WO2016131389A1 - 一种溶液中离子的交换和浓缩方法及装置 - Google Patents

一种溶液中离子的交换和浓缩方法及装置 Download PDF

Info

Publication number
WO2016131389A1
WO2016131389A1 PCT/CN2016/073450 CN2016073450W WO2016131389A1 WO 2016131389 A1 WO2016131389 A1 WO 2016131389A1 CN 2016073450 W CN2016073450 W CN 2016073450W WO 2016131389 A1 WO2016131389 A1 WO 2016131389A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
ammonium
carbonate
hydrogencarbonate
ions
Prior art date
Application number
PCT/CN2016/073450
Other languages
English (en)
French (fr)
Inventor
秦才东
Original Assignee
秦才东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510090656.1A external-priority patent/CN105983251A/zh
Priority claimed from CN201510195654.9A external-priority patent/CN106145258A/zh
Priority claimed from CN201510254209.5A external-priority patent/CN106277185A/zh
Priority claimed from CN201510300633.9A external-priority patent/CN106277189A/zh
Priority claimed from CN201510381052.2A external-priority patent/CN106315761A/zh
Priority claimed from CN201510484320.3A external-priority patent/CN106395983A/zh
Priority claimed from CN201510573879.3A external-priority patent/CN106474770A/zh
Priority claimed from CN201510900599.9A external-priority patent/CN106830184A/zh
Application filed by 秦才东 filed Critical 秦才东
Publication of WO2016131389A1 publication Critical patent/WO2016131389A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention belongs to the technical field of ion separation, and in particular relates to a method and a device for exchanging and concentrating ions in a solution.
  • the method can be used for recovering valuable resources from seawater, waste water, sewage solution, especially from waste water, or replacing harmful ions with harmless ions, or completely removing the anions and cations in water to purify the water, or realize the solution.
  • the exchange of ions between different substances produces the substances needed.
  • Another object of the present invention is to provide an application of the ion exchange and concentration method in the above solution in water treatment.
  • Another object of the present invention is to provide a water treatment method formed by the above-described application combination.
  • Another object of the present invention is to provide a process for producing potassium hydrogencarbonate.
  • the present invention provides a method of ion exchange and concentration in a solution, the method comprising:
  • a cation replacement step replacing a cation in a solution to be treated with an ammonium ion and/or a hydrogen ion; and/or,
  • Anion replacement step replacing an anion in the solution to be treated with a carbonate ion and/or a hydrogencarbonate ion and/or a hydroxide ion;
  • ammonium carbonate ammonium hydrogencarbonate
  • ammonium hydroxide ammonium hydroxide
  • the present invention converts the compound corresponding to the original anion and cation in the solution to be treated into ammonium carbonate and hydrogen carbonate which are easily separated into a solution system by a cation replacement step and/or an anion replacement step (without limiting the order in which the two steps are carried out).
  • Ammonium, ammonium hydroxide or carbonic acid solves the problem that the concentration of ions accompanying the general diffusion dialysis decreases, the ion balance resistance increases, and the diffusion driving force gradually decreases. It is also one of the core problems in the field of diffusion dialysis ion exchange. At the same time, the adverse effects of ammonium ion and hydrogen carbonate ion of polyatomic combination on diffusion dialysis due to self-hydrolysis are solved.
  • one or two of the cation replacement step and the anion replacement step may be carried out as needed.
  • the anion replacement step may be performed; if the anion in the solution to be treated contains only carbonic acid
  • the cation replacement step can be carried out.
  • the cation replacement step and the anion are performed on the solution to be treated
  • the two steps can be carried out separately or simultaneously, preferably simultaneously.
  • a simultaneous method is: dividing the solution to be treated into two parts, one part is treated by a cation replacement step, and the other part is treated by an anion replacement step, and the two parts of the solution are processed into a common mixing container, and the mixed solution is divided into
  • the treatment of the cation replacement step and the anion replacement step is carried out for the two-part post-recycle, and the cation replacement step and the anion replacement step are simultaneously performed.
  • a cationic membrane system using a solution containing ammonium ions and/or hydrogen ions as a driving solution, or ammonium ion and/or a cation exchange resin system in which hydrogen ions are used as an exchange group; an anion membrane system using a solution containing a carbonate ion and/or a hydrogencarbonate ion and/or a hydroxide ion as a driving solution when replacing an anion in a solution to be treated And/or an anionic resin system using carbonate ions and/or hydrogencarbonate ions and/or hydroxide ions as exchange groups.
  • the cation membrane system is further provided with a cation indirect exchange zone (the cation membrane system is equivalent to consisting of a direct exchange zone and an indirect exchange zone), and the cation indirect exchange zone is composed of a cation.
  • Indirect drive solution and indirect exchange of cationic membrane composition ammonium ions and/or hydrogen ions in a driving solution (which may be referred to as a direct drive solution) pass through a cationic membrane (which may be referred to as a direct drive cationic membrane) into the cationic indirect exchange zone to cause ammonium ions and And / or the concentration of hydrogen ions is increased, and then exchanged with the cation in the solution to be treated by indirect exchange of the cation membrane; when the cation is indirectly driven to drive the solution, the cation is selected from one or more of the cations of the solution to be treated.
  • a driving solution which may be referred to as a direct drive solution
  • a cationic membrane which may be referred to as a direct drive cationic membrane
  • the cation is selected from one or more of the cations of the solution to be treated.
  • the anion membrane system is further provided with an anion indirect exchange zone (an anion membrane system corresponding to a direct exchange zone and an indirect exchange zone), the anion indirect exchange zone consisting of an anion indirect drive solution and an indirect exchange anion membrane;
  • the carbonate ion and/or bicarbonate ion and/or hydroxide ion in the driving solution enters the anion indirect exchange zone through an anion membrane (which may be referred to as a direct driving anion membrane) to cause carbonate ion And/or the concentration of the bicarbonate ion and/or the hydroxide ion is increased, and then exchanged with the anion in the solution to be treated by indirect exchange of the anion membrane; when the anion is indirectly driven to drive the solution, the anion is selected from the group to be treated One or more of the solution anions.
  • the direct drive solution with low ion concentration can be exchanged with another indirect drive solution with high ion concentration, the concentration of the corresponding ion is increased, and then exchanged with the solution to be treated, which is equivalent to indirectly improving the direct The corresponding ion concentration in the drive solution for exchange.
  • the direct drive solution with low ion concentration can be exchanged with another indirect drive solution with high ion concentration, the concentration of the corresponding ion is increased, and then exchanged with the solution to be treated, which is equivalent to indirectly improving the direct The corresponding ion concentration in the drive solution for exchange.
  • two anion membranes are used in the anion replacement step, and the space between the two anion membranes is an indirect exchange zone; the saturated ammonia water is used as an anion to directly drive the solution to maintain saturated sodium chloride.
  • the exchange of hydroxide ions in a low concentration of ammonia water with anions in seawater can be indirectly realized (in a direct driving solution, the concentration of hydroxide ions in the ammonia water is low, but through the indirect exchange zone The hydroxide ion has a higher concentration in the indirect drive solution and is exchanged with the anion in the seawater).
  • the use of two cation membranes in the cation replacement step indirectly allows exchange of ammonium ions in a low concentration aqueous ammonia with cations in seawater.
  • the ion exchange is performed by recycling to achieve purification and desalination of seawater; or Subject to the exchange of anions and cations, the ammonia is continuously pumped and reused, and the cycles are exchanged until purified or depleted water is obtained.
  • the purpose of continuously extracting ammonium hydroxide is to reduce the ineffective ion exchange between the sodium chloride in the indirect driving solution and the ammonium hydroxide formed in the seawater, and to achieve the purpose of finally desalinating seawater and sewage.
  • ammonium chloride and sodium hydroxide formed in the aqueous ammonia which directly drives the solution as the anion and the cation, respectively, are preferably mixed separately in time, and the sodium chloride (chlorine) is released by the mixing reaction of the two aqueous ammonia solutions.
  • the equilibrium resistance of dialysis. Keeping the saturation of sodium chloride is to put an excess of sodium chloride crystals in the solution, and to keep the ammonia saturated, always pass in excess ammonia.
  • the ammonia water directly driving the solution as the cation is replaced with a saturated carbonated water or a saturated gas saturated with a flue gas to provide a hydrogen ion as a cation exchanger, and the salt in the seawater is replaced with water.
  • Desalination, and obtaining ammonium chloride and sodium carbonate by-products from the driving solution; or further, the anion direct driving solution also uses acidic flue gas or carbon dioxide.
  • the hydrochloric acid or sodium carbonate separately formed in the direct driving solution is preferably mixed in time to release carbonic acid gas, and the concentrated crystalline sodium chloride is concentrated to reduce the resistance of diffusion dialysis in time.
  • the process of using flue gas as an exchange agent can also achieve the effects of purifying flue gas, desulfurization, out of stock, and obtaining pure carbonic acid products.
  • ammonia water as the direct drive solution is replaced with saturated ammonium hydrogencarbonate or ammonium carbonate to provide ammonium ions and anion exchanged hydrogen carbonate ions or carbonate ions as cation exchange, and the salt in seawater is replaced with ammonium carbonate.
  • seawater or sewage is ion-exchanged with a saturated or concentrated sodium chloride solution that indirectly drives the solution as an anion and a cation, respectively, and the saturated or concentrated sodium chloride solution is separately mixed with ammonia and carbonic acid.
  • the water, acidic flue gas, ammonium hydrogencarbonate or ammonium carbonate is ion exchanged, and the dialysis product is extracted and extracted to achieve the purpose of water treatment. If the sewage contains other salts in addition to sodium chloride, the saturated sodium chloride indirect drive solution is completely exchanged for sodium chloride.
  • the cation membrane is a strong acid cation membrane, a medium acid cation membrane, a weakly acidic cation membrane or a neutral cation membrane;
  • the anion membrane is a strongly basic anion membrane, medium alkali Anionic anion membrane, weakly basic anion membrane or neutral anion membrane.
  • the ammonium ion in the driving solution is in the path of diffusion through the cation membrane. If the membrane is a strongly acidic cation membrane, it may be that the ammonium ion and the membrane are negatively charged.
  • the group forms an acidic ammonium salt, which is equivalent to catalyzing the dissociation of water molecules near the functional group in the membrane, that is, the concentration of hydrogen ions in the vicinity of the ammonium ions migrated in the membrane is high, and the hydrogen ions are reversely migrated, which is equivalent to It is exchanged with ammonium ions so that cations in seawater or sewage cannot be efficiently exchanged by ammonium ions.
  • the process can be applied to promote partial decomposition of ammonium ions or ammonium salts in water to remove ammonium ions in the solution, such as ammonia or ammonium salts in seawater in industrial or domestic sewage or desalinated, especially using various Hydrogen ion in acid
  • the overly acidic cation membrane acts as a cation to promote partial resolution of the ammonium ion in the water and partially to form an ammonium salt with the acid used.
  • the strong alkaline anion membrane provides an inefficient exchange of hydroxide ions with carbonate and bicarbonate ions, such as hydrogen peroxide ion hydrolysis combined with a hydrogen ion, releasing a hydroxide ion, returning to the driving solution,
  • the electrical neutrality is maintained, and therefore, the effect of the strongly basic film is to promote the hydrolysis of carbonate ions and hydrogencarbonate ions.
  • the experiment also found that when the ammonium-containing solution to be treated is treated with a weakly acidic cationic resin, the weakly acidic cationic resin has a catalytic decomposition effect, and the reduction of the concentration of ammonium itself is used as a driving force, and the ammonium ion can be converted into ammonia gas to be treated.
  • the mechanism should be that the functional group in the weakly acidic cationic resin has a stronger binding force to the other cations including ammonium ions than the functional group of the weakly acidic cationic resin, thereby easily binding to the hydrogen ions and allowing the hydrolysis to leave the hydroxide
  • the ion releases the ammonium ion bound to the resin, and the ammonium ion is combined with the hydroxide ion, partially decomposed into water and a volatile ammonia, or is equivalent to a resin ammonium salt formed by temporarily combining the resin with ammonium.
  • the strong acid resin has only weak catalytic decomposition.
  • molecular sieve substances which can preferentially adsorb hydrogen ions have the same catalytic effect of promoting ammonium decomposition.
  • a weakly basic anion resin or a functional group in a molecular sieve-like substance that preferentially adsorbs a hydroxide anion has a stronger binding force to a hydroxide ion, allowing water to evolve hydrogen ions and react with carbonate or bicarbonate ions.
  • the carbonate ion or the hydrogencarbonate ion is converted into carbonic acid gas and then precipitated from the solution to be treated.
  • the volatilization and collection of ammonia is promoted by aeration or by intermittently exposing the resin to the solution.
  • the cation film is preferably a weakly acidic cation film or a neutral cation film;
  • the anion film is preferably a weakly basic anion film or a neutral anion film.
  • the dissociation effect of the strongly acidic cationic membrane or the strongly basic anionic membrane on water can be suppressed by adjusting the pH of the driving solution or the solution to be treated.
  • a strongly acidic cation membrane one method for inhibiting the dissociation of water is to add a basic substance to the cation membrane driving solution or to use an alkaline driving solution; the alkaline substance includes ammonia water, ammonium hydrogencarbonate or ammonium carbonate; The alkaline driving solution includes ammonium hydrogencarbonate or ammonium carbonate.
  • one method of inhibiting the dissociation of water is to add an acidic substance or a basic substance to the anion membrane driving solution;
  • the acidic substance includes ammonium sulfate or ammonium nitrate;
  • the alkaline substance includes hydrogen.
  • Potassium oxide or sodium hydroxide especially the method of adding ammonium sulfate, utilizing the characteristics that the diffusion rate of hydrogencarbonate ions is greater than that of sulfated dianion, so that the anions in the liquid to be treated are mainly carried out with hydrogencarbonate or carbonate ions. exchange.
  • the sequential treatment sequence of the cation replacement step and the anion replacement step is carried out by designing the solution to be treated, so that an acidic substance or an alkaline substance is first formed in the solution to be treated to suppress Dissociation of water by a strongly acidic cationic membrane or a strongly basic anionic membrane.
  • the solution to be treated is first subjected to a cation replacement step, the cation in the solution to be treated is converted into ammonium chloride or ammonium sulfate, etc., and then an anion replacement step is performed to make the anion and carbonate ions in the solution to be treated and/or Or exchange of bicarbonate ions and/or hydroxide ions.
  • the method further comprises the steps of: extracting ammonium carbonate, ammonium hydrogencarbonate, ammonium hydroxide or carbonic acid formed in the solution to be treated, so that all or part of the remaining liquid enters Circulating in the solution to be treated, continuing the cation replacement step and/or the anion replacement step until the ion content in the solution to be treated is reduced to meet the requirements; the extraction is a one-time extraction (after performing all the replacement steps) One-time total extraction), intermittent extraction (extraction after several replacement steps) or continuous extraction (continuous operation of extraction process is provided on the circulation line of the solution).
  • the extraction method includes a precipitation method or a decomposition method, and the precipitation method includes aeration extraction and vacuum evaporation and volatilization;
  • the decomposition method may be a conventional method in the prior art, such as adding alkaline lime, or A molecular sieve that preferentially adsorbs hydrogen ions or hydroxide ions; it can also utilize the strong acid cation membrane, weakly acidic cationic resin described above to decompose ammonium ions and ammonia water, or a strongly basic anion membrane or a weakly basic anion
  • the decomposition of the carbonate ion or the hydrogencarbonate ion of the resin realizes the separation and extraction of ammonium carbonate, ammonium hydrogencarbonate, ammonium hydroxide or carbonic acid in the solution to be treated.
  • the method further comprises the steps of: extracting cations and/or anions from the solution to be treated in the driving solution and generating anions and/or cations in the driving solution.
  • the extraction is a one-time extraction, intermittent extraction or continuous extraction.
  • the extraction method includes cooling crystallization, concentrated crystallization, conversion to a lower solubility substance, crystallization (such as adding ammonium hydrogencarbonate in an ammonium nitrate driving solution), crystallization by salting out effect or addition of a low boiling organic substance to promote crystallization (such as acetone, diethyl ether). Ethanol, methanol, etc. are dehydrated to promote crystallization, and when these organic substances are extracted, the temperature of the solution is lowered to further promote crystallization.
  • the method further comprises the following steps. : supplementing the driving solution of the cationic membrane system with ammonium ions or hydrogen ions, and/or supplementing the driving solution of the anion membrane system with carbonate ions, hydrogencarbonate ions or hydroxide ions to drive ammonium ions in the solution
  • the concentration of hydrogen ions, carbonate ions, hydrogencarbonate ions or hydroxide ions is maintained within the design range.
  • the method further comprises the step of: performing a cation replacement step and/or if the solution to be treated contains a metal ion capable of forming a carbonate or hydroxide precipitate; Before the anion replacement step, a precipitating agent is added to the solution to be treated for precipitation pretreatment, and the precipitating agent includes a combination of one or more of carbonate, hydrogencarbonate and ammonia. Further preferably, the carbonate comprises ammonium carbonate and the hydrogencarbonate comprises ammonium hydrogencarbonate.
  • the ammonium ion in the driving solution or the ammonium ion used for the regeneration of the cationic resin is derived from one or more of ammonia water and ammonium salt.
  • the ammonium salt comprises one of ammonium chloride, ammonium hydrogencarbonate, ammonium carbonate, ammonium nitrate, ammonium sulfate, amine nitrite, ammonium sulfite, ammonium thiocyanate, ammonium formate, ammonium acetate, and ammonium phosphate or Several combinations.
  • the combined form of the ammonium salt comprises the following: (ammonium nitrate + ammonium hydrogencarbonate / ammonium carbonate / ammonium chloride), (ammonium chloride + ammonium hydrogencarbonate / ammonium carbonate) or (ammonium formate + ammonium hydrogencarbonate) / ammonium carbonate / ammonium chloride), (ammonium acetate + ammonium hydrogencarbonate / ammonium carbonate / ammonium chloride).
  • the carbonate ion, the hydrogencarbonate ion or the hydroxide ion in the driving solution or used for the regeneration of the anion resin is derived from potassium carbonate, A combination of one or more of ammonium carbonate, sodium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, aqueous ammonia, potassium hydroxide, and sodium hydroxide.
  • the source of the carbonate ion, the hydrogencarbonate ion or the hydroxide ion comprises the following modes: potassium carbonate, (potassium hydrogencarbonate + ammonium carbonate), ammonium carbonate, ammonium hydrogencarbonate, (ammonium carbonate + sulfuric acid) Ammonium), (ammonium hydrogencarbonate + ammonium sulfate), (ammonium carbonate + ammonium nitrate), (ammonium hydrogencarbonate + ammonium nitrate), (potassium carbonate + potassium hydroxide) or (potassium carbonate + sodium hydroxide).
  • the optimal choice is to consider the subsequent low-cost concentrated crystal extraction and recycling of the dialysis product, in particular, the solubility and ion concentration of the driving substance are as high as possible, and the corresponding in the solution The solubility of the resulting product is as low as possible. Therefore, preferably, the driving solution in the cationic membrane system includes an anion which is easy to form an easily separable product with a cation in the solution to be treated; a driving in the anionic membrane system In the solution, a cation which readily forms an easily separable product with an anion in the solution to be treated is included.
  • the method further comprises the step of adding a substance capable of balancing the osmotic pressure of the driving solution to the solution to be treated in order to reduce water permeation;
  • a substance capable of balancing the osmotic pressure of the driving solution include ammonium bicarbonate, ammonium carbonate or magnetic particles.
  • the substance which can balance the osmotic pressure of the driving solution has a low concentration of added ions and reduces the influence on the driving force of ion exchange, and the higher molecular concentration can effectively balance the osmotic pressure of the driving solution.
  • the method further comprises the step of driving the ions for dialysis migration using a direct current voltage.
  • the cations and anions in the solution to be treated can not only be diafiltered and exchanged by ammonium ions, carbonate ions, hydrogencarbonate ions or hydroxide ions, but also dialysis and migration by DC voltage to further increase the concentration.
  • the difference drives the diffusion mobility of ions in the treatment liquid, or similarly, the purpose of increasing the driving force of the electrodialysis process.
  • the solution to be treated is an alkaline liquid, for example, if the alkali concentration is high, conventional alkali recovery treatment may be performed first.
  • the alkali recovery treatment one method is diffusion dialysis through a cationic membrane, and the alkali is extracted by water; the other method is to perform alkali recovery using the cation replacement step described above, and the ammonium ion enters the treatment to be treated.
  • the solution is reacted with hydroxide ions to form ammonium hydroxide, and then ammonium hydroxide is removed (either by means of volatilization or by thermal decomposition).
  • the alkali recovery treatment step if the salt to be treated still needs to be removed, the treatment solution is subjected to a cation replacement step and/or an anion replacement step.
  • a conventional acid recovery treatment may be performed first.
  • one method is to dilute the anion membrane to extract the acid therein, and the other method is to recover the acid to be treated with the anion replacement step described above, in which case carbonate ions or The bicarbonate ions enter the solution to be treated and react with hydrogen ions to form carbonic acid, and then the carbonic acid is removed.
  • the treatment solution is subjected to a cation replacement step and/or an anion replacement step.
  • a waste water solution containing other anions other than the hydroxide ion such as containing hydrocyanic acid, cyanide, cyanate, thiocyanate, arsenate
  • An anion such as nitrate, sulfate, phosphate or chloride, and a solution of various metal ions.
  • a certain amount of alkali solution is first obtained by diffusion dialysis of the cationic membrane, and then Adding sodium carbonate, preferably adding ammonium carbonate, reducing the alkalinity of the solution by forming ammonium hydroxide and a solution thereof in the form of ammonia gas, and forming an insoluble carbonate to reduce or precipitate the carbonate which can be formed in the solution Precipitated metal ions; further, using the diffusion dialysis of the anion membrane of the anion replacement step, using a saturated solution of ammonium carbonate, potassium carbonate, sodium carbonate, ammonium hydrogencarbonate, potassium hydrogencarbonate or sodium hydrogencarbonate as a driving solution, exchanging the wastewater solution
  • the exchange of various anions such as chloride, sulfate, nitrate, and especially cyanide ions, decreases with the concentration of cyanide ions.
  • the sodium and potassium ions can be dialysis through the cation membrane, and the ammonium ions are used as the driving ions to exchange, so that the wastewater contains only the volatile ammonium carbonate or ammonium hydrogencarbonate.
  • the acid solution containing metal ions when the acid solution containing metal ions is treated, if the acid concentration is high, a part of the acid may be extracted by diffusion dialysis in advance. If the solution further contains hexavalent chromium ions or chromic anhydride, the reducing agent is required to be used first. It is reduced to trivalent chromium ions. Optimally, iron powder and iron are used as reducing agents, and monovalent iron neutralizes acid first, and the generated divalent iron ions are separated from hexavalent chromium.
  • the reduction reaction occurs, and when the acid is completely neutralized and the hexavalent chromium is completely reduced, an appropriate amount of ammonium carbonate and ammonium hydrogencarbonate are added to precipitate a metal ion which can form a carbonate precipitate in the solution to prevent precipitation from forming during the dialysis.
  • an appropriate amount of ammonium carbonate and ammonium hydrogencarbonate are added to precipitate a metal ion which can form a carbonate precipitate in the solution to prevent precipitation from forming during the dialysis.
  • ammonium carbonate or ammonium hydrogencarbonate only the ammonium, sodium and/or potassium salts in water are dissolved in the solution, and the ammonium or sodium or potassium carbonate or bicarbonate is used as the driving solution through the anion membrane.
  • Diffusion dialysis exchange various anions in the solution, according to the needs of drainage or backwater standards, with ammonium or ammonia solution as the driving solution, dialysis treatment by cation membrane, ammonium ion exchange of sodium and potassium ions, then exposed
  • the treatment with an aqueous acid solution is completed by volatilization of gas or catalytic precipitation of ammonium carbonate, ammonium hydrogencarbonate, and ammonium carbonate added in excess by dialysis.
  • the invention provides the application of the method for ion exchange and concentration in the above solution in water treatment, the application comprising: extracting or decomposing ammonium ions, carbonate ions or hydrogencarbonate ions in a solution; treating acid-containing sewage and causing alkali Waste water or salty wastewater; seawater desalination or brackish water desalination; production of salt or production of alkali.
  • formic acid such as methanol, formic acid, removal of organic acids in sugar fermentation products, etc.
  • formic acid For the production of formic acid, such as methanol, formic acid, removal of organic acids in sugar fermentation products, etc.; and daily drinking water purification; deionization of various organic-containing mixed solutions; instead of electrodialysis desalination and purification.
  • a method of extracting or decomposing ammonium ions in a solution comprises the steps of: diffusing dialysis of a solution to be treated containing ammonium ions with a strong acid cation membrane, and converting the ammonium ions into ammonia gas Precipitation in the treatment solution; or, the solution to be treated containing ammonium ions is subjected to a catalytic reaction with a weakly acidic cationic resin or a molecular sieve capable of preferentially adsorbing hydrogen ions, and the ammonium ions are converted into ammonia gas and then precipitated from the solution to be treated.
  • a method of extracting or decomposing carbonate ions or hydrogencarbonate ions in a solution comprises the steps of: treating a solution to be treated containing carbonate ions or hydrogencarbonate ions with a strong basic anion membrane Diffusion dialysis to cause carbonate ions or bicarbonate ions to be precipitated from the solution to be treated after being converted into carbonic acid gas; or, the solution to be treated containing carbonate ions or hydrogencarbonate ions may be preferentially adsorbed by a weakly basic anion resin
  • the molecular sieve of the hydroxide ion undergoes a catalytic reaction to cause the carbonate ion or the hydrogencarbonate ion to be converted into carbonic acid gas and then precipitated from the solution to be treated.
  • a method of seawater desalination or brackish water desalination comprises the steps of: adding a precipitant ammonium carbonate to seawater or brackish water for precipitation pretreatment to convert part of cations in seawater or brackish water.
  • the carbonate comprises calcium carbonate, magnesium carbonate or cesium carbonate; etc.; performing the cation replacement step and the anion replacement step on the pre-pretreated seawater or brackish water, ammonium carbonate or ammonium hydrogencarbonate Extracted from seawater or brackish water;
  • the driving solution used in the cation replacement step is a mixed solution of high concentration or saturated (ammonium nitrate + ammonium hydrogencarbonate and / or ammonium carbonate), (ammonium chloride + ammonium hydrogencarbonate and a mixed solution of /or ammonium carbonate or a mixed solution of (ammonium formate + ammonium hydrogencarbonate and / or ammonium carbonate);
  • the driving solution used in the anion replacement step is a high concentration or saturated ammonium carbonate solution, potassium carbonate solution or (carbonic acid) A mixed solution of potassium + potassium hydroxide and/or sodium hydroxide).
  • ammonium chloride, ammonium nitrate, ammonium formate or ammonium acetate is used because of its high solubility, high ion concentration, and salt formed by sodium ions and potassium ions dialysis from seawater.
  • the solubility is also high, so that the driving substance is not easily crystallized, and ammonium hydrogencarbonate or ammonium carbonate is added to convert sodium and potassium ions into sodium bicarbonate, potassium hydrogencarbonate and sodium carbonate with low solubility, which is convenient for seawater.
  • Intermediate sodium and potassium ions are precipitated indirectly.
  • the driving solution used in the cation replacement step is a mixed solution of saturated ammonium nitrate + ammonium hydrogencarbonate
  • the driving solution used in the anion replacement step is a saturated potassium carbonate solution as an example: (1) by performing a cation replacement step and an anion In the replacement step, ammonium carbonate is formed in seawater or brackish water, which can be volatilized; in the driving solution of the cation replacement step, sodium ions and potassium ions in seawater or brackish water can be crystallized after being converted into low-solubility hydrogencarbonate.
  • the composition of the hydrogencarbonate is mainly sodium hydrogencarbonate, and contains a small amount of potassium hydrogencarbonate; in the driving solution of the anion replacement step, the chloride ion and the sulfate ion in the seawater or brackish water are converted into the potassium salt and then extracted;
  • the main component of the potassium salt is potassium chloride, while containing a small amount of potassium sulfate.
  • Potassium hydrogen is decomposed into potassium carbonate and carbon dioxide, and the remaining solid after heating (mainly potassium carbonate) can be used for the driving solution in the anion replacement step; the collected carbon dioxide gas can be charged into the driving solution of the cation replacement step, and The ammonium carbonate reaction extracted from seawater or brackish water and supplemented into the driving solution of the cation replacement step is converted into ammonium hydrogencarbonate; or the potassium hydrogencarbonate is reacted with ammonium carbonate, and the solubility of the ammonium hydrogencarbonate is lower, and converted into Potassium carbonate and ammonium hydrogencarbonate.
