WO2016127779A1 - 一种探测器智能控制系统、控制方法及pet设备 - Google Patents

一种探测器智能控制系统、控制方法及pet设备 Download PDF

Info

Publication number
WO2016127779A1
WO2016127779A1 PCT/CN2016/071804 CN2016071804W WO2016127779A1 WO 2016127779 A1 WO2016127779 A1 WO 2016127779A1 CN 2016071804 W CN2016071804 W CN 2016071804W WO 2016127779 A1 WO2016127779 A1 WO 2016127779A1
Authority
WO
WIPO (PCT)
Prior art keywords
control module
detector
data transmission
data
interface
Prior art date
Application number
PCT/CN2016/071804
Other languages
English (en)
French (fr)
Inventor
张博
Original Assignee
武汉数字派特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉数字派特科技有限公司 filed Critical 武汉数字派特科技有限公司
Priority to FIEP16748580.4T priority Critical patent/FI3258337T3/fi
Priority to US15/550,378 priority patent/US10845830B2/en
Priority to BR112017017433-2A priority patent/BR112017017433B1/pt
Priority to EP16748580.4A priority patent/EP3258337B1/en
Priority to JP2017560854A priority patent/JP2018510439A/ja
Publication of WO2016127779A1 publication Critical patent/WO2016127779A1/zh
Priority to HK18105265.7A priority patent/HK1245911A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D22/00Control of humidity
    • G05D22/02Control of humidity characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1136Canbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15057FPGA field programmable gate array

Definitions

  • the present invention relates to the field of data processing technologies, and in particular, to a data acquisition and control device for a PET (Positron Emission Computed Tomography) device.
  • PET Pulsitron Emission Computed Tomography
  • Nuclear detectors are becoming more and more common in the daily application of people's death, and they have achieved rapid development in the fields of inspection and quarantine, health and environmental protection, and medical treatment.
  • nuclear detector can detect qualitative or quantitative ionizing various types of ionizing radiation, such as X-ray of level gauge, ⁇ , ⁇ -ray of water quality detection and monitoring, and X-ray of medical CT. , gamma rays of PET, X, ⁇ , neutron and other rays monitored by the background of environmental radiation.
  • the digitization and modularization of nuclear detectors is currently the most mainstream development trend. Through the energy conversion of a certain radiation detection module to the rays, the high-energy rays are gradually converted into quantifiable.
  • the digital signal is the common development trend of nuclear detectors, and is limited by different application fields. Instrument developers need to build data acquisition systems and control systems around modular detectors.
  • OSPREY a universal digital control module multi-channel analyzer for different types of detectors: OSPREY. Based on DSP technology, OSPREY can be adapted to NaI detectors, LaBr3 detectors or high-purity germanium detectors, and provides the positive and negative high voltage options required by the detector.
  • the multichannel analyzer integrates the energy spectrum analysis and automatic gain adjustment. Such functions are the most mature and widely used controllers for nuclear detectors in the field of energy spectrum measurement.
  • Japan Hamamatsu Corporation is a leading component and dedicated module for nuclear detectors.
  • Hamamatsu solidifies the parameters into specific modules by testing the performance of the detectors, and develops independent power modules and application modules.
  • M9001-03 is based on PCI count module card and C499-01 high voltage module.
  • Hamamatsu completes the configuration, control and application of any nuclear detector by combining various components.
  • SensL of Ireland introduced HRM-TDC for its nuclear detectors consisting of silicon photomultipliers (SiPMs) for multi-channel data processing of detectors, and internally containing TDCs to complete nuclear detector-related time measurements and time-of-flight Application, the TDC has been able to achieve 27 ps time accuracy measurements.
  • SiPMs silicon photomultipliers
  • Nuclear instruments such as energy spectrometers and ⁇ measuring instruments from the domestic Hubei North Environmental Protection Technology Co., Ltd. have always occupied a leading market share in China.
  • the company's integrated controller FYFS-2002F features nuclear detector high-voltage supply, calibration, energy spectrum statistics, data pre-processing, etc., and can be paired with multiple nuclear detector models.
  • the company is developing the next generation of FPGA-based super
  • the multi-channel nuclear detector controller hopes to complete the access of multiple detectors through a common platform. At present, the integrated control of the access of the 8-channel-10 detector has been realized on the ⁇ counter.
  • the object of the present invention is to provide a detector intelligent control module and a control method, which independently package the detectors, so that the control network of the detectors and the data are modularized, and a unified interface is provided externally, and the information of the detectors can be comprehensively Master, ensure the normal working state of the detector, and configure the parameters of the detector according to the adaptability of the application and process the data.
  • the basic detector unit can be applied to various fields.
  • the solution of the present invention is:
  • a detector intelligent control system includes an external control module for communication connection and at least one set of data transmission and control modules respectively in communication with the external control module;
  • the external control module is respectively communicably connected to each of the data transmission and control modules for sending a control message of the detector, the data transmission and control module, receiving and processing the feedback message of the two, and the data Detector raw data or preprocessed data sent by the transmission and control module;
  • Each of the data transmission and control modules includes a processing unit, a data preprocessing unit, and at least one set of first type interfaces, at least one set of second type interfaces, fifth type interfaces, and sixth type interfaces;
  • the fifth type interface and the external control module are communicatively coupled to transmit a control message and a feedback message of the probe and the data transmission and control module;
  • the processing unit is configured to receive, parse, process, and forward the control message of the detector and the data transmission and control module;
  • At least one set of the first type interface and the plurality of sets of detectors are respectively connected to the transmission of the control message and the feedback message for the detector;
  • At least one set of the second type interface and the plurality of sets of detectors are respectively connected for transmission of the original data of the detector;
  • the data pre-processing unit is configured to collect, receive, and forward the original data of the detector, or the data pre-processing unit is configured to collect, receive, and pre-process the original data of the detector and forward the pre-processed data of the detector;
  • a sixth type of interface and the external control module are communicatively coupled for transmission of detector raw data or detector preprocessed data.
  • the detector intelligent control system further includes at least one set of detectors and/or a data transmission and control module operating state monitoring and control module and/or an external working environment monitoring module, the data transmission and control module being configured with at least one set of the third class
  • the third type interface is a reserved control interface, and each group of data transmission and control modules is communicably connected to a group of the working condition monitoring and control module and/or an external working environment monitoring module via the third type interface.
  • the working condition monitoring and control module is a combination of one or more of a fan monitoring and control module and a power monitoring and control module: a power supply of the power monitoring and control module at one end and the detector and/or the data transmission and control module The other end of the communication connection, the power monitoring and control module is connected to the data transmission and control module via one of the third type interfaces for accepting the intelligent control system
  • the driver dynamically configures the output of the power supply, wherein the power supply output includes voltage, current, and power output.
  • One end of the fan monitoring and control module is communicatively coupled to a plurality of fans, and the other end of the fan monitoring and control module is coupled to the data transmission and control module via one of the third type interfaces for accepting the intelligent control
  • the drive of the system dynamically adjusts the speed of the fan
  • the external working environment monitoring module is one or more combinations of a working temperature monitoring module and an environmental humidity monitoring module: one end of the working temperature monitoring module is in communication with a temperature sensing unit, and the other end is connected to a third through
  • the class interface is connected to the data transmission and control module to monitor the working temperature information of the detector and/or the data transmission and control module in real time;
  • the environmental humidity monitoring module is connected with a humidity sensing unit at one end, and another One end is coupled to the data transmission and control module via one of the third type of interfaces to monitor humidity information of the detector and/or the working environment of the data transmission and control module in real time.
  • the number of the first type of interfaces and the second type of interfaces corresponds to the number of the plurality of detectors, and each of the detectors transmits the data through a set of first type interfaces, a set of second type interfaces, respectively.
  • control module communication connection
  • the data transmission and control module further includes an ID confirming unit, and the ID confirming unit is communicably connected to the external control module via the fifth type interface for notifying and confirming the data transmission and control module.
  • ID identity a code that specifies the ID of the data transmission and control module.
  • the preprocessing step of the data processing unit is performed between acquisition and forwarding, including one or more combinations of filtering, filtering, algorithm implementation, marking, packetizing, grouping, caching, and packetizing data operations.
  • the processing unit is a first controller for parameter configuration and firmware upgrade
  • the data pre-processing unit is a second controller for multi-channel detector data interaction
  • the set of fifth-type interfaces at least one The first type of interface is disposed on the first controller
  • the set of sixth type interfaces and at least one set of second type interfaces are disposed on the second controller
  • the third type of interface is disposed in the On the first controller or the second controller.
  • the first controller and/or the second controller are provided with a seventh type interface, and the seventh type interface is a peripheral expansion interface to connect the peripheral control unit for the first controller and/or the Second controller RAM and FLASH extension;
  • a fourth type interface is provided between the first controller and the second controller for data interaction between the two controllers;
  • the first controller and the second controller are an MCU (Micro Control Unit), a DSP (digital signal processing), and a CPLD (Complex Programmable Logic Device). Logic device), FPGA (Field-Programmable Gate Array).
  • MCU Micro Control Unit
  • DSP digital signal processing
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the second controller is an FPGA
  • the first controller is communicably connected to the FPGA via a fourth type interface
  • the fourth type interface includes a J401 interface and a J402 interface
  • the J401 interface is used for the Transmission of firmware configuration data between the first controller and the FPGA
  • the J402 interface is used for transmission of service data between the first controller and the FPGA;
  • the J401 interface is a PS mode configuration interface
  • the J402 interface is a short-distance data transmission interface
  • the short-distance data transmission interface is an RS232 interface, a SPI (Serial Peripheral Interface), and an I2C ( Inter-Integrated Circuit), GPIO (General Purpose Input Output), FSMC (Flexible Static Memory Controller), EPI (Embedded Panel Interface), LOCAL BUS (partial) Any of the buses;
  • the first controller is an MCU.
  • the first type interface, the second type interface, the third type interface, the fifth type interface and the sixth type interface are RS232 interface, RS485 interface, Ethernet interface, CAN interface, optical interface, SPI, I2C, GPIO, FSMC Any of them;
  • the external control module includes at least one group of device access units that control the display unit and the control display unit are communicatively coupled;
  • the control display unit includes a performance and environmental parameter configuration section, detector and/or data for message storage and delivery, detector and/or data transmission and control modules for detector and data transmission and control module control a performance and operational status parameter configuration section of the transmission and control module, and a data processing unit for processing, analyzing, and storing the detector raw data or preprocessed data;
  • the message storage and delivery part is communicably connected to the fifth type interface of each set of data transmission and control modules via the device access unit for parameter query and configuration of the detector, the detector and the data.
  • the performance and environmental parameter configuration unit is communicatively coupled to the fifth type of interface of each of the sets of data transmission and control modules via the device access unit to dynamically configure the detector and/or data transmission and Control module operating parameters;
  • the performance and operational status parameter configuration unit is communicatively coupled to the fifth type of interface of each of the sets of data transmission and control modules via the device access unit for dynamically configuring the detector and/or data transmission and control module Working parameters, and working parameters of the working condition monitoring module;
  • the data processing unit is communicatively coupled to the sixth type of interface of each of the data transmission and control modules for post-processing of the multi-path detector raw data/pre-processed data, including data storage, calculation, processing, Forwarding, image reconstruction, etc.
  • control display unit and the device access unit are connected via an all-IP communication;
  • control display unit is connected to the device access unit and the device access unit via an all-IP communication, and the device access unit communicates with the data transmission and control module via a CAN bus. connection.
  • the control display unit includes a third controller and a fourth controller that are independently disposed, and the third controller includes a message storage and delivery unit, a performance and environment parameter configuration unit, and a performance and working state parameter configuration unit.
  • the fourth controller includes the data processing unit.
  • a method for controlling a detector intelligent control system includes the following steps:
  • the external control module determines to receive the start command, drives the data transmission and control module to perform initialization and self-test, and the data of the multi-path detector is collected by the data processing unit. After processing, the data processing unit is forwarded to the external control module via the sixth type interface;
  • the initialization and self-test steps of the step (1) are as follows: after the data transmission and control module is powered on:
  • the processing unit autonomously configures the data transmission and control module clock and peripherals
  • the processing unit configures and detects the detector operating voltage to cause the detector to be successfully powered up, and the processing unit configures the initial operating parameters of the detector to cause the detector to start operating and transmit data;
  • the data of the multi-path detector is processed by the data processing unit that is pre-processed by the data processing unit and then transmitted to the external control module through the sixth-type interface.
  • the external control module monitors and judges the control command input by the operator in real time:
  • control command is a query for specifying the probe parameter
  • the external control module sends the query command to the data transmission and control module via the fifth type interface
  • the data transmission and control module Receiving, after processing the query instruction, querying parameter information of the specified detector via a first type interface that is in communication with the designated detector, and feeding back to the external control module for display and processing;
  • the external control module will specify the parameter information of the probe And transmitting, by the fifth type interface, to the data transmission and control module, the data transmission and control module downloading the parameter information and sending the parameter information to a first type interface that is in communication with a specified detector to The detector, the detector configuring the parameter information;
  • the external control module packages the firmware upgrade program of the specified probe to the data transmission and control module via the fifth type interface.
  • the data transmission and control module configures the firmware upgrade program into the designated detector via the first type of interface communicatively coupled to the designated detector;
  • control command is a firmware upgrade command of the data transmission and control module
  • the external control module packages the firmware upgrade program of the data transmission and control module to the data through the fifth type interface.
  • a transmission and control module wherein the data transmission and control module downloads and configures the data transmission and control module firmware upgrade program.
  • the external control module sends a firmware upgrade instruction and a program of the data transmission and control module via the fifth type interface: (2-4-1) if the external control module When the control command is a firmware upgrade command of the first controller, the first controller firmware upgrade program and the message of the command are sent to the first controller for processing via the fifth type interface, and the first controller receives After analyzing the message, downloading and configuring the firmware upgrade program of the first controller; (2-4-2) if the external control module determines that the control command is a firmware upgrade command of the second controller, And sending, by the first controller, the second controller a firmware upgrade program is sent to the second controller for configuration via the J401 interface;
  • step (2-4), (2-4-1′) if the external control module determines that the control instruction is a firmware upgrade instruction of the first controller, then the first controller firmware upgrade program is passed through The fifth type of interface is sent to the first controller for processing, the first controller downloads and configures a firmware upgrade procedure of the first controller; (2-4-2') if the external control module Determining that the control command is a firmware upgrade command of the second controller, the second controller firmware upgrade program is sent to the second controller for processing via the sixth type interface, and the second control downloads and configures the second Controller firmware upgrade procedure;
  • the control method of the intelligent control system further includes the step (3), the monitoring and processing steps of the detector and/or the data transmission and control module: the data transmission and control module receives the real-time via the third type interface After the working state monitoring module transmits the detector and/or the data transmission and control module operating state real-time parameter data, the fifth type interface is reported to the external control module for performance and working state parameter configuration unit processing,
  • the performance and operating state parameter configuration section processes the performance parameters or performance and operating state parameter configurations of the detector and/or data transmission and control module based on the performance and parameter model of the detector and/or data transmission and control module.
  • the detector operating state monitoring module dynamically adjusts the operating parameters of the monitored device to enable the detector and/or the data transmission and control module to be in an optimal working state.
  • the control method of the intelligent control system further includes a step (4), a working environment state monitoring and processing step of the detector and/or the data transmission and control module: the data transmission and control module receives the real-time via the third type interface The real-time parameter data of the working environment monitoring module and the data transmission and control module working environment are reported to the performance and environment parameter configuration part of the external control module via the fifth type interface, The performance and environmental parameter configuration portion processes the performance parameters of the detector and/or data transmission and control module based on the performance and environmental parameter models of the detector and/or data transmission and control module to cause the detector and/or Or the data transmission and control module is in optimal working condition.
  • the invention also discloses a PET device, comprising a detector, a detector intelligent control system, a calibration system and a bed control system.
  • An auxiliary system such as a power distribution system, a power distribution system, a calibration system, a bed control system, and a power distribution system are respectively communicably connected to the external control module to receive the driving of the external control module, and each set of data transmission and control modules respectively
  • a plurality of detectors are communicatively coupled via the first type of interface and the second type of interface for control of the detector and acquisition and transmission of detector raw data.
  • Programmable and customizable algorithm center as a data preprocessing platform.
  • Traditional nuclear detector controllers basically only have data transmission function or fixed data processing mode. For example, in PET detectors, only data can be sent or energy window and time window can be filtered.
  • the control module performs multi-channel energy spectrum analysis.
  • the detector intelligent control system shown in the present invention can provide various algorithms to the user according to the needs of the user, and also provides a platform for user-defined algorithms. All data processing is based on the second controller such as the FPGA platform to achieve real-time or Control the effect of the delay.
  • Optimum configuration of detectors real-time monitoring of detectors, optimization of detector performance.
  • Traditional detector controllers are fixed configuration parameters, including voltage, gain, and threshold.
  • the nuclear detector intelligent control module can count the working condition of the detector, and the optimal working state of the detector is obtained through big data analysis, so that the optimal configuration file is recommended to configure the detector, and at the same time, the real-time monitoring of the detector is performed.
  • the environmental parameters according to the model of performance and environmental parameters and the performance and working parameter model, dynamically change the configuration parameters of the detector and the intelligent control system, so that the detector and the intelligent control system are always in an optimal working state.
  • the control module of the traditional detector and the detector are one-to-one correspondence, the fixed operation mode, the curing process flow, and offline management.
  • the detector intelligent control system shown in the present invention constructs an All-IP management architecture by combining CAN bus and Ethernet, so that all detectors become online independent units through intelligent modules.
  • the user can access, control, and interact with the detector intelligent module through the centralized control center; collect and collect detector status information; statistical analysis of local data; download and update firmware to complete the function and process change of the detector to cope with different application scenarios.
  • FIG. 1 is a schematic diagram of the overall connection of a first embodiment of a detector intelligent control system according to the present invention
  • Figure 2 is a schematic structural view of the embodiment shown in Figure 1;
  • FIG. 3 is a schematic diagram of a communication connection relationship of the embodiment shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a second embodiment of a detector intelligent control system according to the present invention.
  • FIG. 5 is a schematic diagram of a communication connection relationship of the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic diagram of a communication connection relationship of the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic diagram showing the working flow of a detector intelligent control system according to the present invention.
  • a detector intelligent control system disclosed by the present invention includes an external control module 110, at least one set of data transmission and control modules 120, a working condition monitoring module 130, and an external Work environment monitoring module 140.
  • the external control module 110 is configured to send the control message of the probe 150, the data transmission and control module 120, receive and process the probe raw data/preprocessed data and feedback information sent by the data transmission and control module 120, including control Display unit 111 and A device access unit 112 that is communicatively coupled to the control display unit 111.
  • control display unit 111 is an integrated structure, including a message storage and delivery unit 113, a performance and environment parameter configuration unit 114, a performance and operation status parameter configuration unit 115, and a data processing unit 116.
  • the delivery unit 113 is configured to control the upgrade and parameter configuration of the probe 150, the data transmission and control module 120, the performance and environment parameter configuration unit 114, and the performance and operation status parameter configuration unit 115 for dynamically configuring the detector 150 and data transmission and
  • the control module 120, the data processing unit 116 is configured to process the probe raw data or the pre-processed data sent by the data transmission and control module 120, including data storage, calculation, processing, forwarding, image reconstruction and the like.
  • the device access unit 112 and the control display unit 111 are connected based on an IP network, and the device access unit 112 and the data transmission and control module 120 are communicably connected via an IP or CAN bus for each group of data transmission and control modules 120 and The forwarding, buffering, and conversion of messages between the display units 111 are controlled.
  • each device in the intelligent control system of the detector can be connected based on IP or CAN communication.
  • IP and CAN communication are the standard components of the operating system.
  • the layers are distinct and the external interface is stable and clear, so the whole system is processing data and High reliability, low cost and versatility in transmission.
  • the system is highly scalable, and new data transmission and control modules can be added as needed to achieve new detector access and control without changing the overall framework.
  • Each set of data transmission and control module 120 has a plurality of detectors mounted thereon, including a processing unit 128, a data preprocessing unit 129, an ID validation unit 124, at least one set of first type interfaces 121, and at least one set of second type interfaces 122. At least one set of the third type interface 123, the set of the fifth type interface 125, and the set of the sixth type interface 126 are used to divide the transmission and control of the data into two independent paths.
  • the first type interface 121, the second type interface 122, the third type interface 123, the fifth type interface 125, and the sixth type interface 126 can be an RS232 interface, an RS485 interface, an Ethernet interface, a CAN interface, a fiber interface, an SPI, an I2C.
  • the fifth type interface 125 and the sixth type interface 126 are connected to the external control module 110 via IP or CAN communication, so it is an Ethernet interface or a CAN interface. .
  • Data control at least one set of the first type interface 121 and the plurality of sets of detectors 150 respectively connect the control packets and the feedback packets for the plurality of detectors 150 that are connected to the data transmission and control module 120.
  • the five types of interfaces 125 and the external control module 110 are communicatively coupled for the transmission of control messages and feedback messages of the plurality of transport detectors 150 and the set of data transmission and control modules 120.
  • the fifth type interface 125 is communicatively coupled to the message storage and delivery unit 113 via the device access unit 112 for parameter query and configuration of the probe 150, and the detector 150 and the data transmission and control module 120.
  • Firmware upgrade firmware upgrade.
  • the number of the first type of interfaces 121 is set corresponding to the number of the plurality of detectors 150 that are connected to the group data transmission and control module 120. Each of the detectors 150 communicates with the data transmission and control module via a set of first type interfaces 121, respectively. 120 connections.
  • the fifth type interface 125 is an Ethernet interface, and the processing unit 128 is configured to parse and process the detector 150 and the data transmission and control module control message transmitted via the fifth type interface 125, and simultaneously feed back the detector 150 and the data transmission and control module. Information.
  • At least one set of the second type interface 122 and the plurality of sets of detectors 150 are respectively connected for the original data transmission of the detector 150, and the sixth type interface 126 and the external control module 110 are communicably connected for the original data/preview of the detector 150.
  • the number of the second type of interfaces 122 corresponds to the number of the plurality of detectors 150, and each of the detectors 150 is communicatively coupled to the data transmission and control module 120 via a set of second type interfaces 122, respectively.
  • the data pre-processing unit 129 is configured to receive, collect, and forward the original data of the probe 150 or to receive, collect, and pre-process the original data of the probe 150 and forward the probe pre-processed data.
  • the pre-processing step of the data processing unit 129 is collected. Execution with forwarding, including filtering, filtering, algorithm implementation, marking, packet, grouping, caching, and number of packets According to one or more combinations of operations.
  • the sixth type of interface 126 is an Ethernet interface, and the sixth type of interface 126 of each set of data transmission and control modules is in direct communication with the data processing unit 116 for processing of raw data or pre-processed data of the multi-way detector 150.
  • the ID confirmation unit 124 is connected to the external control module 110 via the fifth type interface 125 for notifying and confirming the ID information of the external data transmission and control module 120 of the external control module 110. Since the external control module 110 is connected with many groups of data transmissions. With the control module, the ID confirmation unit 124 is built in each group of data transmission and control modules to avoid the occurrence of mis-information of information.
  • At least one set of the third type interface 123 is a reserved control interface for access and processing of the working condition monitoring module 130 and the external working environment monitoring module 140.
  • the working condition monitoring module 130 is configured to monitor the working state parameters of the detector 150, the data transmission and control module 120, and send the working state parameters of the two to the data transmission and control module 120, and the fifth type interface of the data transmission and control module 120.
  • the device access unit 112 is communicatively coupled to the performance and operational status parameter configuration portion 115 for dynamically configuring the operational parameters of the detector 150, the data transmission and control module 120, or the driving operational status monitoring module 130 to dynamically adjust the operation of its monitoring device.
  • the state is such that the detector 150 and the data transmission and control module 120 are in an optimal operating state. In this embodiment, it includes one or more combinations of the fan monitoring and control module 131 and the power monitoring and control module 132.
  • One end of the fan monitoring and control module 131 is communicably connected to a plurality of fans, and the other end of the fan monitoring and control module 131 is connected to the data transmission and control module (processing unit 128) via one of the third type interfaces for receiving the intelligent control system.
  • the drive dynamically adjusts the rotational speed of the plurality of fans to adjust the operating temperature of the detector 150, the data transmission and control module 120.
  • the intelligent control system that is, the performance and operation state parameter configuration section 115 determines that the operating temperature of the probe 150 is too high
  • the transmission command controls the fan rotation speed to increase, and when the performance and operation state parameter configuration section 115 determines that the operating temperature of the probe 150 is low.
  • the transmission command controls the fan speed reduction. If the data transmission and control module 120 is sufficiently powerful, the detector 150 performance and operation status parameter configuration unit 115 can also be disposed in the data transmission and control module 120.
  • One end of the power monitoring and control module 132 is connected to the power of the detector 150 and the data transmission and control module 120, and the other end of the power monitoring and control module 132 is connected to the data transmission and control module 120 via a third type of interface (processing unit 128).
  • processing unit 1228 Connected for receiving the output of the intelligent control system to dynamically configure the output of the power supply, wherein the output of the power supply includes the output of voltage, current, and power, and the intelligent control system, ie, the performance and operating state parameter configuration section 115, finally accepts via the fifth type of interface.
  • the real-time working voltage, the current, and the power output of the detector 150 and the data transmission and control module 120 sent by the power monitoring and control module 132.
  • the performance and working state parameter configuration unit 115 sends a control.
  • the command to the power monitoring and control module 132 after the power monitoring and control module 132 parses the command, adjusts the output of the detector 150, the data transmission and control module 120 power, so that the operation of the detector 150, the data transmission and control module 120 is in a normal state.
  • the external working environment monitoring module 140 is configured to monitor the external working environment parameters of the detector 150, the data transmission and control module 120 in real time, and send the real-time working environment parameters to the data transmission and control module 120 via the third type interface (processing unit 128).
  • the fifth type of interface of the data transmission and control module 120 is communicatively coupled to the performance and operational status parameter configuration portion 115 via the device access unit 112 to alert the operator to an abnormal condition of the environmental parameter, such that the detector 150 and/or The data transmission and control module 120 is always in an optimal working condition.
  • the external working environment monitoring module 140 includes one or more combinations of the working temperature monitoring module 141 and the ambient humidity monitoring module 142.
  • One end of the working temperature monitoring module 141 is communicably connected with a temperature sensing unit for receiving temperature data sent by the temperature sensing unit.
  • the other end of the temperature monitoring module 141 is connected to the data transmission and control module 120 via one of the third type interfaces to monitor the working environment temperature information of the detector 150 and the data transmission and control module 120 in real time via the data transmission control module.
  • the processing is sent to the performance and working state parameter configuration unit 115.
  • the temperature sensing unit is a sensor; the environmental humidity monitoring module 142 is connected to the humidity sensing unit at one end, and the other end is connected to the data transmission and control module via a third type interface 123.
  • 120 is connected to monitor the working humidity information of the detector 150, the data transmission and control module 120 in real time.
  • the detector intelligent control system shown in the first embodiment can provide power configuration, power management, working state monitoring and reporting, parameter configuration, and performance correction for the normal operation of the detector 150 and the data transmission and control module 120. Comprehensive monitoring of the detector 150.
  • the control method of the detector intelligent control system shown in the first embodiment, as shown in FIG. 6, includes the following steps:
  • Initialization and self-test After the message storage and delivery unit 113 of the external control module 110 determines that the start command is received, the drive data transmission and control module 120 performs initialization and self-test to determine that the initialization is successful, and the data pre-processing unit starts.
  • the raw data sent by the multi-path detector 150 is collected through the second type of interface, and after the raw data of the detector 150 is preprocessed, the data processing unit is sent to the data processing unit of the external control module 110 via the sixth type interface to perform image reconstruction;
  • step (1) After the data transmission and control module 120 is powered on:
  • the processing unit 128 configures the data transmission and control module clock and peripherals autonomously;
  • the data pre-processing unit 129 loads the data pre-processing program for data acquisition of the subsequent multi-path detector 150;
  • the data processing unit 128 begins to configure and detect the detector 150 operating voltage to cause the detector 150 to successfully power up, and then the processing unit 128 continues to configure the initial operation of the detector 150.
  • the parameters are such that the detector 150 starts working and sends data;
  • the data of the multi-path detector 150 is processed by the data processing unit after the pre-processing by the data processing unit and is transmitted to the external control module 110 through the sixth-type interface.
  • the external control module 110 monitors and judges the control command input by the operator in real time, and adjusts the detector 150 or the data transmission and control module 120 in time.
  • the message storage and delivery unit 113 of the external control module 110 sends the query command to the data transmission and control module 120 via the fifth type interface 125 (
  • the processing unit 128) after receiving the query command, the data transmission and control module (processing unit 128) queries the parameter information of the specified detector 150 via the first type interface 121 communicatively coupled to the designated detector 150 and feeds back to the external control module 110 for display, deal with;
  • the external control module 110 (the message storage and delivery unit 113) sends the parameter information of the specified probe 150 to the data via the fifth type interface.
  • the transmission and control module (processing unit 128), the data transmission and control module downloads the parameter information and transmits the parameter information to the detector 150 via a first type of interface communicatively coupled to the designated detector 150, the detector 150 configuring the parameter information;
  • the external control module 110 (message storage and delivery unit 113) packs the firmware upgrade program of the designated probe 150 via the fifth type interface. Sending to the data transmission and control module, the data transmission and control module configures the firmware upgrade program into the designated detector 150 via the first type of interface communicatively coupled to the designated detector 150;
  • the external control module 110 (message storage and The sending part 113) packages the firmware update program of the control instruction and the data transmission and control module through the fifth type interface to the data transmission and control module, and the data transmission and control module downloads and configures the data transmission and control module firmware upgrade program. .
  • the data transmission and control module receives the real-time parameter data of the working state of the detector 150 and the data transmission and control module 120 transmitted by the working state monitoring module in real time via the third type interface, and then passes through the fifth category.
  • the interface is reported to the performance and operating state parameter configuration unit 115 of the external control module 110.
  • the performance and operating state parameter configuration unit 115 processes the probe 150 according to the detector performance and parameter model, data transmission and control mode performance and parameter model.
  • the working parameters of the data transmission and control module 120, the performance and working state parameter configuration unit 115 drives the working state monitoring module 130 to dynamically adjust the operating parameters of the monitored device, so that the detector 150 and the data transmission and control module 120 are optimally operated.
  • the state in which the performance and parameter models are obtained via multiple simulation experiments is pre-stored in the external control module 110.
  • the data transmission and control module receives the real-time parameter data of the working environment of the detector 150 and the data transmission and control module 120 transmitted by the working environment monitoring module in real time via the third type interface,
  • the five types of interfaces are reported to the performance and environment parameter configuration unit 114 of the external control module 110, and the performance and environment parameter configuration unit 114 processes the operational parameters of the probe 150 and the data transmission and control module 120 dynamically according to the performance and environmental parameter models.
  • the detector 150 is in an optimal working state, wherein the performance and environmental parameter model is obtained through a plurality of simulation experiment statistics, and is pre-stored in the external control module 110.
  • a detector intelligent control system disclosed in the present invention includes an external control module 210 for communication connection, at least one set of data transmission and control modules 220, and a working condition monitoring module. 230 and external working environment monitoring module 240.
  • the external control module 210 is configured to send the control message of the probe 250, the data transmission and control module 220, receive and process the probe raw data/preprocessed data and feedback information sent by the data transmission and control module 220, including control
  • the display unit 211 and the device access unit 212 are connected to the control display unit 211.
  • the control display unit 211 is a split structure, and includes a third controller and a fourth controller, which are separately provided, and a third controller.
  • the message storage and delivery unit 213, the performance and environment parameter configuration unit 214, the performance and operation status parameter configuration unit 215, and the message storage and delivery unit 213 are used to control the upgrade of the probe 250 and the data transmission and control module 220.
  • the parameter configuration, performance and environment parameter configuration section 214 and the performance and operation state parameter configuration section 215 are configured to dynamically configure the probe 250 and the data transmission and control module 220, and the fourth controller includes a data processing section 216 for processing data transmission And detector data sent by the control module 220.
  • the control display unit 211 can also be an integral arrangement as shown in the first embodiment.
  • the third controller and the fourth controller are connected to the device access unit 212 via an IP communication, and the device access unit 212 is connected to the data transmission and control module 220 via an IP or CAN bus.
  • Each module can be based on IP. Or CAN communication connection, IP and CAN communication as the standard components of the operating system, the hierarchy is clear, the external interface is stable and clear, so the whole system is highly reliable, low cost and versatile in data processing and transmission.
  • the data transfer and control module 220 includes a first controller 228 for parameter configuration and firmware upgrades and a second controller 229 for multi-path probe data interaction, the first controller 228 further including a set of fifth type interfaces 225 At least one set of first type interface 221 and a set of third type interface 223 and an ID confirming unit; the second controller 229 includes a set of sixth type interfaces and at least one set of second type interfaces.
  • the first controller, The second controller is provided with a seventh type of interface 227, and the seventh type of interface 227 is a peripheral expansion interface for connecting the peripheral control unit for expansion of the first controller and/or the second controller RAM and FLASH.
  • the first controller 228 and the second controller 229 are separately provided, and the two can be any one of an MCU, a DSP, a CPLD, and an FPGA, and a fourth type interface 224 for data interaction is also provided between the two.
  • the interface 223 is any one of an RS232 interface, an RS485 interface, an Ethernet interface, a CAN interface, a fiber interface, an SPI, an I2C, a GPIO, and an FSMC.
  • the fifth type interface 225 and the sixth type interface 226 are implemented and externally controlled by the module 210. It is connected via IP or CAN communication, so it is an Ethernet interface or a CAN interface.
  • the first controller 228 is configured to parse and process the detector 250 transmitted by the fifth type interface 225 and the data transmission and control module 220 to control the message while feeding back the information of the detector 250 and the data transmission and control module 220.
  • the fifth type of interface 225 is communicatively coupled to the message storage and delivery portion 213 via the device access unit 212 for parameter query and configuration of the probe 250, firmware upgrade of the probe 250 and data transfer and control module 220.
  • At least one set of the first type interface 221 and the plurality of sets of the detectors 250 are respectively connected to the detector 250 for controlling message transmission and information feedback.
  • the number of the first type of interfaces 221 corresponds to the number of the plurality of detectors 250.
  • Each detector 250 is coupled to a data transfer and control module communication 220 via a first set of interfaces 221, respectively.
