WO2016128187A1 - Verfahren zur durchführung einer chemischen synthese und synthesereaktor - Google Patents

Verfahren zur durchführung einer chemischen synthese und synthesereaktor Download PDF

Info

Publication number
WO2016128187A1
WO2016128187A1 PCT/EP2016/051046 EP2016051046W WO2016128187A1 WO 2016128187 A1 WO2016128187 A1 WO 2016128187A1 EP 2016051046 W EP2016051046 W EP 2016051046W WO 2016128187 A1 WO2016128187 A1 WO 2016128187A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
synthesis
reaction chamber
chambers
reactor
Prior art date
Application number
PCT/EP2016/051046
Other languages
English (en)
French (fr)
Inventor
Jakob Albert
Manfred Baldauf
Jenny Reichert
Alexander Tremel
Peter Wasserscheid
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US15/550,114 priority Critical patent/US10562003B2/en
Priority to EP16702887.7A priority patent/EP3233271A1/de
Priority to CN201680010032.7A priority patent/CN107249728A/zh
Priority to AU2016218191A priority patent/AU2016218191B2/en
Publication of WO2016128187A1 publication Critical patent/WO2016128187A1/de
Priority to CL2017002036A priority patent/CL2017002036A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • Recirculation unit are compensated. This is usually operated at high temperatures and leads to high costs. In addition, due to recirculation inert and foreign gases accumulate in the circulation, which leads to negative effects on the reaction. With recirculation, therefore, a small amount of recirculation gas is continuously withdrawn, which results in losses of starting materials and thus lower conversion efficiencies. Furthermore, the recirculated amount of gas leads to a high gas volume flow through the reactor, which increases the size and thus the cost of the reactor.
  • the invention is therefore based on the object to provide a method for carrying out a chemical synthesis in which over the prior art with the same or reduced energy consumption, a higher degree of conversion of the reactants can be achieved.
  • the object is achieved in a method for carrying out a chemical synthesis according to claim 1 and in a synthesis reactor according to claim 8.
  • the method according to the invention for carrying out a chemical synthesis comprises the following steps:
  • a Syntheseedukt which may comprise one or more compo nents ⁇ introduced into a reaction chamber.
  • a pressure PI prevails.
  • At least one synthesis product from the synthesis educt is formed in the reaction chamber. Furthermore, this synthetic product and not rea during the reaction ⁇ gêts, so unreacted Syntheseedukt is discharged from the reaction chamber ⁇ . In addition, outside the Reakti ⁇ onshunt followed by a separation of the synthesis product from the
  • the lowering of the reactor pressure from the first reaction ⁇ chamber to the second reaction chamber causes an overflow of unreacted Syntheseedukte and the synthesis ⁇ products from a reaction chamber in the second reaction ⁇ chamber without additional pressure booster devices, such as blowers or compressors, takes place. This is energy-saving and serves the cost- effectiveness of the entire implementation process.
  • At least one heat pipe also called a heat pipe, is provided, which connects the two reaction chambers to one another.
  • reaction heat which occurs in exothermic reactions, is exchanged between the reaction chambers.
  • a heat exchange can also take place in endothermic reactions via the heat pipe.
  • the heat pipe leaves while in one embodiment of the invention, one of the reaction chambers so that one end of the heat pipe is present outside at least one of the reaction chambers, and at this led out of the reaction chambers end occurs a thermal energy dissipation, for example by a entspre ⁇ sponding cooling device (in an exothermic reaction) or optionally a heating device (for endothermic Reakti ⁇ ons Adjust).
  • Cooling is also possible only by the present outside temperature, which is lower than the temperature in the reaction chambers.
  • an isothermal reaction is ensured between the at least two, usually a plurality of reaction chambers, ie in the individual reaction chambers is due to the use of heat pipes, the high heat fluxes between the chambers and allow outward, always a nearly the same reaction ⁇ temperature before ,
  • a further expedient embodiment of the invention is filled ⁇ into which the Syntheseedukt is introduced into the reaction chambers carrier liquid.
  • the Reakti ⁇ on from Syntheseedukt to the synthesis product is then carried out in the carrier liquid, wherein the Syntheseedukt, the given ⁇ if gaseous, at least partially dissolves in the carrier liquid.
  • the carrier liquid is preferred
  • Particulate catalyst supplied which is preferably present in this finely dispersed.
  • the catalyst supports the reaction of synthesis educts to synthesis products by surface reactions and in particular influences the reaction rate.
  • a non-polar liquid such as oil, in particular a heat transfer oil, has been found to be expedient ⁇ .
  • the reaction can also be carried out in a fixed bed reactor using a catalyst.
  • the reaction of Syntheseedukt to the synthesis product takes place here in the gas phase.
  • This reaction procedure has the advantage over the reaction procedure in a carrier liquid that the reactor construction becomes simpler.
  • the temperature regulation is technologically more complex and difficult to control, in particular through the use of heat pipes.
  • the reaction in a fluidized bed reactor also in the use of a catalyst take place, wherein a bed containing at least partially Katalysatorma ⁇ terial is flowed from below with a gas stream and is fluidized.
  • a further component of the invention is a synthesis reactor according to patent claim 8.
  • This synthesis reactor has at least two reaction chambers, wherein at least one first reaction chamber has at least one supply device for a synthesis educt or, depending on the reaction, several synthesis educts.
  • the first reaction chamber with a second reaction chamber via a supply line is connected to each other, wherein at the feed line a
  • Product separation device is arranged at which at least one synthesis product, which is formed in the first Discussskam ⁇ mer from the Syntheseedukt, from a mixture of unreacted Syntheseedukt and synthesis product sketchschi ⁇ det.
  • a higher pressure is present in the first reaction chamber than in the second reaction chamber.
  • the Synthe ⁇ sereaktor is equipped with at least one heat pipe, which connects the two reaction chambers with each other and through which is effected the exchange of heat of reaction between the reaction chambers.
  • a supply or removal of heat energy can be applied to this projecting out of the reaction chambers end, whereby the state already described is reached again that the reaction chambers are connected nearly isothermal MITEI ⁇ Nander, ie in the reaction chambers despite There occurring exothermic or endothermic reaction is almost the same reaction temperature.
  • This is expedient for the individual reactions in the reaction chambers to proceed almost uniformly, thus permitting an advantageous reaction control in the individual reaction chambers.
  • Figure 1 is a schematic representation of a multi-stage