  • ammonium chloride is converted into a sodium chloride product and ammonium hydrogencarbonate by a co-thermal reaction with hydrogencarbonate, and ammonium hydrogencarbonate is recycled to react with potassium chloride to produce potassium hydrogencarbonate.
  • the driving solution used in the above anion replacement step may be a mixed solution of a high concentration or saturated potassium hydrogencarbonate and ammonium carbonate.
  • the solubility of ammonium hydrogencarbonate is lower than that of potassium hydrogencarbonate, the cost of converting potassium hydrogencarbonate into potassium carbonate is reduced, and potassium chloride is still concentrated after dialysis in the driving solution of the anion replacement step.
  • the mother liquid after the concentration reduction of the crystals is returned to the original driving liquid.
  • the above concentrated crystallization extraction of the driving solution may be a continuous process or a discontinuous process in which the container for concentrating the crystallization is in cyclic communication with the driving solution.
  • the driving solution used in the above anion replacement step may also be a high concentration or saturated ammonium carbonate solution and/or ammonium hydrogencarbonate, in which case the anion replacement step drives the ammonium chloride extracted in the solution to be reused.
  • the driving solution used in the cation replacement step is a high concentration or saturated ammonium nitrate or ammonium formate solution; preferably, ammonium nitrate or ammonium formate solution Adding ammonium chloride or further adding ammonia water to make the driving solution alkaline;
  • the driving solution used in the anion replacement step is a high concentration or saturated potassium carbonate solution, (potassium carbonate + potassium hydroxide and/or sodium hydroxide)
  • cations such as sodium and potassium in seawater or brackish water enter the driving solution, and are converted into sodium chloride and potassium chloride having relatively low solubility, and are concentrated and extracted as a product; processed by an anion replacement step.
  • Anions such as chloride ions and sulfate ions in seawater or brackish water enter the driving solution and are converted into potassium chloride and potassium sulfate having relatively low solubility; at the same time, ammonium hydrogencarbonate and/or ammonium carbonate are formed in seawater or brackish water.
  • the potassium chloride which is concentrated and crystallized from the driving solution of the anion exchange step is reacted with ammonium carbonate which is volatilized from seawater or brackish water to form ammonium chloride and potassium carbonate, and is recycled to the driving solution of the cation replacement step and the anion replacement step, respectively.
  • potassium chloride and ammonium hydrogencarbonate solution are reacted under the promotion of adding an organic solvent to precipitate potassium hydrogencarbonate, and then potassium hydrogencarbonate is heated and converted into potassium carbonate for use in driving the solution to decompose the carbon dioxide.
  • ammonium carbonate which is volatilized from seawater or brackish water to form ammonium hydrogencarbonate and then reacts with potassium chloride, and ammonium chloride formed during the reaction is returned to the driving solution of the cation replacement step.
  • the driving solution of the anion replacement step may be replaced by an ammonium hydrogencarbonate solution or an ammonium carbonate solution, and the ammonium chloride formed after the replacement is concentrated and extracted as a cation replacement step to drive the solution, and the carbonate derived from seawater or brackish water is volatilized.
  • Ammonium hydroxide is reused in the driving solution for the anion displacement step.
  • the driving solutions used in the cation and anion replacement steps are all high concentration or saturated ammonium carbonate and/or ammonium hydrogencarbonate solutions.
  • cations such as sodium and potassium in seawater or brackish water enter the driving solution and are converted into sodium or potassium carbonate or bicarbonate;
  • anion replacement step seawater or brackish water Anions such as chloride ions and sulfate ions enter the driving solution and are converted into ammonium chloride or ammonium sulfate.
  • ammonium carbonate and/or ammonium hydrogencarbonate are formed in seawater or brackish water, and these volatile ammonium salts are continuously extracted to reduce the treatment.
  • the ion concentration in the solution maintains the difference in ion concentration of the solution on both sides of the membrane, enabling efficient ion exchange even at low concentrations of the driving solution.
  • the carbonate or bicarbonate formed in the driving solution of the cation replacing step may be extracted by crystallization and concentrated as a product, or may be reacted with an ammonium salt extracted from the driving solution of the anion replacement step to prepare sodium chloride and ammonium carbonate.
  • the salt wherein the ammonium carbonate salt can be used together with ammonium carbonate or ammonium hydrogencarbon which is volatilized from seawater or brackish water, is used in the driving liquid for the cation and anion replacement steps. Since the driving force of ion exchange is the concentration electromotive force, the short circuit solution will cause a reduction in the effective driving force. Therefore, the driving solution of the cation and anion should be divided into different independent containers.
  • the seawater desalination or brackish water desalination method can also be used as a primary treatment method for subsequent reverse osmosis, electrodialysis, etc., by replacing salt in seawater or brackish water with volatile ammonium carbonate, ammonia, carbonic acid.
  • a method of reducing the salt content in seawater or brackish water is also used as a primary treatment method for subsequent reverse osmosis, electrodialysis, etc.
  • a method for treating alkali-containing sewage comprises the steps of: first adding a precipitant (ammonium carbonate or sodium carbonate) to the alkaline sewage to generate a heavy metal ion (calcium, which is capable of forming a carbonate precipitate; Magnesium and the like) are precipitated and precipitated; then, the alkali removal treatment is carried out, that is, the cation replacement step is used to remove the alkali (the ammonium ions can form ammonium hydroxide with the hydroxide ions after entering the solution to be treated, and the ammonium hydroxide is easily decomposed into ammonia gas.
  • a precipitant ammonium carbonate or sodium carbonate
  • a heavy metal ion calcium, which is capable of forming a carbonate precipitate; Magnesium and the like
  • the driving solution of the cation replacement step used is a saturated or high concentration ammonium chloride solution (using the salt of most chloride ions dissolved in water, avoiding in the membrane or A precipitate is formed on the surface of the membrane, or a mixed solution of ammonium sulfate/ammonium nitrate/ammonium carbonate/ammonium hydrogencarbonate/ammonium carbonate+aqueous ammonia is used as a driving solution for the cation replacement step according to the process requirements. If the alkaline deionized solution further contains other salt ions, the cation replacement step and/or the anion replacement step are further used for the purpose of thoroughly treating the sewage.
  • Typical alkaline sewage includes wastewater from pulping and papermaking black liquor, textile leather sewage, and cyanide extraction of precious metals.
  • the ammonium bicarbonate solution or the ammonium carbonate solution is used as the driving solution of the cation replacement step during the alkali removal, and the driving solution of the cation replacement step after the replacement contains sodium hydrogencarbonate or sodium carbonate, and the carbonic acid can be used.
  • Sodium or sodium bicarbonate and slaked lime are converted to caustic by carbonization and reused in the pulping section.
  • the deposition of the surface of the membrane can be re-dissolved by direct current electrolysis.
  • the black liquor of pulping and papermaking is precipitated by ammonium carbonate to form an organic fertilizer containing inorganic minerals. After removing alkali, the black liquor contains a large amount of organic matter, which can be directly used as irrigation water.
  • the wastewater from textile leather sewage and cyanide after extracting precious metals needs to be pre-precipitated by adding ammonium carbonate and then subjected to alkali removal treatment.
  • the waste water after de-alkali still contains harmful ions such as chromate ions, arsenate-containing ions and others. Heavy metal ions, etc., therefore, it is necessary to further combine the cation replacement step and the anion replacement step to achieve the purpose of thoroughly treating the sewage.
  • the complexes decompose after the removal of alkaline and cyanide ions or during the removal process, and the precipitated metal cyanide and metal cyanide complexes occur. Precipitation, or the evolution of hydrogen cyanide and ammonium cyanide.
  • a method of treating acid-containing sewage comprises the steps of: first performing an acid recovery treatment using an anion replacement step, and if necessary, using a cation replacement step and/or an anion replacement step, To achieve the purpose of thoroughly treating sewage.
  • Typical acid-containing wastewaters include electroplating wastewater, pickling wastewater, and biomass acid hydrolysis of sugar-containing solutions.
  • the cation replacement step drives the ammonium ion exchange in the solution to concentrate various metal ions in the wastewater
  • the anion replacement step drives the anion exchange of the solution to concentrate harmful ions such as chromate ions, arsenate ions, cyanate ions, etc. in the wastewater. .
  • the ammonium salt solution that is, the main driving substance has a high ion concentration, increasing the driving force, and the auxiliary driving substance or the exchanged product forms a low solubility salt with sodium and potassium, so as to keep the relative driving concentration of the main driving force from decreasing, and also promote The ions in seawater are indirectly precipitated by natural crystallization.
  • a method of producing a salt comprises the steps of: performing the cation replacement step and/or the anion replacement step on the solution to be treated, and driving from a driving solution and/or an anionic membrane system of the cationic membrane system Extracting a target product salt in a solution, the solution to be treated being a saturated or concentrated potassium chloride solution or a sodium chloride solution;
  • the driving solution comprises: an ammonium salt solution or (ammonium salt + ammonia water) a mixed solution comprising a combination of one or more of ammonium hydrogencarbonate, ammonium carbonate, ammonium sulfate, ammonium sulfite, ammonium nitrate, ammonium nitrite, ammonium phosphate, ammonium formate, and ammonium acetate;
  • the driving solution comprises: ammonium carbonate solution, ammonium hydrogencarbonate solution, mixed solution of ammonium carbonate + ammonia water, potassium
  • the concentration of the reactants is preferably Higher or saturated.
  • a method of producing a salt comprises the steps of: using saturated or concentrated potassium chloride or sodium chloride solution as the liquid to be treated according to claim 1, respectively, with potassium carbonate or potassium carbonate.
  • a mixed solution of potassium hydroxide, sodium hydroxide, or ammonium hydrogencarbonate or ammonium carbonate or ammonium carbonate with aqueous ammonia, or ammonium carbonate with ammonium sulfate, ammonium nitrate as the driving solution in the anion replacement step of claim 1, in terms of solubility
  • ammonium hydrogencarbonate or ammonium carbonate can precipitate potassium sulfate, potassium n
  • a method of producing a salt comprises the steps of:
  • Saturated or concentrated potassium chloride or sodium chloride solution respectively as the liquid to be treated in order to reduce the cost and reduce the use of anionic membrane, only the ammonium nitrate or ammonium chloride or ammonium sulfate or ammonium formate saturated or concentrated solution as a cation replacement
  • one of the driving solutions is additionally added with saturated or concentrated ammonium nitrate, ammonium sulfate or ammonium hydrogencarbonate or ammonium carbonate, and the low solubility potassium nitrate, potassium sulfate and potassium hydrogencarbonate can be correspondingly precipitated in the driving solution of the cation replacing step.
  • a method of producing a base comprises the steps of: performing the cation replacement step and the anion replacement step on the solution to be treated, and extracting the target product base from the driving solution of the cation membrane system, the
  • the treatment liquid is a saturated or concentrated potassium chloride solution, a sodium chloride solution or a lithium chloride solution; in the cation replacement step
  • the driving solution is an aqueous ammonia solution; in the anion replacement step, the preparation components of the driving solution include: ammonium carbonate, ammonium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, ammonia water, sodium hydroxide a combination of one or more of potassium hydroxide and lithium hydroxide; the target product being sodium hydroxide, potassium hydroxide or lithium hydroxide.
  • a method of producing a base comprises the steps of: performing the anion replacement step only on the solution to be treated, and extracting the target product base from the driving solution of the anion membrane system, the liquid to be treated being a saturated or concentrated potassium chloride solution, a sodium chloride solution or a lithium chloride solution; in the anion replacement step, the driving solution is an aqueous ammonia solution or a calcium hydroxide solution; the target product is sodium hydroxide or potassium hydroxide Or lithium hydroxide.
  • the present invention further provides a water treatment method formed by the combination of the above applications, wherein, in the combined water treatment method, at least one intermediate product or final product in one application is used as a raw material for another application, such as the above
  • the base obtained in the potassium chloride, sodium chloride or lithium chloride solution can be used in applications requiring a basic substance or a hydroxide ion.
  • the present invention additionally provides a method for producing potassium hydrogencarbonate, the method comprising the steps of: mixing a saturated solution of ammonium hydrogencarbonate with potassium chloride, which is easy to add
  • the low-boiling organic solvent extracted by volatilization such as acetone, diethyl ether, methanol, ethanol, precipitates potassium hydrogencarbonate.
  • the invention also provides an apparatus for the method of ion exchange and concentration in the above solution, wherein the apparatus comprises: a precipitation pretreatment vessel system, a driving liquid container system, a solution solution container system to be treated, a diffusion dialysis module and a crystallization separation system;
  • the precipitation pretreatment vessel system and the crystallization separation system operate independently, and the driving liquid container system, the solution solution container system and the diffusion dialysis component are coupled to each other; the systems are connected according to a conventional manner to realize the exchange and concentration of ions in the corresponding solution.
  • the pretreatment pretreatment container system comprises: a feeding device, a stirrer, a sedimentation separation device and a gas recovery device;
  • the drive liquid container system comprises: a container sealing device, a solution replacement valve device and a coupling structure;
  • the solution solution container system includes: a vacuum suction system, an aeration system, and a gas recovery system; and the diffusion dialysis assembly includes a wound or parallel plate membrane module.
  • a container for measuring and precipitating and separating the precipitate and a filtration system are first set, and the aqueous solution is subjected to precipitation pretreatment.
  • the driving solution used contains ammonium ions, carbonate ions, and hydrogen carbonate ions, it is easy to volatilize ammonia gas, ammonium hydrogencarbonate, ammonium carbonate, and carbon dioxide. Therefore, the container for the driving liquid should be sealed and replaceable standard parts.
  • the plug-in type is connected with the dialysis component, which is convenient for replacing the driving solution at the working site, that is, by replacing the driving liquid container, replenishing the new driving liquid; or releasing the used driving liquid through the valve first, and then inputting the fresh driving Solution.
  • the container portion of the solution to be treated should be a container that can provide aeration or suction to form a negative pressure. Under negative pressure conditions, the container is connected to an upright container that is more than 10 meters high in water column, forming a negative above the container.
  • the dialysis component containing the ion exchange membrane may be a separate component containing an anion or cation exchange membrane, and the solution to be treated is subjected to diffusion dialysis treatment and then recirculated into the vessel of the solution to be treated, and each membrane module may be reel type.
  • a separate crystallization separation system that crystallizes the minerals extracted from the seawater or sewage extracted from the drive solution. The above system is miniaturized, that is, it can be used as a deep purification treatment device for desalination or water in a home or community.
  • the method and device for exchanging and concentrating ions in a solution provided by the invention is a combination of an anionic membrane and a cationic membrane or a combination of an anionic and a cationic resin, and the anion and cation in the solution are converted into volatile ammonium carbonate and hydrogen carbonate.
  • Ammonium, ammonium hydroxide or carbonic acid by volatilization, reduces the concentration of ions in the solution, and achieves the separation of substances in the solution and the exchange of ions.
  • seawater desalination, waste water recycling and harmless treatment can be realized; this method can be widely applied to sewage treatment, ion concentration, deacidification, alkali removal and desalting in various industrial production processes. In the process of desalination of salt water, as well as the production of potassium salt, sodium salt and alkali, and the mutual conversion between acid and alkali salts.
  • the present embodiment provides a method for treating seawater desalination and acid-base salt wastewater, and at the same time, it is found that a strong acid cation membrane has a decomposition effect on ammonium ions.
  • Step 1 A cation replacement step.
  • the strong acid cation membrane of model CMI-7000 was clamped between two nylon pieces with a diameter of 3 cm and abutted.
  • the effective area of the membrane was 3 cm diameter circle, and the depth of each nylon piece was 1.5. cm.
  • the first and second membrane chambers are formed on both sides of the membrane, and two outlets on the side of the membrane chamber are connected to the conduit for the inflow and outflow.
  • the commercially available edible sodium chloride solution was used to simulate seawater, and the ammonium chloride solution was used as a driving solution for the cation replacement step, and pumped to the first membrane chamber through a diaphragm pump, and refluxed at a flow rate of 25 ml/min; The pump was pumped to the second membrane chamber and circulated to reflux at a flow rate of 1000 ml/min.
  • Step 2 Anion replacement step.
  • the anion membrane of the model AMI-7001 was a diffusion dialysis membrane, and the ammonium hydrogencarbonate solution was used as a driving solution for the anion replacement step.
  • the carbonate driving solution is pumped to the first membrane chamber through the diaphragm pump, and is circulated and refluxed at a flow rate of 25 ml/min; the seawater treated by the step 1 is pumped to the second membrane chamber through the micro pump, and is circulated and refluxed at a flow rate of 1000 ml. /min.
  • Step 3 every 1 hour or 3 hours, the seawater treated by the step 2 is supplemented with aeration, stirred and volatilized to volatilize; or the second membrane chamber in the step 2 is always in a state of aeration or stirring and decompression, The ammonium bicarbonate product was continuously removed and recovered and returned to the drive solution for ammonium bicarbonate.
  • Step 4 after the solution to be treated in step 3 is fully removed, the product is returned to step 1; or partially returned to step 1, partially returned to step 2 for simultaneous cycle treatment, or from step 1 to The cycle of step 3 is continued until the solute content of the solution to be treated is reduced to the set requirements.
  • the concentrated solution of ammonium chloride with a salinity value of 61.9 ppt was 200 ml of the driving solution, and 150 ml of tap water having a salinity value of 0.1 ppt was the solution to be treated.
  • the salinity value of ammonium chloride was reduced to 60.9, the salinity value of tap water was increased to 0.2ppt, and a small amount of alkaline ammonia was volatilized in ammonium chloride solution, which should be promoted by strong acid cation membrane.
  • the decomposition reaction of ammonium ions in the ammonium chloride to remove hydrogen ions After replacing the tap water value of 33.7ppt sodium chloride solution for tap water for 1 hour, the salinity value of the ammonium chloride solution is reduced to 60.5ppt, and a small amount of ammonia gas is still precipitated, and the salinity value of the sodium chloride solution is increased. It is 34.5 ppt, because the salinity value measured by comparing the same molar concentration of ammonium chloride in the experiment is higher than the salinity value of sodium chloride, indicating that part of sodium chloride is converted into ammonium chloride.
  • This embodiment provides a decomposition experiment of an ammonium salt by a strong acid cation membrane, and analyzes the leakage caused by the decomposition effect and the leakage parameter of the detection membrane itself, specifically including the following experiments:
  • the municipal tap water (200 ml, measured salinity value of 0.1 ppt) containing a trace amount of electrolyte was subjected to diffusion dialysis for the solution to be treated, that is, the corresponding exchange solution; the strong acid cation film used was about 0.28 mm thick.
  • the cation replacement step is performed on the tap water, and the driving solution used is a saturated ammonium chloride solution, and the specific operation is as follows:
  • Saturated ammonium chloride solution was used as the driving solution for the cation replacement step. After diffusion and dialysis for half an hour, ammonia gas was detected in both the ammonium chloride solution and the tap water to precipitate the pH test paper, and the pH value of the tap water increased from about 7. To about 7.5, in addition, it took 10 minutes for the salinity to increase by 0.1 ppt in tap water. After 7 hours, the salinity value of tap water reached 4.4ppt. After evaporation of water, ammonium chloride crystals were observed, and white fog formed after burning, indicating that the cation membrane also had solute ammonium chloride leakage while ammonia was permeated.
  • the driving solution is a mixed solution of saturated ammonium chloride and ammonium carbonate
  • the alkalinity of the driving liquid is increased, and after dialysis for 1.5 hours, a weak ammonia gas is precipitated in the tap water, and the pH test paper is colored, and the pH of the tap water is slightly Alkaline, in addition, the measured salinity in tap water increased by 0.1ppt, which took 18min.
  • the tap water replacement step is performed on the tap water, and the driving solution used is a mixed solution of saturated (ammonium chloride + ammonium carbonate + ammonia water), and the specific operation is as follows:
  • a mixed solution of (ammonium chloride + ammonium carbonate + ammonia) was used as the driving solution for the cation replacement step. After diffusion dialysis for 4 hours, weak ammonia gas was precipitated in the tap water, and the pH value of the tap water increased but the change was not obvious. In addition, it was measured that the salinity in tap water increased by 0.1 ppt, which took 66 minutes.
  • the above two decomposition experiments illustrate the catalytic decomposition of ammonium ions by a strong acid cation membrane, which can be used to remove ammonium carbonate and ammonium hydrogencarbonate which are not completely precipitated in seawater in the seawater desalination method similar to that in Example 1, wherein the corresponding exchange solution is Clear water or an acid-containing solution, the acid-containing solution promotes by providing hydrogen ions.
  • This embodiment provides an experiment of exchanging ions of an ammonium type cationic resin and a carbonate type or bicarbonate type anion resin with a solution to be treated, and an experiment of decomposing an ammonium salt of a weakly acidic cationic resin, and a weakly basic anion resin pair.
  • the analysis of catalytic decomposition of carbonate and bicarbonate includes the following experiments:
  • 50g of the commercially available model: C100EFG strong acid sodium type cationic resin was immersed in a saturated ammonium chloride solution (also a mixed solution of several ammonium salts) for 6 hours, corresponding to the regeneration of cationic resin, 50g model 201x 7 ( 717#)
  • the strong alkaline chlorine type anion resin is immersed in a saturated ammonium hydrogencarbonate or ammonium carbonate solution for 6 hours, which corresponds to the regeneration of an anion resin.
  • the resin was taken out, washed thoroughly with water, and removed by centrifugation. First, 150ml of simulated seawater is poured into chlorine.
  • the seawater is poured into the previously treated anion resin, and after one hour of exchange reaction, an exchange cycle is completed, and then poured into the cationic resin, and the cycle 3
  • the measured salinity was reduced from 35 parts per thousand to 29 parts per thousand, and the alkaline ammonia or ammonium carbonate or ammonium hydrogencarbonate was precipitated by the test paper. In fact, it should be ammonium carbonate or hydrogen carbonate. Ammonium is precipitated, but carbonate ion or bicarbonate test paper is difficult to detect.
  • the strong acid sodium type cationic resin in the experiment 1 was replaced with the D113 weakly acidic cationic resin, and the strong alkaline chlorine type weakly basic anion resin was replaced with the D301 weakly basic anion resin, and a similar effect was found after the circulation treatment. .
  • the D113 weakly acidic hydrogen-type cationic resin is completely converted into a sodium-type resin. After no visible carbonic acid gas is precipitated, it is thoroughly rinsed with water, and then a small amount of acetic acid is added to adjust the pH of the solution to 6, Rinse with water and finally soak for 12 hours with saturated sodium chloride solution. Further, the ammonium chloride powder was heated at 180 ° C for 1 hour to volatilize a trace amount of ammonia remaining in the ammonium chloride.
  • the alkaline ammonia gas can be detected, and the pH of the test side solution is also lowered, indicating that the ammonium chloride is weakly acidic cationic resin.
  • Ammonium carbonate is not volatility due to its own volatility.
  • the mechanism should be that the functional group in the weakly acidic cationic resin has a stronger binding force to the hydrogen ions, thereby easily binding to the hydrogen ions and allowing the hydrolysis to leave the hydroxide ions while releasing the
  • the resin-bound ammonium ion which is combined with hydroxide ions, partially decomposed into water and volatile precipitated ammonia, and molecular sieves or multi-void substances having similar functional groups also have the same catalytic function.
  • ammonium salts such as ammonium chloride or ammonium nitrate
  • the pH of the solution decreases with the volatilization of ammonia, and the lowest pH value of the detection side is about 5, and the low pH value will gradually hinder the volatilization of ammonia gas, but decomposes ammonium carbonate.
  • ammonium hydrogencarbonate since carbonic acid can also be separated, the decomposition and volatilization of ammonium carbonate in the solution can be continued until a trace amount, and the decomposition of ammonia water or ammonium hydroxide is the precipitation of ammonia gas and the formation of water.
  • the weakly basic anion resin can promote the resolution of carbonate or bicarbonate ions.
  • the mechanism should be that the functional group in the weakly basic anion resin has strong binding force to the hydroxide ion, so that the hydrolysis is provided after separation.
  • a free hydrogen ion which combines with a carbonate ion or a hydrogencarbonate ion to convert a carbonate ion or a hydrogencarbonate ion into a carbonic acid gas to be volatilized. It is apparent that the catalytic decomposition of a solution containing ammonium carbonate or ammonium hydrogencarbonate using a weakly acidic cationic resin and a weakly basic anion resin should be more efficient.
  • This embodiment provides a method for treating alkali-containing sewage.
  • the slurry of the pulping plant is taken as an example, and other alkaline wastewater such as textile, leather, electroplating, hydrometallurgical wastewater, etc. can be similarly operated.
  • the inhibitory effect of the strong alkaline solution on the catalytic hydrolysis of the strongly acidic ion membrane was verified; in the examples, a pretreatment step was also used to pre-precipitate some of the ions.
  • the method specifically includes:
  • the exchange rate of sodium is obviously higher than that of ammonium ion in seawater, which further demonstrates the inhibition of strong acid membrane catalyzed hydrolysis by strong alkaline solution.
  • the carbon dioxide gas or ammonia carbonate is pre-charged to promote these metal ions, silicate ions and some macromolecular organic substances.
  • the precipitate is precipitated, and at the same time, a precipitated gas such as ammonia gas or ammonium cyanide gas in the electroplating waste water is recovered.
  • Ammonium carbonate was added to the above-mentioned black liquor, and after standing, the precipitation of carbonate was observed.
  • anions other than hydroxide ions such as anions containing hydrocyanic acid, cyanide, cyanate, thiocyanate, arsenate, nitrate, sulfate, phosphate, chloride, etc.
  • a solution of various metal ions Preferably, if the pH of the solution is greater than 10, a certain amount of alkali solution is first obtained by diffusion and dialysis of the cationic membrane, and then sodium carbonate is added, preferably ammonium carbonate is added to form ammonium hydroxide.
  • Embodiment 1 Diffusion dialysis of an anion membrane in 2 (anion replacement step), using a saturated solution of ammonium carbonate, potassium carbonate, sodium carbonate, ammonium hydrogencarbonate, potassium hydrogencarbonate or sodium hydrogencarbonate as a driving solution, exchanging various anions in the wastewater solution Exchange of chloride, sulfate, nitrate, and especially cyanide ions, with the reduction of cyanide ion concentration, will promote cyanide in cyanide-containing wastewater Dissociation of the metal cyanide complex, and further conversion to carbonate, bicarbonate or metal cyanide, which are concentrated and precipitated and separated, and finally the waste water mainly contains sodium, potassium, and/or ammonium carbon.
  • the sodium and potassium ions can be dialysis through the cation membrane, and the ammonium ions are used as the driving ions to exchange, so that the wastewater contains only the volatile ammonium carbonate or ammonium hydrogencarbonate.
  • This embodiment provides a method for treating pure acid-containing sewage, taking a biomass dilute acid solution as an example, and other acidic wastewater such as electroplating, pickling, chemical synthesis, absorption of acid gases such as sulfur and nitrogen oxides may be used. Do a similar operation.
  • the method specifically includes:
  • the seawater simulated in the first embodiment is replaced with a sugar solution obtained by hydrolyzing crop straw with 3% sulfuric acid, and a mixed solution of ammonium hydrogencarbonate and ammonium carbonate is used as a driving solution for the anion membrane to provide hydrogencarbonate and carbonate ions.
  • step 2 anion replacement step
  • the sulfate ion is exchanged with the hydrogencarbonate ion and the carbonate ion under normal temperature and normal pressure, and the sugar solution is deacidified by the decomposition of carbonic acid to drive the ammonium sulfate in the solution.
  • a fertilizer to achieve its value.
  • nitric acid solution 200 ml was used as the acid to be treated, and a saturated ammonium carbonate solution (which could also be replaced by a saturated mixed solution of ammonium hydrogencarbonate / potassium hydrogencarbonate / potassium carbonate solution + ammonia) was used as the driving solution, and the anion membrane was used.
  • Model AMI7001 strong alkaline anion membrane, after 1 hour dialysis, part of the nitric acid was exchanged with carbonic acid and volatilized, measured by salinity salt value, the salinity value of nitric acid decreased from 22.3ppt to 20.7ppt.
  • the salinity value of nitric acid decreased from 7.3 ppt to 7.1 ppt after 17 min dialysis; at lower concentration, the salinity value of nitric acid decreased from 2.9 ppt to 2.5 ppt after 1 hour of dialysis.
  • an acid-containing solution containing metal ions When treating an acid-containing solution containing metal ions, if the acid concentration is high, a part of the acid may be extracted by diffusion dialysis in advance. If the solution further contains hexavalent chromium ions or chromic anhydride, it needs to be reduced by a reducing agent.
  • the monovalent iron first neutralizes the acid, and the generated divalent iron ions are then reduced with hexavalent chromium ions, when the acid is completely neutralized and six After the valence chromium is completely reduced, add an appropriate amount of ammonium carbonate, ammonium hydrogencarbonate, and the solution can be Metal ions forming a carbonate precipitate precipitate and precipitate to prevent precipitation during dialysis.
  • the mixed wastewater randomly extracted from an electroplating plant was measured by a salinity meter with an initial salinity value of 11 ppt and a pH of 2. After neutralizing the acid and reducing the hexavalent chromium by iron for 10 hours, the pH value is close to 6, and a greenish white precipitate is observed, and then carbonate is added, preferably ammonium carbonate, to form a turbid solution, which is allowed to stand for 10 hours.
  • the initial dialysis rate is faster, the hourly salinity value can be reduced by 1ppt, but after 10 hours, the dialysis is basically stopped, and the inspection is found on the wastewater side.
  • the surface of the membrane is covered with a layer of red rust-like precipitate. After washing with acid bubbles, the dialysis of the membrane is restored.
  • This embodiment provides a method for producing a salt, which comprises the following specific experiments:
  • concentrated or saturated potassium chloride or sodium chloride solution is used as the solution to be treated, with ammonium hydrogencarbonate, sodium carbonate, ammonium carbonate, ammonium sulfate, ammonium sulfite, sodium nitrate, ammonium nitrate, ammonium nitrite, phosphoric acid.
  • the ammonium solution is used as a driving solution in the first step (cation replacement) of the first embodiment; a mixed solution of ammonium hydrogencarbonate, ammonium carbonate, potassium carbonate, (potassium carbonate + potassium hydroxide), potassium hydrogencarbonate, (potassium hydrogencarbonate + A mixed solution of ammonium carbonate or sodium carbonate is used as a driving solution in step 2 (anion replacement) of the embodiment; corresponding potassium carbonate, potassium hydrogencarbonate, potassium sulfate, potassium sulfite, nitric acid are respectively generated in the driving solution of step 1.
  • Potassium, potassium nitrite, potassium phosphate, sodium carbonate, sodium hydrogencarbonate, sodium sulfate, sodium sulfite, sodium nitrate, sodium nitrite or sodium phosphate Preferably, a basic substance such as potassium hydroxide, sodium hydroxide or ammonia water may be added to the potassium chloride or sodium chloride solution, or an acidic substance such as ammonium sulfate, ammonium nitrate or ammonium chloride may be added to inhibit the water. Dissociation reaction to avoid the influence of strong acidic or strong alkaline ion membrane on diffusion dialysis.
  • the potassium chloride solution is the solution to be treated, and the solution to be treated is subjected to a cation replacement step and an anion replacement step, specifically: a driving solution in which a 200 ml saturated ammonium carbonate solution is used as a cation replacement step, and a saturated ammonium hydrogencarbonate solution is driven by an anion replacement step.
  • the solution, cationic membrane and anion membrane are both CMI-7000, YKB or Nafion N438 strong acid and AMI-7001 strong alkaline membrane, 200ml potassium chloride solution is the solution to be treated, and the solution to be treated is simultaneously pumped by 2 micro pumps.
  • the initial salinity value of potassium chloride was reduced from 109.5 ppt to 109.0 ppt for 10 min. After 1 hour of dialysis, the salinity value measured in potassium chloride was reduced from 109.5 ppt to 107.7 ppt.
  • ammonia gas is precipitated and should be ammonia gas formed by partial decomposition of ammonium hydrogencarbonate.
  • the ammonium carbonate driving solution is burned, and the ammonium carbonate is completely evaporated to obtain an alkaline solid powder.
  • the wet pH test paper is directly contacted and measured to have a pH of 14, which should be solid potassium carbonate.
  • the cation membrane is preferably a weakly acidic membrane, and the anion membrane is a weakly alkaline membrane.
  • this experiment only uses the diffusion dialysis of the cationic membrane in step 1 (cation replacement step), using ammonium chloride as the driving solution with high solubility, and also adding ammonium hydrogencarbonate, ammonium carbonate, ammonium sulfate or ammonium nitrate.
  • the driving solution (saturated ammonium carbonate saturated solution) of the cation replacement step in the experiment-specific experiment was replaced with a saturated ammonium nitrate solution, and the potassium chloride was also a saturated solution, which was different from the ammonium carbonate itself, and the ammonium nitrate was acidic because of the cation.
  • the hydrolysis of the strong acidic group of the membrane a large amount of ammonia gas is precipitated from the ammonium nitrate solution, and part of the ammonia gas is also precipitated from the potassium chloride solution, and the pH value of the ammonium nitrate solution is continuously increased, and the ammonium nitrate solution is dialyzed for 1 hour.
  • the salinity increased from 35.0ppt to 37.0ppt, and the pH value of potassium chloride solution increased to about 7.2.
  • the increase of pH indicates the presence of ammonia or ammonia molecules or ammonium bicarbonate or ammonium carbonate, indicating that potassium ions are actually mainly hydrogen ions.
  • Exchange, and only a small amount of exchange with ammonium ions, and hydrogen ions are directly or indirectly derived from hydrogen ions dissociated from ammonium ions, the ammonium ions themselves are converted into ammonia molecules, which are alkaline with water, or generate hydrogen carbonate Alkaline or ammonium carbonate and alkaline.
  • the remaining ammonium nitrate When evaporating and cauterizing the ammonium nitrate solution, the remaining ammonium nitrate completely decomposes and volatilizes, and the obtained potassium nitrate solid finally decomposes, and the remaining potassium oxide detection shows alkalinity. Because the exchange of potassium ions is governed by the dissociation process of ammonium ions, the rate of dialysis is limited. The above ammonium nitrate solution was replaced with the same acidic ammonium sulfate solution, and the same ammonium ion decomposition phenomenon was found.
  • the present embodiment provides a method for producing a base, and a method for indirectly utilizing the obtained alkali to perform seawater desalination and sewage treatment, and specifically includes:
  • the solution to be treated may be a sodium salt, a potassium salt or a lithium salt solution, such as a solution of sodium chloride, potassium chloride or lithium chloride as a solution to be treated; an aqueous ammonia solution or a calcium hydroxide solution;
  • the driving solution in the step 1 (cation replacement step); using ammonium carbonate, ammonium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide or lithium hydroxide as a step
  • the driving solution in 2 anion replacement step); respectively, corresponding sodium hydroxide, potassium hydroxide or lithium hydroxide is generated in the driving solution in step 1.
  • the specific experiment is:
  • aqueous ammonia having a salinity value of about 0.2 ppt as a driving solution of step 1 (cation replacement step), saturated ammonium hydrogencarbonate or potassium hydrogencarbonate as a driving solution for step 2 (anion replacement step), salinity Sodium chloride with a value of 80.8ppt was used as the liquid to be treated, and was pumped to the anion and cation membrane side by two independent micro-pumps for exchange. After 3 hours of dialysis, the salinity value of sodium chloride was increased to 81.3ppt.
  • the salinity value measured after recovering the water amount is 79.3ppt; the salinity value of the concentrated ammonia water is increased to 1.8ppt, and after burning by heating, a white solid powder is obtained, and the test paper is detected.
  • the pH value of 14 indicates that the white powder is sodium hydroxide, and the salinity value measured after recovering the water amount is 1.5 ppt, which is the concentration of the obtained sodium hydroxide.
  • sodium chloride should be kept in a saturated state, ammonia water should be maintained in a saturated state, and pressurized properly.
  • the solution to be treated may be a sodium salt, a potassium salt or a lithium salt solution, such as a saturated or concentrated sodium chloride solution, a potassium chloride solution or a lithium chloride solution as a solution to be treated, and an ammonia water or a calcium hydroxide solution as the step 2
  • the driving solution in the (anion replacement step) respectively generates corresponding sodium hydroxide, potassium hydroxide, lithium hydroxide and corresponding residual salts in the solution to be treated in the step 2; in the specific experiment, when in the anion membrane two
  • the pH value in the sodium chloride solution is significantly greater than 7 after 1 hour of diffusion dialysis, indicating that anion exchange occurs, and a part of the base is formed in the sodium chloride salt solution.
  • the above anion membrane system and the cation membrane system are carried out stepwise, or simultaneously, while simultaneously aerating or decompressing volatilization to continuously precipitate ammonium hydroxide formed by salt conversion in seawater, that is, obtaining continuously purified and desalinated water.
  • the ammonium chloride and sodium hydroxide formed in the aqueous ammonia which is an anion and a cation driving solution, respectively, react to release sodium chloride (minerals derived from seawater such as potassium chloride), and ammonium hydroxide which can be recycled. . Maintaining the saturation of sodium chloride is to deposit excess sodium chloride crystals in the solution, and to maintain the saturation of the ammonia water, always pass in excess ammonia gas.
  • the ammonia water as the above-mentioned driving solution is replaced with a saturated carbonated water or a saturated gas saturated with a flue gas.
  • the ammonia water as the above-mentioned driving solution is replaced with saturated ammonium hydrogencarbonate or a saturated solution of ammonium carbonate to indirectly supply bicarbonate, carbonate and ammonium ions, and the salt in seawater is replaced with ammonium hydrogencarbonate or ammonium carbonate.
  • This embodiment provides a method for simulating salt extraction in seawater, as follows:
  • the effective area of the anion membrane and the cation membrane is about 30 square centimeters, and the saturated ammonium carbonate solution is used as the driving solution of the anion replacement step and the cation replacement step, respectively, and diffusion dialysis is carried out for 4 hours, and 200 ml of sodium chloride-containing brine is used.
  • the salinity value was reduced from the initial 36.0 ppt to 34.5 ppt (after complete evaporation of ammonium carbonate), and after completely evaporating the driving solution of the anion and cation replacement steps, ammonium chloride (pH-5) which was acidic as pH test paper was obtained.
  • the salinity values were 1.1ppt and 1.3ppt respectively, which is the salinity value without ammonium carbonate.
  • ammonium chloride and sodium carbonate are formed in the driving liquid, and the two are mixed and heated to release ammonium carbonate to obtain sodium chloride, which is equivalent to the effect of extracting salt from seawater.
  • ammonium carbonate which is volatilized from seawater is directly supplied to the driving solution of the cation replacement step of the step 1.
  • This embodiment provides a method for simulating salt extraction in seawater, which comprises the following experiments:
  • the ammonium salt solution that is, the main driving substance has a high ion concentration, increasing the driving force, and the auxiliary driving substance or the exchanged product forms a low solubility salt with sodium and potassium, so as to keep the relative driving concentration of the main driving force from decreasing, and also promote The ions in seawater are indirectly precipitated by natural crystallization.
  • the ammonium chloride containing ammonium cation has high solubility, but the solubility of chloride formed by cations such as Na + and K + in seawater is also high. Therefore, the addition of ammonium hydrogencarbonate is promoted in step 1 ( During the cation exchange process of the cation replacement step, it exchanges with a large amount of seawater as much as possible, and also converts sodium and potassium ions into low-solubility sodium hydrogencarbonate and potassium, thereby being easily concentrated and extracted, including along with the dialysis process.
  • Crystallization that occurs with a natural increase in concentration providing a crystallizing cell in the path of the circulating solution of the driving solution and providing seed crystals in the cell), reducing the degree of low temperature required for cooling crystallization or more favorable for salting-out crystallization or addition of acetone,
  • a low-boiling, easily extractable organic substance such as diethyl ether, ethanol or methanol promotes crystallization, and a mother liquor obtained by precipitating bicarbonate such as sodium or potassium or carbonate is added, and ammonium chloride and ammonium hydrogencarbonate are added and recycled.
  • the driving solution of the anion replacement step is preferably ammonium carbonate, or ammonium hydrogencarbonate, or a mixed solution of potassium hydrogencarbonate and ammonium carbonate, or a saturated or concentrated solution of potassium carbonate, or A small amount of potassium hydroxide was added to the saturated solution of potassium carbonate.
  • the concentration of carbonate ions at saturation is up to 8.3 mol/L, which can effectively concentrate and extract anions such as chloride ions and sulfates in seawater.
  • the chloride ion concentration at the time of dialysis is saturated with 4.97 mol/L, and the potassium chloride crystallizes in the crystallization tank or by a natural increase in concentration or precipitates by adding organic matter or in further extracting organic matter, and sulfuric acid Potassium concentrations are even lower. Because of the precipitation of heavy metal ions such as calcium and magnesium in seawater and carbonate, in order to avoid the destruction of the membrane by precipitation, the ammonium carbonate is preliminarily dissolved in the seawater to precipitate the reaction, and the precipitated metal ions are precipitated as a by-product.
  • the driving solution of the cation replacing step is saturated ammonium chloride and saturated ammonium hydrogencarbonate is added, sodium hydrogencarbonate and a small amount of potassium hydrogencarbonate may be crystallized during the dialysis, if the driving solution of the corresponding anion replacement step is hydrogencarbonate.
  • Ammonium or ammonium carbonate can be crystallized by natural crystallization or salting out or acetone to promote the precipitation of ammonium chloride, or with ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium carbonate can be separated from ammonium chloride by volatilization,
  • the ammonium chloride is mixed with the sodium hydrogencarbonate or potassium hydrogencarbonate crystal or concentrated solution precipitated from the driving solution of the cation replacing step to release ammonium hydrogencarbonate, and is absorbed back into the driving solution for the cation replacement step, sodium chloride.
  • the mother liquor obtained by concentrated crystallization and extracting part of the low-solubility salt is continuously recycled and used as the driving liquid, that is, the actual driving liquid contains not only the designed driving substance but also a small amount of various dialysis exchanges.
  • the resulting salt residue If the driving solution of the anion replacement step is potassium carbonate, the potassium chloride obtained by concentration or crystallization is placed in a driving solution of the cation replacement step, and converted into potassium bicarbonate having low solubility by reaction with ammonium hydrogencarbonate, thereby facilitating concentration and crystallization extraction and returning.
  • Potassium hydrogencarbonate or potassium carbonate is prepared by using, or separately reacting potassium chloride with ammonium hydrogencarbonate or ammonium carbonate.
  • the driving solution containing ammonium ions in the first step of the above experiment is replaced by ammonium nitrate having a high solubility (the highest concentration of ammonium ions can reach 30 mol/L when saturated), and the sodium ion concentration when the corresponding sodium nitrate is saturated is 11.2 mol. /L, a large amount of exchange with sodium ions in seawater can be achieved.
  • Ammonium sulfate can also be used as a driving solution for the step 1 (cation replacement step) because of the high solubility of ammonium sulfate and the low solubility of sodium sulfate and potassium sulfate.
  • ammonium chloride is added to the ammonium nitrate driving solution, and the sodium and potassium ions obtained by dialysis in the driving liquid are sodium chloride and potassium chloride by using sodium nitrate in a molar ratio greater than that of sodium chloride.
  • ammonium chloride is derived from anion replacement step
  • the sodium or potassium ions obtained by dialysis in the driving liquid or the potassium chloride obtained from the driving solution of the step 2 are simultaneously added, and concentrated and crystallized by low-soluble hydrogencarbonate or carbonate or sulfate.
  • the driving solution in step 2 may be ammonium hydrogencarbonate or potassium carbonate, or a mixed solution of potassium hydrogencarbonate and ammonium carbonate; wherein ammonium hydrogencarbonate is derived from the precipitated sodium hydrogencarbonate and the step of replacing from the anion
  • the ammonium chloride reaction precipitated in the driving solution is generated by reacting with carbon dioxide generated by decomposition of ammonium carbonate and potassium hydrogencarbonate which are volatilized from seawater, wherein potassium hydrogencarbonate is potassium chloride precipitated in the driving liquid by the anion replacement step. Obtained by the reaction of ammonium hydrogencarbonate. Since the solubility of ammonium hydrogencarbonate is also low, what actually occurs is simultaneous precipitation of potassium hydrogencarbonate and ammonium hydrogencarbonate, but ammonium hydrogencarbonate can be separated from potassium hydrogencarbonate by volatilization.
  • a saturated solution of ammonium nitrate or a concentrated solution is used as the driving solution of the step 1.
  • alkaline ammonia is volatilized, indicating that the ammonium nitrate is decomposed under the action of the strong acid cation membrane, and then,
  • ammonium hydrogencarbonate or ammonium carbonate is added to the driving solution, a turbid colloidal substance can be seen in the vicinity of the inlet of the circulating solution during the dialysis, which should be fine crystal of sodium hydrogencarbonate or sodium carbonate, and precipitated over a long period of time (about 10 hours).
  • the white crystal of carbonate is visible at the bottom of the container.
  • the volume of the driving solution is increased. After 10 hours, the volume increase rate is about 0.06 L/hm 2 , which should be caused by the penetration of water.
  • a saturated or concentrated solution of potassium carbonate is used as the driving solution of the anion replacement step of the above step 2
  • a sodium chloride solution prepared from distilled water of 30 ppt is used as a solution to be treated, and diffusion dialysis for 10 hours, pH of the sodium chloride solution The value is increased to 9.5 (test paper), and the salinity is 30.2 ppt. Since every 2 mol of sodium chloride in the solution is exchanged and converted into 1 mol of sodium carbonate, the specific gravity change of the solution is small, so the change in salinity value is small, but the difference in pH between the two is small. Large, so the pH of the solution can be measured to change significantly.
  • the volume of the potassium carbonate solution was increased by about 6 ml, and the membrane area used was 30 cm 2 , and therefore, the water permeation flux was about 0.2 L/h.m 2 .
  • a low ion concentration can be added to the solution to be treated without affecting the ion exchange driving force, and the molecular concentration is high to effectively balance the ammonium bicarbonate, ammonium carbonate, magnetic particles and the like which drive the osmotic pressure of the solution, and the added
  • the substance is preferably a substance that is easily separated from the aqueous phase.
  • the potassium carbonate solution contains a large amount of potassium chloride, preferably exchanged to a concentration close to the solubility of potassium chloride, and the potassium chloride crystal is placed in the crystallization tank by the solubility of potassium chloride being lower than that of potassium carbonate.
  • the potassium chloride is continuously precipitated, or the low-boiling organic matter such as acetone or ether is added as much as possible under the premise that the potassium carbonate is kept saturated without reaching the crystallization state, and the potassium chloride is preferentially precipitated.
  • potassium chloride is further crystallized, and the mother liquid after crystallization mainly contains potassium carbonate and potassium chloride, and is supplemented with potassium carbonate and returned to the driving solution for the anion replacement step.
  • the extracted potassium chloride crystal or concentrated solution is mixed with the ammonium hydrogencarbonate crystal or the concentrated solution, and then formed into a potassium hydrogencarbonate crystal by the addition of a low boiling organic substance (such as acetone, diethyl ether, ethanol, methanol, etc.) and the ammonium chloride solution is separated.
  • a low boiling organic substance such as acetone, diethyl ether, ethanol, methanol, etc.
  • the mixture is heated and converted into potassium carbonate and carbon dioxide gas, and the potassium carbonate is returned to the driving solution of the anion replacement step, and the carbon dioxide and the additionally concentrated or crystallized ammonium chloride solution are returned to the driving solution of the cation replacement step, or
  • the separated ammonium chloride is converted into sodium chloride and ammonium hydrogencarbonate by reaction with sodium hydrogencarbonate precipitated from the driving solution of the cation replacing step, and ammonium hydrogencarbonate is returned to the driving solution of the cation replacing step.
  • a sealed container is used, and during the dialysis process, the low solubility substance is more likely to precipitate and precipitate preferentially during concentration and crystallization, thus , sodium ions exchanged with ammonium ions into the driving solution It can be precipitated preferentially by sodium carbonate or sodium hydrogencarbonate, and the potassium chloride in the driving solution from the anion replacement step or the potassium ion in the purchased potassium chloride is precipitated as low solubility potassium hydrogencarbonate, accompanied by Sodium and potassium ions are precipitated in a carbonated manner, and some ammonium hydrogencarbonate or ammonium carbonate may be precipitated.
  • sodium chloride, potassium chloride, sodium hydrogencarbonate or sodium carbonate and potassium hydrogencarbonate will preferentially precipitate because of combination with formate ions.
  • Both sodium formate and potassium formate have high solubility, so formate ions have no theoretical consumption as the above nitrate ions.
  • sodium bicarbonate sodium carbonate
  • sodium sulfate may be obtained by replacing ammonium chloride in the driving solution of the cation replacing step with or simultaneously adding or separately adding ammonium hydrogencarbonate (ammonium carbonate), ammonium nitrate or ammonium sulfate.
  • ammonium hydrogencarbonate ammonium carbonate
  • ammonium nitrate ammonium nitrate
  • ammonium sulfate ammonium nitrate
  • a by-product of crystal precipitation when potassium chloride is supplied, preferential crystal precipitation of potassium hydrogencarbonate, potassium nitrate, and potassium sulfate can be obtained, and it can be used as a by-product of the co-produced potassium salt.
  • the above-mentioned lyophilized solution of the driving solution of the cation and anion replacement steps is mixed, and the alkaline ammonia or ammonium carbonate salt is detected to be volatilized, and the final desalinated water treatment can also be aerated and reduced. Volatilization or a small amount of calcium hydroxide or sodium hydroxide is added to the treated solution to be treated or a weakly acidic cationic resin or the like is used to promote decomposition and volatilization of the ammonium salt and ammonia.
  • solubility is in terms of mol concentration, and the concentration of saturated ammonium hydrogencarbonate containing sufficient ammonium bicarbonate crystals is 0.27 mol at 20 ° C. (Solvent water 100g), adding 0.68mol of potassium chloride, the solution has up to 0.27mol of saturated ammonium bicarbonate, 0.34mol of saturated potassium hydrogencarbonate, 0.34mol of unsaturated ammonium chloride, 0.34mol of potassium chloride .
  • the mixture of potassium uses the characteristic that the solubility of ammonium hydrogencarbonate is lower than that of potassium hydrogencarbonate, and the mixture has the effect of high solubility of potassium carbonate and high ion concentration in the solution, and further precipitates ammonium hydrogencarbonate and potassium chloride through the dialysis process;
  • the precipitated potassium hydrogencarbonate is converted into potassium carbonate by adding ammonia water, or decomposed by heating, and ammonium hydrogencarbonate is volatilized to obtain potassium hydrogencarbonate solid, and further heated to 120 ° C or higher to be converted into potassium carbonate or potassium hydrogencarbonate and ammonium carbonate.
  • the reaction is characterized in that the solubility of ammonium hydrogencarbonate is lower than that of potassium hydrogencarbonate, and is partially converted into potassium carbonate of high solubility and ammonium hydrogencarbonate of low solubility. At this time, it is necessary to increase the sealing pressure of ammonium hydrogencarbonate and reduce the volatilization and precipitation thereof.
  • potassium chloride and ammonium hydrogencarbonate are mixed in a saturated state and then added with low-boiling organic matter for treatment.
  • a part of potassium chloride and ammonium chloride are also recycled to the anion replacement step with the crystallization of potassium hydrogencarbonate. In solution. In the crystallization, it is preferable to control the concentration of each substance, and when the organic matter is dehydrated or concentrated or crystallized, as long as possible, only a single target product is crystallized.
  • ammonium carbonate and potassium chloride precipitate potassium carbonate after extracting ammonium chloride by an organic solvent, or potassium bicarbonate and magnesium carbonate form a precipitable double salt, and can also be used for precipitating and separating potassium hydrogencarbonate.
  • the salt is heated and decomposed to drive the solution for the anion replacement step, wherein the magnesium carbonate is naturally precipitated and recycled for precipitation of potassium hydrogencarbonate.
  • Diffusion dialysis treatment was carried out with AMI-7001 strong alkaline anion membrane 30 cm 2 separately.
  • tap water was used as the driving solution.
  • the disappearance time of 0.3 g sodium chloride crystal was measured for 13 minutes, and then concentrated potassium carbonate was used as the driving solution.
  • the pH of the sodium chloride solution was adjusted to 6 with acetic acid, and it took 10 minutes for the crystal of 0.3 g of sodium chloride to disappear.
  • sodium chloride was formed due to the formation of alkaline sodium carbonate.
  • the pH of the solution gradually increases, and the time for the disappearance of 0.3 g of sodium chloride crystals gradually increases. At pH 7, the time required is 11 minutes.
  • the CMI-7000 cationic membrane was separately used for diffusion dialysis.
  • the tap water was used as the driving solution.
  • the disappearance time of 0.3 g of sodium chloride crystal was 15 minutes. It should be dissolved by the water that was infiltrated by the positive infiltration.
  • the concentrated solution of ammonium nitrate is the driving solution.
  • the pH of the saturated sodium chloride solution is adjusted from 4 to 12 with acetic acid and ammonia water, and the time when 0.3 g of sodium chloride disappears (converted to ammonium chloride) Basically 12 minutes, indicating that the pH of the solution to be treated has no obvious effect on the exchange of cations; if ammonia water is added to the ammonium nitrate solution, it is found that the disappearance time of 0.3 g of sodium chloride crystals increases to 15 minutes, indicating that there is no expectation
  • the alkaline ammonia water promotes the diffusion dialysis of ammonium cations in the driving solution. It also shows that in practical applications, it is necessary to perform conventional optimization screening and processing of various parameters according to the characteristics of the film material.
  • the above-mentioned anionic and cation membranes are used in combination for diffusion dialysis treatment, and tap water is used as a driving solution to measure the disappearance time of 0.3 g of sodium chloride crystals for 9 minutes, which should be dissolved by water which is positively permeated, with potassium carbonate and
  • the concentrated solution of ammonium nitrate was used as a driving solution for the anion and cation replacement steps, respectively, and the time required for 0.3 g of sodium chloride crystals to disappear (converted to ammonium carbonate) was 8 minutes.
  • the pH of the saturated sodium chloride solution is mostly maintained below 7, possibly because the amount of acidic ammonium chloride formed after the exchange in the solution is greater than that of the alkaline sodium carbonate, but sometimes it is also found.
  • the pH of the saturated solution of sodium chloride is greater than 7, indicating that there are many parameters involved in the process. For example, changing the temperature of the solution, the dialysis rate is accelerated, and the increase rate of the cation-exchange rate of the anion and cation membrane may be different.
  • the experimental results of different manufacturers' membranes are different. In actual use, it is necessary to optimize the screening process for the characteristics of the film material.
  • the concentration of seawater is low, which can increase the relative flow velocity of seawater and match the concentration of the driving solution, increase the chance of exchange of ions on both sides of the membrane, increase the exchange speed, reduce the contact time, that is, reduce the harmful The amount of water permeation caused by leakage and osmotic pressure due to concentration.
  • This embodiment provides an ion dialysis migration experiment including concentration diffusion driving and DC voltage driving.
  • the driving of the DC voltage is introduced in the above-described system driven by the concentration difference.
  • the solution to be treated is isolated from the anode chamber by a cation membrane, and is also isolated from the cathode chamber by an anion membrane.
  • a carbonate solution such as potassium carbonate, ammonium carbonate, or carbonate, is added to the anode chamber by a saturated or concentrated anion replacement step.
  • Ammonium hydrogen phosphate, potassium hydrogencarbonate solution, a saturated or concentrated cation replacement step driven ammonium salt solution is added to the cathode chamber, and when the diffusion dialysis is simultaneously added with a direct current voltage, the anion and cation in the solution to be treated are subjected to concentration diffusion.
  • the drive is also driven by voltage.
  • This embodiment provides an apparatus that can be used in the above embodiments to effect exchange and concentration of ions in a solution.
  • a container for measuring and precipitating and separating the precipitates and a filtration system are firstly set, and the aqueous solution is subjected to precipitation pretreatment. If the driving solution used contains ammonium ions, carbonate ions, and hydrogen carbonate ions, it is easy to volatilize ammonia gas, ammonium hydrogencarbonate, ammonium carbonate, and carbon dioxide. Therefore, the container for the driving liquid should be sealed and replaceable standard parts.
  • the plug-in type is connected with the dialysis component, which is convenient for replacing the driving solution at the working site, that is, by replacing the driving liquid container, replenishing the new driving liquid; or releasing the used driving liquid through the valve first, and then inputting the fresh driving Solution.
  • the container portion of the solution to be treated should be a container that can provide aeration or suction to form a negative pressure.
  • the container can be connected to an upright container having a water column height of more than 10 meters.
  • a negative pressure is formed above the container, and the flow from the dialysis exchange flows through the upper portion of the container to promote rapid volatilization of ammonium carbonate and the like in the solution, and is connected to the dialysis unit in a plug-in manner so as to be independently and continuously promoted. Precipitation of ammonium carbonate and ammonium hydrogencarbonate.
  • the dialysis component containing the ion exchange membrane may be a separate component containing an anion or cation exchange membrane, and the solution to be treated is subjected to diffusion dialysis treatment and then recirculated into the vessel of the solution to be treated, and each membrane module may be reel type.
  • a separate crystallization separation system that crystallizes the minerals extracted from the seawater or sewage extracted from the drive solution. The above system is miniaturized, that is, it can be used as a deep purification treatment device for desalination or water in a home or community.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种溶液中离子的交换和浓缩方法及装置,通过阴、阳离子膜或阴、阳离子树脂的组合应用,使溶液中的阴、阳离子转化为挥发性的碳酸铵、碳酸氢铵、氢氧化铵或碳酸,实现溶液中物质的分离和离子的交换反应。该方法可用于海水淡化、废水资源化、污水处理,以及工业生产过程中的离子浓缩、脱酸、脱碱、脱盐,和盐、碱的生产。

Description

一种溶液中离子的交换和浓缩方法及装置 技术领域
本发明属于离子分离技术领域,具体涉及一种溶液中离子的交换和浓缩方法及装置。
背景技术
在水处理、包括海水淡化、化工生产、化工分离与化学反应、轻工与食品、原子能等工业领域,常涉及水中各种阴阳离子的交换或转换,或分离脱除或浓缩回收,以及有机物与水、酸、碱、盐等不同种类物质的分离、脱水、提纯和浓缩以及复分解反应问题。因为化学工业的发展,水污染以及淡水的匮乏已经影响到经济的可持续发展,水处理和净化是一个必须从技术上有新的突破的领域。如广泛使用的反渗透技术需要高压和高压设备,因此能耗高,再如离子交换法水净化技术采用的是昂贵的酸和碱作为离子交换剂或再生剂。
发明内容
为克服上述问题,本发明的目的是提供一种溶液中离子的交换和浓缩方法。该方法可用于从海水、废水、污水溶液中,尤其从废水中回收提取有价值的资源,或用无害离子替换有害离子,或完全脱除水中阴阳离子实现水的净化处理,或实现溶液中不同物质间离子的互换,产出所需要的物质。
本发明的另一目的是提供上述溶液中离子的交换和浓缩方法在水处理中的应用。
本发明的另一目的是提供一种由上述应用组合形成的水处理方法。
本发明的另一目的是提供一种生产碳酸氢钾盐的方法。
本发明的又一目的是提供用于上述溶液中离子的交换和浓缩方法的装置。
为达到上述目的,本发明提供了一种溶液中离子的交换和浓缩方法,该方法包括:
阳离子置换步骤:用铵离子和/或氢离子置换待处理溶液中的阳离子;和/或,
阴离子置换步骤:用碳酸根离子和/或碳酸氢根离子和/或氢氧根离子置换待处理溶液中的阴离子;
待处理溶液中的阴离子或阳离子被置换后,在待处理溶液中生成碳酸铵、碳酸氢铵、氢氧化铵和碳酸中的一种或几种。
本发明通过阳离子置换步骤和/或阴离子置换步骤(不限定实施两个步骤的先后顺序),使待处理溶液中原来阴阳离子所对应的化合物转化为容易被分离出溶液体系的碳酸铵、碳酸氢铵、氢氧化铵或碳酸,解决了一般扩散渗析过程中伴随发生的离子浓差降低,离子平衡阻力不断增加,扩散驱动力逐渐减少的问题,也是扩散渗析离子交换应用领域的核心问题之一。同时,解决了多原子组合的铵离子和碳酸氢离子由于自身水解离而对扩散渗析的不利影响。
在上述溶液中离子的交换和浓缩方法中,可根据需要实施阳离子置换步骤和阴离子置换步骤中的一个步骤或两个步骤。
在上述溶液中离子的交换和浓缩方法中,优选地,若待处理溶液中的阳离子仅含有铵离子和/或氢离子,则可以仅实施阴离子置换步骤;若待处理溶液中的阴离子仅含有碳酸根离子和/或碳酸氢根离子和/或氢氧根离子,则可以仅实施阳离子置换步骤。
在上述溶液中离子的交换和浓缩方法中,对待处理溶液实施阳离子置换步骤和阴离子 置换的步骤时,两个步骤可分别进行或同时进行,最好是同时进行。一种同时进行的方法为:将待处理溶液分为两部分,一部分经阳离子置换步骤处理,另一部分经阴离子置换步骤处理,处理后的两部分溶液进入共用的混合容器中,混合后的溶液分为两部分后再循环进行阳离子置换步骤和阴离子置换步骤的处理,实现阳离子置换步骤和阴离子置换步骤的同时进行。
在上述溶液中离子的交换和浓缩方法中,优选地,在阳离子置换步骤中,采用以含有铵离子和/或氢离子的溶液作为驱动溶液的阳离子膜系统,或,采用以铵离子和/或氢离子作为交换基团的阳离子交换树脂系统;置换待处理溶液中的阴离子时,采用以含有碳酸根离子和/或碳酸氢根离子和/或氢氧根离子的溶液作为驱动溶液的阴离子膜系统,和/或,采用以碳酸根离子和/或碳酸氢根离子和/或氢氧根离子作为交换基团的阴离子树脂系统。
在上述溶液中离子的交换和浓缩方法中,所述阳离子膜系统中还设置有阳离子间接交换区(阳离子膜系统相当于由直接交换区和间接交换区组成),所述阳离子间接交换区由阳离子间接驱动溶液和间接交换阳离子膜组成;驱动溶液(可称为直接驱动溶液)中的铵离子和/或氢离子通过阳离子膜(可称为直接驱动阳离子膜)进入阳离子间接交换区使铵离子和/或氢离子的浓度获得增加后,再通过间接交换阳离子膜与待处理溶液中的阳离子进行交换;配制所述阳离子间接驱动溶液时,阳离子选自待处理溶液阳离子中的一种或几种。或者,所述阴离子膜系统中还设置有阴离子间接交换区(阴离子膜系统相当于由直接交换区和间接交换区组成),所述阴离子间接交换区由阴离子间接驱动溶液和间接交换阴离子膜组成;驱动溶液(可称为直接驱动溶液)中的碳酸根离子和/或碳酸氢根离子和/或氢氧根离子通过阴离子膜(可称为直接驱动阴离子膜)进入阴离子间接交换区使碳酸根离子和/或碳酸氢根离子和/或氢氧根离子的浓度获得增加后,再通过间接交换阴离子膜与待处理溶液中的阴离子进行交换;配制所述阴离子间接驱动溶液时,阴离子选自待处理溶液阴离子中的一种或几种。
通过设置间接交换区,可使离子浓度低的直接驱动溶液经另外一个离子浓度高的间接驱动溶液的交换,提高相应离子的浓度,再与待处理溶液进行交换,这样相当于间接地提高了直接驱动溶液中用于交换的相应离子浓度。例如,在对海水或污水处理时,阴离子置换步骤中使用2个阴离子膜,2个阴离子膜之间的空间为间接交换区;以饱和的氨水作为阴离子直接驱动溶液,以保持饱和的氯化钠作为间接驱动溶液,可间接地实现低浓度的氨水中的氢氧根离子与海水中的阴离子的交换(在直接驱动溶液中,氨水中的氢氧根离子浓度较低,然而通过间接交换区使氢氧根离子在间接驱动溶液中具有了较高的浓度,再与海水中的阴离子进行交换)。同样地方法,在阳离子置换步骤中使用2个阳离子膜,则可间接地实现了低浓度的氨水中的铵离子与海水中的阳离子的交换。将前述经阴离子和阳离子分别交换后的海水混合并抽提氢氧化铵(以氨气形式挥发析出)后,再循环进行前述的离子交换,实现海水的净化和淡化;或者,使前述的海水同时经受阴离子和阳离子的交换,连续地抽吸氨并回用,循环进行交换,直至获得净化或淡化的水。不断提取出氢氧化铵的目的是为了减少作为间接驱动溶液中的氯化钠与海水中生成的氢氧化铵的无效离子交换,达到最终淡化海水、污水的目的。而分别作为阴离子和阳离子直接驱动溶液的氨水中生成的氯化铵和氢氧化钠最好及时进行单独的混合,通过两种氨水溶液的混合反应释放出氯化钠(氯 化钾等来自于海水中的矿物质),以及可以循环回用的氢氧化铵,通过及时消除渗析产物氯化铵、氢氧化钠以及浓缩结晶提取氯化钠、抽提氢氧化铵,减少扩散渗析的平衡阻力。保持氯化钠的饱和是在溶液中投放过量的氯化钠晶体,保持氨水饱和则始终通入过量的氨气。
或者,作为上述阳离子直接驱动溶液的氨水替换为饱和的碳酸水或经烟道气饱和的酸性气体饱和的溶液,以提供作为阳离子交换剂的氢离子,使海水中的盐分替换为水,直接实现淡化,并从驱动溶液中获得氯化铵和碳酸钠副产品;或者进一步地,阴离子直接驱动溶液也采用酸性的烟道气或二氧化碳。在直接驱动溶液中分别生成的盐酸或碳酸钠最好及时进行混合反应,释放出碳酸气,浓缩结晶氯化钠,及时减少扩散渗析的阻力。以烟道气作为交换剂的过程,还可以达到净化烟道气,脱硫、脱销,并获得纯净碳酸气产品的效果。
或者,作为上述直接驱动溶液的氨水替换为饱和的碳酸氢铵或碳酸铵,以提供作为阳离子交换的铵离子及阴离子交换的碳酸氢离子或碳酸根离子,使海水中的盐分替换为碳酸铵盐。其中,碳酸铵中最好加入少量氨水,以减少或避免碳酸铵分解为碳酸氢铵及氨基甲酸铵。
因为只有完全相同离子之间的交换不会改变膜两侧溶液的离子浓度,也不会引入离子的污染,所以当海水或污水中的盐主要的是其它盐时,上述饱和或浓氯化钠间接驱动溶液则替换为对应于污水中的盐,污水中少量的盐分则被离子交换为和间接驱动盐成分相同的盐。
总之,通过设置间接交换区,使海水或污水与分别作为阴离子和阳离子间接驱动溶液的饱和的或浓的氯化钠溶液进行离子交换,而饱和的或浓的氯化钠溶液分别与氨水、碳酸水、酸性的烟道气、碳酸氢铵或碳酸铵进行离子交换,经提取转化渗析产物,达到水处理的目的。如污水中除了氯化钠,还含有其它的盐,则被饱和的氯化钠间接驱动溶液全部交换为氯化钠。
在上述溶液中离子的交换和浓缩方法中,所述阳离子膜为强酸性阳离子膜、中等酸性阳离子膜、弱酸性阳离子膜或中性阳离子膜;所述阴离子膜为强碱性阴离子膜、中等碱性阴离子膜、弱碱性阴离子膜或中性阴离子膜。实际应用时需要根据膜材料的特性进行各种参数常规的优化筛选和处理。
在上述溶液中离子的交换和浓缩方法中,我们发现,驱动溶液中的铵离子在通过阳离子膜扩散的路径上,若膜为强酸性阳离子膜,可能是,铵离子与膜上带负电荷的基团形成偏酸性的铵盐,相当于一种催化了膜中功能团附近的水分子的解离,即在膜中迁移的铵离子附近氢离子浓度较高,氢离子反向迁移,相当于和铵离子进行了交换,使海水或污水中阳离子不能有效地被铵离子交换。实验中则发现海水或污水中的盐分只有少量降低,却析出大量的氨气,以及驱动溶液中过饱和铵盐晶体物质的明显减少。因此,强酸性阳离子膜的效果是部分促进了水解,在进入海水或废水溶液时,铵离子与氢氧根离子结合维持电中性,而氢离子反向迁移进入驱动溶液中维持溶液的电中性。即使在驱动溶液中铵离子浓度较低的情况下,当待处理溶液中的阳离子扩散进入驱动溶液时,在强酸性膜中功能团的催化作用下,表现为,铵离子释放氢离子转化为氨而析出,生成的氢离子交换进入待处理液中。此过程可以应用于促进水中铵离子或铵盐的部分分解反应,以便脱除溶液中的铵离子,比如,工业或生活污水中或淡化后的海水中的氨或铵盐,尤其是利用各种酸中的氢离子通 过强酸性阳离子膜作为阳离子催化促使水中铵离子部分分解析出及部分与所用的酸生成铵盐。同理,强碱性阴离子膜提供了氢氧根离子与碳酸根、碳酸氢根离子的无效交换,比如碳酸氢离子水解结合一个氢离子,释放出一个氢氧根离子,返回驱动液中,以维持其电中性,因此,强碱性膜的效果部分是是促进了碳酸根离子、碳酸氢根离子的水解。
另外,实验还发现,使用弱酸性阳离子树脂处理含铵待处理溶液时,弱酸性阳离子树脂具有催化分解作用,以铵自身浓度的降低为驱动力,能使铵离子转变为氨气后从待处理溶液中析出;其机理应该是,因弱酸性阳离子树脂中的功能团对氢离子比对其它阳离子包括铵离子有更强的结合力,从而容易与氢离子结合,并使水解离出氢氧根离子,同时释放出与树脂结合的铵离子,该铵离子再与氢氧根离子结合,部分分解为水和可挥发析出的氨,或者,相当于树脂与铵暂时结合生成的树脂铵盐发生类似于碳酸铵的分解反应,而强酸性树脂则只有微弱的催化分解作用。同理,可优先吸附氢离子的分子筛类物质具有相同的促进铵分解的催化效果。类似地,弱碱性阴离子树脂或可优先吸附氢氧根阴离子的分子筛类物质中的功能团与氢氧根离子有更强的结合力,使水放出氢离子并与碳酸根或碳酸氢根离子结合,使碳酸根离子或碳酸氢根离子转变为碳酸气后从待处理溶液中析出。实际应用时,通过曝气,或者将树脂间隙性地暴露出溶液,促进氨的挥发和收集。
因此,在上述溶液中离子的交换和浓缩方法中,阳离子膜最好选用弱酸性阳离子膜或中性阳离子膜;阴离子膜最好选用弱碱性阴离子膜或中性阴离子膜。
但是,当使用强酸性阳离子膜或强碱性阴离子膜时,可通过调节驱动溶液或待处理溶液的酸碱度抑制强酸性阳离子膜或强碱性阴离子膜对水的解离作用。当使用强酸性阳离子膜时,抑制水的解离作用的一种方法为:在阳离子膜驱动溶液中加入碱性物质或使用碱性驱动液;碱性物质包括氨水、碳酸氢铵或碳酸铵;碱性驱动液包括碳酸氢铵或碳酸铵。当使用强碱性阴离子膜时,抑制水的解离作用的一种方法为:在阴离子膜驱动溶液中加入酸性物质或加入碱性物质;酸性物质包括硫酸铵或硝酸铵;碱性物质包括氢氧化钾或氢氧化钠;尤其是加入硫酸铵的方法,利用了碳酸氢根离子扩散速度大于硫酸根二价阴离子的特性,使待处理液中的阴离子主要的与碳酸氢根或碳酸根离子进行交换。
或者,当使用强酸性阳离子膜或强碱性阴离子膜时,通过设计待处理溶液实施阳离子置换步骤和阴离子置换步骤的先后处理顺序,使待处理溶液中首先生成酸性物质或碱性物质,以抑制强酸性阳离子膜或强碱性阴离子膜对水的解离作用。例如,待处理溶液先实施阳离子置换步骤,将待处理溶液中的阳离子转化为偏酸性的氯化铵或硫酸铵等,然后实施阴离子置换步骤,使待处理溶液中的阴离子与碳酸根离子和/或碳酸氢根离子和/或氢氧根离子交换。
在上述溶液中离子的交换和浓缩方法中,优选地,该方法还包括以下步骤:提取待处理溶液中生成的碳酸铵、碳酸氢铵、氢氧化铵或碳酸后,使全部或部分剩余液体进入待处理溶液中循环,继续所述阳离子置换步骤和/或阴离子置换步骤,直至所述待处理溶液中的离子含量降低至符合要求;所述提取为一次性提取(在实施完所有置换步骤后进行一次性总提取)、间断提取(实施完几个置换步骤后就提取一次)或连续提取(在溶液的循环管路上设置有连续运行的提取工艺)。提取方法包括析出法或分解法,所述析出法包括曝气抽提和抽真空减压挥发析出;分解法可以为现有技术中的常规方法,如加入碱性的石灰,或利 用优先吸附氢离子或氢氧根离子的分子筛;也可以利用前面所述的强酸性阳离子膜、弱酸性阳离子树脂对铵离子及氨水的分解作用,或,强碱性阴离子膜、弱碱性阴离子树脂对碳酸根离子或碳酸氢根离子的分解作用,实现对待处理溶液中的碳酸铵、碳酸氢铵、氢氧化铵或碳酸的分离、提取。
在上述溶液中离子的交换和浓缩方法中,优选地,该方法还包括以下步骤:提取所述驱动溶液中来自待处理溶液的阳离子和/或阴离子与驱动溶液中的阴离子和/或阳离子生成的盐后,使全部或部分剩余液体进入相应的驱动液中进行循环回用;所述提取为一次性提取、间断提取或连续提取。提取的方法包括冷却结晶、浓缩结晶、转化为较低溶解度的物质后结晶(如在硝酸铵驱动溶液中加入碳酸氢铵)、利用盐析效应结晶或加入低沸点有机物促进结晶(如丙酮、乙醚、乙醇、甲醇等进行脱水促进结晶,在抽提出这些有机物时,降低溶液温度,进一步促进结晶)等方式。
在上述溶液中离子的交换和浓缩方法中,随着扩散渗析的进行,驱动溶液中用于交换待处理溶液中离子浓度不断降低,为了保持驱动溶液中相应离子的浓度,该方法还包括以下步骤:向阳离子膜系统的驱动溶液中补充铵离子或氢离子,和/或,向阴离子膜系统的驱动溶液中补充碳酸根离子、碳酸氢根离子或氢氧根离子,使驱动溶液中的铵离子、氢离子、碳酸根离子、碳酸氢根离子或氢氧根离子的浓度维持在设计范围内。
在上述溶液中离子的交换和浓缩方法中,优选地,该方法还包括以下步骤:若待处理溶液中含有可形成碳酸盐或氢氧化物沉淀的金属离子,则在实施阳离子置换步骤和/或阴离子置换步骤前,先向待处理溶液加入沉淀剂进行沉淀预处理,所述沉淀剂包括碳酸盐、碳酸氢盐和氨水中的一种或几种的组合。进一步优选地,所述碳酸盐包括碳酸铵,所述碳酸氢盐包括碳酸氢铵。
在上述溶液中离子的交换和浓缩方法中,优选地,在阳离子置换步骤中,驱动溶液中的铵离子或者用于阳离子树脂再生的铵离子来源于氨水和铵盐中的一种或几种的组合;所述铵盐包括氯化铵、碳酸氢铵、碳酸铵、硝酸铵、硫酸铵、亚硝酸胺、亚硫酸铵、硫氰酸铵、甲酸铵、醋酸铵和磷酸铵中的一种或几种的组合。进一步优选地,铵盐的组合形式包括以下几种:(硝酸铵+碳酸氢铵/碳酸铵/氯化铵)、(氯化铵+碳酸氢铵/碳酸铵)或(甲酸铵+碳酸氢铵/碳酸铵/氯化铵)、(醋酸铵+碳酸氢铵/碳酸铵/氯化铵)。
在上述溶液中离子的交换和浓缩方法中,优选地,在阴离子置换步骤中,驱动溶液中或者用于阴离子树脂再生的碳酸根离子、碳酸氢根离子或氢氧根离子,来源于碳酸钾、碳酸铵、碳酸钠、碳酸氢铵、碳酸氢钠、碳酸氢钾、氨水、氢氧化钾和氢氧化钠中的一种或几种的组合。进一步优选地,碳酸根离子、碳酸氢根离子或氢氧根离子的来源于包括以下几种方式:碳酸钾、(碳酸氢钾+碳酸铵)、碳酸铵、碳酸氢铵、(碳酸铵+硫酸铵)、(碳酸氢铵+硫酸铵)、(碳酸铵+硝酸铵)、(碳酸氢铵+硝酸铵)、(碳酸钾+氢氧化钾)或(碳酸钾+氢氧化钠)。
在上述溶液中离子的交换和浓缩方法中,最优的选择是考虑后续低成本地浓缩结晶提取和循环利用渗析产物,尤其是,驱动物质的溶解度和离子浓度尽可能的高,而溶液中对应生成的产物的溶解度尽可能的低。因此,优选地,所述阳离子膜系统中的驱动溶液中,包括易于与待处理溶液中的阳离子生成易分离产物的阴离子;所述阴离子膜系统中的驱动 溶液中,包括易于与待处理溶液中的阴离子生成易分离产物的阳离子。
在上述溶液中离子的交换和浓缩方法中,优选地,该方法还包括为了减少水渗透,在待处理溶液中加入可平衡驱动溶液渗透压的物质的步骤;所述可平衡驱动溶液渗透压的物质包括碳酸氢铵、碳酸铵或磁性微粒。可平衡驱动溶液渗透压的物质具有加入离子浓度低而减少对离子交换驱动力的影响,分子浓度较高可有效平衡驱动溶液渗透压的作用。
在上述溶液中离子的交换和浓缩方法中,优选地,该方法还包括使用直流电压驱动离子进行渗析迁移的步骤。待处理溶液中的阳离子、阴离子不仅可以被铵离子、碳酸根离子、碳酸氢根离子或氢氧根离子所驱动渗析迁移和交换,还可以同时被直流电压所驱动进行渗析迁移,以进一步增加浓差驱动对待处理液中离子的扩散迁移力,或同样地达到增加电渗析过程的驱动力的目的。
在上述溶液中离子的交换和浓缩方法中,优选地,若待处理溶液为碱性液体,如含碱浓度高,则可以先进行常规的碱回收处理。在碱回收处理中,一种方法为经阳离子膜的扩散渗析,以清水提取其中的碱;另一种方法为用前面介绍的阳离子置换步骤对待处理溶液进行碱回收,此时铵离子进入待处理溶液并与氢氧根离子反应生成氢氧化铵,然后除去氢氧化铵(可通过挥发析出的方式或加热分解的方式)。在碱回收处理步骤后,若待处理溶液中还有盐分需要脱除,则对待处理溶液再实施阳离子置换步骤和/或阴离子置换步骤。
在上述溶液中离子的交换和浓缩方法中,优选地,若待处理溶液为酸性液体,如含酸浓度高,则可以先进行常规的酸回收处理。在酸回收处理中,一种方法是经阴离子膜的扩散渗析,以清水提取其中的酸;另一种方法为为用前面介绍的阴离子置换步骤对待处理溶液进行酸回收,此时碳酸根离子或碳酸氢根离子进入待处理溶液并与氢离子反应生成碳酸,然后除去碳酸。在酸回收步骤后,若待处理溶液中还有盐分需要脱除,则在脱酸步骤结束后,对待处理溶液再实施阳离子置换步骤和/或阴离子置换步骤。
在上述溶液中离子的交换和浓缩方法中,优选地,对于除含有氢氧根离子外,还含有其它阴离子的废水溶液,如含有氢氰酸、氰根、氰酸根、硫氰酸根、砷酸根、硝酸根、硫酸根、磷酸根或氯离子等阴离子,以及各种金属离子的溶液,较佳地,如溶液的pH值大于10,则首先利用阳离子膜扩散渗析获得一定量的碱溶液,再加入碳酸钠,最好加入碳酸铵,通过生成氢氧化铵及其以氨气形式析出溶液,降低溶液的碱性,以及生成不溶性的碳酸盐方式减少或沉淀出溶液中的可生成碳酸盐沉淀的金属离子;进一步地,利用阴离子置换步骤的阴离子膜的扩散渗析,以碳酸铵、碳酸钾、碳酸钠、碳酸氢铵、碳酸氢钾或碳酸氢钠饱和溶液为驱动液,交换出废水溶液中的各种阴离子,如氯离子、硫酸根、硝酸根离子,尤其是氰根离子的交换,随着氰根离子浓度的降低,将促使含氰废水中的金属氰化物、金属氰络合物的解离,以及进一步转化为碳酸盐、碳酸氢盐或金属氰化物,经浓缩后沉淀分离,最终使废水中主要只含有钠、钾、和/或铵的碳酸盐。根据排水或回水标准的需要,其中的钠、钾离子则可经阳离子膜渗析,以铵离子为驱动离子,进行交换,从而使废水中只含有可挥发析出的碳酸铵或碳酸氢铵。
另外,在处理含金属离子的含酸溶液时,若酸浓度较高,则可以预先经扩散渗析提取部分酸,若溶液中还含有六价的铬离子或铬酐,则需先经还原剂使其还原为三价铬离子,最优地,利用铁粉、铁削作为还原剂,单价铁先中和酸,生成的二价铁离子再与六价铬离 子发生还原反应,当酸完全中和且六价铬完全还原后,再加入适量碳酸铵,碳酸氢铵,将溶液中可形成碳酸盐沉淀的金属离子沉淀析出,避免渗析过程中形成沉淀。经碳酸铵、碳酸氢铵沉淀后,溶液中仅有溶于水的铵盐、钠盐和/或钾盐,以铵或钠或钾的碳酸盐或碳酸氢盐为驱动溶液,经阴离子膜的扩散渗析,交换溶液中的各种阴离子,根据排水或回水标准的需要,以铵盐或氨水溶液为驱动溶液,经阳离子膜的渗析处理,以铵离子交换钠、钾离子后,再曝气挥发析出或经催化析出经渗析转化生成的碳酸铵、碳酸氢铵及过量添加的碳酸铵,即完成了含酸水溶液的处理。
本发明提供了上述溶液中离子的交换和浓缩方法在水处理中的应用,所述应用包括:提取或分解溶液中的铵离子、碳酸根离子或碳酸氢根离子;处理含酸污水、含碱废水或含盐废水;海水淡化或苦咸水淡化;生产盐或生产碱。
上述应用中通过离子交换,利用碳酸铵、碳酸氢铵、氢氧化铵、碳酸的挥发性的特点,应用于分离各种含有溶解于水中的阴阳离子组成的有机物和无机物的污水;非电解质参与的化学反应中,包括发酵液的提纯、分离,使非电解质转化成的电解质及产物或副产物中的离子化合物(如无机盐、氯化氢、水以及废弃的催化剂)及时析出,以促进非电解质转化为电解质,如甲醇的氧化制造甲酸,糖发酵产物中有机酸的移除等;以及日常饮用水净化;各种含有机物的混合溶液的脱离子浓缩;代替电渗析脱盐提纯等。
在上述应用中,优选地,提取或分解溶液中铵离子的一种方法包括以下步骤:将含有铵离子的待处理溶液用强酸性阳离子膜进行扩散渗析,使铵离子转变为氨气后从待处理溶液中析出;或,将含有铵离子的待处理溶液用弱酸性阳离子树脂或可优先吸附氢离子的分子筛进行催化反应,使铵离子转变为氨气后从待处理溶液中析出。
在上述应用中,优选地,提取或分解溶液中碳酸根离子或碳酸氢根离子的一种方法包括以下步骤:将含有碳酸根离子或碳酸氢根离子的待处理溶液用强碱性阴离子膜进行扩散渗析,使碳酸根离子或碳酸氢根离子转变为碳酸气后从待处理溶液中析出;或,将含有碳酸根离子或碳酸氢根离子的待处理溶液用弱碱性阴离子树脂或可优先吸附氢氧根离子的分子筛进行催化反应,使碳酸根离子或碳酸氢根离子转变为碳酸气后从待处理溶液中析出。
在上述应用中,优选地,海水淡化或苦咸水淡化的一种方法包括以下步骤:先向海水或苦咸水中加入沉淀剂碳酸铵进行沉淀预处理,使海水或苦咸水中的部分阳离子转化为碳酸盐析出;所述碳酸盐包括碳酸钙、碳酸镁或碳酸锶等;对沉淀预处理后的海水或苦咸水实施所述阳离子置换步骤和阴离子置换步骤,碳酸铵或碳酸氢铵被从海水或苦咸水中提取出;阳离子置换步骤中使用的驱动溶液为高浓度或饱和的(硝酸铵+碳酸氢铵和/或碳酸铵)的混合溶液、(氯化铵+碳酸氢铵和/或碳酸铵)的混合溶液或(甲酸铵+碳酸氢铵和/或碳酸铵)的混合溶液;阴离子置换步骤中使用的驱动溶液为高浓度或饱和的碳酸铵溶液、碳酸钾溶液或(碳酸钾+氢氧化钾和/或氢氧化钠)的混合溶液。
对于阳离子置换步骤中使用的驱动溶液,利用氯化铵、硝酸铵、甲酸铵或醋酸铵是因为其溶解度高,离子浓度高,且与从海水中渗析而来的钠离子、钾离子形成的盐的溶解度也高,从而不会将驱动物质轻易地结晶析出,加入碳酸氢铵或碳酸铵是利用其可以将钠、钾离子转化为溶解度低的碳酸氢钠、碳酸氢钾及碳酸钠,方便海水中钠、钾离子间接析出。
基于上述对海水或苦咸水淡化的方法,可以通过合理设计,对获得的中间产物加以利 用,形成一套经济、环保的综合利用工艺。现以阳离子置换步骤中使用的驱动溶液为饱和的硝酸铵+碳酸氢铵的混合溶液,阴离子置换步骤中使用的驱动溶液为饱和的碳酸钾溶液为例:(1)通过实施阳离子置换步骤和阴离子置换步骤,海水或苦咸水中生成碳酸铵,可被挥发析出;在阳离子置换步骤的驱动溶液中,海水或苦咸水中的钠离子、钾离子转化为低溶解度的碳酸氢盐后可被结晶析出;碳酸氢盐的成分主要为碳酸氢钠,同时含少量的碳酸氢钾;在阴离子置换步骤的驱动溶液中,海水或苦咸水中的氯离子、硫酸根离子转化为钾盐后被提取出;钾盐的主要成分为氯化钾,同时含少量的硫酸钾。(2)为了达到阴离子驱动溶液中的碳酸钾可以循环回用的目的,将提取出的钾盐与碳酸氢铵反应,得到主要成分为碳酸氢钾和氯化铵的产物,对产物加热使碳酸氢钾分解为碳酸钾和二氧化碳,加热后剩余的固体(主要为碳酸钾)可被用于阴离子置换步骤中的驱动溶液;收集的二氧化碳气体则可充入阳离子置换步骤的驱动溶液中,与从海水或苦咸水提取出并补充进入阳离子置换步骤的驱动溶液中的碳酸铵反应转化为碳酸氢铵;或者,将碳酸氢钾与碳酸铵反应,利用碳酸氢铵溶解度更低的特点,转化为碳酸钾和碳酸氢铵。
另外,将获得的氯化铵则与碳酸氢盐共热反应转化为氯化钠产品和碳酸氢铵,碳酸氢铵再循环与氯化钾反应制造碳酸氢钾。
另外,上述阴离子置换步骤中使用的驱动溶液可以为高浓度或饱和的碳酸氢钾与碳酸铵的混合溶液。此时,利用碳酸氢铵比碳酸氢钾溶解度低的特点,以减少碳酸氢钾转化为碳酸钾的成本,阴离子置换步骤的驱动溶液中渗析后需要浓缩析出的仍然是氯化钾。其中,浓缩结晶减量后的母液则返回原驱动液中。上述对驱动溶液的浓缩结晶提取可以是一个连续的过程或者是间断的过程,用于浓缩结晶的容器与驱动溶液循环联通。
另外,上述阴离子置换步骤中使用的驱动溶液还可以为高浓度或饱和的碳酸铵溶液和/或碳酸氢铵,此时阴离子置换步骤驱动溶液中提取的氯化铵可进行回用。
在上述海水淡化或苦咸水淡化方法中,另一种优选方案为:阳离子置换步骤中使用的驱动溶液为高浓度或饱和硝酸铵或甲酸铵溶液;较优地,在硝酸铵或甲酸铵溶液中加入氯化铵或进一步地加入氨水,使驱动溶液偏碱性;阴离子置换步骤中使用的驱动溶液为高浓度或饱和的碳酸钾溶液、(碳酸钾+氢氧化钾和/或氢氧化钠)的混合溶液或(碳酸氢钾+碳酸铵)的混合溶液。经过阳离子置换步骤的处理,海水或苦咸水中的阳离子如钠、钾进入驱动溶液中,转化为溶解度相对低的氯化钠、氯化钾,结晶浓缩提取后作为产品;经过阴离子置换步骤的处理,海水或苦咸水中的阴离子如氯离子、硫酸根离子进入驱动溶液中,转化为溶解度相对低的氯化钾、硫酸钾;同时,海水或苦咸水中生成碳酸氢铵和/或碳酸铵。从阴离子置换步骤的驱动溶液中浓缩结晶析出的氯化钾与从海水或苦咸水中挥发析出的碳酸铵反应生成氯化铵及碳酸钾,则分别循环回阳离子置换步骤和阴离子置换步骤的驱动溶液中;或者,先将氯化钾与碳酸氢铵溶液在加入有机溶剂的促进下反应沉淀出碳酸氢钾,再将碳酸氢钾加热转化为碳酸钾回用于驱动溶液中,将分解出的二氧化碳与来自海水或苦咸水中挥发析出的碳酸铵反应生成碳酸氢铵再与氯化钾反应,而反应过程中生成的氯化铵返回阳离子置换步骤的驱动溶液中。上述阴离子置换步骤的驱动溶液可以替换为碳酸氢铵溶液或碳酸铵溶液,置换后生成的氯化铵经浓缩提取后作为阳离子置换步骤驱动溶液的补充,来自于海水或苦咸水中挥发析出的碳酸氢铵回用于阴离子置换步骤的驱动溶液中。
在上述海水淡化或苦咸水淡化方法中,又一种优选方案为:阳离子和阴离子置换步骤中使用的驱动溶液均为高浓度或饱和碳酸铵和/或碳酸氢铵溶液。经过阳离子置换步骤的处理,海水或苦咸水中的阳离子如钠、钾进入驱动溶液中,转化为钠或钾的碳酸盐、碳酸氢盐;经过阴离子置换步骤的处理,海水或苦咸水中的阴离子如氯离子、硫酸根离子进入驱动溶液中,转化为氯化铵或硫酸铵;同时,海水或苦咸水中生成碳酸铵和/或碳酸氢铵,不断提取这些挥发性铵盐,降低待处理溶液中的离子浓度,维持膜两侧溶液的离子浓度差,使即使低浓度的驱动溶液也能进行有效的离子交换。阳离子置换步骤的驱动溶液中生成的碳酸盐、碳酸氢盐可经结晶浓缩提取后作为产品,也可与从阴离子置换步骤的驱动溶液中提取的铵盐进行反应,制备氯化钠及碳酸铵盐,其中的碳酸铵盐可一并与从海水或苦咸水中挥发析出的碳酸铵、碳酸氢铵回用于阳离子和阴离子置换步骤的驱动液中。因为离子交换的驱动力的本质是浓差电动势,溶液短路后将造成有效驱动力的减少,因此,阳离子和阴离子的驱动溶液应分装在不同的独立的容器中。
上述海水淡化或苦咸水淡化方法也可作为后续的反渗透、电渗析等的一种初级处理方法,通过将海水或苦咸水中的盐分置换为可挥发析出的碳酸铵盐、氨气、碳酸气的方法,以减少海水或苦咸水中的盐含量。
在上述应用中,优选地,处理含碱污水的一种方法包括以下步骤:先向碱性污水中加入沉淀剂(碳酸铵或碳酸钠),使能够生成碳酸盐沉淀的重金属离子(钙、镁等)先行沉淀析出;然后进行脱碱处理,即使用所述阳离子置换步骤脱碱(铵离子进入待处理溶液后可以与氢氧根离子生成氢氧化铵,而氢氧化铵易分解为氨气和水,即达到了除碱的目的);使用的阳离子置换步骤的驱动溶液为饱和的或高浓度的氯化铵溶液(利用大多数氯离子的盐溶于水的特点,避免在膜中或膜表面形成沉淀),或者根据工艺需要选用硫酸铵/硝酸铵/碳酸铵/碳酸氢铵/碳酸铵+氨水的混合溶液作为阳离子置换步骤的驱动溶液。若脱除碱性后的溶液中还含有其它盐离子,则再采用阳离子置换步骤和/或阴离子置换步骤进行处理,达到彻底处理污水的目的。典型的含碱性污水有制浆造纸黑液、纺织皮革污水、氰化物提取贵重金属后的废水。在碱性制浆污水处理时,脱碱时利用碳酸氢铵溶液或碳酸铵溶液作为阳离子置换步骤的驱动溶液,置换后的阳离子置换步骤的驱动溶液中含有碳酸氢钠或碳酸钠,可将碳酸钠或碳酸氢钠与熟石灰碳化转化为烧碱,回用于制浆工段。离子交换过程中,由于pH值的变化,导致木质素等在膜表面的沉积,此时可以间隙性地采用直流电流电解的方法使膜表面的沉积物重新溶解。制浆造纸黑液先行碳酸铵沉淀后形成含无机矿物质的有机肥,在脱除碱性后,黑液含有大量的有机质,可以直接作为灌溉施肥用水。纺织皮革污水、氰化物提取贵重金属后的废水需要先加入碳酸铵进行预沉淀,然后进行脱碱处理,脱碱后的废水中仍然含有有害的离子,如铬酸根离子、含砷酸根离子、其它重金属离子等,因此,需进一步采用阳离子置换步骤和阴离子置换步骤联合处理,达到彻底处理污水的目的。在对氰化物提取贵重金属后的污水进行处理时,当碱性及氰离子脱除后或在脱除的过程中,络合物发生分解,可沉淀的金属氰化物、金属氰络合物发生沉淀,或发生氰化氢、氰化铵的挥发析出。
在上述应用中,优选地,处理含酸污水的一种方法包括以下步骤:可以先利用阴离子置换步骤进行酸回收处理,必要时在利用阳离子置换步骤和/或阴离子置换步骤进行处理, 达到彻底处理污水的目的。典型的含酸污水有电镀废水、酸洗污水、生物质酸水解含糖溶液。阳离子置换步骤驱动溶液中的铵离子交换浓缩出废水中的各种金属离子,阴离子置换步骤驱动溶液的阴离子交换浓缩出废水中的有害离子如含铬酸根离子、含砷酸根离子、氰酸根离子等。
在上述应用中,为了经济地提取驱动溶液或用于驱动树脂再生的溶液中来自海水或废水中的各种离子,需要尽可能地采用溶解度高的溶质作为驱动溶液或驱动离子,增加驱动力,增加可交换提取离子的浓度,同时所交换形成的新物质最好有尽可能低的溶解度,使结晶分离或获得盐产品可以经济地实现。或者通过组合的铵盐溶液,即主驱动物质离子浓度高,增加驱动力,副驱动物质或交换后的产物与钠、钾形成低溶解度的盐,以便保持主驱动力相对浓度不降低,也促使海水中离子间接地通过自然结晶析出。
在上述应用中,优选地,生产盐的一种方法包括以下步骤:对待处理溶液实施所述阳离子置换步骤和/或阴离子置换步骤,并从阳离子膜系统的驱动溶液和/或阴离子膜系统的驱动溶液中提取目标产物盐,所述待处理液为饱和或浓的氯化钾溶液或氯化钠溶液;在所述阳离子置换步骤中,所述驱动溶液包括:铵盐溶液或(铵盐+氨水)的混合溶液,所述铵盐包括碳酸氢铵、碳酸铵、硫酸铵、亚硫酸铵、硝酸铵、亚硝酸铵、磷酸铵、甲酸铵和醋酸铵中的一种或几种的组合;在所述阴离子置换步骤中,所述驱动溶液包括:碳酸铵溶液、碳酸氢铵溶液、碳酸铵+氨水的混合溶液、碳酸钾溶液、碳酸氢钾溶液、碳酸钠溶液、碳酸氢钠、氨水、氢氧化钠溶液、氢氧化钾溶液和氢氧化锂溶液中的一种或几种的组合。在上述方法中,通过使铵离子以挥发性的碳酸氢铵、碳酸铵或氢氧化氨不断析出,保持阳离子膜两侧铵离子的高浓度差;为了加快反应速度,反应物的浓度最好都较高或者饱和。在阳离子置换步骤的驱动溶液中生成对应的碳酸钾、碳酸氢钾、硫酸钾、亚硫酸钾、硝酸钾、亚硝酸钾、磷酸钾、碳酸钠、碳酸氢钠、硫酸钠、亚硫酸钠、硝酸钠、亚硝酸钠或磷酸钠。
在上述应用中,优选地,生产盐的一种方法包括以下步骤:以饱和或浓的氯化钾、氯化钠溶液分别作为权利要求1中所述待处理液,以碳酸钾、或碳酸钾与氢氧化钾、氢氧化钠、或碳酸氢铵或碳酸铵或碳酸铵与氨水、或碳酸铵盐与硫酸铵、硝酸铵的混合溶液作为权利要求1阴离子置换步骤中的驱动溶液,以溶解度较高的硝酸铵或氯化铵或硫酸铵或甲酸铵饱和或浓溶液作为权利要求1阳离子置换步骤的驱动溶液之一,另外加入饱和或浓的硝酸铵、硫酸铵,尤其是加入溶解度较低的碳酸氢铵、碳酸铵,则在阳离子置换步骤的驱动溶液中可析出较低溶解度的硫酸钾、硝酸钾、碳酸氢钾、硫酸钠、碳酸氢钠或碳酸钠等。
在上述应用中,优选地,生产盐的一种方法包括以下步骤:
以饱和或浓的氯化钾或氯化钠溶液分别作为待处理液,为降低成本,减少阴离子膜的使用,仅以硝酸铵或氯化铵或硫酸铵或甲酸铵饱和或浓溶液作为阳离子置换步骤中驱动溶液之一,另外加入饱和或浓的硝酸铵、硫酸铵或碳酸氢铵、碳酸铵,则在阳离子置换步骤的驱动溶液中可对应析出低溶解度的硝酸钾、硫酸钾、碳酸氢钾、硫酸钠、碳酸氢钠、碳酸钠,但在氯化钾或氯化钠溶液中经渗析交换富集的氯化铵需要定期浓缩析出。
在上述应用中,优选地,生产碱的一种方法包括以下步骤:对待处理溶液实施所述阳离子置换步骤和阴离子置换步骤,并从阳离子膜系统的驱动溶液中提取出目标产物碱,所述待处理液为饱和或浓的氯化钾溶液、氯化钠溶液或氯化锂溶液;在所述阳离子置换步骤 中,驱动溶液为氨水溶液;在所述阴离子置换步骤中,驱动溶液的配制组分包括:碳酸铵、碳酸氢铵、碳酸钾、碳酸氢钾、碳酸钠、碳酸氢钠、氨水、氢氧化钠、氢氧化钾和氢氧化锂中的一种或几种的组合;所述目标产物为氢氧化钠、氢氧化钾或氢氧化锂。
在上述应用中,优选地,生产碱的一种方法包括以下步骤:仅对待处理溶液实施所述阴离子置换步骤,并从阴离子膜系统的驱动溶液中提取出目标产物碱,所述待处理液为饱和或浓的氯化钾溶液、氯化钠溶液或氯化锂溶液;在所述阴离子置换步骤中,驱动溶液为氨水溶液或氢氧化钙溶液;所述目标产物为氢氧化钠、氢氧化钾或氢氧化锂。
本发明另外提供了一种由上述应用组合形成的水处理方法,其中,在组合形成的水处理方法中,一种应用中至少有一种中间产品或最终产品作为另一种应用的原料,如上述氯化钾、氯化钠或氯化锂溶液中获得的碱可以用之于需要碱性物质或氢氧根离子的应用场合。
为了使作为阴离子驱动剂的碳酸钾可以循环回用,本发明另外提供了一种生产碳酸氢钾盐的方法,该方法包括以下步骤:将碳酸氢铵饱和溶液与氯化钾混合,经加入易于被抽提挥发的低沸点有机溶剂,如丙酮、乙醚、甲醇、乙醇,沉淀析出碳酸氢钾。
本发明还提供了一种上述溶液中离子的交换和浓缩方法的装置,其中,该装置包括:沉淀预处理容器系统、驱动液容器系统、待处理溶液容器系统、扩散渗析组件和结晶分离系统;其中沉淀预处理容器系统和结晶分离系统独立运行,驱动液容器系统、待处理溶液容器系统和扩散渗析组件互相耦合使用;系统之间按照常规方式连接,以实现相应的溶液中离子的交换和浓缩方法为准;所述沉淀预处理容器系统包括:加料装置、搅拌器、沉淀分离装置和气体回收装置;所述驱动液容器系统包括:容器密闭装置、溶液更换的阀门装置和联接结构;所述待处理溶液容器系统包括:负压抽吸系统、曝气系统和气体回收系统;所述扩散渗析组件包括卷绕式或平行板式膜组件。
在上述装置中,为沉淀出待处理溶液中可与碳酸根离子、氢氧根离子发生沉淀的金属离子,先设置一个计量和沉淀、分离沉淀物的容器和过滤系统,对水溶液进行沉淀预处理。若所使用的驱动溶液中含有铵离子,碳酸根离子、碳酸氢离子,容易挥发析出氨气、碳酸氢铵、碳酸铵、二氧化碳,因此,驱动液的容器应该是密闭的,可更换的标准件,且是插拔式的与渗析组件联接,方便在工作现场更换驱动溶液,即通过更换驱动液的容器,补充新的驱动液;或者通过阀门先释放使用过的驱动液,再输入新鲜的驱动溶液。而待处理溶液的容器部分则应是可以提供曝气或经抽吸形成负压的容器,在负压使用条件下,容器连接一个超过10米水柱高的直立式容器,在容器的上方形成负压,来自渗析交换后的待处理流经容器的上方,促进溶液中碳酸铵等的快速挥发析出,并以插拔式的方式与渗析组件联接,以便独立的促使碳酸铵、碳酸氢铵的析出。含离子交换膜的渗析组件可以是单独的含有阴离子或阳离子交换膜的组件,分别对待处理溶液进行扩散渗析处理后,再循环进入待处理溶液的容器内,每个膜组件可以是卷筒式的也可以是平行板式的结构,即由同一种膜分割出平行的溶液流动的窄空间,待处理液和驱动液交替的流经所说的窄空间内。另外,还可以有一个独立的结晶分离系统,该系统结晶分离驱动溶液中提取的来自海水或污水中的矿物质。上述系统小型化,即可以作为家庭或社区用海水淡化或水的深度净化处理装置。
本发明提供的溶液中离子的交换和浓缩方法及装置,是通过阴离子膜和阳离子膜的组合或阴、阳离子树脂的组合应用,使溶液中的阴、阳离子转化为挥发性的碳酸铵、碳酸氢 铵、氢氧化铵或碳酸,通过挥发析出,降低溶液中的离子浓度,以及实现溶液中物质的分离和离子的交换反应。在不同的驱动溶液的作用下,实现海水淡化、废水的资源化、无害化处理;该方法可以广泛地应用于污水处理,各种工业生产过程中的离子浓缩、脱酸、脱碱、脱盐、盐水淡化过程中,以及钾盐、钠盐、碱的生产,酸碱盐之间的互相转化。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种海水淡化、含酸碱盐污水处理方法,同时发现了强酸性阳离子膜对铵离子有分解作用。
具体的实施方法如下:
步骤1、阳离子置换步骤。将型号为CMI-7000的强酸性阳离子膜被夹紧在两个开孔直径为3厘米并对接的尼龙件之间,膜的有效面积为3厘米直径圆,每个尼龙件开孔深度为1.5厘米。膜两侧形成第一和第二2个膜室,膜室边侧各有2个连接口连接进出水流的导管。以市售食用氯化钠溶液模拟海水,以氯化铵溶液为阳离子置换步骤的驱动溶液,并经隔膜泵泵送至第一膜室,并循环回流,流速25ml/min;模拟的海水经微型泵泵送至第二膜室,并循环回流,流速1000ml/min。
步骤2、阴离子置换步骤。利用与步骤1同样结构的另一尼龙件,型号为AMI-7001的阴离子膜为扩散渗析膜,以碳酸氢铵溶液为阴离子置换步骤的驱动溶液。碳酸盐驱动溶液经隔膜泵泵送至第一膜室,并循环回流,流速25ml/min;经步骤1处理后的海水再经微型泵泵送至第二膜室,并循环回流,流速1000ml/min。
步骤3、每隔1小时或3小时,将经步骤2处理后的海水辅以曝气,搅拌减压挥发;或者使步骤2中的第二膜室始终处于曝气或搅拌减压挥发状态,连续地移除碳酸氢铵产物,并回收和回用于碳酸氢铵的驱动溶液中。
步骤4、将步骤3中的待处理溶液在充分脱除碳酸氢铵产物后,全部返回至步骤1中;或部分返回步骤1,部分返回步骤2中进行同步循环处理,或进行从步骤1至步骤3的循环处理,直至待处理的溶液中的溶质含量降低到设定的要求。
实验发现,在室温25℃条件下,以上述强酸性阳离子膜作为渗透膜时,盐度值61.9ppt的氯化铵浓溶液为200ml驱动溶液,盐度值0.1ppt的自来水150ml为待处理溶液,3小时候,氯化铵的盐度值降低为60.9,自来水的盐度值升为0.2ppt,且在氯化铵溶液中伴有少量碱性的氨气挥发析出,应该是强酸性阳离子膜催化促进了氯化铵中铵离子脱去氢离子的分解反应。将盐度值33.7ppt的氯化钠溶液替代自来水进行交换1小时候后,氯化铵溶液的盐度值降为60.5ppt,且仍有少量的氨气析出,氯化钠溶液的盐度值升为34.5ppt,因为实验中对比出同摩尔浓度的氯化铵测得的盐度值要高于氯化钠的盐度值,说明了部分氯化钠转化为氯化铵。实验发现,当氯化钠的盐度值降低时,如到15ppt后,铵离子对钠离子的交换效应变弱,主要的是铵离子的分解反应,并析出氨气,使盐水的pH值增加,但氯化钠溶液的盐度值变化缓慢,只有氯化铵的盐度值继续明显下降,应该是氯化铵持续转化为氯化氢的缘故。
实施例2
本实施例提供了强酸性阳离子膜对铵盐的分解实验,并分析了由分解效应引起的的泄漏以及检测膜本身的泄漏参数,具体包括以下几个实验:
以含微量电解质的城市自来水(200ml,测得的盐度值为0.1ppt)为待处理溶液即对应的交换溶液进行扩散渗析;所用强酸性阳离子膜厚约0.28毫米。
分解实验一:
对自来水实施阳离子置换步骤,使用的驱动溶液为饱和氯化铵溶液,具体操作如下:
以饱和氯化铵溶液作为阳离子置换步骤的驱动溶液,扩散渗析半小时后,测得氯化铵溶液和自来水中均有氨气析出,使pH试纸显色,且自来水的pH值从约7增加到约7.5,另外,测得自来水中盐度每增加0.1ppt,耗时10min。经7小时后,自来水的盐度值达到4.4ppt,蒸发水分后,可见氯化铵晶体,灼烧后形成白雾,说明了在有氨渗透的同时,阳离子膜也有溶质氯化铵的泄漏。当驱动液为饱和氯化铵和碳酸铵混合溶液时,即增加了驱动液的碱度,渗析1.5小时后,自来水中有微弱氨气析出,并使pH试纸显色,且自来水的pH值微显碱性,另外,测得自来水中盐度每增加0.1ppt,耗时18min。
分解实验二:
在分解实验一的基础上,增加驱动溶液的碱度进行测试。
对自来水实施阳离子置换步骤,使用的驱动溶液为饱和(氯化铵+碳酸铵+氨水)的混合溶液,具体操作如下:
以(氯化铵+碳酸铵+氨水)的混合溶液作为阳离子置换步骤的驱动溶液,扩散渗析4小时后,测得自来水中才有微弱氨气析出,且自来水的pH值有增加但变化不明显,另外,测得自来水中盐度每增加0.1ppt,耗时66min。
总结,
上述两个分解实验说明了强酸性阳离子膜对铵离子的催化分解作用,可用于脱除类似实施例1海水淡化方法中海水中未完全析出的碳酸铵、碳酸氢铵,其中对应的交换溶液为清水或含酸溶液,含酸溶液通过提供氢离子起到促进作用。
本实验也说明了,在利用铵离子作为交换离子时,最好使用弱酸性或中性的阳离子膜,以减少膜中水解离的氢离子对其它阳离子交换的影响,或者加入氨水提供氢氧根离子以抑制水的解离,或者提供酸性的盐,如硫酸铵、硝酸铵提供氢离子,同样的达到抑制水解离的发生,因为水解离生成等量的氢离子和氢氧根离子。
实施例3
本实施例提供了铵型阳离子树脂和碳酸根型或碳酸氢根型阴离子树脂与待处理溶液中的离子的交换实验,以及弱酸性阳离子树脂对铵盐的分解实验,以及弱碱性阴离子树脂对碳酸盐、碳酸氢盐催化分解的分析,具体包括以下几个实验:
实验一,铵型阳离子树脂和碳酸根型或碳酸氢根型阴离子树脂与待处理溶液中的离子的交换实验:
将50g市售型号:C100EFG强酸性钠型阳离子树脂用饱和的氯化铵溶液(也可使用几种铵盐的混合溶液)中浸泡6小时,相当于阳离子树脂的再生,将50g型号201x 7(717#)强碱性氯型阴离子树脂用饱和的碳酸氢铵或碳酸铵溶液浸泡6小时,相当于阴离子树脂的再生。取出树脂后用清水充分洗涤,并经离心脱除水分。先将模拟的海水150ml倒入经氯 化铵处理过的阳离子树脂中,经1小时交换反应后,将海水倒入先前处理过的阴离子树脂中,经1小时交换反应后,完成一个交换循环后,再倒入阳离子树脂中,循环3次后,测得盐度从千分之35降低到千分之29,并可经试纸检侧出碱性的氨气或碳酸铵或碳酸氢铵析出,事实上,应该是碳酸铵或碳酸氢铵的析出,但碳酸根离子或碳酸氢根试纸难以检侧。将实验一中的强酸性钠型阳离子树脂替换为D113弱酸性阳离子树脂,同时,将强碱性氯型弱碱性阴离子树脂替换为D301弱碱性阴离子树脂,经过循环处理,也发现有类似效果。
实验二,弱酸性阳离子树脂对铵盐的分解实验:
以碳酸钠作为再生剂,将D113弱酸性氢型阳离子树脂完全转化为钠型树脂,在没有可见的碳酸气析出后,先用清水充分冲洗,再加入少量醋酸,调节溶液的pH值至6,再用清水冲洗,最后再用饱和氯化钠溶液浸泡12小时后待用。另外将氯化铵粉末在180℃加热1小时,使氯化铵中残留的微量氨挥发析出。当将处理后的弱酸性阳离子树脂与处理后的氯化铵混合搅拌后,即可测出碱性的氨气,检侧溶液的pH值也有所降低,说明了氯化铵在弱酸性阳离子树脂的催化下发生了分解。用硝酸铵代替氯化铵实验也有类似现象,说明了铵盐包括碳酸铵盐可被树脂催化分解。碳酸铵因本身挥发性,不便单独检侧验证。与扩散渗析不同,其机理应该是,因弱酸性阳离子树脂中的功能团对氢离子有更强的结合力,从而容易与氢离子结合,并使水解离出氢氧根离子,同时释放出与树脂结合的铵离子,该铵离子再与氢氧根离子结合,部分分解为水和可挥发析出的氨,具有类似功能团的分子筛或多空隙物质也具有相同的催化功能。在氯化铵或硝酸铵等铵盐情况,随着氨的挥发,溶液的pH值下降,检侧最低pH值约为5,低的pH值将逐渐阻碍氨气的挥发,但在分解碳酸铵或碳酸氢铵的情况,因为碳酸也可以分解析出,因此,溶液中的碳酸铵的分解挥发可以一直进行,直至微量,而氨水或氢氧化铵的分解则是氨气的析出及生成水。
而弱碱性的阴离子树脂可以促进碳酸根或碳酸氢根离子的分解析出,其机制应该是弱碱性阴离子树脂中的功能基团与氢氧根离子结合力较强,使水解离后提供自由的氢离子,氢离子与碳酸根离子或碳酸氢根离子结合,使碳酸根离子或碳酸氢根离子转化为碳酸气而挥发析出。显然同时使用弱酸性阳离子树脂和弱碱性阴离子树脂对含碳酸铵或碳酸氢铵的溶液进行催化分解,应该效率更高。实验发现,将D301弱碱性阴离子树脂转化为氯型树脂后,在其中加入氯化铵溶液,静置1天后,溶液的pH值从5降低到3,说明了树脂中的氯离子被水分子中的氢氧根离子所替代,而溶液中形成了氢离子和氯离子结合的盐酸。在碳酸盐或碳酸铵盐溶液的情况,经碳酸根型阴离子树脂的催化,形成的碳酸可以分解挥发析出,铵盐中的铵离子与解离出的氢氧根离子结合形成易分解和挥发性的氢氧化铵。
实施例4
本实施例提供了一种对单纯含碱污水处理的方法,本实施例中以制浆厂污水为例,其它碱性废水如纺织、皮革、电镀、湿法冶金废水等可以进行类似操作。同时,验证了强碱性溶液对强酸性离子膜催化水解的抑制作用;实施例中还使用了预处理步骤对部分离子进行了预先沉淀处理。该方法具体包括:
将实施列1中模拟的海水替换为碱性的制浆造纸厂污水,以0.28mm厚度的强酸性阳离子膜CMI-7000为扩散渗析膜,以碳酸氢铵的氨水溶液(也可以替换为碳酸铵或碳酸铵盐的氨水溶液)作为驱动溶液,仅经实施例1中的步骤1(阳离子置换步骤)处理,常温常压下, 200ml制浆黑液以盐度计测量,其盐度值降低速度为每小时0.3ppt,合每平方米的阳离子膜每小时可从含碱约5%(重量)废水中交换出约120g氢氧化钠,交换速度明显高于海水中铵离子对钠离子的交换,进一步说明了强碱性溶液对强酸性离子膜催化水解离的抑制。为了避免废水中钙、镁等金属离子形成的碳酸盐、硅酸盐形成沉淀对膜的影响,预先充入二氧化碳气体或者添加碳酸氨,促使这些金属离子、硅酸根离子及部分大分子有机物先行沉淀析出,并同时回收析出的气体如氨气,或电镀废水中的氰化铵气体。在上述的制浆黑液中加入碳酸铵,静置后,可见碳酸盐的沉淀。
对于除含有氢氧根离子外,还含有其它阴离子的废水溶液,如含有氢氰酸、氰根、氰酸根、硫氰酸根、砷酸根、硝酸根、硫酸根、磷酸根、氯离子等阴离子,以及各种金属离子的溶液,较佳地,如溶液的pH值大于10,则首先利用阳离子膜扩散渗析获得一定量的碱溶液,再加入碳酸钠,最好加入碳酸铵,通过生成氢氧化铵及其以氨气形式析出溶液,降低溶液的碱性,以及生成不溶性的碳酸盐方式减少或沉淀出溶液中的可生成碳酸盐沉淀的金属离子;进一步地,利用实施例1中的步骤2(阴离子置换步骤)中的阴离子膜的扩散渗析,以碳酸铵、碳酸钾、碳酸钠、碳酸氢铵、碳酸氢钾或碳酸氢钠饱和溶液为驱动液,交换出废水溶液中的各种阴离子,如氯离子、硫酸根、硝酸根离子,尤其是氰根离子的交换,随着氰根离子浓度的降低,将促使含氰废水中的金属氰化物、金属氰络合物的解离,以及进一步转化为碳酸盐、碳酸氢盐或金属氰化物,经浓缩后沉淀分离,最终使废水中主要只含有钠、钾、和/或铵的碳酸盐。根据排水或回水标准的需要,其中的钠、钾离子则可经阳离子膜渗析,以铵离子为驱动离子,进行交换,从而使废水中只含有可挥发析出的碳酸铵或碳酸氢铵。
实施例5
本实施例提供了一种对单纯含酸污水处理的方法,以生物质稀酸溶液为例,其它酸性废水如电镀、酸洗、化学合成、吸收硫、氮氧化物等酸性气体后的污水可以进行类似的操作。该方法具体包括:
将实施列1中模拟的海水替换为3%硫酸酸水解农作物秸秆所得到的含糖溶液,以碳酸氢铵和碳酸铵的混合溶液作为阴离子膜的驱动溶液,提供碳酸氢、碳酸根离子,仅经步骤2(阴离子置换步骤)处理,常温常压下,使硫酸根离子与碳酸氢根离子、碳酸根离子交换,而含糖溶液因碳酸的分解,而实现脱酸,驱动溶液中的硫酸铵作为化肥实现其价值。
模拟实验中,以200ml硝酸溶液作为待处理酸液,以饱和碳酸铵溶液(也可以替换为饱和的碳酸氢铵/碳酸氢钾/碳酸钾溶液+氨水的混合溶液)为驱动溶液,阴离子膜为型号AMI7001强碱性阴离子膜,经1小时渗析,部分硝酸被碳酸交换并挥发析出,以盐度计盐度值为计量,硝酸的盐度值从22.3ppt降低到20.7ppt。在低浓度硝酸溶液时,经17min渗析,硝酸的盐度值从7.3ppt降低到7.1ppt;更低浓度浓度时,经1小时渗析,硝酸的盐度值从2.9ppt降低到2.5ppt。
在处理含金属离子的含酸溶液时,若酸浓度较高,则可以预先经扩散渗析提取部分酸,若溶液中还含有六价的铬离子或铬酐,则需先经还原剂使其还原为三价铬离子,最优地,利用铁粉、铁削作为还原剂,单价铁先中和酸,生成的二价铁离子再与六价铬离子发生还原反应,当酸完全中和且六价铬完全还原后,再加入适量碳酸铵,碳酸氢铵,将溶液中可 形成碳酸盐沉淀的金属离子沉淀析出,避免渗析过程中形成沉淀。经碳酸铵、碳酸氢铵沉淀后,溶液中仅有溶于水的铵盐、钠盐和/或钾盐,以铵或钠或钾的碳酸盐或碳酸氢盐为驱动溶液,经阴离子膜的扩散渗析,交换溶液中的各种阴离子,根据排水或回水标准的需要,以铵盐或氨水溶液为驱动溶液,经阳离子膜的渗析处理,以铵离子交换钠、钾离子后,再曝气挥发析出或经催化析出经渗析转化生成的碳酸铵、碳酸氢铵及过量添加的碳酸铵,即完成了含酸水溶液的处理。从某电镀厂随机提取的混合废水,以盐度计测量,初始的盐度值为11ppt,pH为2。经铁削10小时中和酸和还原六价铬后,pH值接近6,并可见绿白色沉淀物,再加入碳酸盐,最好是碳酸铵,则形成浑浊的溶液,经10小时静置沉淀,过滤沉淀后得300ml清澈的溶液,利用直径7cm的阴离子膜渗析,以饱和碳酸氢铵溶液为驱动液,经8小时渗析,同时曝气促进碳酸氢铵的挥发析出,溶液的盐度值降低到3ppt;再经直径3厘米的阳离子膜的扩散渗析,以氯化铵或碳酸氢铵为驱动溶液,经5小时的扩散渗析,废水的盐度值降低到2ppt。
实验中,含酸的电镀厂废水未经碳酸铵沉淀的预处理情况下,初期渗析速度较快,每小时盐度值可降低1ppt,但10小时后即基本停止渗析,检查发现在废水侧的膜表面覆盖了一层红色铁锈样沉淀,经酸泡清洗后,膜的渗析作用又得到恢复。
实施例6
本实施例提供了一种盐的生产方法,该方法包括以下几个具体实验:
实验一:
本实验中以浓或饱和的氯化钾或氯化钠溶液作为待处理溶液,以碳酸氢铵、碳酸钠、碳酸铵、硫酸铵、亚硫酸铵、硝酸钠、硝酸铵、亚硝酸铵、磷酸铵溶液作为实施例1的步骤1(阳离子置换)中的驱动溶液;以碳酸氢铵、碳酸铵、碳酸钾、(碳酸钾+氢氧化钾)的混合溶液、碳酸氢钾、(碳酸氢钾+碳酸铵)的混合溶液或碳酸钠作为实施例的步骤2(阴离子置换)中的驱动溶液;在步骤1的驱动溶液中分别生成对应的碳酸钾、碳酸氢钾、硫酸钾、亚硫酸钾、硝酸钾、亚硝酸钾、磷酸钾、碳酸钠、碳酸氢钠、硫酸钠、亚硫酸钠、硝酸钠、亚硝酸钠或磷酸钠。较优地,可在氯化钾或氯化钠溶液中加入碱性物质,如氢氧化钾、氢氧化钠或氨水,或加入酸性物质,如硫酸铵、硝酸铵或氯化铵,以抑制水的解离反应,避免强酸性或强碱性离子膜对扩散渗析的影响。
具体实验如下:
氯化钾溶液为待处理溶液,对待处理溶液实施阳离子置换步骤和阴离子置换步骤,具体为:以200ml饱和碳酸铵溶液为阳离子置换步骤的驱动溶液,饱和的碳酸氢铵溶液为阴离子置换步骤的驱动溶液,阳离子膜和阴离子膜均为CMI-7000、YKB或Nafion N438强酸性和AMI-7001强碱性膜,200ml氯化钾溶液为待处理溶液,待处理溶液同时被2个微型泵循环泵送至阴离子膜侧和阳离子膜侧,氯化钾初期盐度值从109.5ppt降低到109.0ppt耗时10min,经1小时渗析,氯化钾中测得的盐度值从109.5ppt降低到107.7ppt,其中有氨气析出,应该是碳酸氢铵的部分分解形成的氨气。在用于实际生产时,最好始终保持氯化钾的饱和溶液状态。灼烧碳酸铵驱动溶液,完全挥发碳酸铵,得到碱性的固体粉末,潮湿的pH试纸直接接触测得pH达14,应该是固体碳酸钾。为了提供离子交换效率,较优的,阳离子膜选用弱酸性的膜,阴离子膜选用弱碱性的膜。
实验二:
为了节省离子膜的使用,本实验仅采用步骤1(阳离子置换步骤)阳离子膜的扩散渗析,利用溶解度高的氯化铵为驱动溶液,还加入碳酸氢铵、碳酸铵、硫酸铵或硝酸铵,以便在驱动液中生成溶解度低或相对低的相应的钠或钾的碳酸氢盐、碳酸盐、硫酸盐或硝酸盐;或利用溶解度高的硝酸铵(或甲酸铵)为驱动溶液,还加入碳酸氢铵、碳酸铵、硫酸铵或氯化铵,以便在驱动液中生成溶解度低或相对低的相应的钠或钾的碳酸氢盐、碳酸盐、硫酸盐或硝酸盐,如:碳酸氢钠、碳酸氢钾、碳酸钠、硫酸钾、硫酸钠或硝酸钠。
实验三:
将实验一具体实验中的阳离子置换步骤的驱动溶液(碳酸铵饱和溶液)换成饱和硝酸铵溶液,氯化钾也为饱和溶液,与碳酸铵本身显碱性不同,硝酸铵显酸性,因为阳离子膜的强酸性基团的水解作用,从硝酸铵溶液中析出大量氨气,也从氯化钾溶液中析出部分氨气,且硝酸铵溶液的pH值不断增加,经1小时渗析,硝酸铵溶液的盐度从35.0ppt增加到37.0ppt,氯化钾溶液pH值增加为7.2左右,pH的增加说明氨水或氨分子或碳酸氢铵或碳酸铵的存在,说明钾离子实际主要的是和氢离子的交换,而只有较少量的与铵离子交换,而氢离子直接或间接地来源于铵离子解离出的氢离子,铵离子本身转化为氨分子遇水而显碱性,或生成碳酸氢铵或碳酸铵而显碱性。在蒸发及烧灼硝酸铵溶液时,剩余硝酸铵完全分解挥发,所得硝酸钾固体最后分解,剩余的氧化钾检测显示碱性。因为,钾离子的交换受制于铵离子的解离过程,因此,渗析速度受限。将上述的硝酸铵溶液换成同样显酸性的硫酸铵溶液,发现同样的铵离子分解现象。
将上述氯化钾换为氯化钠后,均检测出对应生成的钠盐,故不再赘述。
实施例7
本实施例提供了一种碱的生产方法,以及间接利用获得的碱进行海水淡化、污水处理的方法,具体包括:
在本实施例中,待处理溶液可以为钠盐、钾盐或锂盐溶液,如以氯化钠、氯化钾或氯化锂溶液分别作为待处理的溶液;以氨水溶液或氢氧化钙溶液作为步骤1(阳离子置换步骤)中的驱动溶液;以碳酸铵、碳酸氢铵、碳酸钾、碳酸氢钾、碳酸钠、碳酸氢钠、氨水、氢氧化钠、氢氧化钾或氢氧化锂作为步骤2(阴离子置换步骤)中的驱动溶液;在步骤1中的驱动溶液中分别生成对应的氢氧化钠、氢氧化钾或氢氧化锂。具体实验为:
实验一:
以盐度计测得盐度值约为0.2ppt的浓氨水作为步骤1(阳离子置换步骤)的驱动溶液,饱和碳酸氢铵或碳酸氢钾作为步骤2(阴离子置换步骤)的驱动溶液,盐度值80.8ppt的氯化钠作为待处理液,经2个独立的微型泵泵送至阴、阳离子膜侧进行交换,经3小时渗析,氯化钠的盐度值增加为81.3ppt,该溶液经烧灼挥发碳酸氢铵、或有氯化铵,再恢复水量后测得的盐度值为79.3ppt;浓氨水的盐度值增加到1.8ppt,经加热蒸发烧灼后,得到白色固体粉末,试纸检测pH值达14,说明白色粉末是氢氧化钠,再恢复水量后测得的盐度值为1.5ppt,即为所得的氢氧化钠的浓度。实际生产时应维持氯化钠始终在饱和状态,氨水也维持在饱和状态,并适当加压。
实验二:
待处理溶液可以为钠盐、钾盐或锂盐溶液,如以饱和或浓的氯化钠溶液、氯化钾溶液或氯化锂溶液作为待处理溶液,以氨水或氢氧化钙溶液作为步骤2(阴离子置换步骤)中的驱动溶液,在该步骤2中的待处理溶液中分别生成对应的氢氧化钠、氢氧化钾、氢氧化锂以及对应残余的盐;具体实验时,当在阴离子膜两侧的是氨水与氯化钠浓溶液时,经1小时扩散渗析,氯化钠溶液中的pH值明显大于7,说明发生了阴离子的交换,在氯化钠盐溶液中生成了部分碱。
实验三:
以氯化钠浓溶液或饱和溶液通过2个独立的阴离子膜之间的空间,即相当于一个容器的两侧是由两张阴离子膜所组成,两膜内侧之间是浓或饱和的盐溶液,第一膜的外侧与氨水进行阴离子交换,第二膜的外侧与海水或废水进行阴离子之间的交换,可测出海水或废水中pH值按预期地增加,达到了间接地提高氨水与海水或废水进行交换的氢氧根离子浓度的目的。上述阴离子膜改用为阳离子膜,则可以间接地提高氨水中铵离子与海水或废水进行阳离子交换的有效浓度。直接驱动溶液与间接驱动溶液进行离子交换,间接驱动溶液还与待处理溶液进行离子交换(即构成了驱动溶液、间接驱动溶液再与待处理溶液进行交换的结构)。
