WO2016125789A1 - 鞍乗り型車両 - Google Patents

鞍乗り型車両 Download PDF

Info

Publication number
WO2016125789A1
WO2016125789A1 PCT/JP2016/053051 JP2016053051W WO2016125789A1 WO 2016125789 A1 WO2016125789 A1 WO 2016125789A1 JP 2016053051 W JP2016053051 W JP 2016053051W WO 2016125789 A1 WO2016125789 A1 WO 2016125789A1
Authority
WO
WIPO (PCT)
Prior art keywords
front wheel
rear wheel
electric motor
unit
torque command
Prior art date
Application number
PCT/JP2016/053051
Other languages
English (en)
French (fr)
Inventor
普 田中
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to US15/548,818 priority Critical patent/US10322769B2/en
Publication of WO2016125789A1 publication Critical patent/WO2016125789A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/70Rider propelled cycles with auxiliary electric motor power-driven at single endless flexible member, e.g. chain, between cycle crankshaft and wheel axle, the motor engaging the endless flexible member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/75Rider propelled cycles with auxiliary electric motor power-driven by friction rollers or gears engaging the ground wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/12Motorcycles characterised by position of motor or engine with the engine beside or within the driven wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/02Transmissions characterised by use of an endless chain, belt, or the like of unchangeable ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/80Accessories, e.g. power sources; Arrangements thereof
    • B62M6/90Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This invention relates to a vehicle having a saddle-ride type vehicle body on which a user rides.
  • Patent Document 1 discloses an electric bicycle including a vehicle body, front wheels, rear wheels, front wheel electric motors, and rear wheel electric motors. This electric bicycle is configured to be able to select travel patterns of “OFF”, “rear wheel drive”, “front wheel drive”, and “front and rear wheel drive”. “OFF” is a running pattern in which power is not supplied to either the front wheel electric motor or the rear wheel electric motor. “Rear wheel drive” is a traveling pattern for an electrically assisted bicycle. When the electric bicycle is driven by stepping on a foot pedal, electric power is supplied to the electric motor for the rear wheel according to the torque applied to the crankshaft. .
  • Front wheel drive is a traveling pattern in which the front wheel electric motor is energized while the rear wheel electric motor is not energized in accordance with the operation position of the speed change operation switch.
  • Front and rear wheel drive is a driving mode that improves driving performance by energizing the front wheel electric motor and the rear wheel electric motor, regardless of the pedaling force applied to the foot pedal and the power supply to the rear wheel electric motor. It is.
  • the front-wheel electric motor and the rear-wheel electric motor are driven in the same manner in “front-and-rear wheel drive”, and the electric bicycle is pulled forward by the rear wheel while the electric bicycle is pulled forward by the rear wheel. Will be pressed. Thereby, even on rough roads such as snowy roads and gravel roads, excellent running performance is exhibited.
  • the front wheels and the rear wheels are driven in the same manner, and on the contrary, it may be difficult to run.
  • a rough road such as off-road
  • the user depresses the pedal while lifting the front wheel, lifts the front wheel from the ground and rides on the obstacle, thereby overcoming the obstacle Can continue.
  • An embodiment of the present invention includes a saddle-ride type vehicle body, a front wheel that supports the vehicle body, a rear wheel that supports the vehicle body, a front wheel electric motor that applies a driving force to the front wheel, and a driving force that is applied to the rear wheel.
  • a rear wheel electric motor, a front wheel motor drive unit for driving the front wheel electric motor, a rear wheel motor drive unit for driving the rear wheel electric motor, a front wheel drive command is given to the front wheel motor drive unit, and the rear
  • a control unit programmed to give a rear wheel drive command different from the front wheel drive command to the wheel motor drive unit, and to give a time difference to a change in driving force of the front wheel electric motor and the rear wheel electric motor, Provide saddle-ride type vehicles.
  • the front wheels can be driven by the front wheel electric motor, and the rear wheels can be driven by the rear wheel electric motor.
  • the front wheel electric motor and the rear wheel electric motor are driven by a front wheel motor drive unit and a rear wheel motor drive unit, respectively.
  • the control unit can give a front wheel drive command and a rear wheel drive command to the front wheel motor drive unit and the rear wheel motor drive unit, respectively, so as to give a time difference to changes in the driving force of the front wheel electric motor and the rear wheel electric motor.
  • control unit causes the front wheel drive command and the rear wheel drive command so that a change in the drive force of the front wheel electric motor occurs after a change in the drive force of the rear wheel electric motor.
  • the control unit generates the front wheel drive command and the rear wheel drive command so that the drive force of the front wheel electric motor increases after the increase of the drive force of the rear wheel electric motor. It may be programmed to do.
  • the front wheel when overcoming an obstacle, the front wheel can be lifted and climbed onto the obstacle between the time when the rear wheel driving force increases and the time when the front wheel driving force increases. Thereafter, the driving force of the front wheels increases, so that the front wheels pull the vehicle body. Thereby, the vehicle can travel over obstacles.
  • the front wheel is lifted, the driving force of the front wheel is not increased, which makes it easier to lift the front wheel. Therefore, it is easy to get over obstacles.
  • control unit generates the front wheel drive command and the rear wheel drive command so that the driving force of the front wheel electric motor is generated behind the generation of the driving force of the rear wheel electric motor. Is programmed to do.
  • a rear wheel driving force is generated, and a front wheel driving force is generated later.
  • running performance can be improved.
  • the front wheel pulls the vehicle body by generating the driving force of the front wheel.
  • the vehicle can travel over obstacles. Since the driving force of the front wheel is not generated when lifting the front wheel, it is easy to lift the front wheel. Therefore, it is easy to get over obstacles.
  • the saddle riding type vehicle is operated by a user and outputs a signal corresponding to the operation
  • the front wheel input unit is operated by the user and outputs a signal corresponding to the operation
  • a rear wheel input unit is programmed to generate the front wheel drive command in response to an input from the front wheel input unit and to generate the rear wheel drive command in response to an input from the rear wheel input unit.
  • a front wheel drive command corresponding to the operation of the front wheel input unit is generated, and a rear wheel drive command corresponding to the rear wheel input unit is generated.
  • the control unit may change the front wheel driving force and the rear wheel driving force at the timing according to the operation of the front wheel input unit and the rear wheel input unit. More specifically, the control unit may increase the front wheel driving force and the rear wheel driving force at timings according to operations of the front wheel input unit and the rear wheel input unit, respectively.
  • the operation state is not increased. In this state, the user can easily lift the front wheel and move the vehicle toward the obstacle by the rear wheel driving force, thereby allowing the front wheel to ride on the obstacle. Thereafter, if the user operates the front wheel input unit to generate or increase the front wheel driving force, the front wheel pulls the vehicle body, so that the vehicle can get over the obstacle.
  • control unit responds to the operation of the front wheel input unit and the rear wheel input unit, and sets a predetermined time difference to the change in the driving force of the front wheel electric motor and the rear wheel electric motor regardless of the operation timing. May be attached. For example, when both the front wheel input unit and the rear wheel input unit are operated at the same time or within a certain time, the control unit adds a predetermined time difference to the change in the driving force of the front wheel electric motor and the rear wheel electric motor. May be.
  • the rear wheel input unit includes a pedal that is stepped on by a user, and a pedaling force sensor that detects a pedaling force applied to the pedal and outputs a signal corresponding to the pedaling force.
  • the saddle riding type vehicle further includes a human power drive mechanism that transmits a pedaling force applied to the pedal to a rear wheel.
  • the pedaling force applied to the pedal by the user is transmitted to the rear wheels by the human power drive mechanism.
  • a pedal force sensor that detects the pedal force is used as the rear wheel input unit. That is, a rear wheel drive command corresponding to the pedaling force applied to the pedal by the user is generated.
  • the rear wheel electric motor applies an assisting force to assist the user's pedaling force to the rear wheel. Since there is a time difference between the change in the rear wheel driving force according to the pedaling force and the change in the front wheel driving force, appropriate driving force is given to the front wheels and the rear wheels at appropriate timing according to the conditions of the road. Thus, the running performance of the vehicle can be improved.
  • control unit allows the user to operate the front wheel input unit behind the operation of the rear wheel input unit, and in response to the operation of the rear wheel electric motor. It is programmed to generate the front wheel drive command and the rear wheel drive command so that a change in the driving force of the front wheel electric motor occurs behind the change in the driving force.
  • the control unit is delayed in response to the increase in the driving force of the rear wheel electric motor.
  • the front wheel drive command and the rear wheel drive command may be programmed so as to increase the driving force of the front wheel electric motor.
  • the user can easily lift the front wheel and ride on the obstacle until the front wheel driving force increases. Thereafter, when the front wheel driving force increases, the vehicle body is pulled by the front wheels, so that it is possible to get over obstacles.
  • the control unit adds a predetermined time difference to changes in driving force of the front wheel electric motor and the rear wheel electric motor when both the front wheel input unit and the rear wheel input unit are operated simultaneously or within a predetermined time. May be programmed.
  • the control unit causes the rear wheel driving force and the front wheel driving force to vary with a time difference corresponding to the operation delay time. May be changed in order.
  • control unit allows the user to operate the front wheel input unit behind the operation of the rear wheel input unit, and in response to the operation of the rear wheel electric motor. It is programmed to generate the front wheel drive command and the rear wheel drive command so that the driving force of the front wheel electric motor is generated behind the generation of the driving force.
  • the control unit has an individual control mode and a common control mode, and generates the front wheel drive command in response to an input from the front wheel input unit in the individual control mode, and
  • the rear wheel drive command is generated in response to an input from the rear wheel input unit, and in the common control mode, in response to an input from one of the front wheel input unit and the rear wheel input unit.
  • the front wheel drive command and the rear wheel drive command are programmed to be generated.
  • the saddle riding type vehicle further includes a mode switching operation unit that is operated by a user and switches between the individual control mode and the common control mode.
  • the front wheel driving force and the rear wheel driving force can be individually controlled by the front wheel input unit and the rear wheel input unit, and the front wheel driving force and the rear wheel driving force can be obtained by input from one input unit.
  • a common control mode that can be controlled in common can be switched.
  • an appropriate control mode can be selected according to the condition of the traveling road, and the traveling performance can be further improved.
  • the saddle riding type vehicle further includes an input unit that is operated by a user and outputs a signal corresponding to the operation.
  • the control unit outputs the front wheel drive command and the rear wheel drive command so as to give a time difference to changes in driving force of the front wheel electric motor and the rear wheel electric motor in accordance with an input from the input unit. Programmed to generate.
  • the control unit when the user operates the input unit, the control unit can make a time difference between the change in the front wheel driving force and the change in the rear wheel driving force. Thereby, running performance can be improved.
  • the input unit may be an input unit that is commonly used to increase or decrease the driving force of the front wheels and the rear wheels. More specifically, the input unit may be a single input unit for increasing or decreasing the driving force of the front wheel electric motor and the rear wheel electric motor.
  • control unit may be programmed to increase the rear wheel driving force in response to the operation of the input unit by the user, and then increase the front wheel driving force over time. Further, the control unit may be programmed to generate the rear wheel driving force in response to the operation of the input unit by the user, and then generate the front wheel driving force after a certain time. With these configurations, the user can easily lift the front wheel until the front wheel driving force increases or is generated, and thus can get over the obstacle.
  • the control unit has a synchronous drive mode and a time difference drive mode.
  • the control unit In the synchronous drive mode, the control unit generates the front wheel drive command and the control signal so that changes in the drive powers of the front wheel electric motor and the rear wheel electric motor are generated in synchronization with an input from the input unit.
  • the rear wheel drive command is generated.
  • the control unit In the time difference drive mode, the control unit outputs the front wheel drive command and the control unit so as to give a time difference to changes in driving force of the front wheel electric motor and the rear wheel electric motor in accordance with an input from the input unit.
  • a rear wheel drive command is generated.
  • the saddle riding type vehicle further includes a mode switching operation unit that is operated by a user and switches between the synchronous drive mode and the time difference drive mode.
  • the saddle-ride type vehicle further includes a time difference adjustment unit operated by a user to adjust the time difference.
  • the control unit is programmed to variably set the time difference according to a time difference command signal input from the time difference adjustment unit.
  • the time difference between the change in the front wheel driving force and the change in the rear wheel driving force can be adjusted by operating the time difference adjusting unit.
  • the usability is further improved, and the front wheel driving force and the rear wheel driving force can be changed with a time difference according to the user's preference and the condition of the traveling road.
  • FIG. 1 is a side view for explaining the configuration of the electric motorcycle according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining an electrical configuration of the electric motorcycle.
  • FIG. 3 is a flowchart for explaining a control operation by a control unit provided in the electric motorcycle.
  • FIG. 4 is a view for explaining a situation where an obstacle is overcome by the electric motorcycle.
  • FIG. 5 is a diagram illustrating an example of a temporal change in the front wheel torque command value and the rear wheel torque command value when overcoming an obstacle.
  • FIG. 6 is a side view for explaining the configuration of the electric motorcycle according to the second embodiment of the present invention.
  • FIG. 7 is a plan view showing a configuration example of a remote control unit provided in the electric motorcycle.
  • FIG. 8 is a block diagram for explaining the configuration of the control system for the electric motorcycle.
  • FIG. 9 is a flowchart for explaining a control example of the front wheel electric motor and the rear wheel electric motor.
  • FIG. 10A is a flowchart for explaining a specific operation example of the control unit in mode 1 (traction control on, cooperative control on).
  • FIG. 10B is a flowchart for explaining a specific operation example of the control unit in mode 2 (traction control on, cooperative control off).
  • FIG. 10C is a flowchart for explaining a specific operation example of the control unit in mode 3 (traction control off, cooperative control on).
  • FIG. 10D is a flowchart for explaining a specific operation example of the control unit in mode 4 (traction control off, cooperative control off).
  • FIG. 10A is a flowchart for explaining a specific operation example of the control unit in mode 1 (traction control on, cooperative control on).
  • FIG. 10B is a flowchart for explaining a specific operation example of the control unit in mode 2 (traction
  • FIG. 11 is a diagram illustrating an example of a temporal change in the front wheel torque command value and the rear wheel torque command value when overcoming an obstacle.
  • FIG. 12 is a block diagram for explaining an electrical configuration of an electric motorcycle according to a third embodiment of the present invention.
  • FIG. 13 is a flowchart for explaining a control example of the front wheel electric motor and the rear wheel electric motor.
  • FIG. 14 is a diagram illustrating an example of a temporal change in the front wheel torque command value and the rear wheel torque command value when overcoming an obstacle.
  • FIG. 15 is a block diagram for explaining an electrical configuration of an electric motorcycle according to a fourth embodiment of the present invention.
  • FIG. 1 is a side view for explaining the configuration of an electric motorcycle that is a saddle-ride type vehicle according to a first embodiment of the present invention.
  • the front, rear, left, and right directions refer to directions viewed from the driver (rider) seated on the seat. That is, in FIG. 1, the right side surface of the electric motorcycle 101 appears.
  • the electric motorcycle 101 includes a body frame 102 that is a saddle-ride type vehicle body, and front wheels 103 and rear wheels 104 that support the body frame 102.
  • a steering shaft (not shown) is rotatably attached to the front portion of the body frame 102.
  • a handlebar 107 and a pair of front forks 108 are coupled to the steering shaft.
  • grips 110 On the left and right sides of the handle bar 107, there are provided grips 110 that the user holds with his left and right hands.
  • the right grip 110 is an accelerator grip that is rotatably coupled to the handle shaft and is operated by a user.
  • a front wheel 103 is rotatably attached to the lower ends of the pair of front forks 108.
  • a front wheel electric motor 113 for driving the front wheel 103 is incorporated in the hub of the front wheel 103.
  • a seat 111 on which a user sits across the vehicle body frame 102 is attached.
  • a pivot shaft 117 is provided at a lower rear portion of the body frame 102, and a rear arm 118 is attached to the pivot shaft 117 so as to be swingable in the vertical direction.
  • a rear wheel 104 is rotatably attached to the rear end portion of the rear arm 118.
  • a cushion unit 119 is disposed between the rear arm 118 and the upper portion of the vehicle body frame 102.
  • the body frame 102 holds the power unit 120 in front of the cushion unit 119.
  • Power unit 120 includes a rear wheel electric motor 114, a power transmission gear 115, and a drive sprocket 116.
  • the driving force of the rear wheel electric motor 114 is transmitted to the rear wheel 104 via the power transmission gear 115, the drive sprocket 116 and the power transmission mechanism 121.
  • the power transmission mechanism 121 includes a driven sprocket 122 fixed to the rear wheel 104 and an endless chain 123.
  • the chain 123 is wound around the drive sprocket 116 and the driven sprocket 122.
  • a battery 112 that supplies power to the front wheel electric motor 113 and the rear wheel electric motor 114 is disposed above the power unit 120.
  • the battery 112 is supported by a battery support member 125 coupled to the vehicle body frame 102 and is positioned below the seat 111.
  • Left and right footrests 126 are arranged on the left and right sides of the lower part of the body frame 102.
  • an accelerator pedal 130 that can be operated by the right foot of the user is disposed near the right footrest 126.
  • FIG. 2 is a block diagram for explaining the electrical configuration of the electric motorcycle 101.
  • the electric motorcycle 101 includes a control unit 140, a front wheel motor drive unit 143, and a rear wheel motor drive unit 144.
  • the control unit 140 receives an output signal from the front wheel accelerator sensor 153 and an output signal from the rear wheel accelerator sensor 154.
  • the front wheel accelerator sensor 153 detects the operation amount of the accelerator grip 110 and outputs a signal representing the operation amount.
  • the accelerator grip 110 and the front wheel accelerator sensor 153 are examples of a front wheel input unit.
  • the rear wheel accelerator sensor 154 detects an operation amount of the accelerator pedal 130 and outputs a signal representing the operation amount.
  • the accelerator pedal 130 and the rear wheel accelerator sensor 154 are examples of a rear wheel input unit.
  • the control unit 140 includes a front wheel torque command value calculation unit 141 and a rear wheel torque command value calculation unit 142.
  • the front wheel torque command value calculation unit 141 calculates a front wheel torque command value that should be generated by the front wheel electric motor 113 based on the output signal of the front wheel accelerator sensor 153.
  • the rear wheel torque command value calculation unit 142 calculates a rear wheel torque command value to be generated by the rear wheel electric motor 114 based on the output signal of the rear wheel accelerator sensor 154. Based on the calculated front wheel torque command value and rear wheel torque command value, the control unit 140 gives a front wheel torque command to the front wheel motor drive unit 143 and gives a rear wheel torque command to the rear wheel motor drive unit 144.
  • the control unit 140 includes a microcomputer, and is programmed to realize a plurality of functions including functions as a front wheel torque command value calculation unit 141 and a rear wheel torque command value calculation unit 142. More specifically, the control unit 140 includes a processor (CPU) and a storage medium (memory) that stores a program executed by the processor.
  • CPU central processing unit
  • memory storage medium
  • the front wheel motor drive unit 143 includes a motor drive circuit that supplies drive power to the front wheel electric motor 113.
  • the rear wheel motor drive unit 144 includes a motor drive circuit that supplies drive power to the rear wheel electric motor 114.
  • the front wheel motor drive unit 143 supplies power to the front wheel electric motor 113 in accordance with the front wheel torque command given from the control unit 140.
  • the rear wheel motor drive unit 144 supplies power corresponding to the rear wheel torque command given from the control unit 140 to the rear wheel electric motor 114.
  • a battery 112 (see FIG. 1) is connected to the front wheel motor drive unit 143 and the rear wheel motor drive unit 144.
  • FIG. 3 is a flowchart for explaining a control operation by the control unit 140, and shows a process that the control unit 140 repeats at a predetermined control cycle.
  • the control unit 140 acquires an accelerator grip operation amount (front wheel accelerator operation amount) detected by the front wheel accelerator sensor 153 (step S1), and generates a front wheel torque command value corresponding to the acquired front wheel accelerator operation amount (step S1). S3).
  • the control unit 140 generates a front wheel torque command value such that a larger driving torque is generated from the front wheel electric motor 113 as the front wheel accelerator operation amount is larger.
  • the front wheel motor drive unit 143 drives the front wheel electric motor 113 (step S5).
  • the voltage supplied to the front wheel electric motor 113 is controlled by PWM (pulse width modulation) control.
  • control unit 140 acquires an accelerator pedal operation amount (rear wheel accelerator operation amount) detected by the rear wheel accelerator sensor 154 (step S2), and a rear wheel torque command according to the acquired rear wheel accelerator operation amount. A value is generated (step S4).
  • the control unit 140 generates a rear wheel torque command value so that a larger driving torque is generated from the rear wheel electric motor 114 as the rear wheel accelerator operation amount is larger.
  • the front wheel electric motor 113 is driven by the rear wheel motor drive unit 144 (step S5).
  • the voltage supplied to the rear wheel electric motor 114 is controlled by PWM control.
  • FIG. 4 is a diagram for explaining how the electric motorcycle 101 gets over the obstacle 100.
  • an obstacle 100 such as a log on the traveling path of the electric motorcycle 101
  • the contact position of the front wheel 103 with respect to the obstacle 100 is approximately the same as or higher than the axle 103a of the front wheel 103. Therefore, as shown in FIG. 4, the front wheel 103 is lifted so that the height of the axle 103 a of the front wheel 103 is sufficiently higher than the contact position 99 between the front wheel 103 and the obstacle 100.
  • the front wheel electric motor 113 is driven in this state, the front wheel 103 generates a force that pulls the electric motorcycle 101 onto the obstacle 100. As a result, the electric motorcycle 101 can travel over the obstacle 100.
  • the inventor of the present application has found that the above problem can be solved by generating the driving force of the front wheel 103 later than the driving force of the rear wheel 104. That is, the user raises the handlebar 107 while keeping the accelerator grip 110 in a non-operating state while depressing the accelerator pedal 130 to generate the driving force of the rear wheel 104. Thereby, the front wheel 103 can be easily lifted.
  • the driving force is applied to the rear wheel 104 in a state where the front wheel 103 is lifted, the electric motorcycle 101 can move forward toward the obstacle 100 and the front wheel 103 can ride on the obstacle 100.
  • the user After the front wheel 103 is lifted (either before or after the front wheel 103 contacts the obstacle 100), the user operates the accelerator grip 110 to generate the driving force of the front wheel electric motor 113. Thereby, the front wheel 103 is driven, and the vehicle body is pulled forward by the driving force of the front wheel 103. Thus, the vehicle body is lifted onto the obstacle 100, and the rear wheel 104 passes over the obstacle 100, so that the electric motorcycle 101 can move over the obstacle 100 and move forward.
  • FIG. 5 is a diagram showing an example of a temporal change in the front wheel torque command value and the rear wheel torque command value when overcoming an obstacle as described above.
  • the rear wheel torque command value indicated by the line L2 rises from zero.
  • the front wheel 103 can be in a freely rotating state, and torque can be applied to the rear wheel 104 by the rear wheel electric motor 114, so that the front wheel 103 is easily lifted. Accordingly, the user can lift the front wheel 103 by lifting the handle bar 107.
  • the front wheel torque command value rises behind the rear wheel torque command value.
  • the electric motorcycle 101 can easily remove the obstacle 100. You can get over.
  • the front wheel torque command value when lifting the front wheel 103 does not have to be zero. That is, if the front wheel torque command value is sufficiently small and the rear wheel torque command value is sufficiently large, the operation of lifting the front wheel 103 is relatively easy.
  • FIG. 6 is a side view for explaining the configuration of the vehicle according to the second embodiment of the present invention.
  • the front, rear, left, and right directions are directions viewed from the user seated on the saddle. That is, FIG. 6 shows the right side surface of the electric motorcycle 1.
  • This vehicle is an electric vehicle having a configuration for transmitting the driving force of an electric motor to wheels, and more specifically, is an electric motorcycle 1 having a front wheel 3 and a rear wheel 4. Further, the electric motorcycle 1 includes a human power drive system for driving the rear wheel 4 by human power.
  • the electric motorcycle 1 includes a vehicle body frame 2 constituting a saddle-ride type vehicle body, a front wheel 3 attached to the vehicle body frame 2, and a rear wheel 4 also attached to the vehicle body frame 2.
  • the vehicle body frame 2 includes a head pipe 5, an upper pipe 6, a front pipe 7, a seat pipe 8, a pair of left and right rear pipes 9, and a pair of left and right lower pipes 10.
  • An upper pipe 6 is provided so as to extend rearward from the head pipe 5.
  • the front pipe 7 is disposed below the upper pipe 6 and extends obliquely downward from the head pipe 5 toward the rear.
  • a seat pipe 8 is provided so as to extend upward from the rear end portion of the front pipe 7.
  • the rear end portion of the upper pipe 6 is coupled to the seat pipe 8.
  • a saddle 11 is attached to the upper end of the seat pipe 8.
  • a battery 12 is attached to the seat pipe 8 below the saddle 11.
  • a pair of rear pipes 9 are provided substantially parallel to each other so as to extend rearward and obliquely downward from the rear end portion of the upper pipe 6.
  • a pair of lower pipes 10 are provided substantially parallel to each other so as to extend substantially horizontally rearward from the rear end of the front pipe 7.
  • the rear end portions of the pair of rear pipes 9 and the rear end portions of the pair of lower pipes 10 are coupled to each other.
  • a rear wheel sprocket 15 and a rear wheel 4 are rotatably attached to a joint portion between the rear pipe 9 and the lower pipe 10.
  • a rear wheel electric motor 14 is incorporated in the hub of the rear wheel 4.
  • the rear wheel electric motor 14 is configured to apply a driving force to the rear wheel 4.
  • a crankshaft 16 is rotatably attached to a joint portion between the front pipe 7 and the seat pipe 8 so as to extend horizontally from side to side.
  • a drive sprocket 17 is attached to the crankshaft 16.
  • An endless chain 18 is wound around the drive sprocket 17 and the rear wheel sprocket 15. Accordingly, the rotation of the crankshaft 16 is transmitted from the drive sprocket 17 to the rear wheel sprocket 15 via the chain 18.
  • a pair of crank arms 19 are respectively attached to both ends of the crankshaft 16.
  • the crankshaft 16 and the pair of crank arms 19 constitute a crank 23.
  • a pair of pedals 20 are respectively attached to the pair of crank arms 19. When the driver 21 operates the pedal 20, the crankshaft 16 can be rotated, whereby the rear wheel 4 can be driven by human power.
  • a steering shaft 25 is rotatably inserted into the head pipe 5.
  • a pair of front forks 26 are attached to the lower end portion of the steering shaft 25 substantially parallel to each other.
  • a front wheel 3 is rotatably attached to the lower ends of the pair of front forks 26.
  • a front wheel electric motor 13 is incorporated in the hub of the front wheel 3. The front wheel electric motor 13 is configured to give a driving force to the front wheel 3.
  • a handle bar 27 is attached to the upper end of the steering shaft 25.
  • the handle bar 27 extends substantially horizontally and has a pair of grips 28L and 28R (see also FIG. 7) that are respectively held by the right hand and the left hand of the driver 21.
  • the driver 21 rotates the handle bar 27 to the left and right
  • the steering shaft 25 rotates about the axis of the head pipe 5, and accordingly, the front fork 26 and the front wheel 3 are integrally moved to the left and right. Rotate. Thereby, the electric motorcycle 1 is steered.
  • the grip 28R on the right side as viewed from the driver 21 is provided so as to be rotatable with respect to the shaft of the handle bar 27, and is an accelerator grip for adjusting the outputs of the rear wheel electric motor 14 and the front wheel electric motor 13.
  • This electric motorcycle 1 has a traction control function for detecting the slip state of the front wheel 3 or the rear wheel 4 and quickly recovering the grip force. For example, when the state of the road surface where the front wheel 3 and the rear wheel 4 are in contact with each other is different, such as when the front wheel 3 reaches the manhole cover 60, slipping of the wheel on the road surface with a small friction coefficient is likely to occur.
  • FIG. 7 is a plan view showing a configuration example of the remote control unit 65 provided in the handle bar 27.
  • the remote control unit 65 includes a first switch 61, a second switch 62, and an adjustment volume 63 that are operated by a user.
  • the first switch 61 and the second switch 62 are switches for switching the control mode.
  • the first switch 61 is, for example, a switch for turning on / off the traction control.
  • the traction control is activated, for example, the traction control for the front wheels 3 and the rear wheels 4 or the traction control for only the rear wheels 4 is performed according to the control mode. That is, when the slip of the front wheel 3 and / or the rear wheel 4 is detected, the driving force control for reducing the driving force of the slipped wheel and recovering the grip of the wheel is performed.
  • the second switch 62 is a switch for turning on / off the cooperative control of the front and rear wheels 3 and 4.
  • the cooperative control When the cooperative control is activated, the front wheel driving force and the rear wheel driving force are controlled according to the operation input of either the operation amount of the accelerator grip 28R or the pedaling force applied to the pedal 20.
  • the cooperative control When the cooperative control is deactivated, the driving forces of the front wheels 3 and the rear wheels 4 are controlled independently. More specifically, when the cooperative control is inactive, the front wheel electric motor 13 generates torque according to the operation amount of the accelerator grip 28R, and the rear wheel electric motor 14 generates torque according to the pedal effort.
  • the second switch 62 for turning on / off the cooperative control is an example of a mode switching operation unit.
  • control modes 1 to 4 can be selected by combining traction control on / off and cooperative control on / off.
  • Mode 1 Traction control on
  • cooperative control on Mode 2 Traction control on
  • cooperative control off Mode 3: Traction control off
  • cooperative control on Mode 4 Traction control off, cooperative control off
  • cooperative control off Of these, cooperative control is active
  • Mode 1 and mode 3 are examples of the common control mode.
  • Mode 2 and mode 4 in which cooperative control is inactive are examples of individual control modes.
  • the adjustment volume 63 is an adjustment operation unit for adjusting the ratio of the assist force to the pedal depression force.
  • the ratio of the rear wheel driving force to the pedal depression force follows the setting by the adjustment volume 63.
  • the pedal depression force is used as an operation input when the coordinated control is on, the ratio of the total driving force of the front and rear wheels to the pedal depression force follows the setting by the adjustment volume 63.
  • FIG. 8 is a block diagram for explaining the configuration of the control system of the electric motorcycle 1.
  • the electric motorcycle 1 includes a manpower drive system 31 that shifts a pedal force applied to the pedal 20 by a driver 21 (user) at a predetermined speed ratio and supplies the pedal power to the rear wheels 4, a rear wheel electric motor 14, and a front wheel electric motor.
  • an electric drive system 32 for supplying the 13 driving forces to the rear wheels 4 and the front wheels 3, respectively.
  • the human power drive system 31 is an example of a human power drive mechanism.
  • the human power drive system 31 includes a crank 23 that is rotated by a pedaling force applied to the pedal 20, a speed increasing mechanism 35, a speed change mechanism 36, and a one-way clutch 37.
  • the speed increasing mechanism 35 includes the drive sprocket 17, the chain 18, and the rear wheel sprocket 15.
  • the rotation of the crank 23 is increased according to the gear ratio between the drive sprocket 17 and the rear wheel sprocket 15.
  • the speed change mechanism 36 is accommodated in, for example, a rear wheel hub, and changes the rotation of the input shaft coupled to the rear wheel sprocket 15 at any one of a plurality of speed ratios (for example, three speeds) and outputs it to the output shaft. It is configured as follows.
  • the one-way clutch 37 transmits the rotational force in one direction (forward direction) of the output shaft of the speed change mechanism 36 to the rear wheel 4 and does not transmit the rotation in the other direction (reverse direction). Therefore, the forward rotational force (manpower torque) applied to the crank 23 is increased by the speed increasing mechanism 35, then shifted by the speed change mechanism 36, and transmitted to the rear wheel 4 via the one-way clutch 37.
  • the electric drive system 32 drives the rear wheel electric motor 14 and the front wheel electric motor 13 according to the output of the pedal force sensor 41 and / or the output of the accelerator sensor 42. Further, the electric drive system 32 controls the front wheel electric motor 13 and the rear wheel electric motor 14 in accordance with a control mode (any one of the aforementioned modes 1 to 4) set by the first and second switches 61 and 62. In addition, the electric drive system 32 controls the front wheel electric motor 13 and the rear wheel electric motor 14 so as to generate an auxiliary force in a proportion corresponding to the operation amount of the adjustment volume 63.
  • the pedaling force sensor 41 detects a pedaling force (torque) applied to the crank 23 and outputs a pedaling force signal corresponding to the pedaling force.
  • the accelerator sensor 42 detects an operation amount of the accelerator grip 28R and outputs an accelerator signal corresponding to the operation amount.
  • the pedal 20 and the accelerator grip 28R are examples of drive torque operators that are operated by an operator to set the drive torque generated by the electric motors 13 and 14.
  • the pedal force sensor 41 and the accelerator sensor 42 are examples of operation amount sensors for detecting the operation amount (operation force or displacement amount) of the drive torque operator.
  • the electric drive system 32 includes a remote control unit 65, a pedal force sensor 41, an accelerator sensor 42, a front wheel electric motor 13, a rear wheel electric motor 14, a front wheel speed reduction mechanism 43, a rear wheel speed reduction mechanism 44, and a control unit 45.
  • the control unit 45 drives the front wheel electric motor 13 and the rear wheel electric motor 14 according to the outputs of the remote control unit 65, the pedal force sensor 41 and / or the accelerator sensor 42.
  • the rotation of the front wheel electric motor 13 is decelerated by the front wheel reduction mechanism 43 and transmitted to the front wheel 3.
  • the rotation of the rear wheel electric motor 14 is decelerated by the rear wheel reduction mechanism 44 and transmitted to the rear wheel 4.
  • the pedal 20 and the pedal force sensor 41 function as a rear wheel input unit that inputs an operation input used to calculate the torque command value of the rear wheel electric motor 14.
  • the pedal 20 and the pedal force sensor 41 function as an input unit that inputs operation inputs that are commonly used to calculate torque command values for the front wheel electric motor 13 and the rear wheel electric motor, respectively.
  • the accelerator grip 28R and the accelerator sensor 42 function as a front wheel input unit for inputting an operation input used for calculating a torque command value of the front wheel electric motor 13.
  • the accelerator grip 28R and the accelerator sensor 42 function as an input unit for inputting operation inputs that are commonly used to calculate torque command values for the front wheel electric motor 13 and the rear wheel electric motor, respectively.
  • the control unit 45 includes a front wheel torque command value calculation unit 53 and a rear wheel torque command value calculation unit 54.
  • the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 respectively output the front wheel torque command value and the rear wheel torque command value according to the outputs of the remote control unit 65, the pedal force sensor 41 and / or the accelerator sensor 42. Calculate.
  • the control unit 45 gives a front wheel torque command (front wheel drive command) corresponding to the front wheel torque command value to the front wheel motor drive unit 55. Further, the control unit gives a rear wheel torque command (rear wheel drive command) corresponding to the rear wheel torque command value to the rear wheel motor drive unit 56.
  • the front wheel motor drive unit 55 includes a drive circuit that drives the front wheel electric motor 13 based on a front wheel torque command.
  • the rear wheel motor drive unit 56 includes a drive circuit that drives the rear wheel electric motor 14 based on a rear wheel torque command.
  • the front wheel torque command value is a command value of the driving torque that should be generated by the front wheel electric motor 13.
  • the rear wheel torque command value is a drive torque command value that should be generated by the rear wheel electric motor 14.
  • the front wheel motor drive unit 55 and the rear wheel motor drive unit 56 control the drive voltage from the battery 12 (see FIG. 6) by PWM (pulse width modulation) at duty ratios corresponding to the front wheel torque command value and the rear wheel torque command value, respectively. To do.
  • PWM pulse width modulation
  • the control unit 45 further includes a slip detection unit 50 that detects the slip state of the front wheel 3 and the slip state of the rear wheel 4.
  • the control unit 45 also calculates a front wheel rotation speed calculation unit 51 that calculates the front wheel rotation speed from the rotation speed of the front wheel electric motor 13 and a rear wheel rotation speed calculation that calculates the rear wheel rotation speed from the rotation speed of the rear wheel electric motor 14.
  • a unit 52 The slip detection unit 50 determines the slip state of the front wheel 3 and the slip state of the rear wheel 4 based on the front wheel rotation speed and the rear wheel rotation speed calculated by the front wheel rotation speed calculation unit 51 and the rear wheel rotation speed calculation unit 52, respectively. To detect.
  • the front wheel and rear wheel rotation speed calculation units 51 and 52 determine the rotation speeds of the front wheel and rear wheel electric motors 13 and 14, respectively, You may output as information showing wheel rotational speed.
  • the output signal of the pedal force sensor 41 can be given to the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 via the sensor switching unit 57.
  • the output signal of the accelerator sensor 42 can be given to the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 via the sensor switching unit 57.
  • the sensor switching unit 57 can take the following state, for example.
  • the sensor switching unit 57 is switched by operating the second switch 62 of the remote control unit 65. Specifically, when the cooperative control is activated by the second switch 62, the state 1 or the state 3 is obtained. Whether to be in state 1 or state 3 depends on the setting of the program executed by control unit 45. When the cooperative control is inactive, the sensor switching unit 57 is in the state 2.
  • the detection result by the slip detection unit 50 is input to the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 via the traction control switching unit 58.
  • the traction control switching unit 58 switches between an on state and an off state. In the ON state, the detection result of the slip detection unit 50 is given to the torque command value calculation units 53 and 54, and traction control is executed based on the result. In the off state, the detection result of the slip detection unit 50 is not transmitted to the torque command value calculation units 53 and 54, and traction control is not executed.
  • the traction control switching unit 58 is switched by the first switch 61 of the remote control unit 65. That is, when the traction control is enabled by the first switch 61, the traction control switching unit 58 is turned on, and when the traction control is disabled by the first switch 61, the traction control switching unit 58 is turned off. It becomes.
  • the control unit 45 includes a microcomputer and is programmed to realize a plurality of functions. More specifically, the control unit 140 includes a processor (CPU) and a storage medium (memory) that stores a program executed by the processor.
  • the plurality of functions include a slip detection unit 50, a front wheel rotation speed calculation unit 51, a rear wheel rotation speed calculation unit 52, a front wheel torque command value calculation unit 53, a rear wheel torque command value calculation unit 54, a sensor switching unit 57, and a traction control.
  • a function as the switching unit 58 is included.
  • FIG. 9 and FIGS. 10A to 10D are flowcharts for explaining a processing example of the control unit 45 related to the control of the front wheel electric motor 13 and the rear wheel electric motor 14, and the control unit 45 repeats the processing in a predetermined control cycle. Show.
  • the control unit 45 acquires a signal from the remote control unit 65 (step S11). Specifically, the control unit 45 acquires the state of the first switch 61 and the second switch 62 and the operation amount of the adjustment volume 63. The control unit 45 generates torque command values for the front wheel electric motor 13 and the rear wheel electric motor 14 according to one of the control modes 1 to 4 according to the state of the first and second switches 61 and 62. To do.
  • Step S14 when the traction control is activated by the first switch 61 (step S12), if the cooperative control is activated by the second switch 62 (step S13), the control mode is set to mode 1.
  • Step S14 When the traction control is activated by the first switch 61 (step S12), if the cooperative control is deactivated by the second switch 62 (step S13), the control mode is set to mode 2. (Step S15). Further, when the traction control is deactivated by the first switch 61 (step S12), if the cooperative control is activated by the second switch 62 (step S16), the control mode is set to mode 3. (Step S17). If the traction control is deactivated by the first switch 61 (step S12), and if the cooperative control is deactivated by the second switch 62 (step S16), the control mode is set to mode 4. (Step S18).
  • the control unit 45 controls the sensor switching unit 57 to state 1 or state 3 described above. Which state is set depends on the setting of a program executed by the control unit 45.
  • the sensor switching unit 57 is controlled to the state 1
  • the output signal of the pedal force sensor 41 is acquired as an operation input signal (step S19), and the front wheel torque command value and the rear wheel torque command are based on the operation input signal. A value is generated.
  • the output signal of the accelerator sensor 42 is acquired as an operation input signal (step S19), and the front wheel torque command value and the rear wheel torque command are based on the operation input signal. A value is generated.
  • the electric motorcycle 1 operates as an electric auxiliary bicycle in which auxiliary driving force is applied to the front wheels 3 and the rear wheels 4 according to the pedal depression force.
  • the ratio of the auxiliary driving force to the pedal depression force follows the setting by the adjustment volume 63.
  • the control unit 45 controls the sensor switching unit 57 to the state 2 described above.
  • the output signal of the accelerator sensor 42 and the output signal of the pedal effort sensor 41 are acquired (step S20).
  • a front wheel torque command value is generated based on the output signal of the accelerator sensor 42
  • a rear wheel torque command value is generated based on the output signal of the pedal effort sensor 41.
  • the traction control switching unit 58 is turned on. In this case, for example, traction control may be performed only for the rear wheel 4.
  • the control unit 45 controls the sensor switching unit 57 to the state 1 or 3 described above. Which state is set depends on the setting of the program executed by the control unit 45.
  • the sensor switching unit 57 is controlled to the state 1
  • the output signal of the pedal force sensor 41 is acquired as an operation input signal (step S21), and the front wheel torque command value and the rear wheel torque command are based on the operation input signal.
  • a value is generated.
  • the sensor switching unit 57 is controlled to the state 3
  • the output signal (operation input signal) of the accelerator sensor 42 is acquired (step S21), and the front wheel torque command value and the rear wheel torque are based on the operation input signal.
  • a command value is generated. If the sensor switching unit 57 is in the state 1, the electric motorcycle 1 operates as a battery-assisted bicycle.
  • the ratio of the auxiliary driving force to the pedal depression force follows the setting by the adjustment volume 63. If the sensor switching unit 57 is in the state 3, the electric motorcycle 1 operates as an electric vehicle that travels only with the driving force of the electric motors 13 and 14. The traction control switching unit 58 is turned off.
  • the control unit 45 controls the sensor switching unit 57 to the state 2 described above.
  • the output signal of the accelerator sensor 42 is acquired as an operation input signal (step S22), and a front wheel torque command value is generated based thereon.
  • the output signal of the pedal force sensor 41 is acquired as an operation input signal (step S22), and a rear wheel torque command value is generated based on the operation input signal. Accordingly, the front wheel driving torque and the rear wheel driving torque are generated based on different sensor input signals.
  • the traction control switching unit 58 is turned off. Therefore, traction control is not performed on either the front wheel 3 or the rear wheel 4.
  • FIG. 10A is a flowchart for explaining a specific operation example of the control unit 45 in mode 1 (traction control on, cooperative control on).
  • step S31: YES When the absolute value of the front-rear wheel rotational speed difference obtained by subtracting the rear wheel rotational speed from the front wheel rotational speed exceeds a predetermined threshold (step S31: YES), the slip detection unit 50 performs the front wheel 3 or the rear wheel 4 Is determined to be in a slip state (step S32). Otherwise (step S31: NO), the slip detection unit 50 determines that neither the front wheel 3 nor the rear wheel 4 is in the slip state (step S33).
  • step S32 When it is determined that either the front wheel 3 or the rear wheel 4 is in the slip state (step S32), the slip detection unit 50 further determines that the front wheel has a positive difference between the front and rear wheels (step S34: YES). 3 is determined to be in a slip state (step S35, front wheel slip detection). On the other hand, if the front and rear wheel rotational speed difference is negative (step S34: NO), the slip detection unit 50 determines that the rear wheel 4 is in the slip state (step S36, rear wheel slip detection). That is, when the absolute value of the rotational speed difference between the front wheel 3 and the rear wheel 4 is larger than the threshold value, the slip detection unit 50 determines that the front wheel 3 and the rear wheel 4 with the higher rotational speed is in the slip state. To do.
  • the front wheel torque command value calculation unit 53 calculates the front wheel torque command value in the non-slip mode (normal mode) (step S37). Further, when the front wheel 3 is in the slip state (step S35), the front wheel torque command value calculation unit 53 performs front wheel torque command value calculation in the front wheel slip mode (step S38). Further, when the rear wheel 4 is in the slip state (step S36), the front wheel torque command value calculation unit 53 performs front wheel torque command value calculation in the rear wheel slip mode (step S39).
  • the rear wheel torque command value calculation unit 54 calculates the rear wheel torque command value in the non-slip mode (normal mode) (Ste S40). Further, when the front wheel 3 is in the slip state (step S35), the rear wheel torque command value calculation unit 54 performs a rear wheel torque command value calculation in the front wheel slip mode (step S41). Further, when the rear wheel 4 is in the slip state (step S36), the rear wheel torque command value calculation unit 54 performs a rear wheel torque command value calculation in the rear wheel slip mode (step S42).
  • the front wheel motor drive unit 55 causes the current corresponding to the front wheel torque command value to flow through the front wheel electric motor 13 by PWM control of the drive voltage at the duty ratio corresponding to the front wheel torque command value (step S43).
  • the rear wheel motor drive unit 56 applies a current corresponding to the rear wheel torque command value to the rear wheel electric motor 14 by performing PWM control of the drive voltage at a duty ratio corresponding to the rear wheel torque command value (step). S44). Thereafter, the same operation is repeated at a predetermined control cycle.
  • the front wheel torque command value calculation unit 53 calculates a larger front wheel torque command value as the output signal (operation input signal) of the pedal force sensor 41 or the accelerator sensor 42 increases. Specifically, a front wheel torque command value proportional to the pedal effort or the accelerator operation amount (operation input) is calculated.
  • the rear wheel torque command value calculation unit 54 calculates a larger rear wheel torque command value as the output signal (operation input signal) of the pedal force sensor 41 or the accelerator sensor 42 increases. Specifically, a rear wheel torque command value proportional to the pedal effort or the accelerator operation amount (operation input) is calculated.
  • the proportionality coefficient between the front wheel torque command value and the rear wheel torque command value with respect to the operation input is set by the adjustment volume 63.
  • the front wheel torque command value calculation unit 53 calculates a front wheel torque command value that fluctuates alternately and alternately between a first value and a second value smaller than the first value.
  • the first value may be equal to the front wheel torque command value in the non-slip mode (a value corresponding to the output (operation input) of the pedal force sensor 41 or the accelerator sensor 42), and is smaller than the value in the non-slip mode. It may be a value.
  • the second value may be zero.
  • the front wheel torque command value shows a pulse-like variation that becomes an intermittently significant value (a value that gives forward driving force to the front wheel 3).
  • the front wheel torque command value indicates a fluctuation having a pulse waveform in which the pulse width is determined so that the time length for taking the first value is gradually shortened, whereby the time average value of the front wheel torque command value is obtained. May be determined to gradually decrease.
  • the second value may be a negative value (a value that gives torque to the braking side).
  • the front wheel torque command value calculation unit 53 calculates a front wheel torque command value that alternately and repeatedly fluctuates between the first value and the second value so that the front wheel torque command value becomes the second value at least twice (at least twice). It is preferable to produce.
  • the rear wheel torque command value calculation unit 54 generates a rear wheel torque command value having a characteristic that increases to compensate for the decrease in the time average value of the front wheel torque command value.
  • the rear wheel torque command value is preferably set to show continuous fluctuations rather than pulse fluctuations.
  • the rear wheel torque command value calculation unit 54 for example, rear wheel torque command that alternately and repeatedly fluctuates between a third value and a fourth value smaller than the third value. Calculate the value.
  • the third value may be equal to the rear wheel torque command value in the non-slip mode (a value corresponding to the output (operation input) of the pedal force sensor 41 or the accelerator sensor 42), and is greater than the value in the non-slip mode. It may be a small value.
  • the fourth value may be zero. In this case, the rear wheel torque command value shows a pulse-like variation that becomes an intermittently significant value (a value that gives the forward driving force to the rear wheel 4).
  • the rear wheel torque command value indicates a fluctuation having a pulse waveform in which the pulse width is determined so that the time length for taking the third value is gradually shortened. It may be determined that the average value gradually decreases.
  • the fourth value may be a negative value (a value that gives torque to the braking side).
  • the rear wheel torque command value calculation unit 54 repeatedly changes the rear wheel torque between the third value and the fourth value so that the rear wheel torque command value becomes the fourth value at least twice (at least twice). It is preferable to generate a command value.
  • the front wheel torque command value calculation unit 53 generates a front wheel torque command value having a characteristic that increases to compensate for the decrease in the time average value of the rear wheel torque command value.
  • the front wheel torque command value in this case is preferably set so as to show continuous fluctuations rather than pulse fluctuations.
  • the rear wheel torque command value and the front wheel torque command value are calculated using the output signal of either one of the pedal force sensor 41 and the accelerator sensor 42 as the operation input signal in common.
  • traction control is performed to recover the grip of the wheel on which the slip has occurred.
  • FIG. 10B is a flowchart for explaining a specific operation example of the control unit 45 in mode 2 (traction control on, cooperative control off).
  • the sensor switching unit 57 is controlled to state 2 (step S20 in FIG. 9).
  • the control unit 45 acquires the output signal of the accelerator sensor 42, that is, the accelerator operation amount (step S20 in FIG. 9). Further, the control unit 45 acquires an output signal of the pedal force sensor 41, that is, a pedal force value (step S20 in FIG. 9).
  • the front wheel torque command value calculation unit 53 obtains a front wheel torque command value based solely on the output signal (accelerator operation amount) of the accelerator sensor 42 (step S51).
  • the rear wheel torque command value calculation unit 54 generates a normal rear wheel torque command value corresponding to the pedal force value detected by the pedal force sensor 41 (step S52).
  • the ratio of the normal rear wheel torque command value to the pedaling force can be set by the adjustment volume 63.
  • the slip detection unit 50 determines whether or not the rear wheel 4 is in a slip state based on the rear wheel rotation speed obtained by the rear wheel rotation speed calculation unit 52 (step S53). For example, the slip detection unit 50 may determine that the rear wheel 4 is in the slip state when the rotational acceleration of the rear wheel 4 exceeds a predetermined threshold. The rotational acceleration can be obtained by differentiating the rear wheel rotational speed with time.
  • step S53: NO When it is determined that the rear wheel 4 is not in the slip state (step S53: NO), the normal rear wheel torque command value is used as it is as the rear wheel torque command value. On the other hand, if it is determined that the rear wheel 4 is in the slip state (step S53: YES), the rear wheel torque command value calculation unit 54 corrects the normal rear wheel torque command value to obtain a rear wheel smaller than that. A torque command value is generated (step S54).
  • the front wheel motor drive unit 55 causes a current corresponding to the front wheel torque command value to flow through the front wheel electric motor 13 by PWM control of the drive voltage at a duty ratio corresponding to the front wheel torque command value (step S55).
  • the rear wheel motor drive unit 56 applies a current corresponding to the rear wheel torque command value to the rear wheel electric motor 14 by performing PWM control of the drive voltage at a duty ratio corresponding to the rear wheel torque command value (step). S56).
  • the front wheel electric motor 13 generates torque according to the accelerator operation amount.
  • the rear wheel electric motor 14 generates a torque corresponding to the pedal effort.
  • the rear wheel electric motor 14 generates a torque corresponding to a normal rear wheel torque command value unless the rear wheel 4 is in a slip state.
  • the rear wheel electric motor 14 if the rear wheel 4 is in the slip state, the rear wheel electric motor 14 generates a torque smaller than that in the non-slip state to recover the grip of the rear wheel 4.
  • the rear wheel torque command value may be set to zero or a minute constant value instead of correcting the decrease in the normal rear wheel torque command value. Thereby, the slip state of the rear wheel 4 can be resolved more reliably.
  • FIG. 10C is a flowchart for explaining a specific operation example of the control unit 45 in mode 3 (traction control off, cooperative control on).
  • the sensor switching unit 57 is set to state 1 or state 3.
  • the control unit 45 acquires the output of the tread force sensor 41 as an operation input, and in the case of the state 3, the control unit 45 acquires the output of the accelerator sensor 42 as an operation input ( Step S21 in FIG. 9).
  • the front wheel torque command value calculation unit 53 obtains a front wheel torque command value based on the acquired operation input (step S61). Further, the rear wheel torque command value calculation unit 54 generates a rear wheel torque command value based on the acquired operation input (step S62).
  • the front wheel motor drive unit 55 causes a current corresponding to the front wheel torque command value to flow through the front wheel electric motor 13 by performing PWM control of the drive voltage at a duty ratio corresponding to the front wheel torque command value (step S63).
  • the rear wheel motor drive unit 56 applies a current corresponding to the rear wheel torque command value to the rear wheel electric motor 14 by performing PWM control of the drive voltage at a duty ratio corresponding to the rear wheel torque command value (step). S64).
  • both the front wheel torque command value and the rear wheel torque command value are calculated based on the output of the pedal force sensor 41. Specifically, based on the front wheel assist ratio and the rear wheel assist ratio set by the adjustment volume 63, a front wheel torque command value and a rear wheel torque command value proportional to the pedal effort are calculated. As a result, an auxiliary torque corresponding to the pedaling force is applied to the front wheel 3 and the rear wheel 4, respectively, and an auxiliary force corresponding to the human power applied to the pedal 20 is generated from the front wheel 3 and the rear wheel 4.