  • FIG. 2 shows a detail of a reactor from FIG. 1 with a reaction chamber and a more detailed depiction of a product separation device between two reactor chambers.
  • the synthesis reactor 20 comprises, in particular when, as shown in Figure 1, is constructed stacked manner, in ⁇ is nem lower region, a supply device 3 for synthesis starting materials 2.
  • the Syntheseedukte 2 are thus performed in a first reaction chamber 4, in which already a carrier liquid ⁇ ness 16 in the form of an oil which is a nonpolar liquid is present.
  • a carrier liquid ⁇ ness 16 in the form of an oil which is a nonpolar liquid is present.
  • hydrogen and carbon dioxide and / or carbon monoxide are introduced here as starting material, with a reaction taking place in methanol.
  • a particulate, finely dispersed present catalyst not shown here, is further introduced.
  • the Syntheseedukte 2 can react to the methanol in this case in particular at the Kata ⁇ lysatorober Formation.
  • the gaseous educts 2 can, after they are introduced into the reactor chamber 4, partially dissolve in the carrier liquid 16. The reaction then takes place on the catalyst particles, in particular on its surface. Through a backdift fusion in the gas phase, the products accumulate there and can be deducted above the liquid phase. In the reaction chamber, a pressure of about 90 bar prevails.
  • the temperature is preferably in a range between 150 ° C and 350 ° C, in this example at 250 ° C.
  • reaction stage in the next reaction chamber 10 This stage of the reaction in the reaction chamber 10 is operated at a ge ⁇ ringeren reaction pressure than the reaction step in the reaction chamber 4 to ermögli overflow of the remaining Syntheseedukte without the installation of a pressure increasing means such as a blower or a compressor ⁇ chen.
  • the pressure difference between the reaction stages must be chosen so that pressure losses are compensated for overflow from stage 1 in the reaction chamber 4 to stage 2 in the reaction chamber 10.
  • a pressure difference of about 5 bar from one of a reaction chamber to the other has been found to be advantageous.
  • a valve 24 should be used.
  • stage 2 in the reaction chamber 10 the synthesis reactants 2 can then react again until the chemical equilibrium.
  • the structure of the reactor 20 is repeated step by step, so many steps in the form of reaction chambers 10 are used, as is necessary and economical for the most complete implementation of Synthe- seedukte 2.
  • the reaction chambers 10 may be optionally smaller dimensioned to stage by stage. The remaining at the last reaction stage
  • Reactant gas contains inert gases and foreign and can be withdrawn as a so- ⁇ -called purge gas 26th Alternatively, a return of this gas to the reaction input at the inlet is also possible. possibly after a successful treatment possible.
  • a heat pipe 12 is in the simplest case a closed pipe in which a heat transfer medium is in the two-phase region. Is fed at any point of the heat pipe heat, there is an evaporation of the nickelträ ⁇ transfer medium. The steam then flows to the colder end and condenses there again. Through this process, very high heat flows in a compact design can be transferred almost isothermally.
  • the backflow of the liquid phase can be done solely by gravity, if the evaporation takes place at the lower end of the tube 12 and the condensation above. Furthermore, the return of the liquid phase can be ensured by capillary effects, for example by the installation of wire mesh or wicks.
  • the heat pipes in the presented reactor 20 are advantageously provided with internals not shown here, which make a uniform wetting of the inner wall with liquid phase possible.
  • internals not shown here, which make a uniform wetting of the inner wall with liquid phase possible.
  • evaporation but also condensation take place. Evaporation always takes place in the hottest area of the heat pipe 12 and condensation then in the coldest area. Therefore, the concept allows a very effective and flexible heat exchange between the individual reaction chambers 4, 10.
  • a nearly isothermal reaction is possible along the entire synthesis reactor 20.
  • the various stages in the form of the reaction chambers 4 and 10 are operated at different pressures (pi, p2 ... p n ) but at a nearly constant temperature.
  • the heat pipes 12 can be led out of the synthesis reactor 20 at the upper or at the lower end. As a result, heat supply or heat dissipation is possible at this end of the heat pipe 12 led out of the synthesis reactor 20.
  • heat supply or heat dissipation is possible at this end of the heat pipe 12 led out of the synthesis reactor 20.
  • In exothermic reactions is generally a heat dissipation in the form of cooling necessary. Cooling at the end of the heat pipe it ⁇ enables thus a constant temperature along the reac tors ⁇ .
  • the heat will merohre 12 preferably with water as a heat transfer medium Betrie ⁇ ben. Water in this temperature range enables good heat transfer capabilities and acceptable vapor pressures and so ⁇ 12 with an acceptable wall thickness of the tubes or the heat ⁇ Al ternatively, other heat transfer media or mixtures multifuel can be used.
  • the individual reaction chambers can be constructed according to different concepts.
  • a catalyst may be introduced in a fixed bed of bed or the heat pipes may be provided with a catalyst structure on the surface and the reaction then takes place in the gas phase on a Kataly ⁇ capacitor.
  • the reaction chambers can be designed as fluidized beds. Here, a bed is we ⁇ iquess partially flows reasonable of catalyst material from the bottom and fluidized. The reaction then takes place again on the catalyst surface in the gas phase.
  • the individual reaction chambers 4, 10 are designed as liquid-phase reactors, so-called slurry reactors.
  • catalyst particles are finely distributed in a carrier liquid 16 introduced ⁇ .
  • the gaseous Syntheseedukte 2 for example for the production of methanol, the reactants H 2 and CO 2 / CO, are introduced into the reaction chamber 4, and it finds a researcherss- least partially solve the Syntheseedukte 2 in the Anlagenflüs ⁇ stechnik 16 instead.
  • the reaction then takes place on the surfaces of the catalyst particles.
  • FIG. 2 also illustrates that the reaction chamber 4, which is traversed by heat pipes 12, does not necessarily have to connect directly to the next reaction chamber 10.
  • the individual reaction chambers 4 and 10 may also be arranged sequentially spaced from each other, if this is predetermined by the technical structure, appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Durchführung einer chemischen Synthese, umfassend folgende Schritte: - Einleiten mindestens eines Syntheseeduktes (2) in eine Reaktionskammer (4), in der ein Druck p1 vorherrscht, - Bildung von mindestens einem Syntheseprodukt (6) in der Reaktionskammer (4), - Ausleiten des Syntheseproduktes (6) und eines unreagierten Syntheseeduktes (8) aus der Reaktionskammer (4), - Abtrennen des Syntheseproduktes (6) vom unreagierten Syntheseedukt (8) und - Einleiten des unreagierten Syntheseeduktes (8) in eine zweite Reaktionskammer (10), in der ein Druck p2 vorherrscht, der geringer als der Druck p1 ist.

Description

Beschreibung
Verfahren zur Durchführung einer chemischen Synthese und Synthesereaktor
Der Umsatz bei chemischen Reaktionen ist durch die Gleichgewichtslage der Reaktion beschränkt. Liegt das chemische
Gleichgewicht einer Synthesereaktion nur teilweise auf der Seite der Produkte, führt eine einstufige Reaktionsführung nur zu einem Teilumsatz. Es wird daher nur ein Teil der Edukte bei einem Durchgang durch den Reaktor umgesetzt. Das technische Problem der Erfindung ist daher die Erhöhung des Umsatzes von gleichgewichtslimitierten Reaktionen bei einem einfachen Durchgang durch einen Synthesereaktor.
Sehr viele Reaktionen sind gleichgewichtslimitiert. Bei der chemischen Synthese sind dies z.B. die Erzeugung von Methanol aus Wasserstoff und Kohlenstoffmonoxid und /oder Kohlenstoff¬ dioxid, oder die Erzeugung von Ammoniak aus Wasserstoff und Stickstoff. Diese Reaktionen finden heute in heterogenkatalysierten Festbett- oder Slurryreaktoren statt. Die Edukte werden bei einem einfachen Durchgang durch den Reaktor nur teilweise umgesetzt. Danach werden üblicherweise die Reakti¬ onsprodukte abgetrennt und die nicht umgesetzten Edukte wer- den zum Reaktionseintritt rezirkuliert. Die Rezirkulation von teils großen Gasmengen führt zu einem hohen apparativen Aufwand. Der Druckverlust im Reaktor muss durch eine
Rezirkulationseinheit ausgeglichen werden. Diese wird meist bei hohen Temperaturen betrieben und führt zu hohen Kosten. Zudem reichern sich durch die Rezirkulation Inert- und Fremdgase im Kreislauf an, was zu negativen Einflüssen auf die Reaktionsführung führt. Bei Rezirkulation wird daher kontinuierlich eine kleine Menge an Rezirkulationsgas abgezogen, was Verluste an Edukten und damit niedrigere Umsetzungswirkungs- grade zur Folge hat. Weiterhin führt die zurückgeführte Gas¬ menge zu einem hohen Gasvolumenstrom durch den Reaktor, was die Baugröße und damit die Kosten des Reaktors erhöht. Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Durchführung einer chemischen Synthese bereitzustellen, bei dem gegenüber dem Stand der Technik bei gleichem oder verringertem Energieaufwand ein höherer Umsetzungsgrad der Edukte erzielbar ist.
Die Lösung der Aufgabe besteht in einem Verfahren zur Durch- führung einer chemischen Synthese nach Patentanspruch 1 sowie in einem Synthesereaktor nach Patentanspruch 8.
Das erfindungsgemäße Verfahren zur Durchführung einer chemischen Synthese umfasst folgende Schritte:
Zunächst wird ein Syntheseedukt , das eine oder mehrere Kompo¬ nenten umfassen kann, in eine Reaktionskammer eingeleitet. In dieser Reaktionskammer herrscht ein Druck PI vor.
Im Weiteren wird m der Reaktionskammer mindestens ein Syntheseprodukt aus dem Syntheseedukt gebildet. Im Weiteren wird dieses Syntheseprodukt und während der Reaktion nicht rea¬ giertes, also unreagiertes Syntheseedukt aus der Reaktions¬ kammer ausgeleitet. Im Weiteren folgt außerhalb der Reakti¬ onskammer ein Abtrennen des Syntheseproduktes von dem
unreagierten Syntheseedukt, wobei nunmehr das vereinzelte unreagierte Syntheseedukt in eine zweite Reaktionskammer ein¬ geleitet wird, wobei in der zweiten Reaktionskammer ein Druck P2 vorherrscht, der geringer ist als der Druck PI, der in der ersten Reaktionskammer vorliegt. Durch das erfindungsgemäße Verfahren ist es möglich, bei Er¬ reichen eines chemischen Gleichgewichtes zwischen Synthese- edukten und Syntheseprodukten die Syntheseprodukte zu sepa¬ rieren und in einer weiteren Reaktionskammer die nun wieder nicht im chemischen Gleichgewicht vorhandenen Syntheseedukte durch geeignete Reaktionsbedingungen wie Druck und Temperatur wiederum zu dem beschriebenen chemischen Gleichgewicht zu führen und ein weiteres Mal Syntheseprodukte zu separieren. Auf diese Weise ist es möglich sukzessive eine nicht voll- ständig ablaufende chemische Reaktion so zu führen, dass nach einer Vielzahl von Reaktionsstufen bzw. Anwendungen Reaktionskammern eine nahezu vollständige Umsetzung der anfangs eingebrachten Syntheseedukte erfolgt.
Das Herabsetzen des Reaktordruckes von der ersten Reaktions¬ kammer zur zweiten Reaktionskammer bewirkt, dass ein Überströmen der unreagierten Syntheseedukte sowie der Synthese¬ produkte von einer Reaktionskammer in die zweite Reaktions¬ kammer ohne zusätzliche Druckerhöhungseinrichtungen, wie Gebläse oder Kompressoren, erfolgt. Dies ist energiesparend und dient der Wirtschaftlichkeit des gesamten Umsetzungsprozes¬ ses .
In einer weiteren vorteilhaften Ausgestaltungsform der Erfindung ist mindestens ein Wärmerohr, auch Heatpipe genannt, vorgesehen, dass die beiden Reaktionskammern miteinander verbindet. Durch das Wärmerohr wird zwischen den Reaktionskammern Reaktionswärme, die bei exothermen Reaktionen auftritt, ausgetauscht. Ein Wärmeaustausch kann aber auch bei endothermen Reaktionen über das Wärmerohr erfolgen. Das Wärmerohr verlässt dabei in einer Ausgestaltungsform der Erfindung eine der Reaktionskammern so, dass ein Ende des Wärmerohres außerhalb mindestens einer der Reaktionskammern vorliegt, und an diesem aus den Reaktionskammern herausgeführten Ende erfolgt eine Wärmeenergieabfuhr, beispielsweise durch eine entspre¬ chende Kühlvorrichtung (bei exothermer Reaktionsführung) oder gegebenenfalls eine Heizvorrichtung (bei endothermer Reakti¬ onsführung) . Ein Kühlen ist auch alleine durch die vorliegende Außentemperatur, die niedriger ist als die Temperatur in den Reaktionskammern, möglich. Auf diese Weise wird zwischen den mindestens zwei, in der Regel mehreren Reaktionskammern eine isotherme Reaktionsführung gewährleistet, d.h. in den einzelnen Reaktionskammern liegt aufgrund der Verwendung der Wärmerohre, die hohe Wärmeströme zwischen den Kammern und nach außen ermöglichen, stets eine nahezu gleiche Reaktions¬ temperatur vor. In einer weiteren zweckmäßigen Ausgestaltungsform der Erfindung wird in die Reaktionskammern Trägerflüssigkeit einge¬ füllt, in die das Syntheseedukt eingeleitet wird. Die Reakti¬ on vom Syntheseedukt zum Syntheseprodukt erfolgt dann in der Trägerflüssigkeit, wobei das Syntheseedukt, das gegebenen¬ falls gasförmig vorliegt, sich zumindest teilweise in der Trägerflüssigkeit auflöst. Zur Unterstützung der Durchführung der Reaktion wird der Trägerflüssigkeit ein bevorzugt
partikelförmiger Katalysator zugeführt, der in dieser bevor- zugt feindispergiert vorliegt. Der Katalysator unterstützt durch Oberflächenreaktionen die Reaktion von Syntheseedukten zu Syntheseprodukten und beeinflusst dabei insbesondere die Reaktionsgeschwindigkeit . Als Trägerflüssigkeit hat sich eine unpolare Flüssigkeit, beispielsweise Öl, insbesondere ein Wärmeträgeröl , als zweck¬ mäßig herausgestellt.
Alternativ zu einer Reaktionsführung in einer flüssigen Phase kann die Reaktion auch in einem Festbettreaktor unter Verwendung eines Katalysators durchgeführt werden. Die Reaktion von Syntheseedukt zum Syntheseprodukt erfolgt hierbei in der Gasphase. Diese Reaktionsführung weist gegenüber der Reaktionsführung in einer Trägerflüssigkeit den Vorteil auf, dass der Reaktoraufbau einfacher wird. Bei der Reaktion in der Gasphase ist jedoch die Temperaturregulierung insbesondere über die Verwendung von Wärmerohren technologisch aufwendiger und schwerer zu kontrollieren. In einer weiteren Alternative zur Reaktionsführung in der Trägerphase kann die Reaktion in einem Wirbelbettreaktor, ebenfalls in der Verwendung eines Katalysators stattfinden, wobei eine Schüttung, die wenigstens teilweise Katalysatorma¬ terial enthält, von unten mit einem Gasstrom angeströmt wird und fluidisiert wird. Die Reaktion von Syntheseedukten zu
Syntheseprodukten findet ebenfalls in der Gasphase statt, wo¬ bei dieselben Vor- und Nachteile gegenüber der Verwendung einer Trägerflüssigkeit auftreten. Ein weiterer Bestandteil der Erfindung ist ein Synthesereaktor gemäß Patentanspruch 8. Dieser Synthesereaktor weist mindestens zwei Reaktionskammern auf, wobei zumindest eine erste Reaktionskammer mindestens eine Zufuhrvorrichtung für ein Syntheseedukt bzw. je nach Reaktion mehrere Syntheseedukte aufweist. Hierbei ist die erste Reaktionskammer mit einer zweiten Reaktionskammer über eine Zuleitung miteinander verbunden, wobei an der Zuleitung eine
Produktabscheidevorrichtung angeordnet ist, an der sich wenigstens ein Syntheseprodukt, das in der ersten Reaktionskam¬ mer aus dem Syntheseedukt entstanden ist, aus einer Mischung aus unreagiertem Syntheseedukt und Syntheseprodukt abschei¬ det. In einem Betriebszustand des Synthesereaktors liegt in der ersten Reaktionskammer ein höherer Druck als in der zweiten Reaktionskammer vor. Auch hier stellen sich dieselben Vorteile gegenüber dem Stand der Technik ein, die bereits be¬ züglich Patentanspruch 1 beschrieben wurden, welche insbesondere die nahezu vollständige Umsetzung von chemischen Reakti¬ onen sind, die gleichgewichtslimitiert sind.
Des Weiteren ist es auch hierbei zweckmäßig, dass der Synthe¬ sereaktor mit mindestens einem Wärmerohr ausgestattet ist, der die beiden Reaktionskammern miteinander verbindet und durch den ein Austausch von Reaktionswärme zwischen den Reaktionskammern erfolgt. Wenn das Wärmerohr eine der Reaktionskammern verlässt, kann an diesem aus den Reaktionskammern herausragenden Ende eine Zufuhr bzw. Abfuhr von Wärmeenergie erfolgen, wodurch wieder der bereits beschriebene Zustand erreicht wird, dass die Reaktionskammern nahezu isotherm mitei¬ nander verbunden sind, also in den Reaktionskammern trotz dort stattfindender exothermer oder endothermer Reaktion nahezu dieselbe Reaktionstemperatur vorliegt. Dies wiederum ist zweckmäßig dafür, dass die einzelnen Reaktionen in den Reaktionskammern nahezu gleichmäßig ablaufen und somit eine vor¬ teilhafte Reaktionssteuerung in den einzelnen Reaktionskammern möglich ist. Weitere Ausgestaltungsformen der Erfindung und weitere Merkmale werden anhand der folgenden Figuren näher erläutert. Die folgenden Figuren stellen lediglich schematische Ausführungsbeispiele dar, die keine Einschränkung des Schutzbereiches darstellen.
Dabei zeigen:
Figur 1 eine schematische Darstellung eines mehrstufigen
Reaktors zur Durchführung einer chemischen Synthese und
Figur 2 einen Ausschnitt aus einem Reaktor aus Figur 1 mit einer Reaktionskammer und detaillierterer Darstel- lung einer Produktabscheidevorrichtung zwischen zwei Reaktorkammern.
Beispielhaft soll nun anhand von Figur 1 ein Verfahren zur Durchführung einer chemischen Synthese sowie ein dafür ange- wandter Synthesereaktor 20 näher erläutert werden.
Der Synthesereaktor 20 weist, insbesondere wenn er, wie in Figur 1 dargestellt ist, stapeiförmig aufgebaut ist, in sei¬ nem unteren Bereich eine Zufuhrvorrichtung 3 für Synthese- edukte 2 auf. Die Syntheseedukte 2 werden damit in eine erste Reaktionskammer 4 geführt, in der bereits eine Trägerflüssig¬ keit 16 in Form eines Öls, das eine unpolare Flüssigkeit ist, vorliegt. Als Edukt werden hier beispielhaft Wasserstoff und Kohlendioxid und/oder Kohlenmonoxid eingeführt, wobei eine Reaktion zu Methanol stattfindet. In der Trägerflüssigkeit 16 ist ferner ein hier nicht näher dargestellter partikelförmiger, feindispergiert vorliegender Katalysator eingebracht. Die Syntheseedukte 2 können hierbei insbesondere an der Kata¬ lysatoroberfläche zum Methanol reagieren. Die gasförmigen Edukte 2 können dabei, nachdem sie in die Reaktorkammer 4 eingebracht sind, sich teilweise in der Trägerflüssigkeit 16 lösen. Die Reaktion findet dann an den Katalysatorpartikeln, insbesondere an dessen Oberfläche statt. Durch eine Rückdif- fusion in die Gasphase sammeln sich dort die Produkte an und können oberhalb der Flüssigphase abgezogen werden. In der Reaktionskammer herrscht ein Druck von etwa 90 bar vor. Die Temperatur liegt dabei bevorzugt in einem Spektrum zwischen 150°C und 350°C, in diesem Beispiel bei 250°C. Das Abziehen der Syntheseprodukte 6 und nicht reagierter Syntheseedukte 8 erfolgt über eine Zuleitung 7, die die erste Reaktionskammer 4 mit einer zweiten Reaktionskammer 10 verbindet. Die verbleibenden Syntheseedukte 2 strömen in die nächste
Reaktionsstufe also in die nächste Reaktionskammer 10. Diese Reaktionsstufe in der Reaktionskammer 10 wird bei einem ge¬ ringeren Reaktionsdruck betrieben als die Reaktionsstufe in der Reaktionskammer 4, um ein Überströmen der verbleibenden Syntheseedukte ohne den Einbau einer Druckerhöhungseinrichtung z.B. eines Gebläses oder eines Kompressors zu ermögli¬ chen. Der Druckunterschied zwischen den Reaktionsstufen muss so gewählt werden, dass Druckverluste beim Überströmen von der Stufe 1 in der Reaktionskammer 4 in die Stufe 2 in der Reaktionskammer 10 ausgeglichen werden. Ein Druckunterschied von ca. 5 bar von einer von einer Reaktionskammer zur anderen hat sich als vorteilhaft herausgestellt. Zur Einstellung und Regelung der überströmenden Gasmenge an Syntheseedukten 2 sollte hier ein Ventil 24 eingesetzt werden. In Stufe 2 in der Reaktionskammer 10 können die Syntheseedukte 2 dann wieder bis zum chemischen Gleichgewicht reagieren. Der Aufbau des Reaktors 20 wiederholt sich um Stufe für Stufe, es werden so viel Stufen in Form von Reaktionskammern 10 eingesetzt, wie dies für die möglichst vollständige Umsetzung der Synthe- seedukte 2 nötig und wirtschaftlich ist. Da die Menge an Syn¬ theseedukten 2 entlang der Stufen durch den jeweiligen Abzug von Syntheseprodukten 6 abnimmt, können die Reaktionskammern 10 gegebenenfalls von Stufe zu Stufe kleiner dimensioniert werden. Das an der letzten Reaktionsstufe verbleibende
Eduktgas enthält Fremd- und Inertgase und es kann als soge¬ nanntes Purgegas 26 abgezogen werden. Alternativ ist auch eine Rückführung dieses Gases zum Reaktionseingang an der Zu- führvorrichtung 3 gegebenenfalls nach einer erfolgten Aufbereitung möglich.
Die verschiedenen Reaktionskammern 4 und 10 sind durch Wärmerohre 12, sogenannte Heatpipes, miteinander verbunden. Ein Wärmerohr 12 ist im einfachsten Fall ein geschlossenes Rohr, in dem sich ein Wärmeübertragungsmedium im Zweiphasengebiet befindet. Wird an einer beliebigen Stelle des Wärmerohres Wärme zugeführt, kommt es zu einem Verdampfen des Wärmeträ¬ germediums. Der Dampf strömt dann zum kälteren Ende und kondensiert dort wieder. Durch diesen Prozess können sehr hohe Wärmeströme in kompakter Bauweise nahezu isotherm übertragen werden. Das Zurückfließen der flüssigen Phase kann allein aufgrund der Schwerkraft erfolgen, wenn die Verdampfung am unten liegenden Ende des Rohres 12 und die Kondensation oben stattfinden. Ferner kann die Rückführung der flüssigen Phase durch Kapillareffekte gewährleistet werden, beispielsweise durch den Einbau von Drahtgeweben oder Dochten. Die Wärmerohre im vorgestellten Reaktor 20 sind vorteilhaft mit hier nicht dargestellten Einbauten versehen, die eine gleichmäßige Benetzung der Innenwand mit flüssiger Phase möglich machen. Dadurch kann an jeder Stelle entlang des Wärmerohres 12 eine Verdampfung aber auch eine Kondensation stattfinden. Eine Verdampfung findet stets im heißesten Bereich des Wärmerohres 12 statt und die Kondensation dann im kältesten Bereich. Das Konzept ermöglicht daher einen sehr effektiven und flexiblen Wärmeaustausch zwischen den einzelnen Reaktionskammern 4, 10. Hiermit ist eine nahezu isotherme Reaktionsführung entlang des gesamten Synthesereaktors 20 möglich.
Die verschiedenen Stufen in Form der Reaktionskammern 4 und 10 werden bei unterschiedlichen Drücken (pi, p2...pn) aber bei nahezu konstanter Temperatur betrieben. Die Wärmerohre 12 können am oberen oder am unteren Ende aus dem Synthesereaktor 20 herausgeführt werden. Dadurch ist an diesem aus dem Synthesereaktor 20 herausgeführten Ende 14 des Wärmerohres 12 eine Wärmezufuhr oder eine Wärmeabfuhr möglich. Bei exothermen Reaktionen ist im Allgemeinen eine Wärmeabfuhr in Form von Kühlung nötig. Eine Kühlung am Ende des Wärmerohres er¬ möglicht damit eine konstante Temperatur entlang des Reak¬ tors. Für typische Reaktionstemperaturen von chemischen Synthesen, die zwischen 150°C und 350°C liegen, werden die Wär- merohre 12 bevorzugt mit Wasser als Wärmeträgermedium betrie¬ ben. Wasser ermöglicht in diesem Temperaturbereich gute Wärmeübertragungsfähigkeiten und akzeptable Dampfdrücke und so¬ mit eine akzeptable Wanddicke des bzw. der Wärmerohre 12. Al¬ ternativ können auch andere Wärmeträgermedien oder Mehrstoff- gemische eingesetzt werden.
Die einzelnen Reaktionskammern können nach verschiedenen Konzepten aufgebaut werden. Z.B. kann ein Katalysator in einer Festbettschüttung eingebracht sein oder die Wärmerohre können mit einer Katalysatorstruktur an der Oberfläche versehen sein und die Reaktion findet dann in der Gasphase an einem Kataly¬ sator statt. Weiterhin können die Reaktionskammern als Wirbelbetten ausgeführt werden. Dabei wird eine Schüttung we¬ nigstens teilweise aus Katalysatormaterial von unten ange- strömt und fluidisiert. Die Reaktion findet dann wieder an der Katalysatoroberfläche in der Gasphase statt.
In der hier dargestellten Ausgestaltung sollen die einzelnen Reaktionskammern 4, 10 als Flüssigphasenreaktoren, sogenannte Slurry-Reaktoren, ausgeführt werden. Dabei sind Katalysatorpartikel fein verteilt in einer Trägerflüssigkeit 16 einge¬ bracht. Die gasförmigen Syntheseedukte 2, beispielsweise zur Herstellung von Methanol, die Edukte H2 und CO2/CO, werden in die Reaktionskammer 4 eingebracht und es findet eine wenigs- tens teilweise Lösung der Syntheseedukte 2 in der Trägerflüs¬ sigkeit 16 statt. Die Reaktion findet dann an den Oberflächen der Katalysatorpartikel statt. Durch Rückdiffusion in die Gasphase sammeln sich dann die Syntheseprodukte 6 in der Gasphase in der Reaktionskammer 4 an und können oberhalb des Trägerflüssigkeitsspiegels 19 in die Zuleitung 7 zur Reakti¬ onskammer 10 abgeleitet werden. Um die Mischung aus Trägerflüssigkeit 16, Katalysatorpartikel und den gasförmigen Syntheseedukten 2 möglichst homogen und fein verteilt zu erhalten, ist der Einbau einer geeigneten Mischvorrichtung in Form eines Rührers, der in der Figur nicht dargestellt ist, zweckmäßig. Alternativ können auch die gasförmigen Syntheseedukte 2 so eingebracht werden, dass durch eine gewisse Druckbeaufschlagung eine Durchmischung aufgrund von Verwirbelungen beim Eintrag der Gasphase gewährleistet ist. Neben der Durchmischung führen diese Maßnahmen auch zu einer Erhöhung des Wärmeübergangs zwischen der Trägerflüssigkeit 16, die bevorzugt in Form eines Wärmeträgeröls ausgestattet ist und dem bzw. den Wärmerohren 12.
Wärmeträgeröle und alternative, bevorzugt unpolare Flüssig¬ keiten als Trägerflüssigkeiten 16 für den Flüssigphasenreak- tor, wie er in den Reaktionskammern 4, 10 im Reaktor 20 beispielhaft in Figur 2 dargestellt ist, besitzen bei den Reak¬ tionstemperaturen einen gewissen Dampfdruck. Dadurch kommt es beim Abzug der gasförmigen Syntheseprodukte 6 zu einem leichten Austrag aus der Reaktionskammer 4, 10. In Abbildung 2 ist die erste Reaktionsstufe mit der Reaktionskammer 4 und die dazugehörige Peripherie um die Zuleitung 7 und einer
Produktabscheidevorrichtung 18 detaillierter dargestellt. Um den Austrag bzw. Verlust an Trägerflüssigkeit 16 und Kataly¬ satormaterial zu reduzieren, wird hier das Wärmeträgeröl wäh¬ rend der Abtrennung des Syntheseproduktes 6 separiert und zu¬ rückgeführt. Dies erfolgt in der Produktabscheidevorrichtung 18. Diese Zurückführung der Trägerflüssigkeit 16 erfolgt über die Leitung 17 in die Reaktionskammer 4. Die Rückführung kann durch Ausnutzung von Schwerkrafteffekten ohne den Einsatz einer Pumpe erfolgen.
Das Abziehen der Syntheseprodukte 6 und nicht reagierter Syn¬ theseedukte 8 erfolgt über eine Zuleitung 7. Vor der Abtren- nung der Syntheseprodukte kann eine Temperaturabsenkung zweckmäßig sein. Diese Temperaturabsenkung wird in der Kühlung 22 durchgeführt. Im vorgestellten Beispiel wird die Tem¬ peratur soweit abgesenkt, dass es zur Kondensation von Metha- nol kommt und dieses dann in der Produktabscheidevorrichtung 18 als Syntheseprodukt 6 abgetrennt werden kann.
In Figur 2 ist auch veranschaulicht, dass die Reaktionskammer 4, die von Wärmerohren 12 durchzogen ist, nicht notwendigerweise direkt an die nächste Reaktionskammer 10 anschließen muss. Die einzelnen Reaktionskammern 4 und 10 können auch sequentiell voneinander beabstandet angeordnet sein, wenn dies durch den technischen Aufbau vorgegeben, zweckmäßig ist.

Claims

Patentansprüche
1. Verfahren zur Durchführung einer chemischen Synthese, umfassend folgende Schritte:
- Einleiten mindestens eines Syntheseeduktes (2) in eine Reaktionskammer (4), in der ein Druck pl vorherrscht,
Bildung von mindestens einem Syntheseprodukt (6) in der Reaktionskammer (4),
Ausleiten des Syntheseproduktes (6) und eines unreagierten Syntheseeduktes (8) aus der Reaktionskammer (4),
- Abtrennen des Syntheseproduktes (6) vom unreagierten Syn- theseedukt (8) und
- Einleiten des unreagierten Syntheseeduktes (8) in eine zweite Reaktionskammer (10), in der ein Druck p2 vorherrscht, der geringer als der Druck pl ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Reaktionskammern (4, 10) durch ein Wärmerohr (12) verbunden werden und durch das Reaktionswärme zwischen den Reaktionskammern (4, 10) ausgetauscht wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass das Wärmerohr (12) aus mindestens einer der beiden oder mehreren (?) Reaktionskammern (4, 10) herausgeführt wird, wo- bei an einem herausgeführten Ende des Wärmerohrs (12) diesem Wärmeenergie entzogen wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in die Reaktionskammern (4, 10) Trägerflüssigkeit (16) gefüllt wird, in die das Syntheseedukt (2) eingeleitet wird, wobei das Syntheseedukt (2) in der Trägerflüssigkeit (16) zum Syntheseprodukt (6) umgesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, dass der Trägerflüssigkeit (16) ein
partikelförmiger Katalysator zugeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Trägerflüssigkeit (16) ein Öl, ins¬ besondere ein Wärmeträgeröl ist.
7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reaktionskammern als Festbettreaktor mit einem Katalysator ausgestaltet sind und die Reaktion von Syntheseedukt zu Syntheseprodukt in der Gasphase durchgeführt wird.
8. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reaktionskammern als Wirbelbettreaktor mit einem Katalysator ausgestaltet sind, wobei eine Schüttung wenigstens teilweise aus Katalysatormaterial von unten mit einem
Gasstrom angeströmt und fluidisiert wird und die Reaktion von Syntheseedukt zu Syntheseprodukt in der Gasphase durchgeführt wird .
9. Synthesereaktor umfassend mindestens zwei Reaktionskammern (4, 10), wobei zumindest eine erste Reaktionskammer (4) eine Zufuhrvorrichtung (3) für ein Syntheseedukt (2) aufweist und die erste Reaktionskammer (4) mit einer zweiten Reaktionskammer (10) über eine Zuleitung (7) miteinander verbunden sind, wobei an der Zuleitung (7) eine Produktabscheidevorrichtung (18) angeordnet ist und wobei in einem Betriebszustand des Synthesereaktors (20) in der ersten Reaktionskammer (4) ein höherer Druck als in der zweiten Reaktionskammer (10) vorliegt .
10. Synthesereaktor nach Anspruch 9, dadurch gekennzeichnet, dass mindestens ein Wärmerohr (12) vorgesehen ist, das die mindestens zwei Reaktionskammern (4, 10) verbindet und durch das ein Austausch von Reaktionswärme zwischen den Reaktions¬ kammern (4, 10) erfolgt.
11. Synthesereaktor nach Anspruch 9 und 10, dadurch gekennzeichnet, dass das Wärmerohr (12) aus mindestens einer der mindestens zwei Reaktionskammern (4, 10) heraus ragt, wobei an einem herausragenden Ende (14) des Wärmerohrs (12) eine Abfuhr von Wärmeenergie erfolgt.
PCT/EP2016/051046 2015-02-13 2016-01-20 Verfahren zur durchführung einer chemischen synthese und synthesereaktor WO2016128187A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/550,114 US10562003B2 (en) 2015-02-13 2016-01-20 Chemical synthesis and synthesis reactors
EP16702887.7A EP3233271A1 (de) 2015-02-13 2016-01-20 Verfahren zur durchführung einer chemischen synthese und synthesereaktor
CN201680010032.7A CN107249728A (zh) 2015-02-13 2016-01-20 用于实施化学合成的方法和合成反应器
AU2016218191A AU2016218191B2 (en) 2015-02-13 2016-01-20 Method for carrying out a chemical synthesis and synthesis reactor
CL2017002036A CL2017002036A1 (es) 2015-02-13 2017-08-09 Procedimiento para realizar una síntesis química y reactor de síntesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202680.9 2015-02-13
DE102015202680.9A DE102015202680A1 (de) 2015-02-13 2015-02-13 Verfahren zur Durchführung einer chemischen Synthese und Synthesereaktor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/550,114 Continuation US10562003B2 (en) 2015-02-13 2016-01-20 Chemical synthesis and synthesis reactors

Publications (1)

Publication Number Publication Date
WO2016128187A1 true WO2016128187A1 (de) 2016-08-18

Family

ID=55300469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051046 WO2016128187A1 (de) 2015-02-13 2016-01-20 Verfahren zur durchführung einer chemischen synthese und synthesereaktor

Country Status (7)

Country Link
US (1) US10562003B2 (de)
EP (1) EP3233271A1 (de)
CN (1) CN107249728A (de)
AU (1) AU2016218191B2 (de)
CL (1) CL2017002036A1 (de)
DE (1) DE102015202680A1 (de)
WO (1) WO2016128187A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562003B2 (en) 2015-02-13 2020-02-18 Siemens Aktiengesellschaft Chemical synthesis and synthesis reactors
WO2020157042A1 (de) * 2019-01-30 2020-08-06 Siemens Aktiengesellschaft Reaktorkaskade und verfahren zum betreiben einer reaktorkaskade
EP4059596A1 (de) 2021-03-16 2022-09-21 Paul Scherrer Institut Verfahren zur methanolherstellung aus co2 mit wasserentfernung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3556451T3 (da) * 2018-04-20 2020-08-31 Siemens Ag Fremgangsmåde til drift af et reaktoranlæg

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000656A1 (en) * 1980-08-21 1982-03-04 Wuerfel H Coal hydrogenation process
GB2249547A (en) * 1990-10-29 1992-05-13 Shell Int Research Process for the production of methanol
WO1997041953A1 (en) * 1996-05-03 1997-11-13 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek (Tno) Reactor for carrying out gas phase/liquid phase/solid phase reactions and a method for carrying out such reactions using said reactor
US20070021514A1 (en) * 2005-07-20 2007-01-25 Lattner James R Process for producing methanol

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537352B2 (en) * 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US5925685A (en) * 1996-11-18 1999-07-20 Catalytic Distillation Technologies Method for carrying out heterogeneous catalysis
PL192012B1 (pl) * 1999-06-09 2006-08-31 Tech Uni Muenchen Lehrstuhl F Urządzenie do zgazowywania zawierających węgiel substancji wsadowych
CN1194070C (zh) * 2003-05-08 2005-03-23 中国石化集团洛阳石油化工工程公司 石油常减压蒸馏工艺
EP1707259B1 (de) 2005-04-01 2018-06-06 Casale Sa Verfahren zur heterogenen Synthese von chemischen Komponenten
DE102006050717A1 (de) * 2005-10-24 2007-04-26 Chemetall Gmbh Verfahren zur Herstellung funktionalisierter Fünfringheterocyclen und deren Verwendung
WO2007048799A1 (de) 2005-10-24 2007-05-03 Chemetall Gmbh Verfahren zur herstellung funktionalisierter fünfringheterocyclen und deren verwendung
WO2008080360A1 (en) * 2006-12-29 2008-07-10 Accelergy Shanghai R & D Center Co., Ltd. High throughput fischer-tropsch catalytic process development method
US8906334B2 (en) 2007-05-14 2014-12-09 Invista North America S.A R.L. High efficiency reactor and process
BRPI0907815B1 (pt) 2008-02-25 2021-04-06 Haldor Topsoe A/S Reator para a produção de metanol, e método de produzir metanol em um reator
US8168144B2 (en) * 2009-01-15 2012-05-01 Eventix, Inc. System and method for providing an integrated reactor
DE102009032524B3 (de) * 2009-07-10 2011-02-03 Highterm Research Gmbh Reaktor zur Erzeugung eines Produktgases durch allotherme Vergasung von kohlenstoffhaltigen Einsatzstoffen
EP2450100A1 (de) 2010-10-22 2012-05-09 Methanol Casale S.A. Verfahren und Anlage zur Herstellung von Methanol mit isothermalen Katalysatorbetten
US8984992B2 (en) * 2012-10-25 2015-03-24 Abb Technology Ltd. Socket with nut or bolt holding structure
WO2014116203A1 (en) 2013-01-22 2014-07-31 Thermochem Recovery International, Inc. Integrated two-stage thermochemical heat pipe reactor having a partitioned vessel
EP3113881A4 (de) * 2013-03-15 2018-01-10 Seerstone LLC Zusammensetzungen aus material mit nanokatalysatorstrukturen, systeme mit nanokatalysatorstrukturen und zugehörige verfahren
DE102015202680A1 (de) 2015-02-13 2016-08-18 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Durchführung einer chemischen Synthese und Synthesereaktor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000656A1 (en) * 1980-08-21 1982-03-04 Wuerfel H Coal hydrogenation process
GB2249547A (en) * 1990-10-29 1992-05-13 Shell Int Research Process for the production of methanol
WO1997041953A1 (en) * 1996-05-03 1997-11-13 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek (Tno) Reactor for carrying out gas phase/liquid phase/solid phase reactions and a method for carrying out such reactions using said reactor
US20070021514A1 (en) * 2005-07-20 2007-01-25 Lattner James R Process for producing methanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562003B2 (en) 2015-02-13 2020-02-18 Siemens Aktiengesellschaft Chemical synthesis and synthesis reactors
WO2020157042A1 (de) * 2019-01-30 2020-08-06 Siemens Aktiengesellschaft Reaktorkaskade und verfahren zum betreiben einer reaktorkaskade
EP4059596A1 (de) 2021-03-16 2022-09-21 Paul Scherrer Institut Verfahren zur methanolherstellung aus co2 mit wasserentfernung
WO2022194579A1 (en) 2021-03-16 2022-09-22 Paul Scherrer Institut Process for methanol production from co2 and/or its derivates with water removal

Also Published As

Publication number Publication date
AU2016218191B2 (en) 2018-04-19
CL2017002036A1 (es) 2018-02-09
AU2016218191A1 (en) 2017-08-24
CN107249728A (zh) 2017-10-13
US10562003B2 (en) 2020-02-18
EP3233271A1 (de) 2017-10-25
DE102015202680A1 (de) 2016-08-18
US20180028996A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
DE60025124T2 (de) Methode und Vorrichtung zur Wasserstoffherstellung mittels Reformierung
WO2016128187A1 (de) Verfahren zur durchführung einer chemischen synthese und synthesereaktor
EP1773483B1 (de) Verfahren zur durchführung heterogen katalytischer exothermer gasphasenreaktionen
EP1140349A1 (de) Reaktor zur kontinuierlichen durchführung von gas-flüssig-, flüssig-flüssig- oder gas-flüssig-fest-reaktionen
DE3019625A1 (de) Verfahren und reaktor zur durchfuehrung exothermer bzw. endothermer katalytischer reaktionen in der gasphase unter hohem druck
WO2016128188A1 (de) Verfahren zur durchführung einer chemischen synthese
DE69111820T2 (de) Ammoniaksynthese mit hohem umwandlungsgrad.
EP3802748A1 (de) Verfahren, rohrbündelreaktor und reaktorsystem zur durchführung katalytischer gasphasenreaktionen
EP1461139A1 (de) Verfahren zur reinigung von offgasen einer melaminanlage
EP2872443B1 (de) Vorrichtung und verfahren zur herstellung von phosgen
WO2019233674A1 (de) Verfahren und reaktorsystem zur durchführung katalytischer gasphasenreaktionen
DE69010716T2 (de) Verfahren und Reaktor für die exotherme heterogene Synthese mit Hilfe verschiedener katalytischer Betten und mit Wärmeaustausch.
DE3420579A1 (de) Hochleistungs-methanierungsvorrichtung
EP4065514A1 (de) Verfahren und anlage zur herstellung von ammoniak
DE19833644C2 (de) Reaktoreinheit in einem System zur Erzeugung eines wasserstoffreichen Gases aus einem flüssigen Rohkraftstoff
DE102016107124A1 (de) NH3 Synthesekonfiguration für Großanlagen
EP3802410B1 (de) Verfahren und vorrichtung zur durchführung einer wassergas-shift-reaktion
EP3894062A1 (de) Reaktorkaskade und verfahren zum betreiben einer reaktorkaskade
BE1030481B1 (de) Ammoniakkonverter für schwankenden Teillastbetrieb
DE2339759A1 (de) Verfahren zur herstellung eines wasserstoffreichen gases
EP4327930A1 (de) Multistufenreaktor zum durchführen exothermer gleichgewichtsreaktionen
DE102022204104A1 (de) Ammoniakkonverter für schwankenden Teillastbetrieb
EP4286357A1 (de) Verfahren und anlage zur herstellung von methanol
EP3808724A1 (de) Verfahren zum herstellen von methanol mittels mehrstufiger synthese
WO2023209003A1 (de) Ammoniakkonverter für schwankenden teillastbetrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16702887

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016702887

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016218191

Country of ref document: AU

Date of ref document: 20160120

Kind code of ref document: A