上述阴离子膜系统和阳离子膜系统分步进行,或同时进行,同时经曝气或减压挥发不断析出海水中的盐转化形成的氢氧化铵,即获得不断净化和淡化的水。分别作为阴离子和阳离子驱动溶液的氨水中生成的氯化铵和氢氧化钠混合反应后释放出氯化钠(氯化钾等来自于海水中的矿物质),以及可以循环回用的氢氧化铵。保持氯化钠的饱和是在溶液中投放过量的氯化钠晶体,保持氨水的饱和则始终通入过量的氨气。或者,作为上述驱动溶液的氨水替换为饱和的碳酸水或经烟道气饱和的酸性气体饱和的溶液。或者,作为上述驱动溶液的氨水替换为饱和的碳酸氢铵、或碳酸铵饱和溶液,以间接提供碳酸氢根、碳酸根及铵离子,使海水中的盐分替换为碳酸氢铵或碳酸铵。
实施例8
本实施例提供了一种模拟海水中提盐的生产方法,具体如下:
经实验检测,阴离子膜、阳离子膜有效面积各约为30平方厘米情况下,饱和碳酸铵溶液分别作为阴离子置换步骤和阳离子置换步骤的驱动溶液,经4小时扩散渗析,200ml含氯化钠的盐水的盐度值从初始的36.0ppt降低到34.5ppt(碳酸铵完全挥发后),在完全蒸发阴离子和阳离子置换步骤的驱动溶液后,分别得到pH试纸检测为酸性的氯化铵(pH-5)和碱性的碳酸钠(pH=13)的固体结晶,再加水回到原有体积200ml后,测得盐度值分别为1.1ppt、1.3ppt,为不含碳酸铵的盐度值,即经离子交换后,在驱动液中生成了氯化铵和碳酸钠,将两者混合加热反应释放碳酸铵,得到氯化钠,即相当于完成了从海水中提取出盐的效果。为了实现内部物质的循环,将从海水中挥发析出的碳酸铵直接输送到步骤1的阳离子置换步骤的驱动溶液中。
实施例9
本实施例提供了一种模拟海水中提盐的生产方法,该方法包括以下几个实验:
为了经济地提取上述驱动液或用于驱动树脂再生的溶液中来自海水或废水中的各种离子,需要尽可能地采用溶解度高的溶质作为驱动溶液或驱动离子,增加驱动力,增加可交 换提取离子的浓度,同时所交换形成的新物质最好有尽可能低的溶解度,使结晶分离或获得盐产品可以经济地实现。或者通过组合的铵盐溶液,即主驱动物质离子浓度高,增加驱动力,副驱动物质或交换后的产物与钠、钾形成低溶解度的盐,以便保持主驱动力相对浓度不降低,也促使海水中离子间接地通过自然结晶析出。
实验一:
以渗析温度30摄氏度为参考,含铵阳离子的氯化铵溶解度高,但与海水中的Na+、K+等阳离子形成的氯化物溶解度也高,因此,加入碳酸氢铵,促使在步骤1(阳离子置换步骤)的渗析交换过程中,尽可能的与大量的海水交换,也使钠、钾离子转化为低溶解度的碳酸氢钠、钾,从而容易地被浓缩提取,包括随着渗析过程的进行,浓度的自然增加而发生的结晶(在驱动溶液循环流动的路径上设置结晶池,并在池中提供晶种),减少冷却结晶所需的低温程度或更有利于盐析结晶或加入丙酮、乙醚、乙醇、甲醇等低沸点易抽提的有机物促进结晶的过程,提取钠钾等碳酸氢盐或碳酸盐沉淀后的母液,补充氯化铵、碳酸氢铵后循环使用。对应的,在步骤2(阴离子置换步骤)中,阴离子置换步骤的驱动溶液最好采用碳酸铵、或碳酸氢铵、或碳酸氢钾与碳酸铵的混合溶液、或碳酸钾饱和或浓溶液、或碳酸钾饱和溶液中加入少量氢氧化钾。以碳酸钾为例,饱和时的碳酸根离子浓度最高达8.3mol/L,可以有效地浓缩提取海水中的氯离子、硫酸根等阴离子。渗析时形成的氯化钾饱和时的氯离子浓度4.97mol/L,该氯化钾在结晶池内或通过浓度的自然增加而结晶析出或通过加入有机物或在进一步的抽提有机物时析出,而硫酸钾浓度则更低。因为海水中钙、镁等重金属离子与碳酸盐生成沉淀,为避免沉淀对膜的破坏,海水中预先溶解碳酸铵先行沉淀反应,析出形成沉淀的金属离子作为副产品。
在阳离子置换步骤的驱动溶液为饱和的氯化铵并加入饱和的碳酸氢铵时,渗析过程中可以结晶析出碳酸氢钠及少量的碳酸氢钾,若对应的阴离子置换步骤的驱动溶液为碳酸氢铵或碳酸铵,则可通过自然结晶或盐析结晶或加入丙酮促进结晶析出氯化铵,或与碳酸氢铵、碳酸铵共析,碳酸氢铵、碳酸铵可以经挥发与氯化铵分离,该氯化铵与从阳离子置换步骤的驱动溶液中析出的碳酸氢钠及碳酸氢钾结晶或浓溶液混合反应,释放出碳酸氢铵,吸收回用于阳离子置换步骤的驱动溶液中,氯化钠和氯化钾作为副产品;经浓缩结晶提取了部分低溶解度盐分的母液则继续循环回用为驱动液,即实际的驱动液中不仅含有设计的驱动物质,还含有少量的各种经渗析交换后生成的盐残留物。若阴离子置换步骤的驱动液为碳酸钾,则将浓缩或结晶所得氯化钾放入阳离子置换步骤的驱动溶液中,与碳酸氢铵反应转化为溶解度低的碳酸氢钾,方便浓缩结晶提取和回用,或将氯化钾单独地与碳酸氢铵或碳酸铵反应制得碳酸氢钾或碳酸钾。
实验二:
将上述实验一步骤1中含铵离子的驱动溶液替换为溶解度高的硝酸铵(饱和时铵离子的最高浓度可达30mol/L),而对应生成的硝酸钠饱和时的钠离子浓度有11.2mol/L,可以实现大量与海水中的钠离子进行交换。利用硫酸铵溶解度高,而硫酸钠、硫酸钾等溶解度低的特点,硫酸铵也可作为步骤1(阳离子置换步骤)的驱动溶液。较优地,在硝酸铵驱动溶液中加入氯化铵,利用硝酸钠以mol计溶解度大于氯化钠的特点,使驱动液中经渗析获得的钠、钾离子,以氯化钠、氯化钾方式浓缩结晶析出;而氯化铵则来源于从阴离子置换步 骤的驱动液中浓缩提取的氯化铵或经氯化钾与碳酸氢铵反应后得到的氯化铵;或最优地,在硝酸铵驱动溶液中加入碳酸氢铵、碳酸铵、硫酸铵,使驱动液中经渗析获得的钠、钾离子,或同时加入从步骤2的驱动溶液中获得的氯化钾,以低溶解度的碳酸氢盐或碳酸盐或硫酸盐方式浓缩结晶析出,此时步骤2(阴离子置换步骤)中的驱动溶液可以是碳酸氢铵或碳酸钾,或碳酸氢钾与碳酸铵的混合溶液;其中,碳酸氢铵来源于所析出的碳酸氢钠与从阴离子置换步骤的驱动溶液中析出的氯化铵反应或与来自海水中挥发析出的碳酸铵及碳酸氢钾分解产生的二氧化碳反应而生成,其中碳酸氢钾是利用阴离子置换步骤的驱动液中析出的氯化钾与碳酸氢铵进行反应而获得的。因碳酸氢铵的溶解度也低,实际发生的是同时碳酸氢钾和碳酸氢铵的沉淀析出,但碳酸氢铵可以经挥发与碳酸氢钾分离。
另外,以硝酸铵饱和溶液或浓溶液作为步骤1的驱动溶液,渗析过程中,有碱性的氨气挥发析出,说明了硝酸铵在强酸性阳离子膜的作用下发生了分解反应,随后,在驱动溶液中加入碳酸氢铵或碳酸铵,则在渗析过程中,在循环溶液的入口附近可见浑浊胶体状物质,应是碳酸氢钠或碳酸钠的微细结晶,经长时间(约10小时)沉淀,在容器底部可见碳酸盐白色结晶。在渗析过程中,驱动溶液的体积有增加现象,经10小时平均测量,体积增加的速度约为0.06L/h.m2,应该是水的渗透所造成的现象。
而且,以碳酸钾饱和或浓溶液作为上述步骤2的阴离子置换步骤的驱动溶液,以30ppt的由蒸馏水配制的氯化钠溶液为待处理溶液,经10小时的扩散渗析,氯化钠溶液的pH值增加到9.5(试纸测),盐度为30.2ppt,因为溶液中每2mol氯化钠经交换转化为1mol碳酸钠后,溶液比重变化小,因此盐度值变化小,但两者的酸碱度相差大,因此可测出溶液的pH值变化明显。经测定,碳酸钾溶液的体积增加了约6毫升,所用膜面积30平方厘米,因此,水渗透通量约为0.2L/h.m2。为了减少水渗透,可以在待处理溶液中加入离子浓度低而不影响离子交换驱动力,分子浓度较高以有效平衡驱动溶液渗透压的碳酸氢铵、碳酸铵、磁性微粒等物质,所添加的物质最好还是容易与水相分离的物质。经离子交换后,碳酸钾溶液中含有大量的氯化钾,最好交换至接近氯化钾的溶解度的浓度,利用氯化钾溶解度低于碳酸钾的特点,在结晶池内放入氯化钾晶种,随着氯离子浓度的增加,而不断析出氯化钾,或者尽量在碳酸钾维持饱和而不会达到结晶状态前提条件下,加入丙酮、乙醚等低沸点有机物,优先将氯化钾结晶析出,经抽提有机物,溶液进一步降温,则进一步结晶析出氯化钾,结晶后的母液主要含有碳酸钾、氯化钾,补充碳酸钾后回用于阴离子置换步骤的驱动溶液中。提取的氯化钾结晶或浓溶液与碳酸氢铵结晶或浓溶液混合后在加入低沸点有机物(如丙酮、乙醚、乙醇、甲醇等)的促进下形成碳酸氢钾结晶及分离出氯化铵溶液,分离后加热转化为碳酸钾和二氧化碳气体,碳酸钾再回用于阴离子置换步骤的驱动溶液中,二氧化碳及另外浓缩或结晶的氯化铵溶液则回用于阳离子置换步骤的驱动溶液中,或该分离出的氯化铵与从阳离子置换步骤的驱动溶液中析出的碳酸氢钠反应转化为氯化钠和碳酸氢铵,而碳酸氢铵回用于阳离子置换步骤的驱动溶液中。或将该氯化钾直接导入步骤1的阳离子置换步骤的驱动溶液中,以氯化铵饱和或浓溶液作为阳离子置换步骤的驱动溶液中的驱动介质为例,在驱动溶液中同时加入饱和或高浓度的碳酸氢铵、或碳酸铵,为了使碳酸铵盐不会挥发损失以及增加其溶解度,使用密封容器,在渗析过程中,低溶解度的物质在浓缩结晶时更容易和优先被沉淀析出,因此,与铵离子交换而进入驱动溶液中的钠离子 可优先以碳酸钠或碳酸氢钠方式析出,所加入的来自阴离子置换步骤的驱动液的氯化钾或外购的氯化钾中的钾离子则以低溶解度的碳酸氢钾方式析出,伴随着钠、钾离子以碳酸盐方式的分步析出,部分碳酸氢铵、碳酸铵也可能析出。在渗析过程中,若在阳离子置换步骤的驱动溶液中添加了氯化钾,则其中的氯化铵不断增加,经部分浓缩提取结晶,母液含饱和的氯化铵、碳酸氢铵、碳酸铵、及钾离子、钠离子并循环回用,得到的多余的氯化铵则与前述所得的碳酸氢钠、或碳酸钠加热反应,获得碳酸氢铵或碳酸铵和氯化钠。碳酸氢铵或碳酸铵回用于阳离子置换步骤的驱动溶液中,而氯化钠则作为副产品。所得的碳酸氢钾经加热或与氨水反应转化为碳酸钾,回用于阴离子置换步骤的驱动溶液中。
类似地,将阳离子置换步骤的驱动液替换为甲酸铵(或醋酸铵),则氯化钠、氯化钾、碳酸氢钠或碳酸钠和碳酸氢钾将优先析出,因为与甲酸根离子组合的甲酸钠、甲酸钾均具有高的溶解度,因此甲酸根离子与上述硝酸根离子一样没有理论消耗。
或者,将阳离子置换步骤的驱动液中的氯化铵替换为或同时加入或分别加入碳酸氢铵(碳酸铵)、硝酸铵、硫酸铵,则可得到碳酸氢钠(碳酸钠)、硫酸钠优先结晶析出的副产品,在输入氯化钾的情况下,则可得到碳酸氢钾、硝酸钾、硫酸钾的优先结晶析出,并可作为联产钾盐的副产品。
将上述经阳离子和阴离子置换步骤的驱动溶液分别渗析处理后的待处理液混合,即可测出有碱性的氨或碳酸铵盐挥发,作为最终的淡化水处理,还可通过曝气、减压挥发或在处理后的待处理溶液中添加少量的氢氧化钙或氢氧化钠或利用弱酸性阳离子树脂等促进铵盐和氨的分解挥发。
实验三:
关于碳酸氢钾的结晶,不考虑不同盐之间的互相交互作用对溶解度的影响,溶解度以mol浓度计,以20℃时为例,含足够多碳酸氢铵晶体的饱和碳酸氢铵浓度0.27mol(溶剂水100g),加入0.68mol的氯化钾,则溶液中最多有0.27mol饱和的碳酸氢铵,0.34mol饱和的碳酸氢钾,0.34mol未饱和的氯化铵,0.34mol的氯化钾。当降温,或者加入有机溶剂吸收水分,假如加入的有机溶剂瞬间吸收了一半水分,则有0.135mol的碳酸氢铵和0.17mol的碳酸氢钾,0.12mol氯化钾迅速析出,可被迅速提取和分离,母液中的氯化铵接近饱和状态,经抽提有机溶剂降温后部分析出。为了减少过程成本,将析出的混合物直接导入阴离子置换步骤的驱动溶液中,再补充加入碳酸铵,或也补充部分碳酸钾,相当于驱动溶液为碳酸氢钾与碳酸铵、碳酸氢铵和氯化钾的混合物,利用碳酸氢铵溶解度低于碳酸氢钾的特点,混合物在溶液中起到碳酸钾高溶解度和高离子浓度的效果,经渗析过程,再不断析出碳酸氢铵、氯化钾;或者,将析出的碳酸氢钾加入氨水转化为碳酸钾,或经加热分解,碳酸氢铵挥发析出,得到碳酸氢钾固体,继续加热到120℃以上,转化为碳酸钾,或者碳酸氢钾与碳酸铵反应,利用碳酸氢铵溶解度比碳酸氢钾更低的特点,部分转化为高溶解度的碳酸钾和低溶解度的碳酸氢铵,此时,需要提高碳酸氢铵的密封压力,减少其挥发析出。实际过程中,氯化钾和碳酸氢铵都是饱和状态相混合后再加入低沸点有机物进行处理,另外,一部分氯化钾、氯化铵也随同碳酸氢钾结晶循环回到阴离子置换步骤的驱动溶液中。结晶时最好控制各种物质的浓度大小,在有机物脱水浓缩或降温结晶时,尽可能地仅使单一目标产物出现结晶析出。
实验时,在氯化钾和碳酸氢铵均饱和的混合溶液里,倒入无水乙醇,少量乙醇时,没有沉淀发生,当乙醇较多时,则迅速形成乳白色雾状胶状物,且白色雾状胶体清晰地分层悬浮在溶液的上方,约10分钟后开始聚集并下沉。收集上层白色胶状物或收集沉淀,在100℃温度下烘干,检测所得沉积物显示碱性,应该是碳酸氢钾,至少含有碳酸氢钾。实验发现,当有机物从溶液中挥发后,原来烧杯中的部分沉淀发生了再溶解,因此,最好快速析出沉淀物,避免因有机物的挥发或抽提导致沉淀损失。另外,公知碳酸铵与氯化钾在经有机溶剂萃取氯化铵后析出碳酸钾,或碳酸氢钾和碳酸镁形成可沉淀的复盐,也可以用于将碳酸氢钾沉淀析出,将该复盐加热分解后用于阴离子置换步骤的驱动溶液,其中的碳酸镁自然沉淀分离,再循环用于沉淀析出碳酸氢钾。
实施例10
本实施例提供了考察离子交换脱盐速度的试验,包括以下几个具体实验:
为了观察离子交换的脱盐速度,在饱和的氯化钠溶液中每次加入0.3克氯化钠晶体,测量该晶体消失所需要的时间,虽然饱和的氯化钠与实际的海水或待处理溶液的浓度差别大,但也方便了表征脱盐速度。初步的实验发现,盐的消失时间和实验温度相关,温度越高所需消失的时间越短,也即扩散渗析越快。
实验一:
单独用AMI-7001强碱性阴离子膜30平方厘米进行扩散渗析处理,先以自来水作为驱动溶液,测得0.3克氯化钠晶体消失时间为13分钟,再以浓的碳酸钾作为驱动溶液,在室温9℃情况下,以醋酸调节氯化钠溶液的pH值至6,0.3克氯化钠晶体消失需要10分钟,随着扩散渗析的进行,因为有碱性的碳酸钠的生成,氯化钠溶液的pH值逐步增加,随之,0.3克氯化钠晶体消失的时间逐步增加,在pH为7时,所需时间为11分钟,在pH值为8时,所需时间为13分钟,当加入少量氨水,调节氯化钠溶液的pH值达12(试纸测)时,0.3克氯化钠晶体消失所需的时间增加到11分钟。由此说明了,待处理溶液碱性增加不利于渗析交换的进行,估计是待处理溶液的酸碱度影响了强碱性阴离子膜内水被解离的程度,但与阳离子膜同时处理待处理液时,海水中氯化钠转化为酸性的氯化铵,正好有利于阴离子的渗析交换。在用自来水作为驱动溶液时,可见氯化钠饱和溶液中水量不断增加,说明盐的消失是因为低渗透压的自来水经正渗透进入了高渗透压的饱和氯化钠溶液中的缘故;当自来水改为高浓度的碳酸钾溶液时,膜两侧的渗透压相当,氯化钠溶液中的溶液体积没有可见的变化(下同),说明盐的消失主要是因为离子交换,使氯化钠被替换为碱性的碳酸钠。
实验二:
单独用CMI-7000阳离子膜30平方厘米进行扩散渗析,先以自来水作为驱动溶液,测得0.3克氯化钠晶体消失时间为15分钟,应该是被经正渗透而来的水所溶解,再以硝酸铵浓溶液为驱动溶液,在室温9℃情况下,类似地,以醋酸及氨水调节饱和氯化钠溶液的pH从4直到12,0.3克氯化钠消失(转化为氯化铵)的时间基本都是12分钟,说明了待处理溶液的酸碱度对阳离子的交换影响不明显;若在硝酸铵溶液中加入氨水,则发现0.3克氯化钠晶体消失的时间增加到15分钟,说明了没有预期的碱性的氨水在驱动溶液中对铵阳离子扩散渗析的促进作用。也说明实际应用时需要根据膜材料的特性进行各种参数常规的优化筛选和处理。
实验三:
联合使用上述的阴阳离子膜进行扩散渗析处理,先以自来水作为驱动溶液,测得0.3克氯化钠晶体消失时间为9分钟,应该是被经正渗透而来的水所溶解,以碳酸钾和硝酸铵浓溶液分别作为阴离子和阳离子置换步骤的驱动溶液,0.3克氯化钠晶体消失(转化为碳酸铵)所需的时间为8分钟。与单独阴离子膜的渗析交换不同,饱和氯化钠溶液的pH值大都一直维持在7以下,可能是溶液中交换后形成的酸性氯化铵量多于碱性碳酸钠的量,但有时也发现氯化钠饱和溶液的pH大于7,说明了过程中涉及参数较多,如改变溶液温度,渗析速度加快,阴阳离子膜渗析交换速度的增加幅度也许不同,不同厂家膜的实验效果也不同,总之,实际使用时需要针对膜材料的特性进行优化筛选处理。在实际的海水淡化时,海水的浓度低,可以增加海水的相对流动速度与驱动溶液的浓度匹配,增加膜两侧离子互相接触交换的机会,提高交换速度,减少接触时间,即相对减少了有害泄露和由于浓差形成的渗透压造成的水透过的量。
实施例11
本实施了提供了一种包括浓度扩散驱动和直流电压驱动的离子渗析迁移实验。
为了进一步增加浓差驱动的扩散迁移力,或同样地达到增加电渗析过程的驱动力的目的,在上述浓差驱动的系统中引入直流电压的驱动。待处理溶液被阳离子膜与阳极室所隔离,也被阴离子膜与阴极室所隔离,在阳极室内加入饱和的或浓的阴离子置换步骤的驱动的碳酸盐溶液,如碳酸钾、碳酸铵、碳酸氢铵、碳酸氢钾溶液,在阴极室内加入饱和的或浓的阳离子置换步骤的驱动的铵盐溶液,在扩散渗析时,同时附加直流电压,则待处理溶液中的阴阳离子即受到浓差扩散的驱动也受到电压的驱动。
实施例12
本实施例提供一种可用于上述各实施例中,实现溶液中离子的交换和浓缩的一种装置。
为沉淀出海水或各种废水中可与碳酸根离子、氢氧根离子发生沉淀的金属离子,先设置一个计量和沉淀、分离沉淀物的容器和过滤系统,对水溶液进行沉淀预处理。若所使用的驱动溶液中含有铵离子,碳酸根离子、碳酸氢离子,容易挥发析出氨气、碳酸氢铵、碳酸铵、二氧化碳,因此,驱动液的容器应该是密闭的,可更换的标准件,且是插拔式的与渗析组件联接,方便在工作现场更换驱动溶液,即通过更换驱动液的容器,补充新的驱动液;或者通过阀门先释放使用过的驱动液,再输入新鲜的驱动溶液。而待处理溶液的容器部分则应是可以提供曝气或经抽吸形成负压的容器,在负压使用条件下,可选择地,使容器连接一个超过10米水柱高的直立式容器,在容器的上方形成负压,来自渗析交换后的待处理流经容器的上方,促进溶液中碳酸铵等的快速挥发析出,并以插拔式的方式与渗析组件联接,以便独立的和连续地促使碳酸铵、碳酸氢铵的析出。含离子交换膜的渗析组件可以是单独的含有阴离子或阳离子交换膜的组件,分别对待处理溶液进行扩散渗析处理后,再循环进入待处理溶液的容器内,每个膜组件可以是卷筒式的也可以是平行板式的结构,即由同一种膜分割出平行的溶液流动的窄空间,待处理液和驱动液交替的流经所说的窄空间内。另外,还可以有一个独立的结晶分离系统,该系统结晶分离驱动溶液中提取的来自海水或污水中的矿物质。上述系统小型化,即可以作为家庭或社区用海水淡化或水的深度净化处理装置。

