于双折射效应的物体表面拉压应力测量方法,其特征在于,所述双折射率的测量,通过双折射率测量光路实现;所述双折射率测量光路包括宽带光源、分束器、第一1/4波片、平面镜、扫描振镜、第二1/4波片、透镜、第一CCD、第二CCD、偏振分束器;宽带光源发射的光束经分束器后分成两路,一路光经过快轴方向与水平方向成22.5°角的第一1/4波片后经平面镜原路返回至分束器,一路光经过扫描振镜,再经过快轴方向与水平方向成45°角的第二1/4波片,经过透镜聚焦后入射到待测物体表面的双折射材料中,从双折射材料不同深度返回的光经过后向散射原路返回至分束器与另一路光发生干涉,干涉后的光经过偏振分束器分成两路分别被第一CCD、第二CCD探测,得到的光强分别记为Ah、Av
5.根据权利要求4所述的基于双折射效应的物体表面拉压应力测量方法,其特征在于,所述步骤S3具体实现如下:
步骤S31、对待测物体未受到外力作用时的双折射材料进行横向扫描,依据下式,对扫描范围内的双折射材料相位延迟进行成像,得到相位延迟图及相应的相位曲线:
δ为双折射材料对应的不同深度处的相位延迟;
步骤S32、根据所得的相位曲线,通过下式计算可得待测物体未受到外力作用时的双折射材料的双折射率:
式中,Δn为此时双折射材料的双折射率,Δφ为根据相位曲线所得的相位差,λ为宽带光源发射光束的中心波长,Δl为双折射材料厚度;
步骤S33、外力F作用于待测物体,当F变化时,依公式(1)、(2)可得相位延迟图及相应的相位延迟曲线,并计算得到双折射材料的双折射率线性变化;
步骤S34、根据步骤S31-S33,即可建立的外力大小与双折射材料的双折射率之间的关系曲线。
CN201810860801.3A 2018-08-01 2018-08-01 基于双折射效应的物体表面拉压应力测量方法 Active CN109141699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810860801.3A CN109141699B (zh) 2018-08-01 2018-08-01 基于双折射效应的物体表面拉压应力测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810860801.3A CN109141699B (zh) 2018-08-01 2018-08-01 基于双折射效应的物体表面拉压应力测量方法

Publications (2)

Publication Number Publication Date
CN109141699A true CN109141699A (zh) 2019-01-04
CN109141699B CN109141699B (zh) 2020-10-02

Family

ID=64798554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810860801.3A Active CN109141699B (zh) 2018-08-01 2018-08-01 基于双折射效应的物体表面拉压应力测量方法

Country Status (1)

Country Link
CN (1) CN109141699B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820051A (zh) * 2021-08-19 2021-12-21 南京大学 材料的互补干涉应力测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305449A (ja) * 2007-06-05 2008-12-18 Nec Corp 光ヘッド及び情報記録再生装置
CN103115705A (zh) * 2013-01-19 2013-05-22 清华大学 基于正交偏振固体激光的应力和双折射测量仪及测量方法
CN105115436A (zh) * 2015-08-04 2015-12-02 苏州光环科技有限公司 传感装置及监测应力和温度的方法
WO2016131396A1 (zh) * 2015-02-17 2016-08-25 南通杰福光学仪器科技有限公司 玻璃表面应力检测装置
CN105928775A (zh) * 2016-04-18 2016-09-07 天津商业大学 一种用于材料微区应力场测试的显微光弹性实验系统
CN106679935A (zh) * 2017-01-20 2017-05-17 黑龙江大学 一种单模光纤双折射测量的装置及方法
CN107462336A (zh) * 2017-09-30 2017-12-12 飞秒激光研究中心(广州)有限公司 一种飞秒激光多模态分子影像系统
CN108106973A (zh) * 2017-12-18 2018-06-01 大连理工大学 一种基于透明光弹材料同时测量饱和颗粒介质应力和位移的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305449A (ja) * 2007-06-05 2008-12-18 Nec Corp 光ヘッド及び情報記録再生装置
CN103115705A (zh) * 2013-01-19 2013-05-22 清华大学 基于正交偏振固体激光的应力和双折射测量仪及测量方法
WO2016131396A1 (zh) * 2015-02-17 2016-08-25 南通杰福光学仪器科技有限公司 玻璃表面应力检测装置
CN105115436A (zh) * 2015-08-04 2015-12-02 苏州光环科技有限公司 传感装置及监测应力和温度的方法
CN105928775A (zh) * 2016-04-18 2016-09-07 天津商业大学 一种用于材料微区应力场测试的显微光弹性实验系统
CN106679935A (zh) * 2017-01-20 2017-05-17 黑龙江大学 一种单模光纤双折射测量的装置及方法
CN107462336A (zh) * 2017-09-30 2017-12-12 飞秒激光研究中心(广州)有限公司 一种飞秒激光多模态分子影像系统
CN108106973A (zh) * 2017-12-18 2018-06-01 大连理工大学 一种基于透明光弹材料同时测量饱和颗粒介质应力和位移的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C, HITZENBERGER 等: "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography", 《OPITICS EXPRESS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820051A (zh) * 2021-08-19 2021-12-21 南京大学 材料的互补干涉应力测量装置

Also Published As

Publication number Publication date
CN109141699B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
JP5477275B2 (ja) 塗装膜の検査装置および検査方法
US9841272B2 (en) Film thickness measuring device and film thickness measuring method
Ing et al. Broadband optical detection of ultrasound by two‐wave mixing in a photorefractive crystal
US7920269B2 (en) System and method for measuring interferences
CN103528524A (zh) 透视测量树脂基复合材料内部离面位移场分布的装置及方法
CN106323748A (zh) 一种用于碳纤维复丝应变测量和力学性能表征的非接触视频测量系统
TW200937005A (en) Apparatus for measuring defects in semiconductor wafers
WO2023201928A1 (zh) 一种自适应全光纤激光超声测量仪
CN203745385U (zh) 激光超声光学干涉检测装置
Chen et al. Operational and defect parameters concerning the acoustic-laser vibrometry method for FRP-reinforced concrete
CN104458216B (zh) 一种用于检测光学元件弱吸收的装置及方法
CN102621069B (zh) 高灵敏度测量材料光学非线性的4f相位成像方法
CN109141699A (zh) 基于双折射效应的物体表面拉压应力测量方法
Xie et al. Evaluation of processing parameters in high-speed digital image correlation for strain measurement in rock testing
Akbari et al. Investigation of loading parameters in detection of internal cracks of composite material with digital shearography
CN112595677B (zh) 聚合物光固化过程的监测方法、系统、储存介质及装置
Choi et al. Detecting impact traces on a composite pressure vessel with aluminum-coating optical fiber using a phase-modulated BOCDA sensor
US9500468B2 (en) Scanning interferometry technique for through-thickness evaluation in multi-layered transparent structures
CN113820051B (zh) 材料的互补干涉应力测量装置
JP6973324B2 (ja) 異常検出方法
CN109238971B (zh) 一种水下电视摄像的物体表面折射率成像系统
CN204679249U (zh) 一种多发光单元半导体激光器空间光束轮廓的测试装置
CN201364392Y (zh) 一种实现电子散斑干涉的大错位方棱镜
TWI472715B (zh) 同步式動態輪廓量測干涉儀
CN108918457A (zh) 太赫兹波调制激光谱强度测量电光系数的装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant