WO2017054773A1 - 玻璃表面应力仪和多次钢化玻璃表面应力仪 - Google Patents

玻璃表面应力仪和多次钢化玻璃表面应力仪 Download PDF

Info

Publication number
WO2017054773A1
WO2017054773A1 PCT/CN2016/101161 CN2016101161W WO2017054773A1 WO 2017054773 A1 WO2017054773 A1 WO 2017054773A1 CN 2016101161 W CN2016101161 W CN 2016101161W WO 2017054773 A1 WO2017054773 A1 WO 2017054773A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
prism
glass surface
stress meter
Prior art date
Application number
PCT/CN2016/101161
Other languages
English (en)
French (fr)
Inventor
尚修鑫
汪旭东
王修璞
闫飞
唐翔
王友
Original Assignee
苏州精创光学仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510638763.3A external-priority patent/CN105115635B/zh
Priority claimed from CN201510726582.6A external-priority patent/CN105241593A/zh
Priority claimed from CN201510844432.5A external-priority patent/CN105333980B/zh
Application filed by 苏州精创光学仪器有限公司 filed Critical 苏州精创光学仪器有限公司
Priority to US15/763,455 priority Critical patent/US11060930B2/en
Priority to JP2018536327A priority patent/JP2018534589A/ja
Publication of WO2017054773A1 publication Critical patent/WO2017054773A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position
    • C03B27/0442Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position for bent glass sheets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the present invention relates to a stress detecting device, and more particularly to a glass surface stress meter and a multiple tempered glass surface stress meter.
  • tempered glass also known as tempered glass
  • tempered glass is a kind of prestressed glass. It usually uses chemical or physical methods to form compressive stress on the surface of the glass. When the glass is subjected to external force, it first offsets the surface pressure, thereby improving the bearing capacity and thus tempering. Glass is widely used in building doors and windows, glass curtain walls, electronic instruments and other fields. However, there are a large number of microcracks on the edge of the tempered glass after cutting, resulting in a decrease in the strength of the glass. In particular, with the rapid development of the touch industry, the specifications of the touch products themselves are becoming more and more strict.
  • tempered glass Since the touch panel is externally applied with pressure to operate the sensing components to achieve the effect, the mechanical stress resistance of the products is In this market context, many tempered glass has emerged as an important norm and indicator of major manufacturers.
  • the so-called multiple tempered glass means that the tempered glass is reinforced several times by physical or chemical means, so that the compressive performance of the tempered glass is greatly improved.
  • the tempered glass increases the bearing capacity due to the stress generated, the stress is usually extremely uneven, which reduces the mechanical strength and thermal stability of the tempered glass product, and affects the safe use of the glass product.
  • self-explosion occurs.
  • the specifications of the touch products themselves are becoming more and more strict. Since the touch panel is externally applied with pressure to operate the sensing components to achieve the effect, the mechanical stress resistance of the products is Important norms and indicators of major manufacturers. For optical glass, the presence of large stresses also severely affects optical transparency and image quality.
  • curved glass means that the whole glass is not in a plane, and generally has a curved shape, a J shape, a V shape, a double-sided curved shape, an S shape, a double folding plate and the like.
  • the manufacturing process of curved glass is much more complicated than that of flat glass. First, the glass plate is heated in the heating section, that is, the glass plate is heated to its glass transition temperature or higher than its glass transition temperature, and the heated high temperature glass is heated.
  • the furnace is sent to a forming section provided with a concave forming surface, and the glass sheet is bent by its own gravity to the concave forming surface, thereby being bent into a curved glass of unequal arc, and finally the curved high-temperature glass sheet is transported to the tempered section. Cooling and tempering. Although the tempered curved glass increases the bearing capacity due to stress generation, the stress is usually extremely uneven. In severe cases, the mechanical strength and thermal stability of the curved glass product are reduced, which affects the safe use of the glass product. In serious cases, self-explosion may occur. For optical glass, the presence of large stresses also seriously affects light transmission and image quality.
  • the stress of the glass should be controlled within the specified range, which requires testing the stress of the glass.
  • the main object of the present invention is to provide a glass surface stress meter and a multiple tempered glass surface stress meter to solve the problem of difficulty in testing the surface of the glass in the prior art.
  • a glass surface stress meter comprising a light source, a light refracting element, and an imaging unit, wherein the light refracting element is located in a light emitting direction of the light source for placing the glass to be tested, and the light emitted by the light source passes through the light refracting element.
  • the imaging unit is imaged, and the imaging unit includes a lens group and an image sensor. The front end of the lens group is located in the light refraction direction of the light refraction element, and the image sensor is disposed at the rear end.
  • the light refraction element is a triangular prism whose one surface is a curved surface.
  • the triangular prism is an isosceles triangular prism
  • the bottom surface of the isosceles triangular prism is a curved surface
  • the chief ray emitted by the light source is perpendicular to the waist of the isosceles triangular prism.
  • the lens group is a microscopic objective lens, and the working distance of the microscope objective lens is greater than half of the length of the bottom side of the isosceles triangle prism.
  • the curvature of the triangular prism surface is the same as the curvature of the curved glass to be tested.
  • the light refraction element is provided with a first refractive prism and a second refractive prism along the optical path direction
  • the front end of the lens group is located in the light refraction direction of the second refractive prism
  • the imaging unit further includes a polarizing device
  • the rear end of the lens group is provided
  • a polarizing device is provided with an image sensor at the rear end of the polarizing device.
  • first refractive prism and the second refractive prism are both isosceles triangular prisms, and the principal ray emitted by the light source is perpendicular to the waist of the first refractive prism.
  • the first refractive prism has the same size as the bottom edge of the second refractive prism, and the sum of the size of the bottom edge of the first refractive prism and the size of the bottom edge of the second refractive prism is less than or equal to the size of the glass to be tested.
  • first refractive prism and the second refractive prism are disposed in contact with each other.
  • the polarizing device is formed by splicing two polarizing plates whose polarization directions are perpendicular to each other.
  • the light source is a monochromatic light source having a wavelength in the range of 500-900 nm.
  • a condensing lens is disposed between the light source and the light refracting element, and the light emitted by the light source is concentrated by the condensing lens and then incident on the light refracting element.
  • the distance between the light source, the condensing lens and the light refracting element satisfies the Gaussian optical formula.
  • an attenuation plate is further disposed on the optical path between the light source and the image sensor, and the intensity of the light can be adjusted as needed.
  • the image sensor may be one of CCD or CMOS, and the CCD or CMOS front end is provided with a dual polarizing plate whose polarization directions are perpendicular to each other; the image sensor may also be a dual polarization industrial camera based on CCD or CMOS.
  • the image sensor is connected to a data processing unit.
  • the image sensor may be one of CCD or CMOS, or may be an industrial camera based on CCD or CMOS.
  • a multiple tempered glass surface stress meter which is provided with an outer frame, and a light emitting unit, a light refraction element, and an imaging unit are sequentially disposed along the optical path in the outer frame, characterized in that the light emission is
  • the unit comprises at least two light sources and at least two light source height adjusting devices, wherein the light sources are respectively fixed on the light source height adjusting device;
  • the light refractive element comprises at least two refractive prisms, wherein the refractive prisms are respectively located in the light emitting direction of the light source for placing the glass to be tested
  • the light emitted by the light source is refracted by the refractive prism and then enters the imaging unit for imaging;
  • the imaging unit includes at least two imaging lens barrels, at least two imaging lens barrel angle adjusting mechanisms, and at least two image sensors, and the imaging lens barrels are respectively provided with lenses And the lens adjustment mechanism, the magnifications of the lenses are different from each other, the front ends of the imaging barrels are respectively
  • the light source is a monochromatic light source having a wavelength in the range of 500-900 nm.
  • a filter is disposed on the optical path between the light source and the refractive prism.
  • a light intensity attenuating sheet and a light intensity attenuating sheet adjusting mechanism are disposed on the optical path between the light source and the image sensor.
  • a wide-angle lens is disposed on the imaging lens barrel at the front end of the image sensor.
  • the image sensor may be one of CCD or CMOS, and the CCD or CMOS front end is provided with a double polarizing plate; or may be a dual polarizing industrial camera based on CCD or CMOS.
  • an automatic drip device comprises a liquid storage tank, a transfer pump, a drip support, a drip device and a drip control mechanism, and the transfer pump and the drip device are provided at least on the outer frame.
  • the drip device is arranged at one end of the drip holder, and the drip control mechanism controls the transfer pump to transport the refraction liquid in the liquid storage tank to the dripper for dripping.
  • the drip stand is an adjustable stand, and the position of the dripper can be freely adjusted as needed.
  • a waste liquid collection tank is disposed on the outer frame below the refractive prism, and a waste liquid collection tank is disposed below the waste liquid collection tank, and the waste liquid collection tank is connected to the waste liquid collection tank through a pipeline.
  • the image sensor is connected to a data processing unit.
  • the stress on the surface of the glass can be measured, and it can be known by stress whether the glass meets the requirements.
  • Figure 1 is a schematic view showing a first structure of a glass surface stress meter according to the present invention
  • Figure 2 is a schematic view showing a second structure of a glass surface stress meter according to the present invention.
  • Figure 3 is a schematic view showing a third structure of a glass surface stress meter according to the present invention.
  • Figure 4 is a schematic view showing a fourth structure of a glass surface stress meter according to the present invention.
  • Figure 5 shows an image of interference fringes obtained when measured using an existing glass stress meter
  • Figure 6 is a view showing an interference fringe image obtained by measurement using a glass surface stress meter of the third structure of the present invention.
  • Figure 7 is a schematic view showing the structure of a multiple tempered glass surface stress meter according to the present invention.
  • Figure 8 shows the effect of the use of a multiple tempered glass surface stress meter in accordance with the present invention.
  • a glass surface stress meter comprising a light source, a light refracting element, and an imaging unit, wherein the light refracting element is located in a light emitting direction of the light source for placing the glass to be tested, and the light emitted by the light source passes through the light refracting element.
  • the imaging unit is imaged, and the imaging unit includes a lens group and an image sensor. The front end of the lens group is located in the light refraction direction of the light refraction element, and the image sensor is disposed at the rear end.
  • FIG. 1 is a schematic view showing the structure of an embodiment of the stress gauge of the present invention.
  • the glass surface stress meter of the present invention comprises a light source 810, a light refracting element, and an imaging unit.
  • the light refracting element is located in the light emitting direction of the light source 810 for placing the glass to be tested, and the light emitted by the light source is refracted by the light refracting element to enter the imaging.
  • Unit imaging As can be seen from FIG. 1, the light-refracting element in this embodiment is a triangular prism 820 whose bottom surface is a curved surface.
  • the imaging unit includes a lens group 830 and an image sensor 840.
  • the front end of the lens group 830 is located at the light refraction of the triangular prism 820.
  • the image sensor 840 is provided at the rear end.
  • the tempered glass will have a stress layer on its surface, and the total reflected light incident on the glass surface will generate birefringence under the action of the stress layer, forming two beams having different polarization directions and different propagation directions, and the two beams pass through.
  • the imaging unit is converted into bright stripes or dark stripes that are easy to recognize, and the corresponding glass surface stress values are obtained by calculating the interference fringe information. Therefore, when testing the surface stress information of the glass by the above principle, it is necessary to cause the light emitted from the light source to be totally reflected by the contact surface of the glass to be tested and the refractive prism.
  • the light-refracting element of the stress meter of the present invention adopts a triangular prism with a curved surface on one side, and the curved surface of the triangular prism is used for placing the curved glass to be tested. Since one side of the triangular prism is a curved surface, it can be well adhered to the curved glass to be tested.
  • the light emitted by the light source can be totally reflected at the contact surface of the glass to be tested and the triangular prism.
  • the stress meter of the present invention is provided with a lens group in the imaging unit, and the totally reflected light can be concentrated or diverged according to actual needs, so that the image sensor disposed at the rear end of the lens group receives the clear interference image.
  • the stress meter shown in FIG. 2 includes a light source 810, a triangular prism 820, a lens group, and an image sensor.
  • the triangular prism 820 is located in the light emission direction of the light source 810 for placement. Glass to be tested.
  • the triangular prism 820 in this embodiment is an isosceles triangular prism, and the bottom surface of the isosceles triangular prism is a curved surface, and the principal ray emitted by the light source is perpendicular to the waist of the isosceles triangular prism, and the refractive prism is an isosceles triangle.
  • the prism thus the principal ray perpendicular to the waist of the isosceles triangle prism, will be emitted perpendicular to the other waist of the isosceles triangle prism. Since the principal ray is incident perpendicularly, the loss of light is greatly reduced, and the measurement is improved. Precision.
  • the stress meter of the present invention measures the stress of the glass to be tested by the total reflection of the light emitted from the light source at the contact surface of the refractive prism and the glass to be tested, the medium waist triangle is preferably used as a preferred embodiment.
  • the curvature of the bottom surface of the prism is the same as the curvature of the curved glass to be tested.
  • the curved glass to be tested and the isosceles triangular refractive prism can be completely matched, and the light emitted by the light source can be totally reflected at any position of the glass to be tested, thereby further improving the measurement precision.
  • the curved surface of the isosceles triangle prism may be a concave surface or a convex surface.
  • the curved surface of the medium waist triangular prism 820 is concave, so that the light emitted by the light source 810 is totally reflected by the contact surface of the isosceles triangular prism and the curved glass to be tested, and thus the present embodiment is in a large amplitude.
  • the light refraction direction of the isosceles triangle prism is provided with a microscope objective lens 831. As can be seen from Fig.
  • the front end of the microscope objective lens 831 is located in the light refraction direction of the isosceles triangle prism 820, and an image sensor is provided at the rear end.
  • the microscope objective 831 is convenient for operation, and at the same time, a large amplitude convergence of the divergent light can be performed for image sensor reception at the rear end of the microscope objective.
  • a microscope objective lens with different magnifications is selected.
  • the radius of curvature of the curved glass to be tested is 36 mm
  • the magnification of the microscope objective is 2 to 8 times, preferably 4 times.
  • the working distance of the microscope objective is more than half of the length of the bottom side of the isosceles triangle prism, so that the image sensor at the back end of the microscope objective can receive clear interference fringe images, and the image quality is greatly improved.
  • the curved surface of the triangular prism of the present invention may also be a convex surface.
  • the curved surface is a convex surface, a certain convergence occurs after the light emitted by the light source is totally reflected by the contact surface of the convex surface and the glass to be tested. Convergence without a large multiple of the lens group can be clearly imaged on the image sensor.
  • the curvature of the convex surface is large, due to the large degree of convergence of the light after the total reflection, the concentrated beam can be appropriately diverged by the lens group, so that the image sensor can clearly receive the interference image.
  • the light source 810 in this embodiment is a light source capable of emitting monochromatic light having a center wavelength, and the influence of other wavelengths of light can be excluded to obtain a clear interference fringe image.
  • a monochromatic light source having a center wavelength in the range of 500 to 900 nm is preferred. Since the light emitted by the light source is divergent light, in order to make the light emitted by the light source better incident on the triangular prism 820, in this embodiment, a converging lens 811 is disposed between the light source and the triangular prism, and the light emitted by the light source is concentrated by the converging lens 811.
  • the distance, f 0 is the focal length of the condenser lens, and d 3 is the distance between the light source and the condenser lens.
  • the light source of the present invention may not be a monochromatic light source.
  • a band pass filter may be disposed on the optical path between the light source and the image sensor to filter the light emitted by the light source to become monochromatic light.
  • a band pass filter can be disposed on the optical path between the light source and the image sensor to further purify the light emitted by the light source. It becomes a half-height and narrower monochromatic light.
  • a band pass filter 812 is disposed on the optical path between the light source and the condenser lens, and the half width of the band pass filter 812 is ⁇ 3 nm.
  • an attenuation sheet 813 is further disposed, and the user can adjust the intensity of the light according to actual conditions.
  • the image sensor of the present invention may be one of CCD or CMOS, and the front end of the CCD or CMOS is provided with a dual polarizing plate whose polarization directions are perpendicular to each other; the image sensor may also be a dual polarization industrial camera based on CCD or CMOS.
  • the image sensor is a CCD-based industrial camera 841, and the front end of the industrial camera is provided with a double polarizing plate 842, and the double polarizing plate 842 can be formed by splicing two polarizing plates whose polarization directions are perpendicular to each other for the triangle to be used.
  • the light totally reflected by the prism and the contact surface of the glass to be tested is remarkably recognized as bright and dark stripes.
  • the image sensor at the rear end of the dual polarizer is used for photoelectric conversion, and the optical information of the received bright and dark stripes is converted into a digital signal.
  • the image sensor of the embodiment can also be connected to the data processing unit 850 according to requirements.
  • the data processing unit 850 realizes real-time collection and analysis of the surface stress of the glass to be tested according to the input signal of the image sensor, and completes the surface stress of the curved glass. Accurate detection.
  • the data processing unit 850 can be a general purpose computer with data processing software or a dedicated data processor.
  • the stress meter of the present invention When testing the surface glass surface stress by using the stress meter of the present invention, firstly determining the curvature of the glass to be tested, and selecting a suitable triangular prism according to the measured glass curvature, the closer the curvature of the triangular prism surface is to the curvature of the glass to be tested, the stress meter of the present invention. The more accurate the measurement results. Place the glass to be tested on the triangular prism so that the two can be attached. The contact surface can drop a small amount of refraction liquid to make the glass to be tested and the triangular prism better contact, thereby improving the measurement accuracy.
  • the light source is set at an angle perpendicular to the incident side of the triangular prism, and the light emitted by the light source enters the imaging unit after the total reflection of the contact surface of the glass to be tested and the triangular prism, and the lens pair in the imaging unit After the reflected light is properly adjusted, it is incident on a double polarizing plate whose polarization directions are perpendicular to each other.
  • the light beam after passing through the double polarizing plate is remarkably recognized as a bright and dark stripe, and the image sensor at the rear end of the double polarizing plate will receive the light and dark. After the stripe is photoelectrically converted, the obtained electrical signal is input to the data processing unit to perform accurate detection of the final surface stress.
  • tempered glass surface stress gauges on the market include a light source, a refractive prism, an eyepiece, an industrial camera, a refractive prism is a planar prism and is located in the direction of light emission of the light source, one end of the eyepiece is located in the direction of light refraction of the birefringent prism, and the other end is connected to the industrial camera.
  • a stress meter When testing with such a stress meter, the glass to be tested is placed on the surface of the refractive prism, and the light emitted by the light source is refracted by the refractive prism to enter the industrial camera for imaging.
  • the refractive prism is a planar prism
  • the incident light emitted by the light source is difficult to occur in the unfitable portion.
  • Total reflection which causes the stress meter to fail to measure the stress on the curved glass surface.
  • the beneficial effects of the first embodiment and the second embodiment are that, since the light refractive component of the stress meter of the present invention is a triangular prism with a curved surface, when the surface glass surface stress is tested, the curved surface of the triangular prism can be adhered to the glass to be tested, and the light source is The emitted monochromatic light is totally reflected by the triangular refractive prism and the contact surface of the curved glass to be tested, so that the birefringence information of the glass to be tested is included in the total reflected light, and then enters the imaging unit for imaging, and the measured The surface stress information of the glass being tested.
  • the triangular prism of the present invention is an isosceles triangular prism
  • the bottom surface of the isosceles triangular prism is a curved surface
  • the principal ray emitted by the light source is perpendicular to the waist of the isosceles triangular prism
  • the refractive prism is an isosceles triangular prism. Therefore, the chief ray perpendicular to the waist of the isosceles triangle prism will be emitted perpendicularly to the other waist of the isosceles triangle prism. Since the principal ray is incident perpendicularly, the loss of light is greatly reduced, and the measurement accuracy is improved. .
  • the lens group in the imaging unit is facilitated by the use of a microscope objective
  • the operation is performed.
  • the working distance of the microscope objective is more than half of the length of the bottom side of the isosceles triangle prism, so that the image sensor at the rear end of the microscope objective can receive a clear interference fringe image, and the image quality is greatly improved.
  • the curvature of the triangular prism surface of the present invention is the same as the curvature of the curved glass to be tested, when the stress of the curved glass surface is tested by the stress meter of the present invention, the curved glass to be tested can completely conform to the triangular refractive prism, and the light emitted by the light source Total reflection can occur at any position of the glass to be tested, which further improves the measurement accuracy.
  • Fig. 3 is a schematic view showing the structure of an embodiment of the stress gauge of the present invention.
  • the glass surface stress meter according to the embodiment includes a light source 910, a light refraction component, and an imaging unit.
  • the light refraction component is located in a light emission direction of the light source for placing the glass to be tested 970, and the light emitted by the light source is The refractive element is refracted and enters the imaging unit for imaging.
  • FIG. 3 is a schematic view showing the structure of an embodiment of the stress gauge of the present invention.
  • the glass surface stress meter according to the embodiment includes a light source 910, a light refraction component, and an imaging unit.
  • the light refraction component is located in a light emission direction of the light source for placing the glass to be tested 970, and the light emitted by the light source is The refractive element is refracted and enters the imaging unit for imaging.
  • the light-refracting element of the present embodiment is provided with a first refractive prism 920 and a second refractive prism 930 along the optical path direction
  • the imaging unit includes a lens group 940, a polarization device 950, and an image sensor.
  • the front end of the lens group 940 is located in the light refraction direction of the second refractive prism 930, and the rear end of the lens group 940 is connected to the polarizing device 950 for separating the light component emitted from the second refractive prism into the glass to be tested.
  • Two kinds of light components of vibration and vertical vibration parallel to the contact surface of the second refractive prism, the two light components are significantly recognized as two rows of light and dark stripes.
  • An image sensor 960 is provided at the rear end of the polarizing device 950.
  • d 5 is the distance between the second refractive prism and the lens group
  • f is the focal length of the lens group.
  • the tempered glass will have a stress layer on its surface, and the total reflected light incident on the glass surface will produce birefringence under the action of its stress layer, forming two beams with different polarization directions and different propagation directions.
  • the beam is converted by the imaging unit into two sets of strips of light and dark stripes that are easily identified, and the stress on the surface of the tempered glass is calculated by comparing the correspondence between the corresponding bright stripes or dark stripes in the two sets of stripe.
  • the partially reflected light that partially satisfies the waveguide mode is bound by the surface layer of the glass and then propagates along the inside of the glass to the end face of the glass, and the part of the light energy that is emitted is emitted.
  • the loss causes the brightness of the image received by the imaging unit to be attenuated, and the image brightness attenuation causes the contrast between the bright stripe and the dark stripe to be low, as shown in FIG. 5, and the dark fringe in the interference fringe image obtained by the imaging unit is relatively thin, and the image processing is performed.
  • the correspondence between the corresponding dark stripes in the two rows of stripes is automatically selected.
  • the stress measuring instrument of the present invention is provided with a first refractive prism and a second refractive prism along the optical path direction, and the partially reflected light propagating along the inside of the glass is coupled into the second refractive prism, and after exiting from the second refractive prism, enters The imaging unit to the rear end of the second refractive prism performs imaging.
  • the image processing will automatically select the corresponding relationship between the corresponding bright stripes in the two rows of stripes, because the boundary of the bright stripes is very clear, and the contrast between the bright stripes and the dark stripes is high, In the image processing, the correspondence between the corresponding bright stripes in the two stripe columns can be accurately obtained, thereby accurately calculating the surface stress of the glass, reducing the measurement error and improving the measurement accuracy.
  • FIG. 4 shows a preferred embodiment of the stress gauge of the present invention.
  • the stress meter shown in FIG. 4 includes a light source 910, a first refractive prism 920, a second refractive prism 930, a lens group 940, a polarizing device 950, and an image sensor 960, and the first refractive prism 920 and the second refractive prism 930 are placed.
  • the glass 970 to be tested, the front end of the lens group 940 is located in the light refraction direction of the second refractive prism 930, the rear end of the lens group 940 is provided with a polarizing device 950, and the rear end of the polarizing device 950 is provided with an image sensor 960.
  • the first refractive prism 920 and the second refractive prism 930 described in this embodiment are all isosceles triangular prisms, and the principal ray emitted by the light source 910 is perpendicular to the waist of the first refractive prism 920, and thus perpendicular to The chief ray of the first refracting prism waist will be emitted perpendicular to the waist of the second refracting prism, and the principal ray is vertically incident and outgoing, which greatly reduces the optical energy loss and improves the measurement accuracy.
  • the first refractive prism 920 and the second refractive prism 930 have the same size of the bottom edge, and the sum of the size of the bottom edge of the first refractive prism and the bottom edge of the second refractive prism is less than or equal to the glass 970 to be tested.
  • the portion of the total reflected light that is propagated inside the glass after being totally reflected by the first refractive prism can be all coupled to the second refractive prism 930, thereby preventing light from being emitted from the glass end surface to the outside of the glass, thereby causing loss of light energy, thereby improving measurement accuracy.
  • the first refractive prism 920 is disposed in contact with the second refractive prism 930, which can further improve the measurement accuracy of the stress measuring instrument of the present invention.
  • the light source 910 in this embodiment is a light source capable of emitting monochromatic light having a center wavelength, and the influence of other wavelengths of light can be excluded to obtain a clear interference fringe image.
  • a monochromatic light source having a center wavelength in the range of 500 to 900 nm is preferred. Since the light emitted by the light source is divergent light, in order to maximize the light emitted from the light source to the first refractive prism 920, in this embodiment, a converging lens 911 is disposed between the light source 910 and the first refractive prism 920, and the light source emits The light is concentrated by the converging lens 911 and incident on the first refraction prism.
  • the measuring instrument of the present invention is further provided with a lens holder 914 for mounting the condenser lens 911.
  • the lens holder is composed of a first supporting plate, a second supporting plate and a third supporting plate, wherein the first supporting plate is provided with a converging lens.
  • the angle between the second support plate and the first support plate is 90°, and the angle between the third support plate and the second support plate is 120°.
  • the third support plate is placed perpendicular to the workbench, and the light source is The light emitted by the 910 is concentrated by the converging lens on the first support plate and then incident on the first refractive prism 920.
  • the first supporting plate of the lens holder 914 is disposed in a direction parallel to the incident side, and thus the first refractive prism is an equilateral triangular prism, in order to make the vertical
  • the chief ray on the incident side of the first refracting prism exits perpendicularly to the exit edge of the second refracting prism, and the second refracting prism is also an equilateral triangular prism.
  • the integration degree of the stress gauge of the invention is improved, and the device of the invention occupies less space, has a reasonable structure and is convenient to use.
  • the light source of the present invention may not be a monochromatic light source.
  • a band pass filter may be disposed on the optical path between the light source and the image sensor to filter the light emitted by the light source to become monochromatic light.
  • a band pass filter may be disposed on the optical path between the light source and the image sensor, and the light emitted by the light source is further purified to become a monochromatic light having a narrower half-width and a narrower width.
  • a band pass filter 912 is disposed on the optical path between the light source and the condenser lens, and the half pass width of the band pass filter 912 is ⁇ 3 nm.
  • an attenuation sheet 913 is further disposed, and the user can adjust the intensity of the light according to actual conditions.
  • the polarizing device of the present invention is formed by splicing two polarizing plates whose polarization directions are perpendicular to each other, and an image sensor is disposed at the rear end of the two polarizing plates, and the image sensor may be one of CCD or CMOS, or It is an industrial camera based on CCD or CMOS.
  • the image sensor is a CCD-based industrial camera 961 for photoelectric conversion, converting the received optical signals of the light and dark stripes into digital signals.
  • the image sensor 960 of the present embodiment can also be connected to the data processing unit 980 as needed.
  • the data processing unit 980 realizes real-time collection and analysis of the surface stress of the glass to be tested according to the input signal of the image sensor, and completes the surface of the tempered glass. Accurate detection of stress.
  • the data processing unit 980 can be a general purpose computer with data processing software or a dedicated data processor.
  • the stress meter of the present invention When detecting the surface stress of the tempered glass by using the stress meter of the present invention, firstly selecting a suitable first refractive prism and a second refractive prism according to the size of the glass to be tested, when the first refractive prism and the second refractive prism are isosceles triangular prisms, The measurement accuracy of the inventive stress gauge is higher.
  • the bottom edge dimension of the first refractive prism is the same as the bottom edge dimension of the second refractive prism, and the sum of the dimensions is less than or equal to the size of the glass to be tested, the measurement accuracy is further improved.
  • the glass to be tested is placed on the first refractive prism and the second refractive prism such that the bottom edges of the first refractive prism and the second refractive prism are completely in contact with the glass to be tested, and a small amount of refractive liquid can be dropped on the contact surface for the glass to be tested
  • the first refractive prism and the second refractive prism are better fitted to each other, thereby improving measurement accuracy.
  • Adjusting the light source preferably, the light source is disposed at an angle perpendicular to the incident side of the first refractive prism, and the light emitted by the light source is totally reflected at the contact surface of the first refractive prism and the glass to be tested, and a part of the light reflects the total reflection of the waveguide mode.
  • the light When the light is bound by the surface layer of the glass and propagates along the inside of the glass to the second refractive prism, it is coupled into the second refractive prism, and after exiting from the second prism, enters the imaging unit at the rear end of the second refractive prism, and the lens group in the imaging unit
