WO2016131319A1 - 一种滤波电路及方法 - Google Patents

一种滤波电路及方法 Download PDF

Info

Publication number
WO2016131319A1
WO2016131319A1 PCT/CN2015/095317 CN2015095317W WO2016131319A1 WO 2016131319 A1 WO2016131319 A1 WO 2016131319A1 CN 2015095317 W CN2015095317 W CN 2015095317W WO 2016131319 A1 WO2016131319 A1 WO 2016131319A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
input
output
comb filter
signal
Prior art date
Application number
PCT/CN2015/095317
Other languages
English (en)
French (fr)
Inventor
文显琼
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016131319A1 publication Critical patent/WO2016131319A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/04Recursive filters

Definitions

  • This application relates to, but is not limited to, the field of digital circuits.
  • a digital microphone is a processing device for converting an analog audio signal into a digital audio signal, wherein the digital audio signal output by the digital microphone is in the form of Pulse Density Modulation (PDM).
  • PDM Pulse Density Modulation
  • the digital audio processing device and the playback device connected to the digital microphone only support Pulse Code Modulation (PCM), so that the PDM signal needs to be converted into a PCM signal.
  • PCM Pulse Code Modulation
  • the related art PDM to PCM method can employ a cascaded integrator comb (CIC, Cascade Integrator Comb) filter structure.
  • This paper provides a filter circuit and method, which can solve the complex structure of the comb filter.
  • a filter circuit includes: a first integration filter, a first comb filter, and a downsampler, wherein
  • An input of the downsampler is coupled to an output of the first integrating filter, and an output of the downsampler is coupled to a first input of the first comb filter.
  • the first integration filter includes: an integrator and a first delay device; wherein
  • An output end of the first delay device is connected to a first input end of the integrator, the first extension An input end of the timer is connected to an output end of the integrator;
  • An output of the integrator is coupled to an input of the downsampler.
  • the first comb filter includes: a subtractor and a second delay device; wherein
  • An output of the second delay is coupled to a negative input of the subtractor, and an input of the second delay is coupled to a positive input of the subtractor.
  • At least one second integration filter is further included, and the second integration filter is connected to the first integration filter in a cascade manner.
  • At least one second comb filter is further included, and the second comb filter is connected to the first comb filter in a cascade manner.
  • the delay of the first delay device is 1 unit.
  • the downsampler frequency of the downsampler is R, R is equal to the result of dividing M by N, the M is the working clock frequency used by the integrator, and the N is the work used by the subtractor. Clock frequency.
  • a filtering method comprising:
  • the downsampled signal is input to the first comb filter to obtain a second filtered signal.
  • the method before the acquiring the first filtered signal output by the first integration filter, the method further includes:
  • each of the at least one second integrating filter being connected to the first integrating filter in a cascade manner.
  • the step of inputting the downsampled signal into the first comb filter to obtain the second filtered signal further includes:
  • the filter circuit includes: a first integration filter, a first comb filter, and a downsampler, wherein an input end of the downsampler is connected to an output end of the first integration filter The output of the downsampler is coupled to the first input of the first comb filter. Downsampling is achieved before the comb filter, which reduces the complexity of the comb filter.
  • FIG. 1 is a schematic structural view of a first embodiment of a filter circuit of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a filter circuit of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a filter circuit according to the present invention.
  • FIG. 4 is a flow chart of a first embodiment of a filtering method of the present invention.
  • the filter circuit includes: a first integration filter 10, a first comb filter 30, and a downsampler 20, wherein
  • An input of the downsampler 20 is coupled to an output of the first integrating filter, and an output of the downsampler 20 is coupled to a first input of the first comb filter 30.
  • the digital audio signal of the PDM is input to the first integration filter 10, and the first output signal is output from the output end of the first integration filter 10. Then, the first output signal is input from one end of the downsampler 20, and the Downsampling of the sampler 20, outputting a second output signal from the other end of the downsampler 20, and then inputting the second output signal to the first comb filter 30 through the first input of the first comb filter 30, The digital audio signal of the PCM is then obtained.
  • the delay of the first comb filter 30 is greatly reduced due to the pre-shift of the downsampling, for example, assuming the first comb filter of the related art
  • the delay of the device 30 is 8, and the downsampling rate is 8, then the input-output relationship is expressed as:
  • Z(N) is the output signal of the first comb filter 30
  • y(N) is the input signal of the first comb filter 30
  • y(N-8) is the first delay in the first integration filter 10.
  • the timer inputs the input signal of the first integration filter 10;
  • the delay of the first comb filter 30 in the embodiment of the present invention becomes the ratio of the original delay to the downsampling rate, that is, 1, and the input-output relationship is expressed as
  • Z(N) is the output signal of the first comb filter 30
  • y(N) is the input signal of the first comb filter 30