  • the ID validation unit is coupled to the external control module 210 via the fifth type of interface 225 for informing and confirming the ID information of the set of data transmission and control modules 220 of the external control module 210 to avoid mis-routing of the control instructions.
  • At least one set of the third type interface 223 is a reserved control interface for accessing and processing the working condition monitoring module 230 and the external working environment monitoring module 240.
  • the working condition monitoring module 230 is configured to monitor the working state parameters of the detector 250, the data transmission and control module 220, and send the working state parameters of the two to the first controller 228, and the fifth type interface 225 of the first controller 228 is
  • the device access unit 212 and the performance of the third controller are in communication with the operating state parameter configuration unit 215 for dynamically configuring the operating parameters of the detector 250, the data transmission and control module 220, or the driving operating state monitoring module 230 to dynamically adjust
  • the operating state of the monitoring device is such that the detector 250 and the data transmission and control module 220 are in an optimal operating state. In this embodiment, it includes one or more combinations of a fan monitoring and control module 231 and a power monitoring and control module 232.
  • One end of the fan monitoring and control module 231 is connected to the plurality of fans, and the other end of the fan monitoring and control module 231 is connected to the first controller 228 via one of the third type interfaces for receiving the dynamic control system to dynamically adjust the plurality of fans.
  • the rotational speed adjusts the operating temperature of the detector 250, the data transmission and control module 220.
  • the intelligent control system that is, the performance and operating state parameter configuration unit 215 determines that the operating temperature is too high, the transmission command controls the fan speed to increase, and when the performance and operating state parameter setting unit 215 determines that the operating temperature is low, the command is sent to control the fan speed.
  • the first controller 228 is sufficiently powerful, the above-described performance and operating state parameter configuration unit 215 can also be disposed in the first controller 228.
  • One end of the power monitoring and control module 232 is connected to the power of the detector 250 and the data transmission and control module 220, and the other end of the power monitoring and control module 232 is connected to the first controller 228 via one of the third type interfaces for receiving intelligence.
  • the drive of the control system dynamically configures the output of the power supply.
  • the intelligent control system that is, the performance and working state parameter configuration unit 215 finally receives the real-time working voltage of the detector 250, the data transmission and control module 220 sent by the power monitoring and control module 232 via the fifth type interface, and the performance and working state parameter configuration unit.
  • the performance and working state model is set in 215.
  • the performance and working state model are obtained through multiple simulation experiments to determine the working condition of the detector under different voltage levels.
  • the performance and working state parameter configuration unit 215 sends a control command to the power monitoring and control module 232. After the power monitoring and control module 232 parses the command, the output of the detector 250, the data transmission and control module 220 power is adjusted, so that the detector 250, The operating voltage of the data transmission and control module 220 processes the normal state.
  • the external working environment monitoring module 240 is configured to monitor the external working environment parameters of the detector 250, the data transmission and control module 220 in real time, and send the real-time working environment parameters to the first controller 228 via the third type interface 223, the first controller
  • the fifth type interface 225 of the 228 is communicatively coupled to the performance and operating state parameter configuration unit 215 via the device access unit 212 to alert the operator to an abnormal condition of the environmental parameter, such that the detector 250, the data transmission and control module 220 are always In the best working condition.
  • the external working environment monitoring module 240 operates one or more combinations of the temperature monitoring module 241 and the ambient humidity monitoring module 242.
  • the working temperature monitoring module 241 is connected to a temperature sensing unit at one end, and is connected to the first controller 218 via one of the third type interfaces to monitor the operating temperature information of the detector 250 and the data transmission and control module 220 in real time;
  • One end of the humidity monitoring module 242 is connected to the humidity sensing unit, and the other end is connected to the data transmission and control module 220 via one of the third type interfaces 223 to monitor the working humidity information of the detector 250 and the data transmission and control module 220 in real time.
  • the second controller 229 is configured to receive, collect, and collect the original data of the probe or to receive, collect, and preprocess the original data of the detector 250 and forward the preprocessed data of the detector 250.
  • the preprocessing step of the data processing unit 229 is in the collection and Execution between forwarding, including one or more combinations of filtering, filtering, algorithm implementation, marking, encapsulation, grouping, caching, and packetizing data operations.
  • At least one set of second type interface 222 and sets of detectors 250 are respectively coupled for detector 250 raw data transmission, and sixth type interface 226 and external control module 210 are communicatively coupled for detector 250 raw data/preprocessed data transmission.
  • the number of the second type of interfaces 222 is corresponding to the number of the plurality of detectors 250, and each of the detectors 250 is communicably connected to the data transmission and control module 220 via a set of second type interfaces 222.
  • the first controller 228 is an MCU
  • the second controller is an FPGA
  • the fifth type interface 225 and the sixth type interface 226 are CAN interfaces
  • the third controller is a server
  • the detector intelligent control system shown in the present invention is Further explanation.
  • the MCU and the FPGA are connected by a fourth type of interface, and the fourth type of interface includes a J401 interface and a J402 interface, wherein the J401 interface is a PS mode configuration interface, and the J401 interface is used for transmission of firmware configuration data between the MCU and the FPGA, and the J402 interface It is a short-distance data transmission interface of RS232 interface, SPI, I2C, GPIO, FSMC, EPI, LOCAL BUS, and J402 interface is used for transmission of service data between MCU and FPGA.
  • the first controller 228 is an MCU, it is based on the ARM+Linux platform, and the hardware architecture includes the ARM external plug-in SRAM of the Cortex M4 core to form a minimum system, and the software system adopts the SafeRTOS real-time operating system.
  • the specific functions include firmware programming, online upgrade, configuration, monitoring of data traffic, configuration of detector operating parameters, operation status monitoring, data storage and analysis of sensing units, and network of interface units.
  • the port, the CAN bus, and the USB interface perform communication control, interact with the detector for control commands and sensing information, and interact with the third controller to control commands and data.
  • Under the ARM hardware architecture it provides a unified platform based on SafeRTOS and Linux system, and provides users with SDK and API.
  • the detector function can be configured according to actual needs.
  • the data acquisition and processing center based on FPGA, SRAM, DDR, and PHY is used to collect and preprocess the data of the detector according to requirements, including screening, filtering, algorithm implementation, marking, and packaging.
  • a series of data operations such as grouping, caching, and sending packets.
  • the data preprocessing system adopts FPGA as the core, and implements different data acquisition processes, different data processing mechanisms and different data output formats within the FPGA according to user application requirements.
  • FPGA mainly implements the processing and forwarding of the UDP packet output by the detector. It is loaded by the external MCU, and the configuration file of the FPGA is stored in the FLASH. When the system is powered on, the MCU reads the configuration data from the FLASH to add the FPGA. Loaded.
  • the interface between the FPGA and the external PHY chip is RGMII, and a multi-port MAC is implemented internally.
  • the Ethernet UDP data packet is parsed at the MAC layer, and the UDP packet is compressed according to a certain algorithm to reduce the traffic of the system exit and The computing pressure of the backend server. Because the system needs to combine multiple data into one output, the FPGA needs to set the appropriate cache to ensure that the data is not lost and the system performance is optimized.
  • the system exit data can be forwarded by means of multiple polling data polling or other multi-input and outputting in one way. Considering the calculation speed of the test results in the later stage, the FPGA is externally connected with a DDR, which is convenient to expand into the cache of the algorithm implemented in the FPGA.
  • the system also provides a JTAG interface for FPGA online debugging, LED test lights, power control pins and so on.
  • the server determines the working mode, parameters and firmware of each detector and the working parameters of the device access unit 212 according to the usage scenario of the client; the server communicates the configuration parameters of each detector 250 and the firmware of the device access unit 212 through Ethernet.
  • the device access unit 212 stores all the configurations and firmware delivered by the server in the local file system; all the data transmission and control modules 220 communicate with the device access unit 212 through the CAN bus.
  • the device access unit 212 converts the CAN communication into an Ethernet network, and the server acquires the working mode and parameters of each detector through an Ethernet ⁇ CAN bus to determine whether the detector needs to be upgraded; if an upgrade is required, each will be upgraded.
  • the working mode, parameters and firmware of the detector are sent to the detector module to be upgraded via Ethernet ⁇ CAN bus; after the completion of the delivery, the control unit of each detector completes its own upgrade to complete the detector array firmware. Updates to achieve different detection capabilities.
  • the control method of the detector intelligent control system shown in the above embodiment, as shown in FIG. 6, includes the following steps:
  • step (1) After the data transmission and control module 220 is powered on:
  • the first controller 228 autonomously configures the data transmission and control module clock and peripherals
  • the second controller 229 loads the data pre-processing program for data acquisition of the subsequent multi-path detector 250;
  • the first controller 228 starts to configure and detects the operating voltage of the detector 250 to cause the detector 250 to be successfully powered up, and then the first controller 228 continues to configure its up and down
  • the initial operating parameters of each detector 250 are such that each detector 250 starts to work and transmits data; the initial parameter of the above detector is the operation of the statistical detector, and the optimal working state of the detector is obtained through big data analysis. parameter.
  • the data of the multi-path detector 250 is pre-processed via the second controller 229 and then transmitted to the fourth controller through the sixth-type interface 226 to continue the subsequent processing.
  • the intelligent control system of the detector shown in the invention can realize the online upgrade of the detector according to the needs of the user, and independently change the firmware to realize different according to different applications.
  • the detection method and the parameter configuration and performance correction of the detector are realized to realize the comprehensive monitoring of the detector.
  • the user inputs the control command to the third controller according to the specific needs.
  • the detector intelligent control system constructs the All-IP management architecture through the CAN bus and the Ethernet, so that all the detectors become online independent units through the intelligent module. Users can access, control, and interact with the detector intelligent module through the centralized control center; collect and collect detector status information; statistical analysis of local data; download and update firmware to complete the function and process change of the detector to change independently according to the application. Firmware to achieve different detection methods, deal with different Application scenario.
  • the message storage and delivery unit 213 sends the query command to the first controller 228 via the fifth type interface 225, first After receiving the query command, the controller 228 queries the parameter information of the specified detector 250 via the first type interface 221 that is in communication with the designated detector 250 and feeds back to the third controller for display and processing;
  • the message storage and delivery unit 213 issues the parameter information of the designated probe 250 to the number via the fifth type interface 225.
  • the message storage and delivery unit 213 packages the firmware upgrade program of the designated probe 250 via the fifth type interface 225.
  • the data transfer and control module configures the firmware upgrade program into the designated detector 250 via the first type of interface 221 communicatively coupled to the designated detector 250;
  • the message storage and delivery unit 113 passes the control command and the firmware upgrade program of the data transmission and control module through the fifth category.
  • the interface is packaged and sent to the data transmission and control module, and the data transmission and control module downloads and configures the data transmission and control module firmware upgrade program.
  • step (2-4) the external control module 210 sends the firmware upgrade command and the program of the data transmission and control module via the fifth type interface: (2-4-1) if the message storage and delivery unit 213 determines that the control command is
  • the firmware upgrade command of the first controller 228 sends the message of the first controller 228 firmware upgrade program and the command to the first controller 228 via the fifth type interface 225, and the first controller 228 receives and analyzes the message.
  • the firmware upgrade program of the first controller 228 is downloaded and configured; (2-4-2) if the external control module 210 determines that the control command is the second controller 229, that is, the firmware upgrade command of the FPGA, the second controller 229 The firmware upgrade program and the message of the instruction are sent to the first controller 228 via the fifth type interface 225. After the first controller 228 receives and parses the message, the firmware update program of the second controller 229 is downloaded and configured via the J401 interface. To the second controller 229;
  • the upgrade of the second controller 229 can also be completed by the following steps: (2-4-2') if the external control module 210 determines that the control command is the second
  • the firmware upgrade command of the controller 229 sends the message of the second controller 229 firmware upgrade program and the command to the second controller 229 via the sixth type interface 226, and the second controller 229 receives and analyzes the message. Download and configure the firmware upgrade program of the second controller 229.
  • the conventional detector controllers are fixed configuration parameters, including voltage, gain, threshold, etc.
  • the detector intelligent control system shown in the present invention configures the detector according to the optimal configuration file except in step (1).
  • the working state of the detector 250, the data transmission and control module 220 is also monitored in real time, and then the configuration parameters of the detector 250, the data transmission and control module 220 are dynamically changed according to the model of performance and operating parameters, so that The detector and system are always in optimal working order.
  • the data transmission and control module receives the real-time parameter data of the working state of the detector 150 and the data transmission and control module 120 transmitted by the working state monitoring module in real time via the third type interface, and then passes through the fifth category.
  • the interface is reported to the performance and operation state parameter configuration section 215 of the external control module 210, and the performance and operational state parameter configuration section 215 processes the probe 150 according to the probe performance and parameter model, the data transmission and the control mode performance and the parameter model.
  • the working parameters of the data transmission and control module 120, the performance and working state parameter configuration unit 215 drives the working state monitoring module 130 to dynamically adjust the operating parameters of the monitored device, so that the detector 250, the data transmission and control module 220 are in optimal operation. status.
  • the configuration parameters of the detector 250 and the data transmission and control module 220 are dynamically changed according to the model of performance and environmental parameters, so that the detector and the system are always in an optimal working state.
  • the working environment state monitoring and processing steps of the detector 250 and the data transmission and control module 220 the first processing 228 of the data transmission and control module 220 receives the detector 250 transmitted by the working environment monitoring module 240 via the third type interface in real time.
  • the real-time parameter data of the working environment of the data transmission and control module 220 is reported to the performance and environment parameter configuration unit 214 of the third control via the fifth type interface 225, and the performance and environment parameter configuration unit 214 processes the data according to the detector and the data transmission.
  • control module performance and environmental parameter models to dynamically configure the operating parameters of the detector, data transmission and control module to optimize the detector and / or data transmission and control module.
  • the present invention discloses a PET apparatus including a detector, an auxiliary system, and a detector intelligent control system.
  • the auxiliary system is communicably connected with an external control module to receive driving of an external control module, including a calibration system and bed control.
  • auxiliary systems such as a calibration system, a bed control system, a power distribution system, and a data transmission system are respectively connected to an external control module via an Ethernet interface to perform respective operations as needed.
  • Control all detectors on the PET device are connected to the data transmission and control module. Specifically, each group of data transmission and control modules is connected to a certain number of detectors via a first type of interface for communication on the PET device.
  • the control of the detector is connected to a plurality of detectors via a second type of interface for the acquisition and transmission of the original data of the detector on the PET device.
  • the PET apparatus will be described below with the PET device including the detector intelligent control system shown in the second embodiment.
  • the external control module cooperates with the calibration system to first perform calibration of the overall device, including calibration of the detector sensitivity calibration, detector time resolution, etc., which can be performed once a month. Then power on the data transmission and initialization steps of the control module to prepare for subsequent data acquisition and transmission. Finally, the external control module and the bed control system cooperate to send the person to be tested to the designated position, and then the subsequent PET scanning work can be performed.
  • the data transmission and control module includes a first controller 228 and a second controller 229.
  • the first controller 228 is based on the ARM+Linux platform, and the hardware architecture includes an ARM external SRAM of the Cortex M4 core to form a minimum system for controlling multiple channels.
  • Programmable voltage module combined with voltage, circuit, temperature and humidity sensor, software system uses SafeRTOS real-time operating system, provides API interface for users, completes the following three main tasks: 1 provides basic requirements for normal operation of detector 250: multi-channel power supply Configuration, detector 250 parameter configuration; 2 provides detector 250 effective work guarantee: real-time monitoring; 3 provides a stable working basis: the best performance correction of the detector 250 using the monitoring information and the known detector performance model.
  • the second controller 229 adopts an FPGA as a core, and implements different data acquisition processes, different data processing mechanisms and different data output formats within the FPGA according to user application requirements.
  • a dry mega network interface is used to ensure sufficient data channels. It mainly includes three parts: algorithm platform, data processing flow and data output structure.
  • 1 algorithm platform According to the user's application, it provides algorithm package in fixed mode and provides custom algorithm function. Position, time, and energy information can be calculated in the PET field, and energy window settings can be realized.
  • 2 data processing flow according to user needs, provide specific data processing procedures, such as energy calculation in the PET field, energy window screening, fixed size group packet transmission.
  • 3 data output structure according to user needs, provide custom data format packets, tags and data output. It can realize standard format data packets such as standard TCP, UDP, CAN bus and various custom format data packets.
  • the first controller 228 and the second controller 229 cooperate to implement dynamic firmware maintenance.
  • Custom probe firmware dynamic dimension The protection is used to realize the online upgrade of the detector.
  • the firmware is changed autonomously to realize different detection methods.
  • it mainly includes: 1 CAN bus control of control information: all the data transmission and control devices of the multi-node detector network are mounted on the CAN bus as independent units, which facilitates the one-to-one control of the array detectors and detector groups.
  • the control information can be transmitted bidirectionally between the external control device and the data transmission and control device, and the firmware of the detector is written into the process control module according to a fixed protocol, thereby changing the programs of the ARM and the FPGA.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Small-Scale Networks (AREA)
  • Nuclear Medicine (AREA)
  • Selective Calling Equipment (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Fodder In General (AREA)

Abstract

一种探测器智能控制系统,包括外部控制模块(110)和至少一组数据传输及控制模块(120),外部控制模块(110)用于控制报文下发、反馈消息处理;与外部控制模块(110)连接用于报文传输的第五类接口(125);处理单元(128);与探测器(150)分别连接、传输探测器(150)控制报文的至少一组第一类接口(121);与探测器(150)分别连接、传输探测器(150)原始数据的至少一组第二类接口(122);采集并转发探测器(150)原始数据或预处理数据的数据预处理单元(129);与外部控制模块(110)相连、传输探测器(150)原始数据/预处理数据的第六类接口(126)。探测器智能控制系统可形成对探测器(150)进行动态配置、智能监控、电源管理、数据处理、对外交互、固件升级的智能化控制平台。

Description

一种探测器智能控制系统、控制方法及PET设备 技术领域
本发明涉及数据处理技术领域,尤其涉及一种PET(Positron Emission Computed Tomography,正电子发射计算机断层扫描)设备的数据采集控制设备。
背景技术
核探测器在关系民生的日常应用中越来越普遍,在检验检疫、卫生环保、医疗领域更是获得了快速的发展。核探测器作为射线探测的基本单元,能对日常应用到的各类电离射线进行定性或定量的探测,例如料位计的X射线,水质检测与监测的α、β射线,医用CT的X射线,PET的γ射线,环境辐射本底监测的X、γ,中子等射线。
核探测器的数字化和模块化是当前最主流的发展趋势,通过某一射线探测模块对射线有效的能量转化,将高能的射线通过逐步转化为可量化。可数字化的电信号是目前核探测器的共同发展趋势,而受限于不同的应用领域,仪器开发商需要围绕模块化的探测器搭建数据采集系统和控制系统。
国外的堪培拉(Canberra)公司在核探测器领域有广阔的产品线,并针对不同型号的探测器研发可通用的数字化控制模块多道分析仪:OSPREY。OSPREY基于DSP技术,能适配NaI探测器、LaBr3探测器或高纯锗探测器,并能提供探测器所需的正负高压选择,该多道分析仪集成固化了能谱分析、自动增益调节等功能,是目前核探测器的控制器在能谱测量领域最成熟和广泛的应用。
日本滨松公司主导核探测器的关键部件和专用模块。在特定的探测器上,滨松通过对探测器性能的测试,将参数固化到特定模块中,研发独立的电源模块和应用模块,例如在核探测器的计数领域,目前最新研发M9001-03基于PCI的计数模块卡和C499-01的高压模块。滨松通过希望通过各个部件的组合完成对任意核探测器的配置、控制和应用。
爱尔兰SensL公司针对其硅光电倍增器(SiPM)构成的核探测器,推出HRM-TDC,用于对探测器的多通道数据处理,并且内部含有TDC能完成核探测器相关时间测量、飞行时间的应用,该TDC已经能达到27ps时间精度的测量。
国内的湖北方圆环保科技有限公司的能谱仪、αβ测量仪等核仪器一直在国内占有领先市场份额。该公司推出的集成控制器FYFS-2002F具备核探测器的高压供给、校正、能量谱统计、数据预处理等功能,同时能配对多种核探测器型号,该公司正研发下一代基于FPGA的超多通道核探测器控制器,希望通过通用平台完成多个探测器的接入,目前在αβ计数器上已经实现了8通道-10探测器的接入综合控制。
但是目前无论是医学用辐射探测器还是环境监护、检测、监测用核探测器,都是通过探测器与控制模块的混合设计,将专用电子电路和嵌入式软件系统融合一体完成探测器的供给和功能,目前的探测器 对下列问题无法提供成套的解决方案:
(1)探测器的电源无法通过智能配置供给,无法实施监护。
(2)探测器的数据输出一直都是被动传输,而没有主动控制。
(3)探测器无法动态升级。
(4)阵列化探测器的管理和维护困难:阵列化探测器的星状网络全局时钟在实际应用中面临数据线繁杂,数据布线要求精度高等困难。
发明内容
本发明的目的在于提供一种探测器智能控制模块及控制方法,将探测器独立包装起来,使得探测器的控制网络化、数据模块化,对外提供统一接口,能对探测器的信息进行全面的掌握,保证探测器的正常工作状态,同时能根据应用适应性来配置探测器的参数并进行数据处理,通过在线改变固件就可以让基本探测器单元能适用各种不同的领域的应用。
为达到上述目的,本发明的解决方案是:
一种探测器智能控制系统,包括通信连接的外部控制模块以及与所述外部控制模块分别通信连接的至少一组数据传输及控制模块;
所述外部控制模块与所述每组数据传输及控制模块分别通信连接以用于下发探测器、数据传输及控制模块的控制报文、接收并处理二者的反馈报文以及经由所述数据传输及控制模块发送的探测器原始数据或预处理数据;
所述每组数据传输及控制模块包括处理单元、数据预处理单元,以及至少一组第一类接口、至少一组第二类接口、第五类接口、第六类接口;
所述第五类接口和所述外部控制模块通信连接用于传输探测器和所述数据传输及控制模块的控制报文和反馈报文;
所述处理单元用于接收、解析、处理、转发所述探测器及数据传输及控制模块的控制报文;
至少一组第一类接口和多组探测器分别连接用于探测器的控制报文和反馈报文的传输;
至少一组第二类接口和多组探测器分别连接用于探测器原始数据的传输;
所述数据预处理单元用于采集、接收、转发所述探测器原始数据,或所述数据预处理单元用于采集、接收、预处理所述探测器原始数据并转发探测器预处理数据;
第六类接口和所述外部控制模块通信连接用于探测器原始数据或探测器预处理数据的传输。
探测器智能控制系统还包括至少一组探测器和/或数据传输及控制模块的工作状态监测与控制模块和/或外部工作环境监测模块,所述数据传输及控制模块设置至少一组第三类接口,所述第三类接口为预留控制接口,每组数据传输及控制模块经由所述第三类接口与一组所述工作状态监测与控制模块和/或外部工作环境监测模块通信连接。
所述工作状态监测与控制模块为风扇监测与控制模块、电源监测与控制模块中的一种或多种组合:所述电源监测与控制模块一端与探测器和/或数据传输及控制模块的电源通信连接、所述电源监测与控制模块的另一端经由其中一第三类接口与所述数据传输及控制模块相连以用于接受所述智能控制系统 的驱动动态配置所述电源的输出,其中电源输出包括电压、电流以及功率的输出。;所述风扇监测与控制模块一端与多个风扇通信连接,所述风扇监测与控制模块的另一端经由其中一第三类接口与所述数据传输及控制模块相连以用于接受所述智能控制系统的驱动动态调整所述风扇的转速;
所述外部工作环境监测模块为工作温度监测模块、环境湿度监测模块中的一种或多种组合:所述工作温度监测模块一端与一温度传感单元通信连接、另一端与经由其中一第三类接口与所述数据传输及控制模块相连以实时监测所述探测器和/或所述数据传输及控制模块的工作温度信息;所述环境湿度监测模块一端与一湿度传感单元通信连接、另一端与经由其中一第三类接口与所述数据传输及控制模块相连以实时监测所述探测器和/或所述数据传输及控制模块的工作环境的湿度信息。
所述第一类接口以及第二类接口的数量对应所述多个探测器的数量设置,所述每一个探测器分别经由一组第一类接口、一组第二类接口与所述数据传输及控制模块通信连接;
优选的,所述数据传输及控制模块还包括ID确认单元,所述ID确认单元经由所述第五类接口与所述外部控制模块通信连接以用于告知并确认所述数据传输及控制模块的ID身份;
优选的,所述数据处理单元的预处理步骤在采集与转发之间执行,包括筛选、过滤、算法实现、标记、封包、组包、缓存、发包数据操作的一种或者多种组合。
所述处理单元为用于参数配置和固件升级的第一控制器,所述数据预处理单元为用于多路探测器数据交互的第二控制器,所述一组第五类接口、至少一组第一类接口设置于所述第一控制器上,所述一组第六类接口以及至少一组第二类接口设置于所述第二控制器上,所述第三类接口设置于所述第一控制器或所述第二控制器上。
所述第一控制器和/或所述第二控制器设有一第七类接口,所述第七类接口为外设扩展接口以连接外设控制单元用于第一控制器和/或所述第二控制器RAM以及FLASH的扩展;
优选的,所述第一控制器与所述第二控制器之间设有用于二者之间数据交互第四类接口;
优选的,所述第一控制器和所述第二控制器为MCU(Micro Control Unit,微控制单元)、DSP(digital signal processing,数字信号处理器)、CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)、FPGA(Field-Programmable GateArray,即现场可编程门阵列)中的任意一种。
所述第二控制器为FPGA,所述第一控制器与所述FPGA之间经由第四类接口通信连接,所述第四类接口包括J401接口与J402接口,所述J401接口用于所述第一控制器与所述FPGA之间固件配置数据的传输,所述J402接口用于所述第一控制器与所述FPGA之间业务数据的传输;
优选的,所述J401接口为PS模式配置接口,所述J402接口为短距数据传输接口,所述短距数据传输接口为RS232接口、SPI(Serial Peripheral Interface,串行外设接口)、I2C(Inter-Integrated Circuit)、GPIO(General Purpose Input Output、通用输入/输出)、FSMC(Flexible Static Memory Controller,可变静态存储控制器)、EPI(Embedded Panel Interface、嵌入式面板接口)、LOCAL BUS(局部总线)中的任意一种;
优选的,所述第一控制器为MCU。
所述第一类接口、第二类接口、第三类接口、第五类接口以及第六类接口为RS232接口、RS485接口、以太网接口、CAN接口、光纤接口、SPI、I2C、GPIO、FSMC中的任意一种;
所述外部控制模块包括控制显示单元、和所述控制显示单元通信连接的至少一组设备接入单元;
所述控制显示单元包括用于探测器和数据传输及控制模块控制的报文存储与下发部、探测器和/或数据传输及控制模块的性能与环境参数配置部、探测器和/或数据传输及控制模块的性能与工作状态参数配置部,以及用于处理、分析、存储所述探测器原始数据或预处理数据的数据处理部;
所述报文存储与下发部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以用于探测器的参数查询与配置、所述探测器与数据传输及控制模块的固件升级;
所述性能与环境参数配置部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以将所述用于动态配置所述探测器和/或数据传输及控制模块的工作参数;
所述性能与工作状态参数配置部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以用于动态配置所述探测器和/或数据传输及控制模块的工作参数、以及所述工作状态监测模块的工作参数;
所述数据处理部与所述每组数据传输及控制模块的第六类接口通信连接以用于所述多路探测器原始数据/预处理数据的后期数据处理,包括数据存储、计算、处理、转发、图像重建等。
所述控制显示单元与所述设备接入单元之间,所述设备接入单元之间、所述设备接入单元与所述数据传输及控制模块之间经由全IP通信连接;
或所述控制显示单元与所述设备接入单元之间、所述设备接入单元之间经由全IP通信连接,所述设备接入单元与所述数据传输及控制模块之间经由CAN总线通信连接。
所述控制显示单元包括独立设置的第三控制器与第四控制器,所述第三控制器包括报文存储与下发部、性能与环境参数配置部、性能与工作状态参数配置部,所述第四控制器包括所述数据处理部。
一种探测器智能控制系统的控制方法,包括以下步骤:
(1)初始化及自检,所述外部控制模块判断收到开始指令后,驱动所述数据传输及控制模块进行初始化及自检,所述多路探测器的数据经由所述数据处理单元采集预处理后经由所述第六类接口转发送至所述外部控制模块的数据处理部;
所述步骤(1)的初始化及自检步骤如下:数据传输及控制模块上电后:
(1-1)处理单元自主配置所述数据传输及控制模块时钟与外设;
(1-2)数据预处理单元加载数据处理程序;
(1-3))处理单元配置并检测所述探测器工作电压以使得所述探测器成功上电,处理单元配置所述探测器的初始工作参数以为使得探测器开始工作并发送数据;
(1-4)所述多路探测器的数据经由所述数据处理单元采集预处理后通过所述第六类接口转发送至所述外部控制模块的数据处理部处理。
(2)所述外部控制模块实时监测并判断操作人员输入的控制指令:
(2-1)若判断控制指令为指定探测器参数的查询,则所述外部控制模块将查询指令经由所述第五类接口发送至所述数据传输及控制模块,所述数据传输及控制模块接受处理所述查询指令后经由与指定探测器通信连接的第一类接口查询指定探测器的参数信息并反馈至所述外部控制模块显示、处理;
(2-2)若判断控制指令为指定探测器参数的配置,则所述外部控制模块将指定探测器的参数信息 经由所述第五类接口下发至所述数据传输及控制模块,所述数据传输及控制模块下载所述参数信息并经由与指定探测器通信连接的第一类接口将所述参数信息发送至所述探测器,所述探测器配置所述参数信息;
(2-3)若判断控制指令为指定探测器的固件升级指令,则所述外部控制模块将指定探测器的固件升级程序经由所述第五类接口打包下发至所述数据传输及控制模块,所述数据传输及控制模块经由所述与指定探测器通信连接的第一类接口将所述固件升级程序配置至指定探测器中;
(2-4)若判断控制指令为数据传输及控制模块的固件升级指令,则所述外部控制模块将数据传输及控制模块的固件升级程序经所述第五类接口打包下发至所述数据传输及控制模块,所述数据传输及控制模块下载并配置所述的数据传输及控制模块固件升级程序。
所述步骤(2-4)中,所述外部控制模块经由所述第五类接口发送所述数据传输及控制模块的固件升级指令及程序:(2-4-1)若所述外部控制模块判断控制指令为第一控制器的固件升级指令,则将第一控制器固件升级程序及指令的报文经由第五类接口下发至所述第一控制器处理,所述第一控制器接收并分析所述报文后,下载并配置所述第一控制器的固件升级程序;(2-4-2)若所述外部控制模块判断控制指令为第二控制器的固件升级指令,则将第二控制器固件升级程序及指令的报文经由第五类接口下发至所述第一控制器,所述第一控制器接收并解析所述报文后,下载所述第二控制器的固件升级程序并经由所述J401接口发送至所述第二控制器中进行配置;
或,所述步骤(2-4)中,(2-4-1′)若所述外部控制模块判断控制指令为第一控制器的固件升级指令,则将第一控制器固件升级程序经由所述第五类接口下发至所述第一控制器处理,所述第一控制器下载并配置所述第一控制器的固件升级程序;(2-4-2′)若所述外部控制模块判断控制指令为第二控制器的固件升级指令,则将第二控制器固件升级程序经由第六类接口下发至所述第二控制器处理,所述第二控制下载并配置所述第二控制器的固件升级程序;
所述智能控制系统的控制方法还包括步骤(3),探测器和/或数据传输及控制模块的工作状态监测与处理步骤:所述数据传输及控制模块实时经由所述第三类接口接收所述工作状态监测模块传输的探测器和/或数据传输及控制模块的工作状态实时参数数据后,经由所述第五类接口上报至所述外部控制模块的性能与工作状态参数配置部处理,所述性能与工作状态参数配置部处理根据探测器和/或数据传输及控制模块的性能与参数模型以动态配置所述探测器和/或数据传输及控制模块的工作参数或性能与工作状态参数配置部驱动所述探测器工作状态监测模块动态调整被监测设备的工作参数,以使所述探测器和/或数据传输及控制模块处于最佳工作状态。
所述智能控制系统的控制方法还包括步骤(4),探测器和/或数据传输及控制模块的工作环境状态监测与处理步骤:所述数据传输及控制模块实时经由所述第三类接口接收所述工作环境监测模块传输的探测器和/或数据传输及控制模块工作环境的实时参数数据后,经由所述第五类接口上报至所述外部控制模块的性能与环境参数配置部,所述性能与环境参数配置部处理根据探测器和/或数据传输及控制模块的性能与环境参数模型以动态配置所述探测器和/或数据传输及控制模块的工作参数以使所述探测器和/或数据传输及控制模块处于最佳工作状态。
本发明还公开了一种PET设备,包括探测器、探测器智能控制系统、以及校准系统、床位控制系 统、配电系统等辅助系统,校准系统、床位控制系统以及配电系统分别与所述外部控制模块通信相连以接受所述外部控制模块的驱动进行工作,所述每组数据传输及控制模块分别经由第一类接口以及第二类接口与多个探测器对应通信连接以用于所述探测器的控制以及探测器原始数据的采集与传输。
由于采用上述方案,本发明的有益效果是:
本发明所示的一种探测器智能控制系统相对于传统专用化控制器而言,具体以下优点:
1、可编程、可定制的算法中心作为数据预处理平台。传统的核探测器控制器都基本只具备数据传输功能或者固定化的数据处理模式,比如在PET探测器中,可以只发送数据或者做能量窗、时间窗的筛选;在能谱仪探测器中,控制模块做多道能谱分析。本发明所示的探测器智能控制系统能根据用户需要,提供各种算法实现给用户,也提供用户自定义算法的平台,所有的数据处理都基于第二控制器如FPGA平台来达到实时或者可控延时的效果。
2、最优配置探测器,实时监控探测器,优化探测器性能。传统的探测器控制器都是固定好的配置参数,包括电压,增益,阈值等。核探测器智能控制模块能统计探测器的工作情况,通过大数据分析得出探测器的最优工作状态,从而建议最优的配置文件来配置探测器,同时,通过实时监测探测器所处的环境参数,根据性能与环境参数的模型以及性能与工作参数模型来动态改变探测器以及智能控制系统的配置参数,让探测器与智能控制系统始终处于最优工作状态。
3、在线管理,在线固件升级维护。传统探测器的控制模块与探测器之间都是一一对应的,固定化的操作方式,固化的处理流程,离线管理。本发明所示的探测器智能控制系统通过结合CAN总线和以太网,构造All-IP的管理架构,让所有探测器都通过智能模块成为在线独立的单元。用户可通过集中控制中心对探测器智能模块进行访问、控制、交互;收集、采集探测器状态信息;局部数据统计分析;下载更新固件来完成探测器的功能、流程改变以应对不同的应用场景。
附图说明
图1为本发明一种探测器智能控制系统第一实施例的整体连接示意图;
图2为图1所示实施例的结构示意图;
图3为图1所示实施例的通信连接关系示意图;
图4为本发明一种探测器智能控制系统第二实施例的结构示意图;
图5为图3所示实施例的通信连接关系示意图;
图6为本发明一种探测器智能控制系统的工作流程示意图。
具体实施方式
以下结合附图所示实施例对本发明作进一步的说明。
第一实施例中,如图1至图3所示,本发明公开的一种探测器智能控制系统包括一外部控制模块110、至少一组数据传输及控制模块120、工作状态监测模块130和外部工作环境监测模块140。
外部控制模块110用于下发探测器150、数据传输及控制模块120的控制报文、接收并处理经由数据传输及控制模块120发送的探测器原始数据/预处理数据及反馈信息,其包括控制显示单元111以及 与控制显示单元111通信连接的设备接入单元112。
本实施例中,控制显示单元111为一体式结构,包括报文存储与下发部113、性能与环境参数配置部114、性能与工作状态参数配置部115以及数据处理部116,报文存储与下发部113用于控制探测器150、数据传输及控制模块120的升级与参数配置、性能与环境参数配置部114与性能与工作状态参数配置部115用于动态配置探测器150和数据传输及控制模块120,数据处理部116用于处理数据传输及控制模块120所发送的探测器原始数据或者预处理数据,包括数据存储、计算、处理、转发、图像重建等操作。设备接入单元112与控制显示单元111基于IP网络通信连接,设备接入单元112与数据传输及控制模块120之间经由IP或CAN总线通信连接,以用于各组数据传输及控制模块120与控制显示单元111之间消息的转发、缓冲和转换。
采用此种通信架构,探测器智能控制系统中各设备均能够基于IP或CAN通信连接,IP与CAN通信作为操作系统的标准组件,层次分明,对外接口稳定明晰,从而整个系统在进行数据处理与传输时可靠性高、成本低廉,通用性强。且系统的可扩展性强,可根据需要,在不改变整体框架的前提下,加入新的数据传输及控制模块,以实现新的探测器的接入与控制。
每组数据传输及控制模块120上下挂了多个探测器,其包括处理单元128、数据预处理单元129、ID确认单元124、至少一组第一类接口121、至少一组第二类接口122、至少一组第三类接口123、一组第五类接口125以及一组第六类接口126,用于将数据的传输与控制分为独立的两路进行。
第一类接口121、第二类接口122、第三类接口123、第五类接口125以及第六类接口126可为RS232接口、RS485接口、以太网接口、CAN接口、光纤接口、SPI、I2C、GPIO、FSMC中的任意一种,本实施例中,第五类接口125以及第六类接口126为实现与外部控制模块110之间经由IP或CAN通信连接,故为以太网接口或CAN接口。
数据的控制:至少一组第一类接口121和多组探测器150分别连接用于该组数据传输及控制模块120上下挂的多个探测器150的控制报文及反馈报文的传输,第五类接口125和外部控制模块110通信连接用于上述多个传输探测器150和该组数据传输及控制模块120的控制报文和反馈报文的传输。本实施例中,第五类接口125经由设备接入单元112与报文存储与下发部113通信连接以用于探测器150的参数查询与配置、探测器150与数据传输及控制模块120的固件升级。第一类接口121的数量对应该组数据传输及控制模块120上下挂的多个探测器150的数量设置,每一个探测器150分别经由一组第一类接口121、与数据传输及控制模块通信120连接。第五类接口125为以太网接口,处理单元128用于解析、处理经由第五类接口125传输的探测器150及数据传输及控制模块控制报文,同时反馈探测器150以及数据传输及控制模块的信息。
数据的传输,至少一组第二类接口122和多组探测器150分别连接用于探测器150原始数据传输,第六类接口126和外部控制模块110通信连接用于探测器150原始数据/预处理数据传输。本实施例中,第二类接口122的数量对应多个探测器150的数量设置,每一个探测器150分别经由一组第二类接口122与数据传输及控制模块120通信连接。数据预处理单元129用于接收、采集、转发探测器150的原始数据或用于接收、采集、预处理探测器150原始数据并转发探测器预处理数据,数据处理单元129的预处理步骤在采集与转发之间执行,包括筛选、过滤、算法实现、标记、封包、组包、缓存、发包数 据操作的一种或者多种组合。第六类接口126为以太网接口,每组数据传输及控制模块的第六类接口126与数据处理部116直接通信连接以用于多路探测器150的原始数据或预处理数据的处理。
ID确认单元124经由第五类接口125与外部控制模块110相连以用于告知并确认外部控制模块110此组数据传输及控制模块120的ID信息,由于外部控制模块110下挂了很多组数据传输与控制模块,故每组数据传输与控制模块中内置ID确认单元124,以避免信息的错发的情况发生。
至少一组第三类接口123为预留控制接口以用于工作状态监测模块130、外部工作环境监测模块140的接入与处理。
工作状态监测模块130用于监测探测器150、数据传输及控制模块120的工作状态参数并将二者的工作状态参数发送至数据传输及控制模块120,数据传输及控制模块120的第五类接口经由设备接入单元112与性能与工作状态参数配置部115通信连接以用于动态配置探测器150、数据传输及控制模块120的工作参数,或驱动工作状态监测模块130动态调整其监控设备的工作状态,使得探测器150与数据传输及控制模块120处于最佳工作状态。本实施例中,其包括风扇监测与控制模块131、电源监测与控制模块132一种或多种组合。
风扇监测与控制模块131一端与多个风扇通信相连,风扇监测与控制模块131的另一端经由其中一第三类接口与数据传输及控制模块(处理单元128)相连以用于接受智能控制系统的驱动动态调整多个风扇的转速,从而调整探测器150、数据传输及控制模块120的工作温度。当智能控制系统即性能与工作状态参数配置部115判断探测器150的工作温度过高时,则发送指令控制风扇转速提高,当性能与工作状态参数配置部115判断探测器150的工作温度较低时,则发送指令控制风扇转速降低,若数据传输及控制模块120功能足够强大时,上述探测器150性能与工作状态参数配置部115也可设置在数据传输及控制模块120中。
电源监测与控制模块132一端与探测器150、数据传输及控制模块120的电源相连、电源监测与控制模块132的另一端经由其中一第三类接口与数据传输及控制模块120(处理单元128)相连以用于接受智能控制系统的驱动动态配置电源的输出,其中电源的输出包括电压、电流以及功率三者的输出,智能控制系统即性能与工作状态参数配置部115最终经由第五类接口接受电源监测与控制模块132发送的探测器150、数据传输及控制模块120的实时工作电压大小、电流大小以及功率输出,若判断该某一输出处于异常,则性能与工作状态参数配置部115发送控制指令至电源监测与控制模块132,电源监测与控制模块132解析指令后调整探测器150、数据传输及控制模块120电源的输出,使得探测器150、数据传输及控制模块120的工作处于正常状态。
外部工作环境监测模块140用于实时监测探测器150、数据传输及控制模块120的外部工作环境参数,并经由第三类接口将实时工作环境参数发送至数据传输及控制模块120(处理单元128),数据传输及控制模块120的第五类接口经由设备接入单元112与性能与工作状态参数配置部115通信连接以及时或者并提醒操作人员处理环境参数的异常情况,使得探测器150和/或数据传输及控制模块120始终处于最佳工作状态。本实施例中,外部工作环境监测模块140包括工作温度监测模块141、环境湿度监测模块142中的一种或多种组合。
工作温度监测模块141一端与一温度传感单元通信连接用以接受温度传感单元发送的温度数据,工 作温度监测模块141的另一端与经由其中一第三类接口与数据传输及控制模块120通信相连以实时将监测的探测器150、数据传输及控制模块120的工作环境温度信息经由数据传输控制模块发送至性能与工作状态参数配置部115处理,上述温度传感单元为传感器;环境湿度监测模块142一端与湿度传感单元相连、另一端与经由其中一第三类接口123与数据传输及控制模块120相连以实时监测探测器150、数据传输及控制模块120的工作湿度信息。
采用第一实施例所示的探测器智能控制系统,可为探测器150以及述数据传输及控制模块120的正常工作提供电源配置、电源管理、工作状态监控与上报、参数配置、性能校正,实现探测器150的全面监护。
第一实施例所示的探测器智能控制系统的控制方法,如图6所示,包括如下步骤:
(1)初始化及自检,外部控制模块110的报文存储与下发部113判断收到开始指令后,驱动数据传输及控制模块120进行初始化及自检,判断初始化成功,数据预处理单元开始经由第二类接口采集多路探测器150发送的原始数据,对探测器150原始数据预处理之后,数据处理单元经由第六类接口转发送至外部控制模块110的数据处理部进行图像重建;
步骤(1)中初始化及自检步骤具体如下:数据传输及控制模块120上电后:
(1-1)处理单元128自主配置数据传输及控制模块时钟与外设;
(1-2)数据预处理单元129加载数据预处理程序以用于后续的多路探测器150的数据采集;
(1-3))当数据预处理单元129加载完毕后,数据处理单元128开始配置并检测探测器150工作电压以使得探测器150成功上电,然后处理单元128继续配置探测器150的初始工作参数以为使得探测器150开始工作并发送数据;
(1-4)多路探测器150的数据经由数据处理单元采集预处理后通过第六类接口转发送至外部控制模块110的数据处理部处理。
(2)在探测器150数据的采集与传输过程中,外部控制模块110实时监测并判断操作人员输入的控制指令,以及时对探测器150或数据传输与控制模块120进行调整。
(2-1)若判断控制指令为指定探测器150参数的查询,则外部控制模块110的报文存储与下发部113将查询指令经由第五类接口125发送至数据传输及控制模块120(处理单元128),数据传输及控制模块(处理单元128)接受查询指令后经由与指定探测器150通信连接的第一类接口121查询指定探测器150的参数信息并反馈至外部控制模块110显示、处理;
(2-2)若判断控制指令为指定探测器150参数的配置,则外部控制模块110(报文存储与下发部113)将指定探测器150的参数信息经由第五类接口下发至数据传输及控制模块(处理单元128),数据传输及控制模块下载参数信息并经由与指定探测器150通信连接的第一类接口将参数信息发送至探测器150,探测器150配置参数信息;
(2-3)若判断控制指令为指定探测器150的固件升级指令,则外部控制模块110(报文存储与下发部113)将指定探测器150的固件升级程序经由第五类接口打包下发至数据传输及控制模块,数据传输及控制模块经由与指定探测器150通信连接的第一类接口将固件升级程序配置至指定探测器150中;
(2-4)若判断控制指令为数据传输及控制模块的固件升级指令,则外部控制模块110(报文存储与 下发部113)将控制指令及数据传输及控制模块的固件升级程序经第五类接口打包下发至数据传输及控制模块,数据传输及控制模块下载并配置的数据传输及控制模块固件升级程序。
(3)工作状态监测与处理步骤:数据传输及控制模块实时经由第三类接口接收工作状态监测模块传输的探测器150、数据传输与控制模块120的工作状态实时参数数据后,经由第五类接口上报至外部控制模块110的性能与工作状态参数配置部115处理,性能与工作状态参数配置部115处理根据探测器性能与参数模型、数据传输与控制模性能与参数模型以动态配置探测器150、数据传输与控制模块120的工作参数,性能与工作状态参数配置部115驱动工作状态监测模块130动态调整所监控设备的工作参数,以使探测器150、数据传输与控制模块120处于最佳工作状态,其中性能与参数模型是经由多次模拟实验统计获得,预存储在外部控制模块110中。
(4)工作环境状态监测与处理步骤:数据传输及控制模块实时经由第三类接口接收探工作环境监测模块传输的探测器150、数据传输与控制模块120工作环境的实时参数数据后,经由第五类接口上报至外部控制模块110的性能与环境参数配置部114,性能与环境参数配置部114处理根据性能与环境参数模型以动态配置探测器150、数据传输与控制模块120的工作参数以使探测器150处于最佳工作状态,其中性能与环境参数模型是经由多次模拟实验统计获得,预存储在外部控制模块110中。
第二实施例中,如图4和图5所示,本发明公开的一种探测器智能控制系统包括通信连接的一外部控制模块210、至少一组数据传输及控制模块220、工作状态监测模块230和外部工作环境监测模块240。
外部控制模块210用于下发探测器250、数据传输及控制模块220的控制报文、接收并处理经由数据传输及控制模块220发送的探测器原始数据/预处理数据及反馈信息,其包括控制显示单元211以及与控制显示单元211通信连接的设备接入单元212,本实施例中,控制显示单元211为分体式结构,包括单独设置的第三控制器与第四控制器,第三控制器包括报文存储与下发部213、性能与环境参数配置部214、性能与工作状态参数配置部215,报文存储与下发部213用于控制探测器250、数据传输及控制模块220的升级与参数配置、性能与环境参数配置部214与性能与工作状态参数配置部215用于动态配置探测器250和数据传输及控制模块220,第四控制器包括数据处理部216,用于处理数据传输及控制模块220所发送的探测器数据。此外,控制显示单元211也可为第一实施例中所示的一体式设置。
第三控制器与第四控制器与设备接入单元212之间经由IP通信连接,设备接入单元212与数据传输及控制模块220之间经由IP或CAN总线通信连接,各模块均能够基于IP或CAN通信连接,IP与CAN通信作为操作系统的标准组件,层次分明,对外接口稳定明晰,从而整个系统在进行数据处理与传输时可靠性高、成本低廉,通用性强。
数据传输及控制模块220包括用于参数配置和固件升级的第一控制器228以及用于多路探测器数据交互的第二控制器229,第一控制器228进一步包括一组第五类接口225、至少一组第一类接口221以及、一组第三类接口223以及ID确认单元;第二控制器229包括一组第六类接口以及至少一组第二类接口此外,第一控制器、第二控制器设有一第七类接口227,第七类接口227为外设扩展接口以连接外设控制单元用于第一控制器和/或第二控制器RAM以及FLASH的扩展。
第一控制器228与第二控制器229分别独立设置,二者可为MCU、DSP、CPLD、FPGA中的任意一种,且二者之间还设有用于数据交互第四类接口224,第一类接口221、第二类接口222、第三类 接口223为RS232接口、RS485接口、以太网接口、CAN接口、光纤接口、SPI、I2C、GPIO、FSMC中的任意一种,第五类接口225以及第六类接口226为实现与外部控制模块210之间经由IP或CAN通信连接,故为以太网接口或CAN接口。
第一控制器228用于解析、处理经由第五类接口225传输的探测器250及数据传输及控制模块220控制报文,同时反馈探测器250以及数据传输及控制模块220的信息。
第五类接口225经由设备接入单元212与报文存储与下发部213通信连接以用于探测器250的参数查询与配置、探测器250与数据传输及控制模块220的固件升级。
至少一组第一类接口221和多组探测器250分别连接用于探测器250控制报文传输及信息反馈,本实施例中,第一类接口221的数量对应多个探测器250的数量设置,每一个探测器250分别经由一组第一类接口221、与数据传输及控制模块通信220连接。
ID确认单元经由第五类接口225与外部控制模块210相连以用于告知并确认外部控制模块210此组数据传输及控制模块220的ID信息以避免控制指令的错发。
至少一组第三类接口223为预留控制接口以用于工作状态监测模块230、外部工作环境监测模块240的接入与处理。
工作状态监测模块230用于监测探测器250、数据传输及控制模块220的工作状态参数并将二者的工作状态参数发送至第一控制器228,第一控制器228的第五类接口225经由设备接入单元212与第三控制器的性能与工作状态参数配置部215通信连接以用于动态配置探测器250、数据传输及控制模块220的工作参数,或驱动工作状态监测模块230动态调整其监控设备的工作状态,使得探测器250与数据传输及控制模块220处于最佳工作状态。本实施例中,其包括风扇监测与控制模块231、电源监测与控制模块232一种或多种组合。
风扇监测与控制模块231一端与多个风扇相连,风扇监测与控制模块231的另一端经由其中一第三类接口与第一控制器228相连以用于接受智能控制系统的驱动动态调整多个风扇的转速,从而调整探测器250、数据传输及控制模块220的工作温度。当智能控制系统即性能与工作状态参数配置部215判断工作温度过高时,则发送指令控制风扇转速提高,当性能与工作状态参数配置部215判断工作温度较低时,则发送指令控制风扇转速降低,若第一控制器228功能足够强大时,上述性能与工作状态参数配置部215也可设置在第一控制器228中。
电源监测与控制模块232一端与探测器250、数据传输及控制模块220的电源相连、电源监测与控制模块232的另一端经由其中一第三类接口与第一控制器228相连以用于接受智能控制系统的驱动动态配置电源的输出。智能控制系统即性能与工作状态参数配置部215最终经由第五类接口接受电源监测与控制模块232发送的探测器250、数据传输及控制模块220的实时工作电压大小,性能与工作状态参数配置部215中设有性能与工作状态模型,该性能与工作状态模型经由多次模拟实验统计获得,用以确定不同电压大小下探测器的工作情况,若经由性能与工作状态模型判断该工作电压处于异常,则性能与工作状态参数配置部215发送控制指令至电源监测与控制模块232,电源监测与控制模块232解析指令后调整探测器250、数据传输及控制模块220电源的输出,使得探测器250、数据传输及控制模块220的工作电压处理正常状态。
外部工作环境监测模块240用于实时监测探测器250、数据传输及控制模块220的外部工作环境参数,并经由第三类接口223将实时工作环境参数发送至第一控制器228,第一控制器228的第五类接口225经由设备接入单元212与性能与工作状态参数配置部215通信连接以及时或者并提醒操作人员处理环境参数的异常情况,使得探测器250、数据传输及控制模块220始终处于最佳工作状态。本实施例中,外部工作环境监测模块240工作温度监测模块241、环境湿度监测模块242中的一种或多种组合。
工作温度监测模块241一端与一温度传感单元相连、另一端与经由其中一第三类接口与第一控制器218相连以实时监测探测器250、数据传输及控制模块220的工作温度信息;环境湿度监测模块242一端与湿度传感单元相连、另一端与经由其中一第三类接口223与数据传输及控制模块220相连以实时监测探测器250、数据传输及控制模块220的工作湿度信息。
第二控制器229用于接收、采集转发探测器原始数据或者用于接收、采集、预处理探测器250原始数据并转发探测器250的预处理数据,数据处理单元229的预处理步骤在采集与转发之间执行,包括筛选、过滤、算法实现、标记、封包、组包、缓存、发包数据操作的一种或者多种组合。至少一组第二类接口222和多组探测器250分别连接用于探测器250原始数据传输,第六类接口226和外部控制模块210通信连接用于探测器250原始数据/预处理数据传输。本实施例中,第二类接口222的数量对应多个探测器250的数量设置,每一个探测器250分别经由一组第二类接口222与数据传输及控制模块220通信连接。
以下以第一控制器228为MCU,第二控制器为FPGA,第五类接口225以及第六类接口226为CAN接口、第三控制器为服务器、对本发明所示的探测器智能控制系统做进一步的说明。
MCU与FPGA之间经由第四类接口通信连接,第四类接口包括J401接口与J402接口,其中J401接口为PS模式配置接口,J401接口用于MCU与FPGA之间固件配置数据的传输,J402接口为RS232接口、SPI、I2C、GPIO、FSMC、EPI、LOCAL BUS中的任意一种短距数据传输接口,J402接口用于MCU与FPGA之间业务数据的传输。
第一控制器228为MCU时,其基于ARM+Linux平台,硬件架构包括Cortex M4内核的ARM外挂SRAM形成最小系统,软件系统采用SafeRTOS实时操作系统。具体功能的实现包括对FPGA的固件烧写、在线升级、配置、对数据流量的监控;对探测器工作参数的配置,运行状态监控;对传感单元的数据存储与分析;对接口单元的网口、CAN总线、USB接口进行通信控制,与探测器进行控制命令和传感信息交互,与第三控制器进行控制命令与数据交互。在ARM硬件架构下提供统一基于SafeRTOS和Linux系统平台,为用户提供SDK和API,可根据实际需要配置探测器功能。
第二控制器为FPGA时,基于FPGA、SRAM、DDR、PHY的数据采集和处理中心,用于将探测器的数据按照需求进行采集、预处理,包括筛选、过滤、算法实现、标记、封包、组包、缓存、发包等一系列数据操作。
数据预处理系统采用FPGA为核心,根据用户应用需求,在FPGA内部实现不同的数据获取流程,不同的数据处理机制和不同的数据输出格式。在数据输入和数据输出接口方面,采用干兆网络接口保证足够的数据通道。FPGA主要实现探测器输出UDP报文的处理与转发,其通过外部MCU进行加载,FPGA的配置文件存放在FLASH中,系统上电时,由MCU从FLASH中读取配置数据对FPGA进行加 载。FPGA与外部PHY芯片的接口为RGMII,并在内部实现了一个多口MAC,将以太网UDP数据包在MAC层进行解析,同时UDP报文按照一定的算法进行压缩,以减少系统出口的流量和后端服务器的计算压力。由于系统需要将多路数据合并成一路输出,FPGA需要设置适当的缓存,保证各路数据不丢失以及系统性能的最优化。系统出口数据可采取对多路入口数据轮询的方式或者其他的多路输入并成一路输出的方式进行转发。考虑后期提升检测结果的计算速度,FPGA外挂了一个DDR,方便拓展为FPGA内实现算法的缓存。此外,系统还提供了JTAG接口供FPGA在线调试,LED测试灯,电源控制管脚等。
服务器根据客户的使用场景,自主决定各个探测器的工作模式、参数和固件、设备接入单元212的工作参数;服务器将各探测器250的配置参数、设备接入单元212的固件通过以太网通讯下发到设备接入单元212,设备接入单元212将服务器下发的所有配置和固件存储在本地的文件系统中;所有的数据传输与控制模块220通过CAN总线和设备接入单元212通信,由设备接入单元212将CAN通信转化为以太网,服务器通过以太网→CAN总线的方式获取各探测器的工作模式和参数,以决定是否需要对该探测器升级;若需升级,则将各探测器的工作模式、参数和固件通过以太网→CAN总线的方式下发到需升级的探测器模块;待下发完成后各探测器的控制单元完成自身的升级,以此完成探测器阵列固件的更新,实现不同的探测功能。
上述实施例所示的一种探测器智能控制系统的控制方法,如图6所示,包括如下步骤:
(1)初始化及自检,第三控制器判断收到开始指令后,驱动第一控制器228进行初始化及自检,判断初始化成功,第二控制器229开始经由第二类接口采集多路探测器250发送的原始数据,对探测器250原始数据预处理之后,第二控制器229经由第六类接口转发送至第四控制器进行后续处理;
步骤(1)中初始化及自检步骤具体如下:数据传输及控制模块220上电后:
(1-1)第一控制器228自主配置数据传输及控制模块时钟与外设;
(1-2)第二控制器229加载数据预处理程序以用于后续的多路探测器250的数据采集;
(1-3))当第二控制器229加载完毕后,第一控制器228开始配置并检测探测器250工作电压以使得探测器250成功上电,然后第一控制器228继续配置其上下挂的各个探测器250的初始工作参数以为使得各探测器250开始工作并发送数据;上述探测器的初始参数是统计探测器的工作情况,通过大数据分析得出探测器的最优工作状态的工作参数。
(1-4)多路探测器250的数据经由第二控制器229采集预处理后通过第六类接口226转发送至第四控制器继续后续处理。
(2)在探测器250数据的采集与传输过程中,本发明所示的探测器智能控制系统还可根据使用者需求,实现探测器的在线升级,根据应用不同,自主改变固件来实现不同的探测方式以及对实现探测器的参数配置、性能校正,实现探测器的全面监护。
使用人员根据具体需求向第三控制器输入控制指令,探测器智能控制系统通过CAN总线和以太网,构造All-IP的管理架构,让所有探测器都通过智能模块成为在线独立的单元。用户可通过集中控制中心对探测器智能模块进行访问、控制、交互;收集、采集探测器状态信息;局部数据统计分析;下载更新固件来完成探测器的功能、流程改变以根据应用不同,自主改变固件来实现不同的探测方式,应对不同 的应用场景。
(2-1)若第三控制器判断控制指令为指定探测器250参数的查询,则报文存储与下发部213将查询指令经由第五类接口225发送至第一控制器228,第一控制器228接受查询指令后经由与指定探测器250通信连接的第一类接口221查询指定探测器250的参数信息并反馈至第三控制器显示、处理;
(2-2)若第三控制器判断控制指令为指定探测器250参数的配置,则报文存储与下发部213将指定探测器250的参数信息经由第五类接口225下发至数第一控制器228,第一控制器228下载参数信息并经由与指定探测器250通信连接的第一类接口将参数信息发送至探测器250,探测器250配置参数信息;
(2-3)若第三控制器判断控制指令为指定探测器250的固件升级指令,则报文存储与下发部213将指定探测器250的固件升级程序经由第五类接口225打包下发至第一控制器228,数据传输及控制模块经由与指定探测器250通信连接的第一类接口221将固件升级程序配置至指定探测器250中;
(2-4)若第三控制器判断控制指令为数据传输及控制模块的固件升级指令,则报文存储与下发部113将控制指令及数据传输及控制模块的固件升级程序经第五类接口打包下发至数据传输及控制模块,数据传输及控制模块下载并配置的数据传输及控制模块固件升级程序。
步骤(2-4)中,外部控制模块210经由第五类接口发送数据传输及控制模块的固件升级指令及程序:(2-4-1)若报文存储与下发部213判断控制指令为第一控制器228的固件升级指令,则将第一控制器228固件升级程序及指令的报文经由第五类接口225下发至第一控制器228,第一控制器228接收并分析报文后,下载并配置第一控制器228的固件升级程序;(2-4-2)若外部控制模块210判断控制指令为第二控制器229即FPGA的固件升级指令,则将第二控制器229固件升级程序及指令的报文经由第五类接口225下发至第一控制器228,第一控制器228接收并解析报文后,下载第二控制器229的固件升级程序并经由J401接口配置至第二控制器229中;
当第二控制器229为除FPGA之外的其他处理元件时,第二控制器229的升级还可通过以下步骤完成:(2-4-2′)若外部控制模块210判断控制指令为第二控制器229的固件升级指令,则将第二控制器229固件升级程序及指令的报文经由第六类接口226下发至第二控制器229处理,第二控制器229接收并分析报文后,下载并配置第二控制器229的固件升级程序即可。
传统的探测器控制器都是固定好的配置参数,包括电压,增益,阈值等,本发明所示的探测器智能控制系统除在步骤(1)中,根据最优的配置文件来配置探测器外,在使用过程中,还通过实时监测探测器250、数据传输与控制模块220的工作状态,然后根据性能与工作参数的模型来动态改变探测器250、数据传输与控制模块220配置参数,让探测器与系统始终处于最优工作状态。
(3)工作状态监测与处理步骤:数据传输及控制模块实时经由第三类接口接收工作状态监测模块传输的探测器150、数据传输与控制模块120的工作状态实时参数数据后,经由第五类接口上报至外部控制模块210的性能与工作状态参数配置部215处理,性能与工作状态参数配置部215处理根据探测器性能与参数模型、数据传输与控制模性能与参数模型以动态配置探测器150、数据传输与控制模块120的工作参数,性能与工作状态参数配置部215驱动工作状态监测模块130动态调整所监控设备的工作参数,以使探测器250、数据传输与控制模块220处于最佳工作状态。
此外,还通过实时监测探测器、所处的环境参数,根据性能与环境参数的模型来动态改变探测器250、数据传输及控制模块220的配置参数,让探测器与系统始终处于最优工作状态。
(4)探测器250、数据传输及控制模块220的工作环境状态监测与处理步骤:数据传输及控制模块220的第一处理228实时经由第三类接口接收工作环境监测模块240传输的探测器250、数据传输及控制模块220的工作环境的实时参数数据后,经由第五类接口225上报至第三控制的性能与环境参数配置部214,性能与环境参数配置部214处理根据探测器、数据传输及控制模块的性能与环境参数模型以动态配置探测器、数据传输及控制模块的工作参数以使探测器和/或数据传输及控制模块处于最佳工作状态。
第三实施例中,本发明公开了一种PET设备,包括探测器、辅助系统以及探测器智能控制系统,辅助系统与外部控制模块通信连接以接受外部控制模块的驱动,包括校准系统、床位控制系统、配电系统、数据传输系统等,本实施例中,校准系统、床位控制系统、配电系统、数据传输系统等辅助系统分别经由以太网接口与外部控制模块相连以根据需要进行各自工作的控制,PET设备上的所有的探测器与都与数据传输及控制模块通信连接,具体的,每组数据传输及控制模块经由第一类接口与一定数量的探测器对应通信连接用于PET设备上探测器的控制,经由第二类接口与多个探测器对应通信连接用于PET设备上探测器原始数据的采集与传输。
以下以PET设备包括第二实施例中所示的探测器智能控制系统对PET设备进行说明。
一般的,外部控制模块与校准系统配合首先进行整体设备的校准,包括探测器灵敏度校准、探测器时间分辨率等的校准,该步骤可一个月进行一次。然后上电进行数据传输及控制模块的初始化步骤以为后续数据采集传输做好准备,最后通过外部控制模块与床位控制系统配合将待检测人员送入至指定位置,即可进行后续的PET扫描工作。
数据传输及控制模块包括第一控制器228其与第二控制器229,优选的,第一控制器228基于ARM+Linux平台,硬件架构包括Cortex M4内核的ARM外挂SRAM形成最小系统,控制多路可编程电压模块,结合电压、电路、温湿度传感器,软件系统采用SafeRTOS实时操作系统,为用户提供API接口,完成以下三个方面主要工作:①提供探测器250正常工作的基本需求:多路电源配置,探测器250参数配置;②提供探测器250有效工作保障:实时监护;③提供稳定工作基础:利用监护信息和已知探测器性能模型对探测器250进行最佳性能校正。
第二控制器229采用FPGA为核心,根据用户应用需求,在FPGA内部实现不同的数据获取流程,不同的数据处理机制和不同的数据输出格式。在数据输入和数据输出接口方面,采用干兆网络接口保证足够的数据通道。主要包括算法平台、数据处理流程和数据输出结构三部分。①算法平台:根据用户的应用,提供固定模式下的算法包,同时提供自定义算法功能。在PET领域可实现位置、时间、能量信息计算,能实现能量窗的设定等。②数据处理流程:根据用户需求,提供特定数据处理流程,如在PET领域中的能量计算、能量窗筛选,固定大小组包发送等。③数据输出结构:根据用户需求,提供自定义数据格式的封包、标记和数据输出。能实现标准TCP、UDP、CAN总线等标准格式数据包和各种自定义格式的数据包。
同时,第一控制器228、第二控制器229配合实现自定义固件动态维护。自定义探测器固件动态维 护用于实现探测器的在线升级,根据应用不同,自主改变固件来实现不同的探测方式。目前主要包括:①控制信息的CAN总线控制:将所有的多节点探测器网络的数据传输及控制装置作为独立的单元挂载在CAN总线上,方便阵列化探测器和探测器组的逐一控制。通过CAN总线,能将控制信息进行在外部控制设备和数据传输及控制装置之间双向的传递,同时将探测器的固件按照固定的协议写入处理控制模块中,从而改变ARM和FPGA的程序,实现多样化的探测器功能。②探测器阵列的网络化访问:在多个探测器构成阵列时,能通过CAN总线和CAN总线交换机对所有探测器定点进行访问和控制。③固件信息(包括ARM和FPGA)的自动化加载:应用适应性的固件能在线烧写入ARM平台,进而ARM动态加载FPGA实现特定自定义的算法模块和探测器数据处理流程,从而完成整个探测器组件的固件更新,根据应用需求来改变或者自定义探测器的使用。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (17)

  1. 一种探测器智能控制系统,其特征在于:包括外部控制模块以及至少一组与多个探测器分别通信连接的数据传输及控制模块;
    所述外部控制模块与所述每组数据传输及控制模块分别通信连接以用于下发探测器、该组数据传输及控制模块的控制报文、接收并处理二者的反馈报文以及经由所述数据传输及控制模块发送的探测器原始数据或预处理数据;
    所述每组数据传输及控制模块上下挂多个探测器,包括处理单元、数据预处理单元,以及至少一组第一类接口、至少一组第二类接口、第五类接口、第六类接口;
    所述第五类接口和所述外部控制模块通信连接用于传输探测器和所述数据传输及控制模块的控制报文和反馈报文;
    所述处理单元用于接收、解析、处理、转发所述探测器、数据传输及控制模块的控制报文和反馈报文;
    所述至少一组第一类接口和多组探测器分别连接用于探测器控制报文和反馈报文的传输;
    所述至少一组第二类接口和多组探测器分别连接用于探测器原始数据的传输;
    所述数据预处理单元用于采集、接收、转发所述探测器原始数据,或所述数据预处理单元用于采集、接收、预处理所述探测器原始数据并转发探测器预处理数据;
    所述第六类接口和所述外部控制模块通信连接用于探测器原始数据或探测器预处理数据的传输。
  2. 根据权利要求1所述的探测器智能控制系统,其特征在于:还包括至少一组探测器和/或数据传输及控制模块的工作状态监测与控制模块和/或外部工作环境监测模块,所述数据传输及控制模块设置至少一组第三类接口,所述第三类接口为预留控制接口,每组数据传输及控制模块经由所述第三类接口与一组所述工作状态监测与控制模块和/或外部工作环境监测模块通信连接,所述智能控制系统根据所述工作状态监测与控制模块和/或外部工作环境监测模块发送的监测信息动态配置所述探测器和/或数据传输及控制模块的工作参数。
  3. 根据权利要求2所述的探测器智能控制系统,其特征在于:所述工作状态监测与控制模块为电源监测与控制模块、风扇监测与控制模块中的一种或多种组合:所述电源监测与控制模块一端与探测器和/或数据传输及控制模块的电源通信连接,所述电源监测与控制模块的另一端经由其中一第三类接口与所述数据传输及控制模块通信连接以用于接受所述智能控制系统的驱动动态配置所述电源的输出;所述风扇监测与控制模块一端与多个风扇通信连接,所述风扇监测与控制模块的另一端经由其中一第三类接口与所述数据传输及控制模块通信连接以用于接受所述智能控制系统的驱动动态调整所述多个风扇的转速;
    优选的,所述外部工作环境监测模块为工作温度监测模块、环境湿度监测模块中的一种或多种组合:所述工作温度监测模块一端与一温度传感单元通信连接、另一端与经由其中一第三类接口与所述数据传输及控制模块通信连接以实时监测所述探测器和/或所述数据传输及控制模块的工作环境的温度信息;所述环境湿度监测模块一端与一湿度传感单元通信连接、另一端与经由其中一第三类接口与所述数据传输及控制模块通信连接以实时监测所述探测器和/或所述数据传输及控制模块的工作环境的湿度信息。
  4. 根据权利要求1所述的探测器智能控制系统,其特征在于:每组数据传输及控制模块中,所述第一类接口以及第二类接口的数量对应该组数据传输及控制模块上下挂的探测器的数量设置,所述每一个探测器分别经由一组第一类接口、一组第二类接口与所述数据传输及控制模块通信连接;
    优选的,所述数据传输及控制模块还包括ID确认单元,所述ID确认单元经由所述第五类接口与所述外部控制模块通信连接以用于告知并确认所述数据传输及控制模块的ID身份;
    优选的,所述数据处理单元的预处理步骤在采集与转发之间执行,包括筛选、过滤、算法实现、标记、封包、组包、缓存、发包数据操作的一种或者多种组合。
  5. 根据权利要求1所述的探测器智能控制系统,其特征在于:所述每组数据传输及控制模块包括用于参数配置和固件升级的第一控制器和用于多路探测器数据交互的第二控制器,所述第一控制器包括所述处理单元、所述一组第五类接口、至少一组第一类接口,所述第二控制器包括所述数据预处理单元、一组第六类接口以及至少一组第二类接口,第三类接口设置于所述第一控制器或所述第二控制器上。
  6. 根据权利要求5所述的探测器智能控制系统,其特征在于:所述第一控制器和/或所述第二控制器设有一第七类接口,所述第七类接口为外设扩展接口以连接外设处理单元用于第一控制器和/或所述第二控制器的RAM以及FLASH的扩展;
    优选的,所述第一控制器与所述第二控制器之间设有用于二者之间数据传输的第四类接口;
    优选的,所述第一控制器和所述第二控制器为MCU、DSP、CPLD、FPGA中的任意一种。
  7. 根据权利要求5或6所述的探测器智能控制系统,其特征在于:所述第二控制器为FPGA,所述第一控制器与所述FPGA之间经由第四类接口通信连接,所述第四类接口包括J401接口与J402接口,所述J401接口用于所述第一控制器与所述FPGA之间固件配置数据的传输,所述J402接口用于所述第一控制器与所述FPGA之间业务数据的传输;
    优选的,所述J401接口为PS模式配置接口,所述J402接口为短距数据传输接口,所述短距数据传输接口为RS232接口、SPI、I2C、GPIO、FSMC、EPI、LOCAL BUS中的任意一种;
    优选的,所述第一控制器为MCU,所述第二控制器为FPGA。
  8. 根据权利要求1或5所述的探测器智能控制系统,其特征在于:所述第一类接口、第二类接 口、第三类接口、第五类接口以及第六类接口为RS232接口、RS485接口、以太网接口、CAN接口、光纤接口、SPI、I2C、GPIO、FSMC中的任意一种。
  9. 根据权利要求1所述的探测器智能控制系统,其特征在于:所述外部控制模块包括控制显示单元、和所述控制显示单元通信连接的至少一组设备接入单元;
    所述控制显示单元包括用于探测器和数据传输及控制模块控制的报文存储与下发部、探测器和/或数据传输及控制模块的性能与环境参数配置部、探测器和/或数据传输及控制模块的性能与工作状态参数配置部,以及用于处理、分析、存储所述探测器原始数据或预处理数据的数据处理部;
    所述报文存储与下发部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以用于探测器的参数查询与配置、所述探测器与数据传输及控制模块的固件升级;
    所述性能与环境参数配置部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以将所述用于动态配置所述探测器和/或数据传输及控制模块的工作参数;
    所述性能与工作状态参数配置部经由所述设备接入单元与所述每组数据传输及控制模块的第五类接口通信连接以用于动态配置所述探测器和/或数据传输及控制模块的工作参数、以及所述工作状态监测模块的工作参数;
    所述数据处理部与所述每组数据传输及控制模块的第六类接口通信连接以用于所述多路探测器原始数据/预处理数据的后期数据处理。
  10. 根据权利要求9所述的探测器智能控制系统,其特征在于:所述控制显示单元与所述设备接入单元之间,所述设备接入单元之间、所述设备接入单元与所述数据传输及控制模块之间经由全IP通信连接;
    或所述控制显示单元与所述设备接入单元之间、所述设备接入单元之间经由全IP通信连接,所述设备接入单元与所述数据传输及控制模块之间经由CAN总线通信连接。
  11. 根据权利要求9所述的探测器智能控制系统,其特征在于:所述控制显示单元包括独立设置的第三控制器与第四控制器,所述第三控制器包括报文存储与下发部、性能与环境参数配置部、性能与工作状态参数配置部,所述第四控制器包括所述数据处理部。
  12. 一种权利要求1至11任一项所述探测器智能控制系统的控制方法,其特征在于:包括以下步骤:
    (1)初始化及自检,所述外部控制模块判断收到开始指令后,驱动所述每组数据传输及控制模块进行初始化及自检,所述数据预处理单元采集与其通信连接的多路探测器原始数据后,经由所述第六类接口直接转发或预处理后经由所述第六类接口转发送至所述外部控制模块的数据处理部;
    (2)所述外部控制模块实时监测并判断操作人员输入的控制指令:
    (2-1)若判断控制指令为指定探测器参数的查询,则所述外部控制模块将查询指令经由所述第五 类接口发送至所述数据传输及控制模块,所述数据传输及控制模块的处理单元接受处理所述查询指令后经由与指定探测器通信连接的第一类接口查询指定探测器的参数信息并反馈至所述外部控制模块显示、处理;
    (2-2)若判断控制指令为指定探测器的参数配置,则所述外部控制模块将指定探测器的参数信息经由所述第五类接口下发至所述数据传输及控制模块,所述数据传输及控制模块的处理单元下载所述参数信息并经由与指定探测器通信连接的第一类接口将所述参数信息发送至所述探测器,所述探测器配置所述参数信息;
    (2-3)若判断控制指令为指定探测器的固件升级指令,则所述外部控制模块将指定探测器的固件升级程序经由所述第五类接口打包下发至所述数据传输及控制模块,所述数据传输及控制模块的处理单元经由所述与指定探测器通信连接的第一类接口将所述固件升级程序配置至指定探测器中;
    (2-4)若判断控制指令为数据传输及控制模块的固件升级指令,则所述外部控制模块将数据传输及控制模块的固件升级程序经所述第五类接口打包下发至所述数据传输及控制模块,所述数据传输及控制模块下载并配置所述的数据传输及控制模块固件升级程序。
  13. 根据权利要求12所述智能控制系统的控制方法,其特征在于:所述步骤(1)的初始化及自检步骤如下:数据传输及控制模块上电后:
    (1-1)处理单元自主配置所述数据传输及控制模块时钟与外设;
    (1-2)数据预处理单元加载数据处理程序;
    (1-3))处理单元配置并检测所述探测器工作电压以使得所述探测器成功上电,处理单元配置所述探测器的初始工作参数以为使得探测器开始工作并发送数据;
    (1-4)所述多路探测器的数据经由所述数据处理单元采集后直接经由所述第六类接口转发送或预处理后通过所述第六类接口转发送至所述外部控制模块的数据处理部处理。
  14. 根据权利要求12所述智能控制系统的控制方法,其特征在于:所述步骤(2-4)中,所述外部控制模块经由所述第五类接口发送所述数据传输及控制模块的固件升级指令及程序:(2-4-1)若所述外部控制模块判断控制指令为第一控制器的固件升级指令,则将第一控制器固件升级程序及指令的报文经由第五类接口下发至所述第一控制器处理,所述第一控制器接收并分析所述报文后,下载并配置所述第一控制器的固件升级程序;(2-4-2)若所述外部控制模块判断控制指令为第二控制器的固件升级指令,则将第二控制器固件升级程序及指令的报文经由第五类接口下发至所述第一控制器,所述第一控制器接收并解析所述报文后,下载所述第二控制器的固件升级程序并经由所述J401接口发送至所述第二控制器中进行配置;
    或,所述步骤(2-4)中,(2-4-1′)若所述外部控制模块判断控制指令为第一控制器的固件升级指令,则将第一控制器固件升级程序经由所述第五类接口下发至所述第一控制器处理,所述第一控制器 下载并配置所述第一控制器的固件升级程序;(2-4-2′)若所述外部控制模块判断控制指令为第二控制器的固件升级指令,则将第二控制器固件升级程序经由第六类接口下发至所述第二控制器处理,所述第二控制下载并配置所述第二控制器的固件升级程序。
  15. 根据权利要求12所述智能控制系统的控制方法,其特征在于:还包括步骤(3),探测器和/或数据传输及控制模块的工作状态监测与处理步骤:
    所述数据传输及控制模块实时经由所述第三类接口接收所述工作状态监测模块传输的探测器和/或数据传输及控制模块的工作状态实时参数数据后,经由所述第五类接口上报至所述外部控制模块的性能与工作状态参数配置部处理,所述性能与工作状态参数配置部处理根据探测器和/或数据传输及控制模块的性能与参数模型以动态配置所述探测器和/或数据传输及控制模块的工作参数或性能与工作状态参数配置部驱动所述探测器工作状态监测模块动态调整被监测设备的工作参数,以使所述探测器和/或数据传输及控制模块处于最佳工作状态。
  16. 根据权利要求12所述智能控制系统的控制方法,其特征在于:还包括步骤(4),探测器和/或数据传输及控制模块的工作环境状态监测与处理步骤:所述数据传输及控制模块实时经由所述第三类接口接收所述工作环境监测模块传输的探测器和/或数据传输及控制模块工作环境的实时参数数据后,经由所述第五类接口上报至所述外部控制模块的性能与环境参数配置部,所述性能与环境参数配置部处理根据探测器和/或数据传输及控制模块的性能与环境参数模型以动态配置所述探测器和/或数据传输及控制模块的工作参数以使所述探测器和/或数据传输及控制模块处于最佳工作状态。
  17. 一种PET设备,包括探测器、校准系统、床位控制系统以及配电系统,其特征在于:还包括如权利要求1至11任一项所述的探测器智能控制系统,所述校准系统、床位控制系统以及配电系统分别与所述外部控制模块通信相连以接受所述外部控制模块的驱动进行工作,所述每组数据传输及控制模块分别经由第一类接口以及第二类接口与多个探测器对应通信连接以用于所述探测器的控制以及探测器原始数据的采集与传输。
PCT/CN2016/071804 2015-02-13 2016-01-23 一种探测器智能控制系统、控制方法及pet设备 WO2016127779A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FIEP16748580.4T FI3258337T3 (fi) 2015-02-13 2016-01-23 Älykäs ohjausjärjestelmä ja ohjausmenetelmä ilmaisimelle ja lemmikkilaitteelle
US15/550,378 US10845830B2 (en) 2015-02-13 2016-01-23 Intelligent control system and control method for detector, and pet device
BR112017017433-2A BR112017017433B1 (pt) 2015-02-13 2016-01-23 Sistema de controle inteligente para um detector
EP16748580.4A EP3258337B1 (en) 2015-02-13 2016-01-23 Intelligent control system and control method for detector, and pet device
JP2017560854A JP2018510439A (ja) 2015-02-13 2016-01-23 探知器知能制御システムとその制御方法、及びpet装置
HK18105265.7A HK1245911A1 (zh) 2015-02-13 2018-04-23 一種探測器智能控制系統、控制方法及pet設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510080902.5A CN104820452B (zh) 2015-02-13 2015-02-13 一种探测器智能控制系统及控制方法
CN201510080902.5 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016127779A1 true WO2016127779A1 (zh) 2016-08-18

Family

ID=53730772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071804 WO2016127779A1 (zh) 2015-02-13 2016-01-23 一种探测器智能控制系统、控制方法及pet设备

Country Status (7)

Country Link
US (1) US10845830B2 (zh)
EP (1) EP3258337B1 (zh)
JP (1) JP2018510439A (zh)
CN (2) CN108646816B (zh)
FI (1) FI3258337T3 (zh)
HK (1) HK1245911A1 (zh)
WO (1) WO2016127779A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510439A (ja) * 2015-02-13 2018-04-12 武漢数字派特科技有限公司The Wuhan Digital Pet Co., Ltd 探知器知能制御システムとその制御方法、及びpet装置
CN109488886A (zh) * 2017-09-11 2019-03-19 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN113741234A (zh) * 2021-07-21 2021-12-03 重庆真测科技股份有限公司 一种工业ct控制电路、工业ct系统及工业ct控制方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204500749U (zh) * 2015-02-13 2015-07-29 武汉数字派特科技有限公司 一种基于ip与can总线的pet通信系统
CN105395209B (zh) 2015-12-01 2018-10-02 沈阳东软医疗系统有限公司 一种正电子发射断层扫描成像系统及方法
CN106131169B (zh) * 2016-07-01 2019-09-10 武汉数字派特科技有限公司 一种pet控制网络通信系统及方法
CN107608410A (zh) * 2017-09-15 2018-01-19 刘程秀 一种智能反应釜的温度控制方法
CN108646612A (zh) * 2018-03-20 2018-10-12 中国核电工程有限公司 一种n-16监测仪数据采集处理平台
CN108279636A (zh) * 2018-04-10 2018-07-13 江苏亨通工控安全研究院有限公司 工业机房安全防护系统
CN108693804A (zh) * 2018-05-11 2018-10-23 广东冉盛科学仪器有限公司 一种非接触式监测设备及处理方法
CN110554609A (zh) * 2018-05-31 2019-12-10 维谛技术有限公司 一种动环监控采集器和动环监控采集系统
CN110602659A (zh) * 2018-06-12 2019-12-20 上海电享信息科技有限公司 一种充电桩工作方式设置系统及方法
CN109032528B (zh) * 2018-08-01 2020-11-17 西安电子科技大学 一种平板pet系统的在线预处理方法及装置
CN109143941A (zh) * 2018-10-19 2019-01-04 陕西科技大学 一种探测器系统高压电源系统及其监测方法
CN109889270B (zh) * 2019-02-01 2021-09-10 国网江苏省电力有限公司 一种基于电力无线专网的精准切负荷系统及方法
CN110101402B (zh) * 2019-04-26 2023-09-26 上海联影医疗科技股份有限公司 探测装置及其检测方法、具有探测装置的检测设备
CN111289544A (zh) * 2020-02-25 2020-06-16 沈阳先进医疗设备技术孵化中心有限公司 一种ct设备、ct设备的探测器阵列的参数配置方法
CN111324070B (zh) * 2020-03-04 2021-07-13 明峰医疗系统股份有限公司 基于fpga的ct串行探测器模块集群的调试方法
CN111913899B (zh) * 2020-07-02 2022-02-08 山东大学 一种基于fsmc与fpga的uart拓展方法
CN114065694A (zh) * 2020-08-03 2022-02-18 上海复旦微电子集团股份有限公司 一种fpga布线资源图压缩方法和全局布线模块
CN111897655B (zh) * 2020-08-06 2022-10-11 泰安泰山高压开关有限公司 一种输变电云端智能控制器
CN112865314B (zh) * 2021-01-19 2021-11-09 中国科学院声学研究所 一种海底观测网接驳盒
CN113495288A (zh) * 2021-07-14 2021-10-12 雷震 一种医院放射科辐射剂量监测监控设备及其方法
CN114236590B (zh) * 2021-12-06 2024-06-07 中国工程物理研究院核物理与化学研究所 环境级γ智能测量探头装置、系统及方法
CN115941102B (zh) * 2022-10-31 2023-09-15 三峡智控科技有限公司 一种采用spi连接mcu和fpga的控制器间同步通信的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212645A (en) * 1990-07-19 1993-05-18 General Electric Company Flexible real-time, multi-tasking architecture for tool condition monitoring
CN201017459Y (zh) * 2007-03-13 2008-02-06 同方威视技术股份有限公司 辐射成像数据采集设备
CN101198206A (zh) * 2006-12-08 2008-06-11 清华大学 一种用于辐射成像用的数据获取和控制电路及其方法
CN201107279Y (zh) * 2007-11-15 2008-08-27 天津工业大学 高速x射线探测器
KR101259826B1 (ko) * 2011-03-24 2013-04-30 삼성중공업 주식회사 분산 제어 시스템의 버전 관리 시스템 및 버전 관리 방법
CN103330571A (zh) * 2013-04-27 2013-10-02 中国人民解放军北京军区总医院 数据采集系统及其控制方法、移动ct扫描仪
CN104820452A (zh) * 2015-02-13 2015-08-05 武汉数字派特科技有限公司 一种探测器智能控制系统、控制方法及pet设备

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901159B2 (en) * 2001-01-31 2005-05-31 General Electric Company Communication of image data from image detector to host computer
JP4187432B2 (ja) * 2001-10-29 2008-11-26 株式会社テイエルブイ 機器監視システム
US6907099B2 (en) * 2002-05-01 2005-06-14 Koninklijke Philips Electronics N.V. Method and apparatus for computed tomography imaging
EP1573358A1 (en) * 2002-12-09 2005-09-14 Koninklijke Philips Electronics N.V. Distributed medical imaging system
US7360100B2 (en) * 2003-08-01 2008-04-15 Ge Medical Systems Global Technology Company, Llc Intelligent power management control system and method
JP3863873B2 (ja) * 2003-09-30 2006-12-27 株式会社日立製作所 放射線検査装置
JP2005258996A (ja) * 2004-03-15 2005-09-22 Meidensha Corp Fpgaのリモートメンテナンス方式
US7921323B2 (en) * 2004-05-11 2011-04-05 L-3 Communications Integrated Systems, L.P. Reconfigurable communications infrastructure for ASIC networks
JP2006167105A (ja) * 2004-12-15 2006-06-29 Toshiba Corp 医用画像管理システム
JP5269283B2 (ja) * 2005-04-06 2013-08-21 株式会社東芝 医用画像診断装置及び画像再構成方法
US7711170B2 (en) * 2005-05-10 2010-05-04 General Electric Company Method and system for filtering scan data
US7488943B2 (en) * 2006-07-17 2009-02-10 General Electric Company PET detector methods and apparatus
KR101110471B1 (ko) * 2006-08-08 2012-03-13 가부시키가이샤 시마즈세이사쿠쇼 양전자 ct 장치
US8238624B2 (en) * 2007-01-30 2012-08-07 International Business Machines Corporation Hybrid medical image processing
CN102749640B (zh) * 2007-07-02 2016-03-02 皇家飞利浦电子股份有限公司 用于混合pet-mr系统的热稳定的pet探测器
DE102007044873A1 (de) * 2007-09-20 2009-04-16 Siemens Ag Verfahren zur Stabilisierung der Verstärkung eines PET-Detektionssystems
WO2010048626A2 (en) * 2008-10-24 2010-04-29 University Of Washington Improved data-processing electronics for use in a positron-emission tomography system
US9995829B2 (en) * 2008-12-10 2018-06-12 Koninklijke Philips N.V. Autonomous detector module as a building block for scalable PET and SPECT systems
WO2010097714A2 (en) * 2009-02-25 2010-09-02 Koninklijke Philips Electronics, N.V. Attenuation correction of mr coils in a hybrid pet/mr system
JP5433299B2 (ja) * 2009-05-18 2014-03-05 株式会社東芝 医用画像診断装置
US8735834B2 (en) * 2010-03-31 2014-05-27 John MILLETT Mobile cardiac positron emission tomography (moPET) camera
WO2012095978A1 (ja) * 2011-01-13 2012-07-19 三菱電機株式会社 ネットワーク選定支援方法
US9354332B2 (en) * 2011-04-05 2016-05-31 Koninklijke Philips N.V. Detector array with time-to-digital conversion having improved temporal accuracy
CN103890611B (zh) * 2011-10-06 2016-12-07 皇家飞利浦有限公司 数据驱动的对事件接受/拒绝逻辑的优化
CN103767722B (zh) * 2012-10-25 2016-04-27 上海联影医疗科技有限公司 Ct或pet-ct系统及其进行扫描的定位方法
US10027340B1 (en) * 2012-12-31 2018-07-17 Jefferson Science Associates, Llc Method and apparatus to digitize pulse shapes from radiation detectors
US9632187B2 (en) * 2013-06-12 2017-04-25 The Regents Of The University Of California Modular positron emission tomography kit
CN103800076B (zh) * 2014-01-14 2016-02-03 中国科学院自动化研究所 一种结构-光学-核素多模态成像系统与方法
CN104062673B (zh) * 2014-06-20 2016-05-18 成都理工大学 核分析仪自诊断系统
CN105572153B (zh) * 2014-06-25 2018-07-17 山东大学 基于x射线线阵扫描的便携式面阵成像系统
CN105361900B (zh) * 2014-08-26 2019-01-22 北京纳米维景科技有限公司 静态实时ct成像系统及其成像控制方法
KR101783001B1 (ko) * 2015-01-20 2017-09-28 삼성전자주식회사 단층 영상 장치 및 단층 영상의 이미징 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212645A (en) * 1990-07-19 1993-05-18 General Electric Company Flexible real-time, multi-tasking architecture for tool condition monitoring
CN101198206A (zh) * 2006-12-08 2008-06-11 清华大学 一种用于辐射成像用的数据获取和控制电路及其方法
CN201017459Y (zh) * 2007-03-13 2008-02-06 同方威视技术股份有限公司 辐射成像数据采集设备
CN201107279Y (zh) * 2007-11-15 2008-08-27 天津工业大学 高速x射线探测器
KR101259826B1 (ko) * 2011-03-24 2013-04-30 삼성중공업 주식회사 분산 제어 시스템의 버전 관리 시스템 및 버전 관리 방법
CN103330571A (zh) * 2013-04-27 2013-10-02 中国人民解放军北京军区总医院 数据采集系统及其控制方法、移动ct扫描仪
CN104820452A (zh) * 2015-02-13 2015-08-05 武汉数字派特科技有限公司 一种探测器智能控制系统、控制方法及pet设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510439A (ja) * 2015-02-13 2018-04-12 武漢数字派特科技有限公司The Wuhan Digital Pet Co., Ltd 探知器知能制御システムとその制御方法、及びpet装置
CN109488886A (zh) * 2017-09-11 2019-03-19 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN109488886B (zh) * 2017-09-11 2024-01-23 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN113741234A (zh) * 2021-07-21 2021-12-03 重庆真测科技股份有限公司 一种工业ct控制电路、工业ct系统及工业ct控制方法

Also Published As

Publication number Publication date
JP2018510439A (ja) 2018-04-12
EP3258337A4 (en) 2019-02-13
HK1245911A1 (zh) 2018-08-31
EP3258337B1 (en) 2023-10-11
US10845830B2 (en) 2020-11-24
CN104820452A (zh) 2015-08-05
US20180032094A1 (en) 2018-02-01
BR112017017433A2 (zh) 2018-04-03
CN104820452B (zh) 2018-11-13
CN108646816B (zh) 2020-02-04
FI3258337T3 (fi) 2024-01-12
EP3258337A1 (en) 2017-12-20
BR112017017433A8 (pt) 2023-01-24
CN108646816A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2016127779A1 (zh) 一种探测器智能控制系统、控制方法及pet设备
JP6567692B2 (ja) マルチノードセンサーネットワークのデータ伝送・制御装置
US9684583B2 (en) Trace data export to remote memory using memory mapped write transactions
CN110162446A (zh) 一种基于bmc的背板硬盘点灯方法
CN109223010A (zh) 放射线成像装置和放射线成像系统
CN110058900B (zh) 基于可插拔组件框架的数据传输服务系统
US20220291283A1 (en) Automatic chip testing system and method
CN103984617A (zh) 一种服务器主动推送监控数据的方法
Engel et al. The ALICE high-level trigger read-out upgrade for LHC Run 2
CN204347152U (zh) 一种多总线板卡测试诊断系统
CN112774042A (zh) 射束照射系统及其控制方法
CN102955875B (zh) 用于在影响装置中处理数据的方法
CN207424123U (zh) 无人机机载航电设备测试系统
CN208114598U (zh) 一种无线传输ct系统
WO2016127781A1 (zh) 一种基于ip与can总线的pet通信系统
CN105634871A (zh) 基于AXIe的智能平台管理系统测试仪器
CN206573502U (zh) 电力设备x射线数字成像三维可视化检测远程操控平台
Spiwoks et al. Run control communication for the upgrade of the ATLAS Muon-to-Central Trigger Processor Interface (MUCTPI)
He et al. An Internet of Things-Based Cluster System for Monitoring Lactating Sows’ Feed and Water Intake
CN204514762U (zh) 具空气中尘埃粒子在线监测的装置
CN203744991U (zh) 光电式高抗尘播种传感器
CN211484637U (zh) 一种x射线图像采集控制系统
CN109951309A (zh) 电能云采集系统网络节点维护方法及装置
CN107272500A (zh) 一种伺服液压能源测控系统
JPH1139008A (ja) プログラマブルコントローラ用のプログラム作成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017433

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2016748580

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017017433

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170814