  • the polarizing device that is incident on the rear end after appropriately adjusting the received light, the light passing through the polarizing device is remarkably recognized as a stripe row between two sets of bright and dark stripes, and the image sensor performs the light and dark stripe columns received. After photoelectric conversion, the obtained electrical signal is input to the data processing unit to perform accurate measurement of the surface stress of the final tempered glass.
  • the tempered glass surface stress meter currently on the market includes a light source, a refractive prism, an eyepiece, an industrial camera, and a refractive prism is located in the light emitting direction of the light source.
  • One end of the eyepiece is located in the direction of light refraction of the refractive prism, and the other end is connected to an industrial camera.
  • the total reflected light incident on the surface of the glass will produce birefringence under the action of the stress layer, forming two beams with mutually perpendicular polarization directions.
  • the two beams are converted into convenient by passing through the eyepiece and the industrial camera.
  • the identified two rows of light and dark stripes are striation columns, and the stress on the glass surface is calculated by comparing the positional correspondence between the corresponding bright stripes or dark stripes in the two rows of stripes.
  • the surface stress of the tempered glass is measured by the existing stress meter, although the light emitted by the light source is totally reflected by the contact surface of the refractive prism and the glass to be tested, an interference fringe image can be obtained, but after the total reflection, the waveguide mode is partially satisfied.
  • the light is bound by the surface of the glass to be tested and then emerges from the end face of the glass.
  • the loss of light energy from the part of the glass that is emitted causes the brightness of the image received by the industrial camera to be attenuated. The brightness of the image is reduced, and the contrast between the bright and dark stripes is low. The boundary of the stripe is not clear. .
  • the dark fringes in the interference fringe image obtained by the existing stress meter are relatively thin, and the correspondence between the corresponding dark stripes in the two sets of stripe rows is automatically selected during image processing to calculate the stress on the surface of the tempered glass. Since the contrast between the dark stripe and the bright stripe is low, and the boundary of the dark stripe is not clear, the correspondence between the corresponding dark strips in the two stripe columns cannot be accurately obtained during image processing, resulting in a large measurement error of the existing stress meter, and the measurement is large. Low precision.
  • the beneficial effects of the third embodiment and the fourth embodiment are that, since the light refraction element of the stress measuring instrument of the present invention is provided with the first refractive prism and the second refractive prism along the optical path direction, the glass to be tested is placed on the first refractive prism and the second Above the refractive prism, after the light emitted by the light source is incident on the first refractive prism, total reflection occurs at the contact surface of the first refractive prism and the glass to be tested, and some of the total reflected light that satisfies the waveguide mode is bound by the surface of the glass to be tested. , spread along the inside of the glass.
  • the partially reflected light propagating along the inside of the glass is coupled into the second refractive prism, and after exiting from the second refractive prism, the imaging unit that enters the rear end of the second refractive prism performs imaging. . Since the partially reflected light propagating inside the glass after passing through the first refractive prism is not transmitted to the outside of the glass at the end face of the glass, but is coupled to the second refractive prism and received by the imaging unit, the brightness of the image received by the imaging unit Without attenuation, the contrast between the bright and dark stripes is high and the stripes are clearly defined.
  • the image received by the imaging unit is generated by the interference of the partially reflected light that propagates inside the glass after passing through the first refractive prism, the bright stripes in the interference fringe image are relatively thin, and the image processing automatically selects the corresponding brightness in the two rows of stripes.
  • the image processing automatically selects the corresponding brightness in the two rows of stripes.
  • the correspondence between the corresponding bright stripes in the two sets of stripes can be accurately obtained during image processing, so that the accuracy is calculated.
  • the surface stress of the glass reduces the measurement error and improves the measurement accuracy.
  • the first refractive prism and the second refractive prism of the present invention are all isosceles triangular prisms, and the principal ray emitted by the light source is perpendicular to the waist of the first refractive prism, due to the first refractive prism and the second refractive prism. All of them are isosceles triangle prisms, so the principal ray perpendicular to the waist of the first refracting prism will be emitted perpendicular to the waist of the second refracting prism, and the principal ray is incident and emitted vertically, which greatly reduces the loss of optical energy and improves measurement accuracy.
  • the first refractive prism and the bottom of the second refractive prism have the same size, and the sum of the size of the bottom edge of the first refractive prism and the bottom edge of the second refractive prism is less than or equal to the size of the glass to be tested, along the interior of the glass to be tested.
  • the partially reflected light that is propagated can be all coupled to the second refractive prism, which prevents light from being emitted from the glass end face to the outside of the glass, thereby causing loss of light energy and improving measurement accuracy.
  • the first refractive prism is disposed in contact with the second refractive prism, which can further improve the measurement accuracy of the stress measuring instrument of the present invention.
  • a multiple tempered glass surface stress meter is also provided.
  • Fig. 7 is a view showing the structure of a multiple tempered glass surface stress meter of the present invention. Since the stress device using the single optical path system tests the surface stress of the tempered glass multiple times, if one of the interference fringes is amplified, the other interference fringes will have the same amplification effect, but the same multiples are applied to the various interference fringes of different properties. Amplification results in at least one of the stripes being difficult to accurately read, and thus the present invention employs a method of surface stress testing of a plurality of strengthened glass by a multi-optical system.
  • This embodiment is directed to a dual optical path system for secondary tempered glass.
  • a light emitting unit, a light refracting element, and an imaging unit are sequentially disposed along the optical path in the outer frame 10, wherein the light emitting unit includes two light sources 21 22, two light source height adjusting devices 210, 220, the light sources 21, 22 are respectively fixed on the light source height adjusting devices 210, 220, when used, the light emitting angle of the light source can be adjusted according to actual conditions, so that the light emitted by the light source passes through the refractive prism Critical reflection occurs on the glass to be tested, which improves the measurement accuracy.
  • the light source height adjusting device 210, 220 may be any structure capable of adjusting the height of the light source.
  • the outer frame is provided with a light source lifting frame, and the light source lifting frame is connected with the lifting and adjusting hand wheel via a rack gear transmission mechanism, and the light source is fixed to the light source.
  • the light source can be lifted and lowered by driving the lifting and adjusting hand wheel;
  • the light refraction element comprises two refractive prisms 31, 32, and the refractive prisms 31, 32 are respectively located in the light emitting direction of the light sources 21, 22 for placing the glass to be tested.
  • the light emitted by the light sources 21, 22 is refracted by the refractive prisms 31, 32 and then enters the imaging unit for imaging.
  • the optical path between the light source and the image sensor of the present invention may also be set.
  • the filter is not limited in specific position.
  • the filter may be a band pass filter such as an interference filter, or the light beam entering the imaging barrel may be monochromatic light having a certain spectral width, which further improves the measurement accuracy.
  • the imaging unit of the present embodiment includes two imaging lens barrels 41, 42, two imaging lens barrel angle adjusting mechanisms 401, 402, two image sensors 43, 44, and lenses 51, 52 are respectively disposed in the imaging lens barrels 41, 42.
  • the lens adjustment mechanisms 501, 502 for adjusting the lenses 51, 52 are respectively disposed on the outer surface of the imaging barrel. Since the first reinforcement stripe and the second enhancement stripe need different magnifications in order to accurately acquire the two types of interference fringe information at the same time, the magnification of the lens 51 and the lens 52 in this embodiment is different, and the focal length of the lens 51 is 100-150 mm. The focal length of the lens 52 is 150-200 mm.
  • the front ends of the imaging barrels 41, 42 are respectively located in the light refraction direction of the refractive prisms 31, 32, and the rear ends of the imaging barrels 41, 42 are respectively provided with image sensors 43, 44, and the image sensors 43, 44 may be in CCD or CMOS.
  • the front end of the CCD or CMOS is provided with a double polarizing plate, and the directions of the double polarizing plates are perpendicular to each other.
  • the image sensors 43, 44 may also be industrial cameras based on CCD or CMOS.
  • the light sources 21, 22 in this embodiment select a monochromatic light source having a wavelength in the range of 500-900 nm
  • the image sensors 43, 44 are CCD-based dual-polarization industrial cameras, avoiding two shots from the glass after birefringence.
  • the roads are mutually doped with each other, so that the two beams can be significantly recognized as two parts, improving the measurement accuracy.
  • light intensity attenuating sheets 45 and 46 and light intensity attenuating sheet adjusting mechanisms 405 and 406, and light intensity attenuating sheets 45 and 46 are respectively disposed.
  • the specific placement position is not limited, and the light intensity can be freely adjusted according to the working process to adapt to the image sensor for detection.
  • the imaging lens barrels 41 and 42 of the present invention may be respectively provided with two wide-angle lenses (not shown), and the two wide-angle lenses respectively Located at the rear end of the image sensors 43, 44.
  • the stress meter of the embodiment is also provided with automatic The drip device, as shown in FIG.
  • the automatic drip device includes a liquid storage tank 60 provided on the outer frame 10, a transfer pump 601, 602, a drip holder 61, drip devices 621, 622, and a drip control mechanism,
  • the liquid containers 621, 622 are provided at one end of the drip holder 61, and the drip control mechanism controls the transfer pumps 601, 602 to transport the refraction liquid in the liquid storage tank 60 to the drip feeders 621, 622 to realize automatic dripping.
  • the drip stand is an adjustable stand and the position of the dripper can be freely adjusted as needed.
  • the drip control mechanism in the present invention is any device capable of implementing a drip control function, such as a computer with a control processing function.
  • a waste liquid collection tank 70 is disposed below the refractive prisms 31 and 32.
  • a waste liquid collection tank 71 is further disposed below the waste liquid collection tank, and the waste liquid collection tank 71 is connected through a pipeline. Waste liquid collection tank 70.
  • the used refraction fluid can be collected through the waste collection tank to prevent the refraction droplets from falling on the instrument and affecting the life of the instrument.
  • the image sensor of the present invention can also be connected to the data processing unit according to requirements, and the data processing unit realizes real-time collection and analysis of the surface stress of the glass to be tested according to the input signal of the image sensor, and completes the surface stress of the tempered glass multiple times. Detection.
  • the data processing device can be a general purpose computer with data processing software or a dedicated data processor.
  • Fig. 8 is a view showing the use effect of the stress meter for testing the surface stress of the secondary tempered glass according to the present invention, wherein Fig. 8(a) is a second enhanced stripe effect diagram, and Fig. 8(b) is a read one. Enhanced stripe effect map. Can be seen from Figure 8 (a) Therefore, when the secondary reinforcing stripe is read, the interference fringe of the secondary reinforcement is relatively clear, but the one-time reinforcing stripe is dense and dense, and it is not easy to accurately recognize. When the reinforcing stripe is read once in Fig.
  • the interference fringe of one strengthening becomes very clear and is easy to be accurately recognized, and the secondary reinforcing stripe at this time is Due to the enlargement of the larger multiple, the stripes become very thick and the position thereof is not easy to determine. Since the stress meter of the invention adopts the design of the multi-optical path system, different degrees of adjustment can be simultaneously performed according to the properties of different interference fringes, so that the information of a plurality of interference fringes can be accurately read in one test, thereby greatly improving the measurement accuracy and efficiency.
  • the height adjusting device is passed through the light source. Adjust the height of the light source to adjust a suitable angle of light emission, so that the light is reflected by the refractive prism on the glass to be tested.
  • the light is refracted by the refractive prism and enters the imaging tube for image recognition.
  • the image after recognition is converted by the image sensor.
  • the invention adopts a multi-optical path system, the angles of the light source, the lens and the imaging barrel can be adjusted by the light source height adjusting device, the lens adjusting mechanism and the imaging lens barrel angle adjusting mechanism at the same time to test the surface stress of the glass, so that each light path is adjusted.
  • the image of at least one type of interference fringe is very clear, so that image recognition of one or more enhanced interference fringes can be performed simultaneously without affecting each other, thereby improving measurement accuracy and efficiency.
  • tempered glass surface stress gauges on the market include a light source, a birefringent prism, an eyepiece, an industrial camera, and a birefringent prism is located at a light emitting direction of the light source.
  • One end of the eyepiece is located in the direction of light refraction of the birefringent prism, and the other end is connected to an industrial camera.
  • the interference fringes of multiple tempered glass are obviously different due to multiple strengthening, and the interference fringes are strengthened and dense after repeated strengthening.
  • the enhanced interference fringes are thin but thick. Since the one-time reinforcing stripe is too dense and the image recognition judgment is inconvenient, the stripe needs to be enlarged, but it is limited by the angle of view of the eyepiece, and the stripe after the enlargement cannot be completely recognized. Therefore, the stress meter cannot perform the stress on the surface of the tempered glass multiple times. test.
  • the Chinese utility model patent CN201520111147.8 discloses a secondary tempered glass automatic surface stress meter, which compensates for the blank of the secondary tempered glass inspection industry by providing a wide-angle lens at the front end of the industrial camera and adjusting the light source.
  • the stress of the secondary tempered glass is detected by the stress meter, although the wide-angle lens provided through the front end of the eyepiece can completely recognize all the stripes, the secondary reinforcing stripe is obviously thickened after the enlargement, and the position of the secondary stripe is still difficult to be read. Take, only one estimate can be taken, which affects the measurement accuracy.
  • the beneficial effect of the multiple tempered glass surface stress meter of the present invention is that since at least two light sources, a refractive prism, an imaging lens barrel and an image sensor are provided, the stress meter of the present invention can simultaneously read accurately by adopting a multi-optical path system. Once and fortified stripe, the measurement accuracy and efficiency are greatly improved. Since the primary reinforcing stripe is significantly different from the multiple reinforcing stripe, the primary reinforcing stripe is dense and dense, and the multiple reinforcing stripe is sparse and thick, so that the lens magnifications in the optical path of the present invention are not equal to each other, and the lens in the optical path system for identifying the primary reinforcing stripe is recognized.
  • the multiple is larger than the lens multiple in the multiple-strength stripe optical path system.
  • the primary reinforcing stripe can be enlarged a large extent, so that the enhanced stripe can be accurately and quickly read, and the multiple-strength stripe is amplified by a small amount to ensure the small amplitude amplification.
  • the position of the reinforcing stripe multiple times is easy to determine.
  • the imaging lens barrel of the present invention is provided with a wide-angle lens at the front end of the image sensor.
  • the invention also has an automatic drip device, which can automatically drop the liquid to the refracting prism according to the demand situation, thereby avoiding time and labor for manual operation.
  • a waste liquid collection tank is arranged below the refractive prism, which can collect the used refractive liquid to prevent dripping on the instrument and affect the service life of the instrument.
  • the lens adjusting mechanism, the eyepiece angle adjusting device and the light source height adjusting device can be freely adjusted and conveniently used by the user according to actual needs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种玻璃表面应力仪和多次钢化玻璃表面应力仪,玻璃表面应力仪包括光源(810、910)、光折射元件(820、920)、成像单元,光折射元件(820、920)位于光源(810、910)的光发射方向,供放置待测玻璃(970),光源(810、910)发出的光经光折射元件(820、920)折射后进入成像单元成像,成像单元包括透镜组(830、940)和图像传感器(840、960),透镜组(830、940)的前端位于光折射元件(820、920)的光折射方向,后端设有图像传感器(840、960)。利用所述玻璃表面应力仪可以测量玻璃表面的应力,通过应力可以获知玻璃是否符合要求。

Description

玻璃表面应力仪和多次钢化玻璃表面应力仪 技术领域
本发明涉及应力检测装置,具体而言,涉及一种玻璃表面应力仪和多次钢化玻璃表面应力仪。
背景技术
我们知道,钢化玻璃又称强化玻璃,它是一种预应力玻璃,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层压力,从而提高了承载能力,因而钢化玻璃广泛应用于建筑门窗、玻璃幕墙、电子仪表等领域。但是钢化玻璃切割后边缘会存在大量微裂纹,导致玻璃强度降低。尤其是随着触控产业的蓬勃发展,触控产品本身的规格要求也日渐严格,由于触控面板是由外部施加压力去进行感应组件的运作方式从而达到使用效果,因此产品的机械抗压力是各大厂商的重要规范与指标,在这种市场背景下,多次钢化玻璃应运而生。所谓多次钢化玻璃,是指通过物理方式或化学方式对钢化完的玻璃再进行多次强化,因而多次钢化玻璃的抗压性能得以大幅提高。
此外,虽然经过钢化处理的玻璃由于产生应力从而提高了其承载力,但是这种应力通常是极不均匀的,会降低钢化玻璃制品的机械强度和热稳定性,影响玻璃制品的安全使用,严重时甚至会发生自爆现象。尤其是随着触控产业的蓬勃发展,触控产品本身的规格要求也日渐严格,由于触控面板是由外部施加压力去进行感应组件的运作方式从而达到使用效果,因此产品的机械抗压力是各大厂商的重要规范与指标。对于光学玻璃,较大应力的存在也严重影响了光学透光性及成像质量。
随着现代科技的迅猛发展,尤其是手机屏幕的日新月异,具有更符合人体工程学及消费者习惯等优点的曲面玻璃屏幕手机应运而生。所谓曲面玻璃,是指整体玻璃不在一个平面上,通常有弧形、J形、V形、双面弯曲形、S形、双折版等。曲面玻璃的制造工艺比平面玻璃要复杂的多,首先玻璃板要在加热段中进行加热,即将玻璃板加热到其玻璃态转化温度或高于其玻璃态转化温度,加热后的高温玻璃由加热炉送至设有内凹成型面的成型段,玻璃板依靠自身重力下垂弯曲至内凹成型面,从而弯制成不等弧的曲面玻璃,最后将弯曲成型后的高温玻璃板输送至钢化段进行冷却钢化。虽然经过钢化处理的曲面玻璃由于产生应力从而提高了其承载力,但是这种应力通常是极不均匀的,严重时会降低曲面玻璃制品的机械强度和热稳定性,影响玻璃制品的安全使用,严重时甚至会发生自爆现象。对于光学玻璃,较大应力的存在也严重影响了透光性及成像质量。
因而,为保证玻璃制品的使用性能,玻璃的应力要控制在规定范围内,这就要求对玻璃的应力进行测试。
发明内容
本发明的主要目的在于提供一种玻璃表面应力仪和多次钢化玻璃表面应力仪,以解决现有技术中的难以测试玻璃表面的应力的问题。
根据本发明的一个方面,提供了一种玻璃表面应力仪,包括光源、光折射元件、成像单元,光折射元件位于光源的光发射方向,供放置待测玻璃,光源发出的光经光折射元件折射后进入成像单元成像,成像单元包括透镜组和图像传感器,透镜组的前端位于光折射元件的光折射方向,后端设有图像传感器。
进一步地,光折射元件是一面为曲面的三角棱镜。
进一步地,三角棱镜为等腰三角棱镜,等腰三角棱镜的底面为曲面,且光源发出的主光线垂直于等腰三角棱镜的腰。
进一步地,等腰三角棱镜的曲面为凹面时,透镜组为显微物镜,且显微物镜的工作距离大于等腰三角棱镜底边长的一半。
进一步地,三角棱镜曲面的曲率与待测曲面玻璃的曲率相同。
进一步地,光折射元件是沿光路方向设置有第一折射棱镜和第二折射棱镜,透镜组的前端位于第二折射棱镜的光折射方向,成像单元还包括偏振装置,透镜组的后端设有偏振装置,偏振装置的后端设有图像传感器。
进一步地,第一折射棱镜和第二折射棱镜均为等腰三角棱镜,且光源发出的主光线垂直于第一折射棱镜的腰。
进一步地,第一折射棱镜与第二折射棱镜底边的尺寸相同,且第一折射棱镜底边的尺寸与第二折射棱镜底边的尺寸之和小于或等于待测玻璃的尺寸。
进一步地,第一折射棱镜和第二折射棱镜相接设置。
进一步地,偏振装置由两片偏振方向互相垂直的偏振片拼接而成。
进一步地,光源是波长为500-900nm范围的单色光源。
进一步地,光源与光折射元件之间设置有会聚透镜,光源发出的光经会聚透镜会聚后入射到光折射元件,光源、会聚透镜与光折射元件之间的距离满足高斯光学公式。
进一步地,光源与图像传感器之间的光路上还设有衰减片,可以根据需要对光线强弱进行调节。
进一步地,图像传感器可以为CCD或CMOS中的一种,CCD或CMOS前端设有偏振方向互相垂直的双偏振片;图像传感器也可以是基于CCD或CMOS的双偏振工业相机。
进一步地,图像传感器连接有数据处理单元。
进一步地,图像传感器可以为CCD或CMOS中的一种,也可以是基于CCD或CMOS的工业相机。
根据本发明的另一个方面,还提供了一种多次钢化玻璃表面应力仪,设有外框架,外框架内沿光路依次设置光发射单元、光折射元件、成像单元,其特征在于,光发射单元包括至少两个光源以及至少两个光源高度调节装置,光源分别固定在光源高度调节装置上;光折射元件包括至少两个折射棱镜,折射棱镜分别位于光源的光线发射方向,供放置待测玻璃,光源发出的光经折射棱镜折射后进入成像单元成像;成像单元包括至少两个成像镜筒、至少两个成像镜筒角度调节机构以及至少两个图像传感器,成像镜筒内均分别设有透镜及透镜调节机构,透镜的放大倍数互不相同,成像镜筒的前端分别位于折射棱镜的光折射方向,成像镜筒的后端分别设有图像传感器。
进一步地,光源是波长为500-900nm范围的单色光源。
进一步地,光源与折射棱镜之间的光路上设置有滤波片。
进一步地,光源与图像传感器之间的光路上设有光强衰减片及光强衰减片调节机构。
进一步地,成像镜筒上位于图像传感器的前端设有广角镜头。
进一步地,图像传感器可以为CCD或CMOS中的一种,CCD或CMOS前端设有双偏振片;也可以是基于CCD或CMOS的双偏振工业相机。
进一步地,还设有自动滴液装置,自动滴液装置包括设在外框架上的储液罐、输送泵、滴液支架、滴液器以及滴液控制机构,输送泵以及滴液器均至少设有两个,滴液器设在滴液支架的一端,滴液控制机构控制输送泵将储液罐中的折射液输送到滴液器进行滴液。
进一步地,滴液支架为可调节支架,滴液器的位置可根据需要自由调节。
进一步地,外框架上位于折射棱镜的下方设有一废液收集槽,废液收集槽下方设有废液收集罐,废液收集罐通过管路连接废液收集槽。
进一步地,图像传感器连接有数据处理单元。
利用本发明的玻璃表面应力仪可以测量玻璃表面的应力,通过应力可以获知玻璃是否符合要求。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的玻璃表面应力仪第一种结构的示意图;
图2示出了根据本发明的玻璃表面应力仪第二种结构的示意图;
图3示出了根据本发明的玻璃表面应力仪第三种结构的示意图;
图4示出了根据本发明的玻璃表面应力仪第四种结构的示意图;
图5示出了利用现有玻璃应力仪测量时得到的干涉条纹图像;
图6示出了利用本发明的第三种结构的玻璃表面应力仪测量时得到的干涉条纹图像;
图7示出了根据本发明的多次钢化玻璃表面应力仪的结构示意图;
图8示出了根据本发明的多次钢化玻璃表面应力仪的使用效果。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
根据本发明的一个方面,提供了一种玻璃表面应力仪,包括光源、光折射元件、成像单元,光折射元件位于光源的光发射方向,供放置待测玻璃,光源发出的光经光折射元件折射后进入成像单元成像,成像单元包括透镜组和图像传感器,透镜组的前端位于光折射元件的光折射方向,后端设有图像传感器。
实施例一
图1示出了本发明应力仪的一种实施例结构示意图。本发明所述的玻璃表面应力仪,包括光源810、光折射元件、成像单元,光折射元件位于光源810的光发射方向,供放置待测玻璃,光源发出的光经光折射元件折射后进入成像单元成像。由图1可以看出,本实施例中的光折射元件是底面为曲面的三角棱镜820,所述的成像单元包括透镜组830和图像传感器840,透镜组830的前端位于三角棱镜820的光折射方向,后端设有图像传感器840。为了便于图像传感器840接收清晰图像,三角棱镜、透镜组与图像传感器之间的距离满足高斯光学公式,即:1/d2=1/f+1/d1,其中,d2为透镜组与图像传感器之间的距离,d1为三角棱镜与透镜组之间的距离,f为透镜组的焦距。
经钢化处理的玻璃在其表面会产生应力层,入射到玻璃表面的全反射光在应力层的作用下产生双折射,形成两束偏振方向互相垂直且传播方向不同的光束,该两束光束通过成像单元被转换成便于识别的亮条纹或暗条纹,通过计算干涉条纹信息从而获得相应玻璃表面应力值。因而,在利用上述原理测试玻璃表面应力信息时,必须要使光源发出的光经待测玻璃与折射棱镜的接触面发生全反射。但是,利用现有应力仪去测曲面玻璃应力时,由于折射棱镜的表面为平面,曲面玻璃无法与其完全贴合,因而光源发出的光就无法在待测玻璃与折射棱镜不能贴合的部位发生全反射,也就无法测出该部位的应力信息。对此,本发明应力仪的光折射元件采用一面为曲面的三角棱镜,三角棱镜的曲面供放置待测曲面玻璃,由于三角棱镜的一面为曲面,可以较好地与待测曲面玻璃相贴合,因而光源发出的光能够在待测玻璃与三角棱镜的接触面发生全反射。同时,本发明应力仪在成像单元设置了透镜组,可以根据实际需要对全反射后的光进行不同范围的会聚或发散,以便设置在透镜组后端的图像传感器接收清晰干涉图像。
实施例二
图2示出了本发明的一种优选实施例,如图2所示的应力仪,包括光源810、三角棱镜820、透镜组和图像传感器,三角棱镜820位于光源810的光发射方向,供放置待测玻璃。作为优选实施方式,本实施例中的三角棱镜820为等腰三角棱镜,等腰三角棱镜的底面为曲面,且光源发出的主光线垂直于等腰三角棱镜的腰,由于折射棱镜为等腰三角棱镜,因而垂直于等腰三角棱镜腰的主光线将会以垂直于等腰三角棱镜另一腰的方式射出,由于主光线垂直地射入射出,因而大大减小了光的损耗,提高了测量精度。另外,由于本发明应力仪是通过光源发出的光在折射棱镜与待测玻璃的接触面发生全反射,从而测得待测玻璃的应力信息,因而,作为优选的实施方式,本实施中等腰三角棱镜底面的曲率与待测曲面玻璃的曲率相同,待测曲面玻璃与等腰三角折射棱镜可以完全贴合,光源发出的光可以在待测玻璃的任意位置发生全反射,进一步提高了测量精度。
由于曲面玻璃上下表面待测应力位置的不同,等腰三角棱镜的曲面可以为凹面,也可以为凸面。本实施例中等腰三角棱镜820的曲面为凹面,因而光源810发出的光经等腰三角棱镜与待测曲面玻璃的接触面全反射之后会产生较大幅度的发散,对此,本实施例在等腰三角棱镜的光折射方向设置了显微物镜831,由图2可以看出,显微物镜831的前端位于等腰三角棱镜820的光折射方向,后端设有图像传感器。显微物镜831便于操作使用,同时可以对发散的光进行较大幅度的会聚,以便设置在显微物镜后端的图像传感器接收。
由于待测玻璃弯曲程度的不同,光源发出的光经接触面全反射之后会具有不同程度的发散,同时玻璃加工工艺的不同也会导致表面应力的疏密程度不同,因而在测试曲面玻璃应力之前,要根据待测玻璃的曲率及加工工艺的不同,选择放大率不同的显微物镜。在本实施例中,待测曲面玻璃的曲率半径为36mm,显微物镜的放大倍数为2倍-8倍,优选4倍。显微物镜的工作距离大于等腰三角棱镜底边长的一半,使显微物镜后端的图像传感器能够接收到清晰的干涉条纹图像,成像质量得以大幅提升。当然,本发明所述的三角棱镜的曲面也可以为凸面,当曲面为凸面时,由于光源发射出的光经凸面与待测玻璃的接触面全反射之后会发生一定的会聚,因而此时就不需要透镜组较大倍数的会聚即可清晰成像在图像传感器上。当凸面曲率较大时,由于对全反射之后的光进行了较大程度的会聚,此时通过透镜组可以对会聚光束进行适当程度的发散,以使图像传感器能够清晰接收干涉图像。
本实施例中的光源810是能发射出具有中心波长的单色光的光源,可以排除其它波长光的影响,以便得到清晰的干涉条纹图像。本实施例中优选中心波长为500-900nm范围的单色光源。由于光源发出的光为发散光,为了使光源发射的光更好地入射到三角棱镜820,本实施例中在光源与三角棱镜之间设置有会聚透镜811,光源发出的光经会聚透镜811会聚后入射到三角棱镜,光源、会聚透镜与三角棱镜之间的距离满足高斯光学公式,即1/d4=1/f0+1/d3,其中,d4为会聚透镜与三角棱镜之间的距离,f0为会聚透镜的焦距,d3为光源与会聚透镜之间的距离。
本发明所述的光源也可以不是单色光源,对此,可以在光源与图像传感器之间的光路上设置带通滤波片对光源发射出的光进行滤波使之成为单色光。当然,即使光源是单色光源,也可以在光源与图像传感器之间的光路上设置带通滤波片,对光源发射的光进一步提纯,使 之成为半高宽更窄的单色光。本实施例中,光源与会聚透镜之间的光路上设置有带通滤波片812,带通滤波片812的半高宽≤3nm。本实施例光源与图像传感器之间的光路上还设有衰减片813,使用者可以根据实际情况对光线强弱进行调节。
本发明所述的图像传感器可以为CCD或CMOS中的一种,CCD或CMOS前端设有偏振方向互相垂直的双偏振片;图像传感器也可以是基于CCD或CMOS的双偏振工业相机。在本实施例中,图像传感器为基于CCD的工业相机841,工业相机前端设置有双偏振片842,双偏振片842可以由两片偏振方向互相垂直的偏振片拼接而成,用于将从三角棱镜与待测玻璃接触面全反射后的光显著地识别为亮、暗条纹。双偏振片后端的图像传感器用于光电转换,将接收到的亮、暗条纹的光学信息转化为数字信号。
较佳地,本实施例所述的图像传感器还可以根据需要连接数据处理单元850,数据处理单元850根据图像传感器的输入信号实现对待测玻璃表面应力的实时采集和分析,完成曲面玻璃表面应力的精确检测。该数据处理单元850可以是具有数据处理软件的通用计算机,或者是专用数据处理器。
使用本发明应力仪测试曲面玻璃表面应力时,首先测定待测玻璃的曲率,根据测得的玻璃曲率选择合适的三角棱镜,三角棱镜曲面的曲率与待测玻璃的曲率越接近,本发明应力仪的测量结果也就越精确。将待测玻璃放置三角棱镜处,使二者贴合,接触面可以滴少量折射液以便待测玻璃与三角棱镜更好地接触,从而提高测量精度。调整光源,最好使光源以主光线垂直于三角棱镜入射边的角度设置,光源发出的光在待测玻璃与三角棱镜的接触面发生全反射之后进入成像单元,成像单元中的透镜组对全反射后的光进行适当的调整后入射到偏振方向互相垂直的双偏振片,经过双偏振片后的光束被显著识别为亮、暗条纹,双偏振片后端的图像传感器将接收到的亮、暗条纹进行光电转换后,将得到的电信号输入到数据处理单元完成最终表面应力的精确检测。
市场上常见的钢化玻璃表面应力仪包括光源、折射棱镜、目镜、工业相机,折射棱镜为平面棱镜且位于光源的光线出射方向,目镜的一端位于双折射棱镜的光折射方向,另一端连接工业相机,利用这种应力仪进行测试时,将待测玻璃放置在折射棱镜表面,光源发出的光经折射棱镜折射后进入工业相机成像。但是,使用现有应力仪去测试曲面玻璃表面应力时,由于折射棱镜为平面棱镜,曲面玻璃放置其表面时,不能与折射棱镜完全贴合,光源发出的入射光难以在不能贴合的部分发生全反射,导致这种应力仪无法测出曲面玻璃表面的应力。
实施例一和实施例二的有益效果是,由于本发明应力仪的光折射元件是一面为曲面的三角棱镜,测试曲面玻璃表面应力时,三角棱镜的曲面可以与待测玻璃相贴合,光源发出的单色光经三角折射棱镜与待测曲面玻璃的接触面发生全反射,从而在全反射后的光中包含了被测玻璃的双折射信息,再进入成像单元进行成像,即可测得被测玻璃表面应力信息。作为优选方案,本发明所述的三角棱镜为等腰三角棱镜,等腰三角棱镜的底面为曲面,且光源发出的主光线垂直于等腰三角棱镜的腰,由于折射棱镜为等腰三角棱镜,因而垂直于等腰三角棱镜腰的主光线将会以垂直于等腰三角棱镜的另一腰的方式射出,由于主光线垂直地射入射出,因而大大减小了光的损耗,提高了测量精度。成像单元中的透镜组通过选用显微物镜,便于 操作使用,同时,显微物镜的工作距离大于等腰三角棱镜底边长的一半,使显微物镜后端的图像传感器能够接收到清晰的干涉条纹图像,成像质量得以大幅提升。由于本发明所述的三角棱镜曲面的曲率与待测曲面玻璃的曲率相同,因而利用本发明应力仪测试曲面玻璃表面应力时,待测曲面玻璃可与三角折射棱镜完全贴合,光源发出的光可以在待测玻璃的任意位置发生全反射,更进一步提高了测量精度。
实施例三
图3示出了本发明应力仪的一种实施例结构示意图。如图3所示,本实施例所述的玻璃表面应力仪,包括光源910、光折射元件、成像单元,光折射元件位于光源的光发射方向,供放置待测玻璃970,光源发射的光经折射元件折射后进入成像单元成像。由图3可以看出,本实施例所述的光折射元件是沿光路方向设置有第一折射棱镜920和第二折射棱镜930,所述的成像单元包括透镜组940、偏振装置950和图像传感器960,透镜组940的前端位于第二折射棱镜930的光折射方向,透镜组940的后端连接偏振装置950,偏振装置用于将从第二折射棱镜出射的光成分分离成相对于待测玻璃与第二折射棱镜的接触面平行的振动和垂直的振动的两种光成分,这两种光成分被显著识别为两组亮、暗条纹相间的条纹列。偏振装置950的后端设有图像传感器960。为了便于图像传感器960接收清晰图像,第二折射棱镜930、透镜组940与图像传感器960之间的距离满足高斯光学公式,即1/d2=1/f+1/d5,其中,d2为透镜组与图像传感器之间的距离,d5为第二折射棱镜与透镜组之间的距离,f为透镜组的焦距。
经钢化处理的玻璃在其表面会产生应力层,入射到玻璃表面的全反射光在其应力层的作用下会产生双折射,形成两束偏振方向互相垂直且传播方向不同的光束,该两束光束通过成像单元被转换成便于识别的两组亮、暗条纹相间的条纹列,通过对比两组条纹列中相应亮条纹或暗条纹之间的对应关系计算钢化玻璃表面的应力。但是,由于光源发出的光在折射棱镜与待测玻璃接触面发生全反射之后,有部分满足波导模式的全反射光被玻璃表层束缚后沿玻璃内部传播至玻璃端面出射,出射的这部分光能损耗导致成像单元接收到的图像亮度衰减,图像亮度衰减造成亮条纹和暗条纹之间的对比度变低,如图5所示,而且成像单元得到的干涉条纹图像中暗条纹比较细,图像处理时会自动选择对比两组条纹列中相应暗条纹之间的对应关系,由于暗条纹与亮条纹之间条纹边界不清晰,尤其是暗条纹的边界不清晰,图像处理时难以精确获取两组条纹列中相应暗条纹之间的对应关系,导致测量精度低。对此,本发明应力测量仪沿光路方向设置了第一折射棱镜和第二折射棱镜,沿玻璃内部传播的这部分全反射光被耦合进入第二折射棱镜,从第二折射棱镜出射后,进入到第二折射棱镜后端的成像单元进行成像。由于经过第一折射棱镜后在玻璃内部传播的这部分全反射光没有在玻璃端面传出至玻璃外面,而是被耦合进入第二折射棱镜后由成像单元接收,因而成像单元接收到的图像亮度没有衰减,亮条纹和暗条纹之间的对比度高,同时,由于成像单元接收到的图像是由经过第一折射棱镜后在玻璃内部传播的这一部分全反射光干涉产生,干涉条纹图像中亮条纹比较细,如图6所示,图像处理时会自动选择两组条纹列中相应亮条纹之间的对应关系,由于亮条纹的边界非常清晰,且亮条纹与暗条纹之间的对比度高,因而图像处理时可以精确获取两组条纹列中相应亮条纹之间的对应关系,从而精确计算出玻璃表面应力,减小了测量误差,提高了测量精度。
实施例四
图4示出了本发明应力仪的一种优选实施例。如图4所示的应力仪,包括光源910、第一折射棱镜920、第二折射棱镜930、透镜组940、偏振装置950以及图像传感器960,第一折射棱镜920和第二折射棱镜930供放置待测玻璃970,透镜组940的前端位于第二折射棱镜930的光折射方向,透镜组940的后端设有偏振装置950,偏振装置950的后端设有图像传感器960。作为优选实施方式,本实施例中所述的第一折射棱镜920和第二折射棱镜930均为等腰三角棱镜,且光源910发出的主光线垂直于第一折射棱镜920的腰,因而垂直于第一折射棱镜腰的主光线将会以垂直于第二折射棱镜腰的方式出射,主光线垂直地入射和出射,大大减小了光能损耗,提高了测量精度。本实施例中,第一折射棱镜920与第二折射棱镜930底边的尺寸相同,且第一折射棱镜底边的尺寸与第二折射棱镜底边的尺寸之和小于或等于待测玻璃970的尺寸,因而经过第一折射棱镜全反射后在玻璃内部传播的这部分全反射光能够被全部耦合至第二折射棱镜930,避免了光从玻璃端面出射至玻璃外面而造成光能损耗,提高了测量精度。从图4可以看出,第一折射棱镜920与第二折射棱镜930相接设置,可以进一步提高本发明应力测量仪的测量精度。
本实施例中的光源910是能发射出具有中心波长的单色光的光源,可以排除其它波长光的影响,以便得到清晰的干涉条纹图像。本实施例中优选中心波长为500-900nm范围的单色光源。由于光源发出的光为发散光,为了使光源发射的光最大程度地入射到第一折射棱镜920,本实施例中在光源910与第一折射棱镜920之间设置有会聚透镜911,光源发出的光经会聚透镜911会聚后入射到第一折射棱镜,光源910、会聚透镜911与第一折射棱镜920之间的距离满足高斯光学公式,即:1/d4=1/f0+1/d3,其中,d4为会聚透镜与第一折射棱镜之间的距离,f0为会聚透镜的焦距,d3为光源与会聚透镜之间的距离。为了操作方便,本发明测量仪还设置有用于安装会聚透镜911的透镜支架914,透镜支架由第一支撑板、第二支撑板和第三支撑板构成,其中,第一支撑板上安装会聚透镜,第二支撑板与第一支撑板的夹角为90°,第三支撑板与第二支撑板的夹角为120°,使用时将第三支撑板以垂直于工作台的方式放置,光源910发出的光线经第一支撑板上的会聚透镜会聚后入射到第一折射棱镜920。为使光源发出的主光线垂直于第一折射棱镜的入射边,透镜支架914的第一支撑板呈与入射边平行的方向设置,因而此时第一折射棱镜为等边三角棱镜,为了使垂直于第一折射棱镜入射边的主光线以垂直于第二折射棱镜出射边的方式出射,第二折射棱镜也为等边三角棱镜。由于第一折射棱镜和第二折射棱镜均为等边三角棱镜,提高了本发明应力仪的集成度,使本发明装置占据空间更小,结构合理,使用便利。
本发明所述的光源也可以不是单色光源,对此,可以在光源与图像传感器之间的光路上设置带通滤波片对光源发射出的光进行滤波使之成为单色光。当然,即使光源是单色光源,也可以在光源与图像传感器之间的光路上设置带通滤波片,对光源发射的光进一步提纯,使之成为半峰宽更窄的单色光。本实施例中,光源与会聚透镜之间的光路上设置有带通滤波片912,带通滤波片912的半峰宽≤3nm。本实施例光源与图像传感器之间的光路上还设有衰减片913,使用者可以根据实际情况对光线强弱进行调节。
本发明所述的偏振装置是由两片偏振方向互相垂直的偏振片拼接而成,两片偏振片后端设有图像传感器,所述的图像传感器可以为CCD或CMOS中的一种,也可以是基于CCD或CMOS的工业相机。在本实施例中,图像传感器为基于CCD的工业相机961,用于光电转换,将接收到的亮、暗条纹的光学信号转换为数字信号。
作为优选实施方式,本实施例所述的图像传感器960还可以根据需要连接数据处理单元980,数据处理单元980根据图像传感器的输入信号实现对待测玻璃表面应力的实时采集和分析,完成钢化玻璃表面应力的精确检测。该数据处理单元980可以是具有数据处理软件的通用计算机,或者是专用数据处理器。
使用本发明应力仪检测钢化玻璃表面应力时,首先根据待测玻璃的尺寸选择合适的第一折射棱镜和第二折射棱镜,第一折射棱镜与第二折射棱镜为等腰三角棱镜的时候,本发明应力测量仪的测量精度更高。当第一折射棱镜的底边尺寸与第二折射棱镜的底边尺寸相同,且尺寸之和小于或等于待测玻璃的尺寸时,测量精度得以进一步提高。将待测玻璃放置第一折射棱镜与第二折射棱镜之上,使第一折射棱镜与第二折射棱镜的底边完全与待测玻璃相接触,接触面可以滴少量折射液以便待测玻璃与第一折射棱镜和第二折射棱镜更好的相贴合,从而提高测量精度。调整光源,最好使光源以主光线垂直于第一折射棱镜入射边的角度设置,光源发出的光在第一折射棱镜与待测玻璃的接触面发生全反射,其中一部分满足波导模式的全反射光被玻璃表层束缚后沿玻璃内部传播至第二折射棱镜处时,被耦合进入第二折射棱镜,从第二棱镜出射后,进入到第二折射棱镜后端的成像单元,成像单元中的透镜组对接收到的光进行适当调整后入射到后端的偏振装置,经过偏振装置的光被显著识别为两组亮、暗条纹相间的条纹列,图像传感器将接收到的亮、暗相间的条纹列进行光电转换后,将得到的电信号输入到数据处理单元完成最终钢化玻璃表面应力的精确测量。
目前市场上常见的钢化玻璃表面应力仪包括光源、折射棱镜、目镜、工业相机,折射棱镜位于光源的光线发射方向,目镜的一端位于折射棱镜的光折射方向,另一端连接工业相机,利用这种应力仪检测钢化玻璃表面应力时,将待测玻璃放置在棱镜表面使棱镜与其相贴合,光源发出的光入射到折射棱镜上,在折射棱镜与待测玻璃的接触面发生全反射。由于钢化玻璃表面存在应力,入射到玻璃表面的全反射光在应力层的作用下会产生双折射,形成两束偏振方向互相垂直的光束,该两束光束通过目镜、工业相机后被转换成便于识别的两组亮、暗条纹相间的条纹列,通过对比两组条纹列中相应亮条纹或暗条纹之间的位置对应关系计算玻璃表面的应力。然而,利用现有应力仪测量钢化玻璃表面应力时,虽然光源发出的光经折射棱镜与待测玻璃的接触面发生全反射之后可以得到干涉条纹图像,但是由于全反射之后有部分满足波导模式的光被待测玻璃表层束缚后从玻璃端面出射,出射的这部分光能损耗导致工业相机接收到的图像亮度衰减,图像亮度衰减造成亮条纹和暗条纹之间的对比度变低,条纹边界不清晰。而且,现有应力仪测量时得到的干涉条纹图像中暗条纹比较细,图像处理时会自动选择对比两组条纹列中相应暗条纹之间的对应关系,从而计算出钢化玻璃表面的应力。由于暗条纹与亮条纹之间的对比度低,且暗条纹边界不清晰,图像处理时就无法精确获取两组条纹列中相应暗条纹之间的对应关系,导致现有应力仪测量误差大,测量精度低。
实施例三和实施例四的有益效果是,由于本发明应力测量仪的光折射元件是沿光路方向设置有第一折射棱镜和第二折射棱镜,待测玻璃放置在第一折射棱镜和第二折射棱镜之上,光源发射的光入射到第一折射棱镜之后,在第一折射棱镜与待测玻璃的接触面发生全反射,其中有部分满足波导模式的全反射光被待测玻璃表层束缚后,沿玻璃内部传播。由于沿光路方向还设置有第二折射棱镜,沿玻璃内部传播的这部分全反射光被耦合进入第二折射棱镜,从第二折射棱镜出射后,进入到第二折射棱镜后端的成像单元进行成像。由于经过第一折射棱镜后在玻璃内部传播的这部分全反射光没有在玻璃端面传出至玻璃外面,而是被耦合进入第二折射棱镜后由成像单元接收,因而成像单元接收到的图像亮度没有衰减,亮条纹和暗条纹之间的对比度高,条纹边界清晰。由于成像单元接收到的图像是由经过第一折射棱镜后在玻璃内部传播的这一部分全反射光干涉产生,干涉条纹图像中亮条纹比较细,图像处理时会自动选择两组条纹列中相应亮条纹之间的对应关系,由于亮条纹比较清晰,且亮条纹与暗条纹之间的对比度高,因而图像处理时可以精确获取两组条纹列中相应亮条纹之间的对应关系,从而精度计算出玻璃表面应力,减小了测量误差,提高了测量精度。作为优选方案,本发明所述的第一折射棱镜和第二折射棱镜均为等腰三角棱镜,且光源发出的主光线垂直于第一折射棱镜的腰,由于第一折射棱镜与第二折射棱镜均为等腰三角棱镜,因而垂直于第一折射棱镜腰的主光线将会以垂直于第二折射棱镜腰的方式出射,主光线垂直地入射和出射,大大减小了光能损耗,提高了测量精度。由于第一折射棱镜与第二折射棱镜底边的尺寸相同,且第一折射棱镜底边的尺寸与第二折射棱镜底边的尺寸之和小于或等于待测玻璃的尺寸,沿待测玻璃内部传播的这部分全反射光能够被全部耦合至第二折射棱镜,避免了光从玻璃端面出射至玻璃外面而造成光能损耗,提高了测量精度。第一折射棱镜与第二折射棱镜相接设置,可以进一步提高本发明应力测量仪的测量精度。
根据本发明的另一个方面,还提供了一种多次钢化玻璃表面应力仪。
图7示出了本发明的多次钢化玻璃表面应力仪的结构示意图。由于采用单光路系统的应力装置在测试多次钢化玻璃表面应力时,若对其中某种干涉条纹进行放大,其它干涉条纹会有同样的放大效果,但是对性质不同的多种干涉条纹进行同样倍数放大,就会导致至少其中一种条纹不易精确读取,因而本发明采用的方式是通过多光路系统对多次强化的玻璃进行表面应力测试。
本实施例是针对二次强化玻璃采用的双光路系统,如图7所示,外框架10内沿光路依次设置光发射单元、光折射元件、成像单元,其中,光发射单元包括两个光源21、22,两个光源高度调节装置210、220,光源21、22分别固定在光源高度调节装置210、220上,使用时可以根据实际情况调节光源的光线发射角度,使光源发射的光线经过折射棱镜在待测玻璃上发生临界反射,提高了测量精度。光源高度调节装置210、220可以是任何能够实现调节光源高度的结构,如:外框架上设有光源升降架,光源升降架经齿条齿轮传动机构与升降调节手轮传动连接,光源固定于光源升降架上,通过传动升降调节手轮即可实现光源的升降;光折射元件包括两个折射棱镜31、32,折射棱镜31、32分别位于光源21、22的光线发射方向,供放置待测玻璃,光源21、22发出的光经折射棱镜31、32折射后进入成像单元成像。当然,为了避免杂光对测试结果造成影响,本发明所述的光源与图像传感器之间的光路上还可设置 滤波片,具体放置位置不限,滤波片可以是诸如干涉滤波片这样的带通滤波片,也可以是进入成像镜筒的光束呈具有一定光谱宽度的单色光,进一步提高了测量精度。
本实施例的成像单元包括两个成像镜筒41、42,两个成像镜筒角度调节机构401、402,两个图像传感器43、44,成像镜筒41、42内分别设有透镜51、52,成像镜筒的外表面上分别设有调节透镜51、52的透镜调节机构501、502。由于为了同时精确获取两种干涉条纹信息,一次强化条纹和二次强化条纹需要不同的放大倍数,因而本实施例中的透镜51与透镜52的放大倍数不同,透镜51的焦距为100-150mm,透镜52的焦距为150-200mm。成像镜筒41、42的前端分别位于折射棱镜31、32的光折射方向,成像镜筒41、42的后端分别设有图像传感器43、44,图像传感器43、44可以为CCD或CMOS中的一种,CCD或CMOS前端设有双偏振片,双偏振片的方向互相垂直。另外,图像传感器43、44也可以是基于CCD或CMOS的工业相机。优选地,本实施例中的光源21、22选用波长为500-900纳米范围的单色光源,图像传感器43、44为基于CCD的双偏振工业相机,避免了经双折射之后从玻璃射出的两路互相垂直光束之间的彼此掺杂,从而使两束光能够显著地被识别为两部分,提高了测量精度。
本实施例中的光源21、22与图像传感器43、44之间的光路上均分别设有光强衰减片45、46及光强衰减片调节机构405、406,光强衰减片45、46的具体放置位置不限,可以根据工作过程对光线亮暗进行自由调节,以适应图像传感器进行探测。为了防止受限于视角范围,避免放大后的条纹不能被全部识别,本发明所述的成像镜筒41、42上还可以分别设有两个广角镜头(图中未示出),两个广角镜头分别位于图像传感器43、44的后端。
由于对玻璃表面应力进行测试时,在待测玻璃放置折射棱镜上表面之前,需要向折射棱镜上滴少量折射液以提高检测精度,为了避免人工操作费时费力,本实施例应力仪还设有自动滴液装置,如图7所示,自动滴液装置包括设在外框架10上的储液罐60,输送泵601、602,滴液支架61,滴液器621、622以及滴液控制机构,滴液器621、622设在滴液支架61的一端,滴液控制机构控制输送泵601、602将储液罐60中的折射液输送到滴液器621、622来实现自动滴液。优选地,滴液支架为可调节支架,滴液器的位置可根据需要自由调节。本发明中的滴液控制机构为任何能够实现滴液控制功能的装置,如,带有控制处理功能的计算机。本实施例中所述的外框架10内位于折射棱镜31、32的下方设有一废液收集槽70,废液收集槽下方还设有废液收集罐71,废液收集罐71通过管路连接废液收集槽70。使用后的折射液可以通过废液收集槽进行收集,从而可以防止折射液滴落在仪器上对仪器使用寿命造成影响。
较佳地,本发明所述的图像传感器还可以根据需要连接数据处理单元,数据处理单元根据图像传感器的输入信号实现对待测玻璃表面应力的实时采集和分析,完成多次钢化玻璃表面应力的精确检测。该数据处理装置可以是具有数据处理软件的通用计算机,或者是专用数据处理器。
图8为本发明应力仪测试二次钢化玻璃表面应力时的使用效果图,其中,图8(a)为读取到的二次强化条纹效果图,图8(b)为读取到的一次强化条纹效果图。由图8(a)可以看 出,当读取二次强化条纹时,二次强化的干涉条纹比较清晰,但是一次强化条纹多且密,不易于精确识别。图8(b)中读取一次强化条纹时,由于通过调节透镜的焦距进行了较大倍数的放大,因而一次强化的干涉条纹变得非常清晰,便于精确识别,这时的二次强化条纹却由于较大倍数的放大,导致条纹变得非常粗,因而其位置不易确定。由于本发明应力仪采用了多光路系统的设计,可以根据不同干涉条纹的性质同时进行不同程度的调节,因而一次测试便可以精确读取多种干涉条纹的信息,大大提高了测量精度和效率。
上述实施例中所有的调节机构都可使用本领域中的现有技术。
利用本发明所述的应力仪测试多次钢化玻璃表面应力时,通过自动滴液装置向折射棱镜表面滴少量折射液,将待测玻璃放置滴有折射液的折射棱镜表面,通过光源高度调节装置调整光源的高度,以调整一个合适的光线发射角度,使光线经过折射棱镜在待测玻璃上发生临界反射,光线经折射棱镜折射后进入成像镜筒进行图像识别,识别之后的图像经图像传感器转换成带有玻璃表面应力信息的电子信号,最后电子信号由数据处理元件完成最终应力计算。由于本发明采用了多光路系统,测试玻璃表面应力时可以同时通过光源高度调节装置、透镜调节机构以及成像镜筒角度调节机构对光源、透镜以及成像镜筒的角度进行调节,以使每个光路中至少一种干涉条纹的图像非常清晰,从而可以在互不影响的情况下同时对一次和多次强化的干涉条纹进行图像识别,提高了测量精度和效率。
市场上常见的钢化玻璃表面应力仪包括光源、双折射棱镜、目镜、工业相机,双折射棱镜位于光源的光线射出方向,目镜的一端位于双折射棱镜的光折射方向,另一端连接工业相机,利用这种应力仪进行测试时,将待测玻璃放在双折射棱镜表面,光源发出的光经双折射棱镜折射后进入工业相机成像。但是,利用这种应力仪对多次钢化玻璃进行应力检测时可以发现,由于经过多次强化,多次钢化玻璃的干涉条纹明显疏密不同,经过一次强化的干涉条纹多且密,经过多次强化的干涉条纹疏但粗。由于一次强化条纹多且密不便于图像识别判断,需要对条纹进行放大,但是受限于目镜视角范围,放大之后的条纹不能被全部识别,因而这种应力仪无法对多次钢化玻璃表面应力进行测试。中国实用新型专利CN201520111147.8公开了一种二次钢化玻璃全自动表面应力仪,通过在工业相机前端设置广角镜头以及对光源进行调整的方式,弥补了二次钢化玻璃检测行业的空白。利用该应力仪检测二次钢化玻璃表面应力时,虽然通过目镜前端设置的广角镜头可以全部识别所有条纹,但是由于放大之后二次强化条纹便会明显加粗,因而二次条纹的位置仍不易被读取,只能取一个估值,从而影响了测量精度。
本发明的多次钢化玻璃表面应力仪的有益效果是,由于光源、折射棱镜、成像镜筒、图像传感器均至少设有两个,本发明应力仪通过采用多光路系统的方式可以同时精确读取一次和多次强化条纹,使测量精度和效率都得以大幅提升。由于一次强化条纹与多次强化条纹明显不同,一次强化条纹多且密,多次强化条纹疏但粗,所以本发明光路中的透镜放大倍数互不相等,识别一次强化条纹的光路系统中的透镜倍数大于多次强化条纹光路系统中的透镜倍数,使用时可以对一次强化条纹进行较大幅度放大,从而可精确且快速的读取出一次强化条纹,多次强化条纹进行小幅度放大,从而保证了多次强化条纹的位置易于确定。为了防止受 限于视角范围,避免放大后的条纹不能被全部识别,本发明所述的成像镜筒上位于图像传感器的前端设有广角镜头。本发明还设有自动滴液装置,可以根据需求情况自动向折射棱镜进行滴液,避免了人工操作费时费力。折射棱镜下方设有废液收集槽,可以将使用后的折射液进行收集,防止滴落在仪器上对仪器使用寿命造成影响。透镜调节机构、目镜角度调节装置以及光源高度调节装置,可以让使用者根据实际需要进行自由调节,方便使用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种玻璃表面应力仪,包括光源、光折射元件、成像单元,光折射元件位于光源的光发射方向,供放置待测玻璃,所述光源发出的光经所述光折射元件折射后进入所述成像单元成像,其特征在于,所述的成像单元包括透镜组和图像传感器,所述透镜组的前端位于所述光折射元件的光折射方向,后端设有所述图像传感器。
  2. 根据权利要求1所述的玻璃表面应力仪,其特征在于,所述的光折射元件是一面为曲面的三角棱镜。
  3. 根据权利要求2所述的玻璃表面应力仪,其特征在于,所述三角棱镜为等腰三角棱镜,等腰三角棱镜的底面为曲面,且所述光源发出的主光线垂直于等腰三角棱镜的腰。
  4. 根据权利要求3所述的玻璃表面应力仪,其特征在于,等腰三角棱镜的曲面为凹面时,所述透镜组为显微物镜,且所述显微物镜的工作距离大于所述等腰三角棱镜底边长的一半。
  5. 根据权利要求2至4中任一项所述的玻璃表面应力仪,其特征在于,所述三角棱镜曲面的曲率与待测曲面玻璃的曲率相同。
  6. 根据权利要求1所述的玻璃表面应力仪,其特征在于,所述的光折射元件是沿光路方向设置有第一折射棱镜和第二折射棱镜,所述透镜组的前端位于所述第二折射棱镜的光折射方向,所述成像单元还包括偏振装置,所述透镜组的后端设有所述偏振装置,所述偏振装置的后端设有图像传感器。
  7. 根据权利要求6所述的玻璃表面应力仪,其特征在于,所述第一折射棱镜和所述第二折射棱镜均为等腰三角棱镜,且所述光源发出的主光线垂直于所述第一折射棱镜的腰。
  8. 根据权利要求7所述的玻璃表面应力仪,其特征在于,所述第一折射棱镜与所述第二折射棱镜底边的尺寸相同,且所述第一折射棱镜底边的尺寸与所述第二折射棱镜底边的尺寸之和小于或等于待测玻璃的尺寸。
  9. 根据权利要求6至8中任一项所述的玻璃表面应力仪,其特征在于,所述第一折射棱镜和所述第二折射棱镜相接设置。
  10. 根据权利要求6至8中任一项所述的玻璃表面应力仪,其特征在于,所述的偏振装置由两片偏振方向互相垂直的偏振片拼接而成。
  11. 根据权利要求1至4和6至8中任一项所述的玻璃表面应力仪,其特征在于,所述光源是波长为500-900nm范围的单色光源。
  12. 根据权利要求1至4和6至8中任一项所述的玻璃表面应力仪,其特征在于,所述光源与所述光折射元件之间设置有会聚透镜,所述光源发出的光经所述会聚透镜会聚后入射到所述光折射元件,所述光源、所述会聚透镜与所述光折射元件之间的距离满足高斯光学公式。
  13. 根据权利要求1至4和6至8中任一项所述的玻璃表面应力仪,其特征在于,所述光源与所述图像传感器之间的光路上还设有衰减片,可以根据需要对光线强弱进行调节。
  14. 根据权利要求2至4中任一项所述的玻璃表面应力仪,其特征在于,所述图像传感器可以为CCD或CMOS中的一种,CCD或CMOS前端设有偏振方向互相垂直的双偏振片;所述图像传感器也可以是基于CCD或CMOS的双偏振工业相机。
  15. 根据权利要求14所述的玻璃表面应力仪,其特征在于,所述图像传感器连接有数据处理单元。
  16. 根据权利要求6至8中任一项所述的玻璃表面应力仪,其特征在于,所述的图像传感器可以为CCD或CMOS中的一种,也可以是基于CCD或CMOS的工业相机。
  17. 一种多次钢化玻璃表面应力仪,设有外框架,所述外框架内沿光路依次设置光发射单元、光折射元件、成像单元,其特征在于,所述光发射单元包括至少两个光源以及至少两个光源高度调节装置,所述光源分别固定在所述光源高度调节装置上;所述光折射元件包括至少两个折射棱镜,所述折射棱镜分别位于所述光源的光线发射方向,供放置待测玻璃,所述光源发出的光经所述折射棱镜折射后进入所述成像单元成像;所述成像单元包括至少两个成像镜筒、至少两个成像镜筒角度调节机构以及至少两个图像传感器,所述成像镜筒内均分别设有透镜及透镜调节机构,透镜的放大倍数互不相同,成像镜筒的前端分别位于所述折射棱镜的光折射方向,所述成像镜筒的后端分别设有所述图像传感器。
  18. 根据权利要求17所述的多次钢化玻璃表面应力仪,其特征在于,所述光源是波长为500-900nm范围的单色光源。
  19. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,所述光源与所述折射棱镜之间的光路上设置有滤波片。
  20. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,所述光源与所述图像传感器之间的光路上设有光强衰减片及光强衰减片调节机构。
  21. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,所述成像镜筒上位于所述图像传感器的前端设有广角镜头。
  22. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,所述图像传感器可以为CCD或CMOS中的一种,CCD或CMOS前端设有双偏振片;也可以是基于CCD或CMOS的双偏振工业相机。
  23. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,还设有自动滴液装置,所述自动滴液装置包括设在外框架上的储液罐、输送泵、滴液支架、滴液器以及滴液控制机构,所述输送泵以及所述滴液器均至少设有两个,所述滴液器设在所述滴液支架的一端,所述滴液控制机构控制所述输送泵将所述储液罐中的折射液输送到所述滴液器进行滴液。
  24. 根据权利要求23所述的多次钢化玻璃表面应力仪,其特征在于,所述滴液支架为可调节支架,所述滴液器的位置可根据需要自由调节。
  25. 根据权利要求17或18所述的钢化玻璃表面应力仪,其特征在于,所述外框架上位于折射棱镜的下方设有一废液收集槽,所述废液收集槽下方设有废液收集罐,所述废液收集罐通过管路连接废液收集槽。
  26. 根据权利要求17或18所述的多次钢化玻璃表面应力仪,其特征在于,所述图像传感器连接有数据处理单元。
PCT/CN2016/101161 2015-09-30 2016-09-30 玻璃表面应力仪和多次钢化玻璃表面应力仪 WO2017054773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/763,455 US11060930B2 (en) 2015-09-30 2016-09-30 Glass surface stress meter and multiple-tempered glass surface stress meter
JP2018536327A JP2018534589A (ja) 2015-09-30 2016-09-30 ガラス表面応力計および複数回強化ガラス表面応力計

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510638763.3 2015-09-30
CN201510638763.3A CN105115635B (zh) 2015-09-30 2015-09-30 多次钢化玻璃表面应力仪
CN201510726582.6A CN105241593A (zh) 2015-10-30 2015-10-30 曲面玻璃表面应力仪
CN201510726582.6 2015-10-30
CN201510844432.5 2015-11-27
CN201510844432.5A CN105333980B (zh) 2015-11-27 2015-11-27 钢化玻璃表面应力测量仪

Publications (1)

Publication Number Publication Date
WO2017054773A1 true WO2017054773A1 (zh) 2017-04-06

Family

ID=58422692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101161 WO2017054773A1 (zh) 2015-09-30 2016-09-30 玻璃表面应力仪和多次钢化玻璃表面应力仪

Country Status (3)

Country Link
US (1) US11060930B2 (zh)
JP (1) JP2018534589A (zh)
WO (1) WO2017054773A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189287A (zh) * 2018-09-05 2019-08-30 永康市胜时电机有限公司 像素点双向拟合系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198016A1 (en) 2019-03-22 2020-10-01 Corning Incorporated Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates
US11573078B2 (en) * 2019-11-27 2023-02-07 Corning Incorporated Apparatus and method for determining refractive index, central tension, or stress profile
US11442342B2 (en) * 2019-12-23 2022-09-13 Apple Inc. Recording indicators
TWI771820B (zh) * 2020-12-04 2022-07-21 財團法人金屬工業研究發展中心 曲面塊材的殘留應力量測方法
WO2023097076A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
CN117054238B (zh) * 2023-10-11 2023-12-12 淄博博山孟友钢化玻璃制品厂 一种无损式钢化玻璃餐具自爆隐患检测方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062656A (zh) * 2010-12-31 2011-05-18 肖天长 玻璃表面应力测试仪
CN203519217U (zh) * 2013-10-18 2014-04-02 苏州精创光学仪器有限公司 显微镜式玻璃表面应力仪
CN203587256U (zh) * 2013-12-13 2014-05-07 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
CN204128721U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 新型全自动玻璃表面应力仪
CN204128720U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 改进的全自动玻璃表面应力仪
CN204479219U (zh) * 2015-02-16 2015-07-15 苏州精创光学仪器有限公司 二次钢化玻璃全自动表面应力仪
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置
WO2015164243A1 (en) * 2014-04-23 2015-10-29 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
CN105115635A (zh) * 2015-09-30 2015-12-02 苏州精创光学仪器有限公司 多次钢化玻璃表面应力仪
CN105241593A (zh) * 2015-10-30 2016-01-13 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
CN105333980A (zh) * 2015-11-27 2016-02-17 苏州精创光学仪器有限公司 钢化玻璃表面应力测量仪

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914181B2 (ja) 1978-09-01 1984-04-03 株式会社東芝 風冷強化ガラスの表面応力測定方法
DE3071243D1 (en) * 1979-07-06 1986-01-02 Toshiba Kk Surface stress measurement
JPS57157130A (en) 1981-03-25 1982-09-28 Toshiba Corp Measuring method for surface stress of curved surface reinforced glass
US4539475A (en) * 1983-03-14 1985-09-03 Pitney Bowes Inc. Temperature compensation system for a prism in an optical transducer
US4777358A (en) * 1987-03-30 1988-10-11 Geo-Centers, Inc. Optical differential strain gauge
JPH11281501A (ja) 1998-03-30 1999-10-15 Orihara Seisakusho:Kk 表面応力測定装置
JP5033820B2 (ja) 2009-02-03 2012-09-26 株式会社日立ハイテクノロジーズ 全反射顕微鏡装置、及び蛍光試料分析方法
US8134695B2 (en) * 2009-08-05 2012-03-13 Emhart Glass S.A. Glass container stress measurement using fluorescence
CN201716137U (zh) 2010-07-06 2011-01-19 北京奥博泰科技有限公司 一种钢化玻璃应力检测装置
JP5892156B2 (ja) 2011-03-18 2016-03-23 旭硝子株式会社 ガラスの表面応力測定装置およびガラスの表面応力測定方法
US9140543B1 (en) * 2011-05-25 2015-09-22 Corning Incorporated Systems and methods for measuring the stress profile of ion-exchanged glass
FR2997180B1 (fr) 2012-10-24 2015-01-16 Commissariat Energie Atomique Etalon metrologique bidimensionnel
US10156488B2 (en) * 2013-08-29 2018-12-18 Corning Incorporated Prism-coupling systems and methods for characterizing curved parts
CN203490010U (zh) 2013-09-27 2014-03-19 中国建材检验认证集团股份有限公司 一种用于检测钢化玻璃表面应力的应力仪
CN103644990A (zh) 2013-12-13 2014-03-19 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
CN103955050B (zh) 2014-05-13 2016-08-24 杨征 一种多光路显微系统
CN104359924A (zh) 2014-11-04 2015-02-18 苏州精创光学仪器有限公司 钢化玻璃表面应力测量方法
CN205027468U (zh) 2015-09-30 2016-02-10 苏州精创光学仪器有限公司 多次钢化玻璃表面应力仪
CN205066980U (zh) 2015-10-30 2016-03-02 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
CN205120285U (zh) 2015-11-27 2016-03-30 苏州精创光学仪器有限公司 钢化玻璃表面应力测量仪

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062656A (zh) * 2010-12-31 2011-05-18 肖天长 玻璃表面应力测试仪
US20140368808A1 (en) * 2013-06-17 2014-12-18 Corning Incorporated Prism Coupling Methods With Improved Mode Spectrum Contrast for Double Ion-Exchanged Glass
CN203519217U (zh) * 2013-10-18 2014-04-02 苏州精创光学仪器有限公司 显微镜式玻璃表面应力仪
CN203587256U (zh) * 2013-12-13 2014-05-07 苏州精创光学仪器有限公司 紧凑型玻璃表面应力测量仪
WO2015164243A1 (en) * 2014-04-23 2015-10-29 Corning Incorporated Method of enhancing contrast in prism coupling measurements of stress
CN204128721U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 新型全自动玻璃表面应力仪
CN204128720U (zh) * 2014-11-02 2015-01-28 苏州精创光学仪器有限公司 改进的全自动玻璃表面应力仪
CN204479219U (zh) * 2015-02-16 2015-07-15 苏州精创光学仪器有限公司 二次钢化玻璃全自动表面应力仪
CN204535899U (zh) * 2015-02-17 2015-08-05 李俊峰 玻璃表面应力检测装置
CN105115635A (zh) * 2015-09-30 2015-12-02 苏州精创光学仪器有限公司 多次钢化玻璃表面应力仪
CN105241593A (zh) * 2015-10-30 2016-01-13 苏州精创光学仪器有限公司 曲面玻璃表面应力仪
CN105333980A (zh) * 2015-11-27 2016-02-17 苏州精创光学仪器有限公司 钢化玻璃表面应力测量仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189287A (zh) * 2018-09-05 2019-08-30 永康市胜时电机有限公司 像素点双向拟合系统

Also Published As

Publication number Publication date
US20180274997A1 (en) 2018-09-27
JP2018534589A (ja) 2018-11-22
US11060930B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2017054773A1 (zh) 玻璃表面应力仪和多次钢化玻璃表面应力仪
TWI746944B (zh) 用於特徵化彎曲部件的稜鏡耦合系統及方法
WO2016131396A1 (zh) 玻璃表面应力检测装置
CN205120285U (zh) 钢化玻璃表面应力测量仪
CN102749303B (zh) 一种测量平板型透明介质折射率的装置和方法
CN105333980B (zh) 钢化玻璃表面应力测量仪
CN202693473U (zh) 一种测量平板型透明介质折射率的装置
CN103644990A (zh) 紧凑型玻璃表面应力测量仪
CN203587256U (zh) 紧凑型玻璃表面应力测量仪
CN103759675B (zh) 一种用于光学元件非球面微结构的同步检测方法
CN105241593A (zh) 曲面玻璃表面应力仪
CN105115635B (zh) 多次钢化玻璃表面应力仪
CN205066980U (zh) 曲面玻璃表面应力仪
US20160245760A1 (en) Device and Method for Measuring Sheets, More Particularly Windshields of Vehicles
CN108489607A (zh) 水体光学衰减系数测量装置及方法
WO2023098349A1 (zh) 一种光学镜片参数测量装置及方法
CN106770056B (zh) 钢化玻璃识别仪及识别方法
CN108572160B (zh) 一种折射率分布测量的折光计
CN101975562A (zh) 一种测量光波阵列面或光学反射面表面平坦度的方法
CN206019884U (zh) 玻璃表面应力检测装置
CN204166209U (zh) 一种偏振装置及玻璃应力检测装置
RU2366894C2 (ru) Лазерное устройство для измерения нестабильности пространственного положения объектов и определения отклонения их формы от прямолинейности
CN103592265B (zh) 一种生物芯片的透射式扫描方法
CN213543860U (zh) 一种自动对焦曲面玻璃表面检测应力仪
RU2488096C2 (ru) Рефрактометр дифференциальный портативный

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018536327

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850397

Country of ref document: EP

Kind code of ref document: A1