  • y(N-1) is the first delay in the first integration filter 10.
  • the input of the first integration filter 10 is input to the timer.
  • the filter circuit includes: a first integration filter 10, a first comb filter 30, and a downsampler 20, wherein an input end of the downsampler 20 and the first integration filter The output of the downsampler 20 is coupled to the first input of the first comb filter 30. Downsampling is achieved before the comb filter, which reduces the complexity of the comb filter.
  • the first integration filter 10 may include an integrator 11 and a first delay device 12.
  • the output end of the first delay device 12 is connected to the first input end of the integrator 11, and the input end of the first delay device 12 is connected to the output end of the integrator 11 to integrate
  • An output of the processor 11 is coupled to an input of the downsampler 20.
  • the first comb filter 30 may include: a subtractor 31 and a second delay 32; wherein an output of the second delay 32 and a first input of the subtractor 31 (negative input) Connected, the other end of the second delay 32 is connected to the second input (positive input) of the subtractor 31.
  • the first input signal and the second input signal are respectively input to the integrator 11 through the first input end and the second input end of the integrator 11 to obtain a first output signal, wherein the second input signal is the first input signal.
  • the signal obtained by the first delay 12 is then extracted by the downsampler 20, and then the signal output by the downsampler 20 is split into two paths, one input directly to the second of the subtractor 31. At the input end, the other path is delayed by the second delay unit 32 and then input to the first input terminal of the subtractor 31, and the subtractor 31 outputs the second output signal.
  • the filter circuit further includes at least one second integration filter 40, and the second integral filter The device 40 is connected to the first integration filter 10 in a cascade manner. As shown in FIG. 3, the output of the second integration filter 40 is coupled to the second input of the first integration filter 10.
  • the filter circuit further includes at least one second comb filter 50 coupled to the first comb filter 30 in a cascade manner. As shown in FIG. 3, the output of the first comb filter 30 is coupled to the second input of the second comb filter 50.
  • the delay of the first delay device 12 is 1 unit.
  • the downsampling frequency of the downsampler 20 is R, R is equal to the result of dividing M by N, the M is the working clock frequency used by the integrator 11, and the N is the subtractor 31.
  • the implementation manner of this embodiment includes the following steps:
  • the PDM digital audio signal is input to the multi-stage integrator, and the delay of the integrator is 1, that is, the current output of each stage of the integral filter is equal to the sum of the current input and the previous output.
  • y(n) is the output signal of the integration filter
  • x(n) is the input signal of the integration filter
  • y(n-1) is the input signal of the input integration filter passing through the first delayer
  • the R number is downsampled and extracted, and the number of data becomes 1/R of the original number.
  • Z(N) is the output signal of the comb filter
  • y(N) is the input signal of the comb filter
  • y(N-8) is the input signal of the input integration filter passing through the first delayer
  • the delay of the comb filter of the embodiment of the present invention becomes the ratio of the original delay to the downsampling rate, that is, 1, and the input-output relationship is expressed as
  • Z(N) is the output signal of the comb filter
  • y(N) is the input signal of the comb filter
  • y(N-1) is the input signal of the input integration filter passing through the first delay.
  • the filtering method includes:
  • Step 401 Acquire a first filtered signal output by the first integration filter.
  • Step 402 Perform a down sampling process on the first filtered signal to obtain a downsampled signal.
  • Step 403 Input the downsampled signal into the first comb filter to obtain a second filtered signal.
  • the PDM digital audio signal is input to the first integration filter, and the first output signal is output from the output of the first integration filter, and then the first output signal is input from the downsampler end, and the downsampler is downsampled.
  • the second output signal is output from the other end of the downsampler, and then the second output signal is input to the comb filter through the first input of the comb filter, and then the digital audio signal of the PCM is obtained.
  • the first filtered signal is downsampled by acquiring the first filtered signal output by the first integrating filter to obtain a downsampled signal, and the downsampled signal is input to the first comb filter. , obtaining a second filtered signal. Downsampling is achieved before the comb filter, which reduces the complexity of the comb filter.
  • the method before acquiring the first filtered signal output by the first integration filter, the method further includes:
  • each of the at least one second integrating filter being connected to the first integrating filter in a cascade manner.
  • the method further includes:
  • the delay of the first comb filter and the second comb filter comb filter is reduced a lot, which means that the number of data to be saved is greatly reduced in the actual circuit, that is, Simplifies the circuit structure and the resources used.
  • the downsampling is performed before the comb filter, so that the delay of the comb filter is greatly reduced, so that the number of data to be saved is greatly reduced, thereby simplifying the circuit structure and occupied resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