Claims (41)

  1. 一种溶液中离子的交换和浓缩方法,其特征在于,该方法包括以下步骤:
    阳离子置换步骤:用铵离子和/或氢离子置换待处理溶液中的阳离子;和/或,
    阴离子置换步骤:用碳酸根离子和/或碳酸氢根离子和/或氢氧根离子置换待处理溶液中的阴离子;
    待处理溶液中的阴离子或阳离子被置换后,在待处理溶液中生成碳酸铵、碳酸氢铵、氢氧化铵和碳酸中的一种或几种。
  2. 根据权利要求1所述的方法,其特征在于,
    若待处理溶液中的阳离子仅含有铵离子和/或氢离子,则仅实施阴离子置换步骤;
    若待处理溶液中的阴离子仅含有碳酸根离子和/或碳酸氢根离子和/或氢氧根离子,则仅实施阳离子置换步骤。
  3. 根据权利要求1所述的方法,其特征在于,
    对待处理溶液实施阳离子置换步骤和阴离子置换的步骤时,两个步骤同时进行。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,
    在阳离子置换步骤中,采用以含有铵离子和/或氢离子的溶液作为驱动溶液的阳离子膜系统,或,采用以铵离子和/或氢离子作为交换基团的阳离子交换树脂系统;
    置换待处理溶液中的阴离子时,采用以含有碳酸根离子和/或碳酸氢根离子和/或氢氧根离子的溶液作为驱动溶液的阴离子膜系统,和/或,采用以碳酸根离子和/或碳酸氢根离子和/或氢氧根离子作为交换基团的阴离子树脂系统。
  5. 根据权利要求4所述的方法,其特征在于,
    所述阳离子膜系统中还设置有阳离子间接交换区,所述阳离子间接交换区由阳离子间接驱动溶液和间接交换阳离子膜组成;驱动溶液中的铵离子和/或氢离子通过阳离子膜进入阳离子间接交换区使铵离子和/或氢离子的浓度获得增加后,再通过间接交换阳离子膜与待处理溶液中的阳离子进行交换;配制所述阳离子间接驱动溶液时,阳离子选自待处理溶液阳离子中的一种或几种;和/或,
    所述阴离子膜系统中还设置有阴离子间接交换区,所述阴离子间接交换区由阴离子间接驱动溶液和间接交换阴离子膜组成;驱动溶液中的碳酸根离子和/或碳酸氢根离子和/或氢氧根离子通过阴离子膜进入阴离子间接交换区使碳酸根离子和/或碳酸氢根离子和/或氢氧根离子的浓度获得增加后,再通过间接交换阴离子膜与待处理溶液中的阴离子进行交换;配制所述阴离子间接驱动溶液时,阴离子选自待处理溶液阴离子中的一种或几种。
  6. 根据权利要求5所述的方法,其特征在于,所述待处理溶液为海水;
    在所述阳离子膜系统中,所述驱动溶液为氨水、碳酸水、酸性的烟道气、碳酸氢铵或碳酸铵;所述间接驱动溶液为饱和的或浓的氯化钠溶液;
    在所述阴离子膜系统中,所述驱动溶液为氨水、碳酸水、酸性的烟道气、碳酸氢铵或碳酸铵;所述间接驱动溶液为饱和的或浓的氯化钠溶液。
  7. 根据权利要求4所述的方法,其特征在于,
    所述阳离子膜为强酸性阳离子膜、中等酸性阳离子膜、弱酸性阳离子膜或中性阳离子膜;
    所述阴离子膜为强碱性阴离子膜、中等碱性阴离子膜、弱碱性阴离子膜或中性阴离子膜。
  8. 根据权利要求7所述的方法,其特征在于,
    所述阳离子膜为弱酸性阳离子膜或中性阳离子膜;
    所述阴离子膜为弱碱性阴离子膜或中性阴离子膜。
  9. 根据权利要求7所述的方法,其特征在于,该方法还包括以下步骤:
    当使用强酸性阳离子膜或强碱性阴离子膜时,通过调节驱动溶液或待处理溶液的酸碱度抑制强酸性阳离子膜或强碱性阴离子膜对水的解离作用。
  10. 根据权利要求9所述的方法,其特征在于,
    当使用强酸性阳离子膜时,抑制水的解离作用的方法为:在阳离子膜驱动溶液中加入碱性物质或使用碱性驱动液;所述碱性物质包括氨水、碳酸氢铵或碳酸铵;所述碱性驱动液包括碳酸氢铵或碳酸铵;
    当使用强碱性阴离子膜时,抑制水的解离作用的方法为:在阴离子膜驱动溶液中加入酸性物质或加入碱性物质;所述酸性物质包括硫酸铵或硝酸铵;所述碱性物质包括氢氧化钾或氢氧化钠。
  11. 根据权利要求7所述的方法,其特征在于,该方法还包括以下步骤:
    当使用强酸性阳离子膜或强碱性阴离子膜时,通过设计待处理溶液实施阳离子置换步骤和阴离子置换步骤的先后处理顺序,使待处理溶液中首先生成酸性物质或碱性物质,以抑制强酸性阳离子膜或强碱性阴离子膜对水的解离作用。
  12. 根据权利要求11所述的方法,其特征在于,
    在使用强碱性阴离子膜时,设计的一种抑制水的解离作用的方法为:待处理溶液先实施阳离子置换步骤,将待处理溶液中的阳离子转化为偏酸性的氯化铵或硫酸铵,然后实施阴离子置换步骤,使待处理溶液中的阴离子与碳酸根离子和/或碳酸氢根离子和/或氢氧根离子交换。
  13. 根据权利要求1-3任意一项所述的方法,其特征在于,该方法还包括以下步骤:
    提取待处理溶液中生成的碳酸铵、碳酸氢铵、氢氧化铵或碳酸后,使全部或部分剩余液体进入待处理溶液中循环,继续所述阳离子置换步骤和/或阴离子置换步骤,直至所述待处理溶液中的离子含量降低至符合要求。
  14. 根据权利要求13所述的方法,其特征在于,
    所述提取的方法包括析出法或分解法;
    所述析出法包括:曝气抽提或减压挥发;
    所述分解法包括以下步骤:
    将待处理溶液用强酸性阳离子膜进行扩散渗析,使其中的铵离子转变为氨气后从待处理溶液中析出,扩散渗析中的交换溶液为水,或含酸、含碱溶液;和/或,
    将待处理溶液用弱酸性阳离子树脂或可优先吸附氢离子的分子筛进行催化分解,使铵离子转变为氨气后从待处理溶液中析出;和/或,
    将待处理溶液用强碱性阴离子膜进行扩散渗析,使碳酸根离子或碳酸氢根离子转变为碳酸气后从待处理溶液中析出;和/或,
    将待处理溶液用弱碱性阴离子树脂或可优先吸附氢氧根离子的分子筛进行催化分解,使碳酸根离子或碳酸氢根离子转变为碳酸气后从待处理溶液中析出。
  15. 根据权利要求4所述的方法,其特征在于,该方法还包括以下步骤:
    提取所述驱动溶液中来自待处理溶液中的阳离子和/或阴离子与驱动溶液中的阴离子和/或阳离子生成的盐后,使全部或部分剩余液体进入相应的驱动液中进行循环回用。
  16. 根据权利要求15所述的方法,其特征在于,
    所述提取方法包括:冷却结晶、浓缩结晶、转化为较低溶解度的物质后结晶、利用盐析效应结晶或加入低沸点有机物促进结晶。
  17. 根据权利要求15所述的方法,其特征在于,该方法还包括以下步骤:
    向阳离子膜系统的驱动溶液中补充铵离子或氢离子,和/或,向阴离子膜系统的驱动溶液中补充碳酸根离子、碳酸氢根离子或氢氧根离子,使驱动溶液中的铵离子、氢离子、碳酸根离子、碳酸氢根离子或氢氧根离子的浓度维持在设计范围内。
  18. 根据权利要求1-3任意一项所述的方法,其特征在于,该方法还包括以下步骤:
    若待处理溶液中含有可形成碳酸盐或氢氧化物沉淀的金属离子,则在实施阳离子置换步骤和/或阴离子置换步骤前,先向待处理溶液加入沉淀剂进行沉淀预处理,所述沉淀剂包括碳酸盐、碳酸氢盐和氨水中的一种或几种的组合。
  19. 根据权利要求4所述的方法,其特征在于,
    在阳离子置换步骤中,驱动溶液中或者用于阳离子树脂再生的铵离子来源于氨水和铵盐中的一种或几种的组合;
    所述铵盐包括氯化铵、碳酸氢铵、碳酸铵、硝酸铵、硫酸铵、亚硝酸胺、亚硫酸铵、硫氰酸铵、甲酸铵、醋酸铵和磷酸铵中的一种或几种的组合。
  20. 根据权利要求19所述的方法,其特征在于,
    在阳离子置换步骤中,铵离子的来源包括以下几种方式:硝酸铵+碳酸氢铵/碳酸铵/氯化铵、氯化铵+碳酸氢铵/碳酸铵或甲酸铵+碳酸氢铵/碳酸铵/氯化铵。
  21. 根据权利要求4所述的方法,其特征在于,
    在阴离子置换步骤中,驱动溶液中或者用于阴离子树脂再生的碳酸根离子、碳酸氢根离子或氢氧根离子,来源于碳酸钾、碳酸铵、碳酸钠、碳酸氢铵、碳酸氢钠、碳酸氢钾、氨水、氢氧化钾和氢氧化钠中的一种或几种的组合。
  22. 根据权利要求21所述的方法,其特征在于,
    在阴离子置换步骤中,碳酸根离子、碳酸氢根离子或氢氧根离子的源于包括以下几种方式:碳酸钾、碳酸氢钾+碳酸铵、碳酸铵、碳酸氢铵、碳酸铵+硫酸铵、碳酸氢铵+硫酸铵、碳酸铵+硝酸铵、碳酸氢铵+硝酸铵、碳酸钾+氢氧化钾或碳酸钾+氢氧化钠。
  23. 根据权利要求4所述的方法,其特征在于,
    所述阳离子膜系统中的驱动溶液中,包括能与待处理溶液中的阳离子生成易分离产物的阴离子;
    所述阴离子膜系统中的驱动溶液中,包括能与待处理溶液中的阴离子生成易分离产物的阳离子。
  24. 根据权利要求4所述的方法,其特征在于,该方法还包括使用直流电压驱动离子 进行渗析迁移的步骤。
  25. 根据权利要求4所述的方法,其特征在于,
    若待处理溶液为碱性液体,对待处理溶液实施所述阳离子置换步骤,此时铵离子进入待处理溶液并与氢氧根离子反应生成氢氧化铵,然后除去氢氧化铵。
  26. 根据权利要求4所述的方法,其特征在于,
    若待处理溶液为酸性液体,对待处理溶液实施所述阴离子置换步骤,此时碳酸根离子或碳酸氢根离子进入待处理溶液并与氢离子反应生成碳酸,然后除去碳酸。
  27. 根据权利要求1-3任意一项所述的方法,其特征在于,该方法还包括为了减少水渗透,在待处理溶液中加入可平衡驱动溶液渗透压的物质的步骤;所述可平衡驱动溶液渗透压的物质包括碳酸氢铵、碳酸铵或磁性微粒。
  28. 一种权利要求1-27任意一项所述的溶液中离子的交换和浓缩方法在水处理中的应用,所述应用包括:
    提取或分解溶液中的铵离子、碳酸根离子或碳酸氢根离子;
    处理含酸污水、含碱废水或含盐废水;
    海水淡化或苦咸水淡化;
    生产盐或生产碱。
  29. 根据权利要求28所述的应用,其特征在于,提取或分解溶液中铵离子的一种方法包括以下步骤:
    将含有铵离子的待处理溶液用强酸性阳离子膜进行扩散渗析,扩散渗析中的交换溶液为水,或含酸、含碱溶液,使铵离子转变为氨气后从待处理溶液中析出;或,
    将含有铵离子的待处理溶液用弱酸性阳离子树脂或可优先吸附氢离子的分子筛进行催化反应,使铵离子转变为氨气后从待处理溶液中析出。
  30. 根据权利要求28所述的应用,其特征在于,提取或分解溶液中碳酸根离子或碳酸氢根离子的一种方法包括以下步骤:
    将含有碳酸根离子或碳酸氢根离子的待处理溶液用强碱性阴离子膜进行扩散渗析,扩散渗析中的交换溶液为水,或含酸、含碱溶液,使碳酸根离子或碳酸氢根离子转变为易于分解或提取的碳酸;或,
    将含有碳酸根离子或碳酸氢根离子的待处理溶液用弱碱性阴离子树脂或可优先吸附氢氧根离子的分子筛进行催化反应,使碳酸根离子或碳酸氢根离子转变为易于分解或提取的碳酸。
  31. 根据权利要求28所述的应用,其特征在于,海水淡化或苦咸水淡化的一种方法包括以下步骤:
    先向海水或苦咸水中加入沉淀剂碳酸铵进行沉淀预处理,使海水或苦咸水中的部分阳离子转化为碳酸盐析出;所述碳酸盐包括碳酸钙、碳酸镁或碳酸锶;
    对沉淀预处理后的海水或苦咸水实施所述阳离子置换步骤和阴离子置换步骤,碳酸铵或碳酸氢铵被从海水或苦咸水中提取出;
    阳离子置换步骤中使用的驱动溶液为高浓度或饱和的硝酸铵+碳酸氢铵的混合溶液、硝酸铵+碳酸铵的混合溶液、硝酸铵+碳酸氢铵+碳酸铵的混合溶液、氯化铵+碳酸氢铵的混合 溶液、氯化铵+碳酸铵的混合溶液、氯化铵+碳酸氢铵+碳酸氢铵的混合溶液、甲酸铵+碳酸铵的混合溶液、甲酸铵+碳酸氢铵的混合溶液或甲酸铵+碳酸氢铵+碳酸氢铵的混合溶液;阴离子置换步骤中使用的驱动溶液为高浓度或饱和碳酸铵溶液、碳酸钾溶液、碳酸钾+氢氧化钾的混合溶液或碳酸钾+氢氧化钠的混合溶液。
  32. 根据权利要求28所述的应用,其特征在于,海水淡化或苦咸水淡化的一种方法包括以下步骤:
    阳离子置换步骤中使用的驱动溶液为高浓度或饱和碳酸铵和/或碳酸氢铵溶液;阴离子置换步骤中使用的驱动溶液也为高浓度或饱和碳酸铵和/或碳酸氢铵溶液;
    经过阳离子置换步骤的处理,海水或苦咸水中的钠、钾进入驱动溶液中,转化为钠或钾的碳酸盐、碳酸氢盐;经过阴离子置换步骤的处理,海水或苦咸水中的氯离子、硫酸根离子进入驱动溶液中,转化为氯化铵或硫酸铵;同时,海水或苦咸水中生成碳酸铵和/或碳酸氢铵;
    阳离子置换步骤的驱动溶液中生成的碳酸盐或碳酸氢盐经结晶浓缩提取后作为产品。
  33. 根据权利要求28所述的应用,其特征在于,生产盐的一种方法包括以下步骤:
    对待处理溶液实施所述阳离子置换步骤和/或阴离子置换步骤,并从阳离子膜系统的驱动溶液和/或阴离子膜系统的驱动溶液中提取目标产物盐,所述待处理液为饱和或浓的氯化钾溶液或氯化钠溶液;
    在所述阳离子置换步骤中,所述驱动溶液包括:铵盐溶液或铵盐+氨水的混合溶液,所述铵盐包括碳酸氢铵、碳酸铵、硫酸铵、硫氰酸铵、亚硫酸铵、硝酸铵、亚硝酸铵、磷酸铵、甲酸铵和醋酸铵中的一种或几种的组合;
    在所述阴离子置换步骤中,所述驱动溶液包括:碳酸铵溶液、碳酸氢铵溶液、碳酸钾溶液、碳酸氢钾溶液、碳酸钠溶液、碳酸氢钠、氨水、氢氧化钠溶液、氢氧化钾溶液和氢氧化锂溶液中的一种或几种的组合。
  34. 根据权利要求28所述的应用,其特征在于,生产盐的一种方法包括以下步骤:
    对待处理溶液实施所述阳离子置换步骤和/或阴离子置换步骤,并从阳离子膜系统的驱动溶液中提取目标产物盐,所述待处理液为饱和或浓的氯化钾溶液或氯化钠溶液;
    在所述阳离子置换步骤中,所述驱动溶液包括:溶解度较高的硝酸铵或氯化铵或硫酸铵或硫氰酸铵或甲酸铵或醋酸铵中的一种或几种的组合的饱和或浓溶液,再加入溶解度较低的碳酸氢铵或碳酸铵,则优先结晶析出低溶解度的碳酸氢盐或碳酸盐;
    在所述阴离子置换步骤中,所述驱动溶液包括:碳酸铵溶液、碳酸氢铵溶液、碳酸钾溶液、碳酸氢钾溶液、碳酸钠溶液、碳酸氢钠、氨水、氢氧化钠溶液、氢氧化钾溶液和氢氧化锂溶液中的一种或几种的组合。
  35. 根据权利要求28所述的应用,其特征在于,生产盐的一种方法包括以下步骤:
    对待处理溶液仅实施所述阳离子置换步骤,并从阳离子膜系统的驱动溶液中提取出目标产物盐,所述待处理液为饱和或浓的氯化钾溶液或氯化钠溶液;
    在所述阳离子置换步骤中,驱动溶液选自饱和或浓的碳酸铵、硝酸铵溶液、硫酸铵溶液、甲酸铵溶液和醋酸铵溶液中的一种或几种的组合。
  36. 根据权利要求28所述的应用,其特征在于,生产盐的一种方法包括以下步骤:
    对待处理溶液仅实施所述阳离子置换步骤,并从阳离子膜系统的驱动溶液中提取出目标产物盐,所述待处理液为饱和或浓的氯化钾溶液或氯化钠溶液;
    在所述阳离子置换步骤中,驱动溶液选自饱和或浓的硝酸铵溶液、氯化铵溶液、硫酸铵溶液、硫氰酸铵溶液、甲酸铵溶液和醋酸铵溶液中的一种或几种的组合,再加入较低溶解度的碳酸氢铵或碳酸铵,优先结晶析出低溶解度的碳酸氢盐或碳酸盐。
  37. 根据权利要求28所述的应用,其特征在于,生产碱的一种方法包括以下步骤:
    对待处理溶液实施所述阳离子置换步骤和阴离子置换步骤,并从阳离子膜系统的驱动溶液中提取出目标产物碱,所述待处理液为饱和或浓的氯化钾溶液、氯化钠溶液或氯化锂溶液;
    在所述阳离子置换步骤中,驱动溶液为氨水溶液;
    在所述阴离子置换步骤中,驱动溶液的配制组分包括:碳酸铵、碳酸氢铵、碳酸钾、碳酸氢钾、碳酸钠、碳酸氢钠、氨水、氢氧化钠、氢氧化钾和氢氧化锂中的一种或几种的组合;
    所述目标产物为氢氧化钠、氢氧化钾或氢氧化锂。
  38. 根据权利要求28所述的应用,其特征在于,生产碱的一种方法包括以下步骤:
    仅对待处理溶液实施所述阴离子置换步骤,并从阴离子膜系统的驱动溶液中提取出目标产物碱,所述待处理液为饱和或浓的氯化钾溶液、氯化钠溶液或氯化锂溶液;
    在所述阴离子置换步骤中,驱动溶液为氨水溶液或氢氧化钙溶液;
    所述目标产物为氢氧化钠、氢氧化钾或氢氧化锂。
  39. 一种由权利要求28-38任意一项所述的应用组合形成的水处理方法,其特征在于,在组合形成的水处理方法中,一种应用中至少有一种中间产品或最终产品作为另一种应用的原料。
  40. 一种生产碳酸氢钾盐的方法,其特征在于,该方法包括以下步骤:
    将碳酸氢铵饱和溶液与氯化钾混合,经加入低沸点有机溶剂,沉淀析出碳酸氢钾。
  41. 一种用于权利要求1-27任意一项所述的方法的装置,其特征在于,该装置包括:
    沉淀预处理容器系统、驱动液容器系统、待处理溶液容器系统、扩散渗析组件和结晶分离系统;其中,沉淀预处理容器系统和结晶分离系统独立运行,驱动液容器系统、待处理溶液容器系统和扩散渗析组件互相耦合使用;
    所述沉淀预处理容器系统包括:加料装置、搅拌器、沉淀分离装置和气体回收装置;
    所述驱动液容器系统包括:容器密闭装置、溶液更换的阀门装置和联接结构;
    所述待处理溶液容器系统包括:负压抽吸系统、曝气系统和气体回收系统;
    所述扩散渗析组件包括卷绕式或平行板式膜组件。
PCT/CN2016/073450 2015-02-16 2016-02-04 一种溶液中离子的交换和浓缩方法及装置 WO2016131389A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201510090656.1A CN105983251A (zh) 2015-02-16 2015-02-16 溶液中离子的交换和浓缩方法及装置
CN201510090656.1 2015-02-16
CN201510195654.9 2015-04-16
CN201510195654.9A CN106145258A (zh) 2015-04-16 2015-04-16 一种溶液中离子的交换和浓缩方法
CN201510254209.5 2015-05-12
CN201510254209.5A CN106277185A (zh) 2015-05-12 2015-05-12 溶液中离子的交换和浓缩方法
CN201510300633.9A CN106277189A (zh) 2015-05-30 2015-05-30 溶液中离子的交换和浓缩方法
CN201510300633.9 2015-05-30
CN201510381052.2A CN106315761A (zh) 2015-06-24 2015-06-24 溶液中离子的交换和浓缩方法
CN201510381052.2 2015-06-24
CN201510484320.3 2015-07-31
CN201510484320.3A CN106395983A (zh) 2015-07-31 2015-07-31 溶液中离子的交换和浓缩方法及装置
CN201510573879.3A CN106474770A (zh) 2015-08-31 2015-08-31 溶液中离子的交换和浓缩方法及装置
CN201510573879.3 2015-08-31
CN201510900599.9 2015-12-05
CN201510900599.9A CN106830184A (zh) 2015-12-05 2015-12-05 溶液中离子的交换和浓缩方法及装置

Publications (1)

Publication Number Publication Date
WO2016131389A1 true WO2016131389A1 (zh) 2016-08-25

Family

ID=56691985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073450 WO2016131389A1 (zh) 2015-02-16 2016-02-04 一种溶液中离子的交换和浓缩方法及装置

Country Status (1)

Country Link
WO (1) WO2016131389A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072906A (zh) * 1991-12-03 1993-06-09 武汉化工学院 离子交换苛化法制备烧碱的新工艺
CN1809407A (zh) * 2003-04-23 2006-07-26 全技术联合公司 用于产生高纯洗脱液的方法和装置
CN101254966A (zh) * 2008-04-14 2008-09-03 北京特斯顿新材料技术发展有限公司 磷酸废液的回收方法
CN101481124A (zh) * 2008-12-22 2009-07-15 建德市大洋化工有限公司 一种碳酸钾的生产工艺
CN102515317A (zh) * 2012-01-10 2012-06-27 刘景亮 用氨氮废水生产酸和氨水的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072906A (zh) * 1991-12-03 1993-06-09 武汉化工学院 离子交换苛化法制备烧碱的新工艺
CN1809407A (zh) * 2003-04-23 2006-07-26 全技术联合公司 用于产生高纯洗脱液的方法和装置
CN101254966A (zh) * 2008-04-14 2008-09-03 北京特斯顿新材料技术发展有限公司 磷酸废液的回收方法
CN101481124A (zh) * 2008-12-22 2009-07-15 建德市大洋化工有限公司 一种碳酸钾的生产工艺
CN102515317A (zh) * 2012-01-10 2012-06-27 刘景亮 用氨氮废水生产酸和氨水的方法及装置

Similar Documents

Publication Publication Date Title
CN104445755B (zh) 一种用于氯化铵废水资源化处理的方法
CN113087229B (zh) 一种浓海水的固碳应用系统及方法
WO2016182337A1 (ko) 수산화리튬 및 탄산리튬의 제조 방법
CN108689522A (zh) 一种光伏行业混酸废水的处理及资源化回收方法
CN103864249A (zh) 一种由盐湖卤水提取氢氧化锂的方法
JP2012509237A (ja) 脱塩廃液の利用
CN209835879U (zh) 一种利用脱硫废水制备酸碱的系统
CN105948362A (zh) 一种煤化工ro浓盐水处理工艺
CN106186550A (zh) 污水资源化零排放装置及方法
CN108609714A (zh) 一种利用碳基磁性金属复合材料催化激活过硫酸盐去除水中内分泌干扰物的方法
CN110937728A (zh) 一种脱硫废水的处理方法及处理系统
CN110526439A (zh) 一种ro浓盐水的再利用方法及装置
CN113562924A (zh) 一种钢铁冶金高盐废水资源化利用的处理系统及方法
CN105174563A (zh) 一种叶酸废水的处理方法
CN106830184A (zh) 溶液中离子的交换和浓缩方法及装置
KR101689059B1 (ko) 해수 중 음이온 제거 및 탄산이온 전환을 이용한 미네랄 농축수 제조방법
CN112939317A (zh) 工业高盐废水的零排放及资源化处理系统
CN219409508U (zh) 高盐膜浓水处理设备
CN205773845U (zh) 一种双甘膦废水资源化利用的处理系统
Wang et al. Selective removal of calcium ions from seawater or desalination brine using a modified sodium carbonate method
CN111620498A (zh) 回收焦化废水中硫酸钠和氯化钠的方法
DK146200B (da) Fremgangsmaade til energibesparende oparbejdning af spildevand, der stammer fra regenereringen af de til behandling af sukkersafter anvendte ionbytter- og adsorptionsharpikser
CN213771708U (zh) 一种新型废水除硬的膜处理系统
CN106474770A (zh) 溶液中离子的交换和浓缩方法及装置
WO2016131389A1 (zh) 一种溶液中离子的交换和浓缩方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16751920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16751920

Country of ref document: EP

Kind code of ref document: A1