一种滤波电路及方法,滤波电路包括第一积分滤波器(10)、降采样器(20)、第一梳状滤波器(30)。其中,降采样器(20)的输入端与第一积分滤波器(10)的输出端连接,降采样器(20)的输出端与第一梳状滤波器(30)的第一输入端连接。通过在梳状滤波器之前进行降采样,减少了梳状滤波器的复杂性。

Description

一种滤波电路及方法 技术领域
本申请涉及但不限于数字电路领域。
背景技术
数字麦克风是一种将模拟音频信号转换为数字音频信号的处理装置,其中,数字麦克风输出的数字音频信号是脉冲密度调制(Pulse Density Modulation,简称PDM)的形式。
通常,与数字麦克风连接的数音频处理设备和播放设备都只支持脉冲编码调制(Pulse Code Modulation,简称PCM),从而需要将PDM信号转换为PCM信号。相关技术的PDM转PCM的方法可以采用级联积分梳状(CIC,Cascade Integrator Comb)滤波结构。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
相关技术的滤波电路进行信号处理时,需要占用大量的内存,造成梳状滤波器结构复杂。
本文提供了一种滤波电路及方法,可以解决收梳状滤波器结构复杂的问题。
一种滤波电路,包括:包括:第一积分滤波器、第一梳状滤波器和降采样器,其中,
所述降采样器的输入端与所述第一积分滤波器的输出端连接,所述降采样器的输出端与所述第一梳状滤波器的第一输入端连接。
可选的,所述第一积分滤波器,包括:积分器和第一延时器;其中,
所述第一延时器的输出端与所述积分器的第一输入端连接,所述第一延 时器的输入端与所述积分器的输出端连接;
所述积分器的输出端与所述降采样器的输入端连接。
可选的,所述第一梳状滤波器,包括:减法器和第二延时器;其中,
所述第二延时器的输出端与所述减法器的负输入端连接,所述第二延时器的输入端与所述减法器的正输入端连接。
可选的,还包括至少一个第二积分滤波器,所述第二积分滤波器与所述第一积分滤波器通过级联的方式连接。
可选的,还包括至少一个第二梳状滤波器,所述第二梳状滤波器与所述第一梳状滤波器通过级联的方式连接。
可选的,所述第一延时器的时延为1个单位。
可选的,所述降采样器的降采样频率为R,R等于M除以N的结果,所述M为所述积分器所用的工作时钟频率,所述N为所述减法器所用的工作时钟频率。
一种滤波方法,包括:
获取第一积分滤波器输出的第一滤波信号;
将所述第一滤波信号进行降降采样处理,获得降采样信号;
将所述降采样信号输入第一梳状滤波器,获得第二滤波信号。
可选的,所述获取第一积分滤波器输出的第一滤波信号之前,还包括:
获取至少一个第二积分滤波器输出的第三滤波信号,所述至少一个第二积分滤波器中的每个第二积分滤波器与所述第一积分滤波器通过级联的方式连接。
可选的,所述将所述降采样信号输入第一梳状滤波器,获得第二滤波信号之后,还包括:
将所述第二滤波信号输入至少一个第二梳状滤波器,获得第四滤波信号,所述至少一个第二梳状滤波器中的第二梳状滤波器与所述第一梳状滤波器通过级联的方式连接。
在本实施例中,滤波电路,包括:第一积分滤波器、第一梳状滤波器和降采样器,其中,所述降采样器的输入端与所述第一积分滤波器的输出端连接,所述降采样器的输出端与所述第一梳状滤波器的第一输入端连接。实现了降采样在梳状滤波器之前,从而减少了梳状滤波器的复杂性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明的滤波电路第一实施例的结构示意图;
图2为本发明的滤波电路第二实施例的结构示意图;
图3为本发明的滤波电路第三实施例的结构示意图;
图4为本发明的滤波方法第一实施例的流程图。
本发明的实施方式
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明的滤波电路第一实施例的结构示意图,如图1所示,滤波电路,包括:第一积分滤波器10、第一梳状滤波器30和降采样器20,其中,
所述降采样器20的输入端与所述第一积分滤波器的10输出端连接,所述降采样器20的输出端与所述第一梳状滤波器30的第一输入端连接。
其中,PDM的数字音频信号输入到第一积分滤波器10,并从第一积分滤波器10的输出端输出第一输出信号,接着,将第一输出信号从降采样器20一端输入,通过降采样器20的降采样,从降采样器20的另一端输出第二输出信号,再接着,第二输出信号通过第一梳状滤波器30的第一输入端输入第一梳状滤波器30,然后获得PCM的数字音频信号。
从降采样器20抽取输出后,进入级联梳状滤波器,第一梳状滤波器30的时延由于降采样的前移而大大减小,例如,假设相关技术的第一梳状滤波 器30的时延为8,降采样率为8,那么输入输出关系表示为:
z(N)=y(N)-y(N-8),其中,
Z(N)为第一梳状滤波器30的输出信号,y(N)为第一梳状滤波器30的输入信号,y(N-8)为第一积分滤波器10中通过第一延时器输入第一积分滤波器10的输入信号;
本发明实施例的第一梳状滤波器30的时延变为原时延与降采样率的比值,也就是1,输入输出关系表示为
z(N)=y(N)-y(N-1),其中,
Z(N)为第一梳状滤波器30的输出信号,y(N)为第一梳状滤波器30的输入信号,y(N-1)为第一积分滤波器10中通过第一延时器的输入第一积分滤波器10的输入信号。
可以看出改进后第一梳状滤波器30的时延减小了很多,这在实际电路中意味着所需要保存数据的个数大大减小,也就简化了电路结构和占用的资源。
在本实施例中,滤波电路,包括:第一积分滤波器10、第一梳状滤波器30和降采样器20,其中,所述降采样器20的输入端与所述第一积分滤波器10的输出端连接,所述降采样器20的输出端与所述第一梳状滤波器30的第一输入端连接。实现了降采样在梳状滤波器之前,从而减少了梳状滤波器的复杂性。
图2为本发明的滤波电路第二实施例的结构示意图,如图2所示,在上述实施例的基础上,第一积分滤波器10,可以包括:积分器11和第一延时器12;其中,所述第一延时器12的输出端与所述积分器11的第一输入端连接,所述第一延时器12的输入端与所述积分器11的输出端连接,积分器11的输出端与所述降采样器20的输入端连接。
第一梳状滤波器30,可以包括:减法器31和第二延时器32;其中,所述第二延时器32的输出端与所述减法器31的第一输入端(负输入端)连接,所述第二延时器32的另一端与所述减法器31的第二输入端(正输入端)连接。
举例来讲,第一输入信号与第二输入信号分别通过积分器11的第一输入端和第二输入端输入积分器11,获得第一输出信号,其中,第二输入信号是第一输入信号通过第一延时器12获得的信号,接着,第一输出信号通过降采样器20抽取R,再接着,降采样器20输出的信号分为两路,一路直接输入到减法器31的第二输入端,另一路通过第二延时器32延时之后输入到该减法器31的第一输入端,减法器31输出第二输出信号。
图3为本发明的滤波电路第三实施例的结构示意图,如图3所示,在上述实施例的基础上,滤波电路,还包括至少一个第二积分滤波器40,所述第二积分滤波器40与所述第一积分滤波器10通过级联的方式连接。如图3所示,该所述第二积分滤波器40的输出端与所述第一积分滤波器10的第二输入端连接。
该滤波电路还包括至少一个第二梳状滤波器50,所述第二梳状滤波器50与所述第一梳状滤波器30通过级联的方式连接。如图3所示,所述第一梳状滤波器30的输出端与所述第二梳状滤波器50的第二输入端连接。
可选的,所述第一延时器12的时延为1个单位。
可选的,所述降采样器20的降采样频率为R,R等于M除以N的结果,所述M为所述积分器11所用的工作时钟频率,所述N为所述减法器31所用的工作时钟频率。
举例来讲,本实施例的实现方式包括以下步骤:
PDM数字音频信号输入到多级积分器,积分器的时延为1,即每一级积分滤波器的当前输出等于当前输入与上一次输出之和,
y(n)=x(n)+y(n-1),其中,
y(n)为积分滤波器的输出信号,x(n)为积分滤波器的输入信号,y(n-1)为通过第一延时器的输入积分滤波器的输入信号;
(2)从级联积分器输出后,经过R倍降采样抽取,数据个数变为原来个数的1/R。降采样可以通过时钟频率变化来实现:积分器所用的工作时钟频率为M,梳状滤波器所用的工作时钟频率为N,并且满足M=NxR,那么进入梳状滤波器的数据个数,就是从积分器输出的数据个数的1/R。
将降采样后信号
Figure PCTCN2015095317-appb-000001
其中,y(n)为降采样前信号;
(3)从降采样抽取输出后,进入级联梳状滤波器,梳状滤波器的时延由于降采样的前移而大大减小,例如,假设相关技术的梳状滤波器的时延为8,降采样率为8,那么输入输出关系表示为:
z(N)=y(N)-y(N-8),其中,
Z(N)为梳状滤波器的输出信号,y(N)为梳状滤波器的输入信号,y(N-8)为通过第一延时器的输入积分滤波器的输入信号;
本发明实施例的梳状滤波器的时延变为原时延与降采样率的比值,也就是1,输入输出关系表示为
z(N)=y(N)-y(N-1),其中,
Z(N)为梳状滤波器的输出信号,y(N)为梳状滤波器的输入信号,y(N-1)为通过第一延时器的输入积分滤波器的输入信号。
可以看出改进后梳状滤波的时延减小了很多,这在实际电路中意味着所需要保存数据的个数大大减小,也就简化了电路结构和占用的资源。
图4为本发明的滤波方法第一实施例的流程图,如图4所示,该滤波方法,包括:
步骤401、获取第一积分滤波器输出的第一滤波信号。
步骤402、将所述第一滤波信号进行降采样处理,获得降采样信号。
步骤403、将所述降采样信号输入第一梳状滤波器,获得第二滤波信号。
PDM的数字音频信号输入到第一积分滤波器,并从第一积分滤波器的输出端输出第一输出信号,接着,将第一输出信号从降采样器一端输入,通过降采样器的降采样,从降采样器的另一端输出第二输出信号,再接着,第二输出信号通过梳状滤波器的第一输入端输入梳状滤波器,然后获得PCM的数字音频信号。
在本实施例中,通过获取第一积分滤波器输出的第一滤波信号,将所述第一滤波信号进行降采样处理,获得降采样信号,将所述降采样信号输入第一梳状滤波器,获得第二滤波信号。实现了降采样在梳状滤波器之前,从而减少了梳状滤波器的复杂性。
可选的,在上述实施例的基础上,获取第一积分滤波器输出的第一滤波信号之前,还包括:
获取至少一个第二积分滤波器输出的第三滤波信号,所述至少一个第二积分滤波器中的每个第二积分滤波器与所述第一积分滤波器通过级联的方式连接。
可选的,在上述实施例的基础上,所述将所述降采样信号输入第一梳状滤波器,获得第二滤波信号之后,还可以包括:
将所述第二滤波信号输入至少一个第二梳状滤波器,获得第四滤波信号,所述至少一个第二梳状滤波器中的第二梳状滤波器与所述第一梳状滤波器通过级联的方式连接。
在本实施例中,第一梳状滤波器和第二梳状滤波器梳状滤波的时延减小了很多,这在实际电路中意味着所需要保存数据的个数大大减小,也就简化了电路结构和占用的资源。
工业实用性
本发明实施例在梳状滤波器之前降采样,使得梳状滤波器的时延减小了很多,这样所需要保存数据的个数大大减小,从而简化了电路结构和占用的资源。

Claims (10)

  1. 一种滤波电路,包括:第一积分滤波器、第一梳状滤波器和降采样器,其中,
    所述降采样器的输入端与所述第一积分滤波器的输出端连接,所述降采样器的输出端与所述第一梳状滤波器的第一输入端连接。
  2. 根据权利要求1所述的滤波电路,其中,所述第一积分滤波器,包括:积分器和第一延时器;其中,
    所述第一延时器的输出端与所述积分器的第一输入端连接,所述第一延时器的输入端与所述积分器的输出端连接;
    所述积分器的输出端与所述降采样器的输入端连接。
  3. 根据权利要求2所述的滤波电路,其中,所述第一梳状滤波器,包括:减法器和第二延时器;其中,
    所述第二延时器的输出端与所述减法器的负输入端连接,所述第二延时器的输入端与所述减法器的正输入端连接。
  4. 根据权利要求3所述的滤波电路,还包括至少一个第二积分滤波器,所述第二积分滤波器与所述第一积分滤波器通过级联的方式连接。
  5. 根据权利要求4任一项所述的滤波电路,还包括至少一个第二梳状滤波器,所述第二梳状滤波器与所述第一梳状滤波器通过级联的方式连接。
  6. 根据权利要求5所述的滤波电路,其中,所述第一延时器的时延为1个单位。
  7. 根据权利要求6所述的滤波电路,其中,所述降采样器的降采样频率为R,R等于M除以N的结果,所述M为所述积分器所用的工作时钟频率,所述N为所述减法器所用的工作时钟频率。
  8. 一种滤波方法,包括:
    获取第一积分滤波器输出的第一滤波信号;
    将所述第一滤波信号进行降降采样处理,获得降采样信号;
    将所述降采样信号输入第一梳状滤波器,获得第二滤波信号。
  9. 根据权利要求8所述的方法,其中,所述获取第一积分滤波器输出的第一滤波信号之前,还包括:
    获取至少一个第二积分滤波器输出的第三滤波信号,所述至少一个第二积分滤波器与所述第一积分滤波器通过级联的方式连接。
  10. 根据权利要求8或9所述的方法,其中,所述将所述降采样信号输入第一梳状滤波器,获得第二滤波信号之后,还包括:
    将所述第二滤波信号输入至少一个第二梳状滤波器,获得第四滤波信号,所述至少一个第二梳状滤波器与所述第一梳状滤波器通过级联的方式连接。
PCT/CN2015/095317 2015-08-14 2015-11-23 一种滤波电路及方法 WO2016131319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510502257.1 2015-08-14
CN201510502257.1A CN106470022A (zh) 2015-08-14 2015-08-14 一种滤波电路及方法

Publications (1)

Publication Number Publication Date
WO2016131319A1 true WO2016131319A1 (zh) 2016-08-25

Family

ID=56688703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095317 WO2016131319A1 (zh) 2015-08-14 2015-11-23 一种滤波电路及方法

Country Status (2)

Country Link
CN (1) CN106470022A (zh)
WO (1) WO2016131319A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359868A (zh) * 2016-05-10 2017-11-17 深圳市中兴微电子技术有限公司 脉冲密度调制转换电路及方法
CN117459065A (zh) * 2023-12-26 2024-01-26 深圳市九天睿芯科技有限公司 Pdm信号转换为pcm信号的方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037675A1 (en) * 2000-11-03 2002-05-10 Nokia Corporation Filtering method and filter
US6470365B1 (en) * 1999-08-23 2002-10-22 Motorola, Inc. Method and architecture for complex datapath decimation and channel filtering
US20040107078A1 (en) * 2002-12-03 2004-06-03 Che-Sheng Chiu Optimized filter parameters design for digital IF programmable downconverter
US7035888B2 (en) * 2004-06-22 2006-04-25 Samsung Thales Co., Ltd. Digital sampling rate converter for compensation for drop of in-band signal
US7856464B2 (en) * 2006-02-16 2010-12-21 Sigmatel, Inc. Decimation filter
CN102035503A (zh) * 2010-11-19 2011-04-27 钜泉光电科技(上海)股份有限公司 滤波装置及级联积分梳状滤波器的滤波方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271431A (ja) * 2001-03-14 2002-09-20 Hitachi Kokusai Electric Inc 低域通過フィルタ
CN103475333A (zh) * 2013-09-04 2013-12-25 苏州苏尔达信息科技有限公司 一种混合多相级联积分梳状滤波器
CN103475335A (zh) * 2013-09-04 2013-12-25 苏州苏尔达信息科技有限公司 一种多相数字降采样滤波器
CN203406842U (zh) * 2013-09-04 2014-01-22 苏州苏尔达信息科技有限公司 混合多相级联积分梳状滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470365B1 (en) * 1999-08-23 2002-10-22 Motorola, Inc. Method and architecture for complex datapath decimation and channel filtering
WO2002037675A1 (en) * 2000-11-03 2002-05-10 Nokia Corporation Filtering method and filter
US20040107078A1 (en) * 2002-12-03 2004-06-03 Che-Sheng Chiu Optimized filter parameters design for digital IF programmable downconverter
US7035888B2 (en) * 2004-06-22 2006-04-25 Samsung Thales Co., Ltd. Digital sampling rate converter for compensation for drop of in-band signal
US7856464B2 (en) * 2006-02-16 2010-12-21 Sigmatel, Inc. Decimation filter
CN102035503A (zh) * 2010-11-19 2011-04-27 钜泉光电科技(上海)股份有限公司 滤波装置及级联积分梳状滤波器的滤波方法

Also Published As

Publication number Publication date
CN106470022A (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP2015111859A5 (zh)
US10003324B2 (en) Fast FIR filtering technique for multirate filters
WO2017193877A1 (zh) 脉冲密度调制转换电路及方法、存储介质
JP2005124155A (ja) 有理数因子によってデジタル信号のデシメーションを可能にするフィルタ
WO2016131319A1 (zh) 一种滤波电路及方法
US9608598B1 (en) Cascaded integrator-comb filter as a non-integer sample rate converter
US9954514B2 (en) Output range for interpolation architectures employing a cascaded integrator-comb (CIC) filter with a multiplier
CN210142997U (zh) 级联积分梳状抽取滤波器
JP4449007B2 (ja) サンプリング周波数変換装置
CN105099396B (zh) 一种滤波器切换方法、装置以及医疗设备
TWI566239B (zh) 語音信號處理裝置及語音信號處理方法
JP2008219560A (ja) デシメーションフィルタ
Vaishnavi et al. Implementation of CIC filter for DUC/DDC
WO2007102611A1 (ja) 補間関数生成回路
JP2003032082A (ja) デジタルフィルタ
CN109167587B (zh) 基于fpga的信号带通滤波处理方法及系统
KR101555215B1 (ko) Fifo 모듈을 이용한 샘플링 레이트 변경 장치 및 방법
Sahour et al. FPGA implementation of Daubeshies polyphase-decimator filter
CN116561479A (zh) 一种二分之一反升余弦窗函数的构造方法、装置及滤波器
CN116467549A (zh) 一种四分之一正弦窗的构造方法、装置及滤波器
Devi et al. Improved maximally flat wideband CIC compensation filter using sharpening technique
CN116383558A (zh) 一种抛物线型窗函数的构造方法、装置及滤波器
WO2005086347A1 (ja) 直流成分抽出フィルタ、方法およびプログラム
KR100251634B1 (ko) 다위상구조를가지는디지털수신기
JP2007201521A (ja) 周波数成分分離フィルタ、方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882458

Country of ref document: EP

Kind code of ref document: A1