  • both the front wheel torque command value and the rear wheel torque command value are calculated based on the output of the accelerator sensor 42. Specifically, a front wheel torque command value and a rear wheel torque command value that are proportional to the operation amount of the accelerator sensor 42 are calculated. As a result, a driving torque corresponding to the operation amount of the accelerator sensor 42 is applied to the front wheels 3 and the rear wheels 4.
  • the traction control Since the traction control is inactive, the traction control is not performed even if the front wheel 3 or the rear wheel 4 slips. That is, the cancellation of the slip state is exclusively left to the user's pedal operation or accelerator operation.
  • FIG. 10D is a flowchart for explaining a specific operation example of the control unit 45 in mode 4 (traction control off, cooperative control off).
  • mode 4 the sensor switching unit 57 is controlled to the state 2 (step S22 in FIG. 9).
  • the control unit 45 acquires the output signal of the accelerator sensor 42, that is, the accelerator operation amount (step S22 in FIG. 9). Further, the control unit 45 acquires an output signal of the pedal force sensor 41, that is, a pedal force value (step S22 in FIG. 9).
  • the front wheel torque command value calculation unit 53 obtains a front wheel torque command value based solely on the output signal (accelerator operation amount) of the accelerator sensor 42 (step S71). Further, the rear wheel torque command value calculation unit 54 generates a rear wheel torque command value corresponding to the pedal force value detected by the pedal force sensor 41 (step S72). The ratio of the rear wheel torque command value with respect to the pedaling force follows the setting by the adjustment volume 63.
  • the front wheel motor drive unit 55 causes the front wheel electric motor 13 to flow a current corresponding to the front wheel torque command value by PWM control of the drive voltage at a duty ratio corresponding to the front wheel torque command value (step S73).
  • the rear wheel motor drive unit 56 applies a current corresponding to the rear wheel torque command value to the rear wheel electric motor 14 by performing PWM control of the drive voltage at a duty ratio corresponding to the rear wheel torque command value (step). S74).
  • the front wheel torque command value is calculated based on the output of the accelerator sensor 42. Specifically, a front wheel torque command value proportional to the operation amount of the accelerator sensor 42 is calculated. As a result, a driving torque corresponding to the operation amount of the accelerator sensor 42 is applied to the front wheels 3.
  • the rear wheel torque command value is calculated based on the output of the pedal force sensor 41. Specifically, based on the rear wheel assist ratio set by the adjustment volume 63, a rear wheel torque command value proportional to the pedal effort is calculated. As a result, an auxiliary torque proportional to the pedaling force is applied to the rear wheel 4, and an auxiliary force corresponding to the human power applied to the pedal 20 is generated from the rear wheel 4.
  • the front wheel torque command value corresponds to the accelerator operation amount
  • the rear wheel torque command value corresponds to the pedaling force applied to the pedal.
  • FIG. 11 is a diagram illustrating an example of a temporal change in the front wheel torque command value and the rear wheel torque command value when an obstacle (such as a log) existing on the traveling path of the electric motorcycle 1 is overcome.
  • a line L11 indicates a front wheel torque command value
  • a line L12 indicates a rear wheel torque command value.
  • the driver 21 operates the second switch 62 to turn off the cooperative control, and selects mode 2 or mode 4. Thereby, the front wheel driving force and the rear wheel driving force can be controlled independently of each other. As in the case of FIG. 4 referred to with respect to the first embodiment described above, the driver 21 lifts the front wheel 3 and rides on the obstacle, and then applies a driving torque to the front wheel 3 so that the front wheel 3 Operate to pull up.
  • the driver 21 depresses the pedal 20 with the accelerator operation amount set to zero and the front wheel electric motor 13 freely rotating without generating torque.
  • the rear wheel torque command value rises.
  • the rear wheel 4 receives human power from the human power drive system 31 and auxiliary power generated by the rear wheel electric motor 14.
  • the driver 21 raises the handle bar 27.
  • the front wheel 3 can be floated easily.
  • the vehicle body advances toward the obstacle by the driving force (human power and auxiliary force) applied to the rear wheel 4.
  • the driver 21 operates the accelerator grip 28R to increase the accelerator operation amount.
  • the front wheel torque command value increases, and the front wheel electric motor 13 generates a torque corresponding to the accelerator operation amount. Therefore, when the front wheel 3 contacts the obstacle and the torque is transmitted to the obstacle, the front wheel 3 pulls the vehicle body and rides on the obstacle.
  • the front wheel torque command value for lifting the front wheel 3 does not have to be zero. That is, if the front wheel torque command value is sufficiently small and the rear wheel torque command value is sufficiently large, the operation of lifting the front wheel 3 is relatively easy.
  • FIG. 12 is a block diagram for explaining an electrical configuration of an electric motorcycle 81 according to the third embodiment of the present invention.
  • FIG. 12 the corresponding parts of the respective parts in FIG. In the description of this embodiment, reference is again made to FIGS. 6, 7 and 10A to 10D.
  • control unit 45 includes a first delay unit 71 that delays the output signal of the pedal force sensor 41 and a second delay unit 72 that delays the output signal of the accelerator sensor 42. That is, the control unit 45 is programmed to realize the functions as the first delay unit 71 and the second delay unit 72.
  • the first delay unit 71 may delay the input signal for a first predetermined time.
  • the second delay unit 72 may delay the input signal for a second predetermined time.
  • the first and second predetermined times may be equal or different.
  • the first and second predetermined times may be set to, for example, about 0 seconds to 1.5 seconds (preferably about 0.5 seconds to 1.5 seconds). Further, by setting the control unit 45 to a predetermined setting mode, the first predetermined time and / or the second predetermined time can be adjusted by the adjustment volume 63 or according to an input of an operation unit different from the adjustment volume 63. It may be said.
  • the first delay unit 71 may delay the input signal for a time required for the rear wheel 4 to rotate by a predetermined first delay rotation angle.
  • the second delay unit 72 may delay the input signal for a time required for the rear wheel 4 to rotate by a predetermined second delay rotation angle.
  • the first and second delayed rotation angles may be equal or different.
  • the first and second delay rotation angles may be set to about 90 degrees, for example.
  • the control unit 45 sets the signal delay time in the first and second delay units 71 and 72 based on the obtained time.
  • the output signal of the pedal force sensor 41 can be given to the rear wheel torque command value calculation unit 54 via the sensor switching unit 57. Further, the output signal of the pedal force sensor 41 can be given to the front wheel torque command value calculation unit 53 via the sensor switching unit 57 after being delayed by the first delay unit 71.
  • the output signal of the accelerator sensor 42 can be given to the rear wheel torque command value calculation unit 54 via the sensor switching unit 57. Further, the output signal of the accelerator sensor 42 can be given to the front wheel torque command value calculation unit 53 via the sensor switching unit 57 after being delayed by the second delay unit 72. Further, the output signal of the accelerator sensor 42 can be given to the front wheel torque command value calculation unit 53 via the sensor switching unit 57 without being delayed by the second delay unit 72.
  • the sensor switching unit 57 can take the following states.
  • the output signal of the pedal force sensor 41 is given to both the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54, and the output signal of the accelerator sensor 42 is the torque command value calculation unit. It is not given to either 53 or 54.
  • the output signal of the pedal force sensor 41 is delayed by the first delay unit 71 and supplied to the front wheel torque command value calculation unit 53.
  • the sensor switching unit 57 is switched by operating the first switch 61 of the remote control unit 65. Specifically, when the cooperative control is activated by the first switch 61, the state 1 or the state 3 is obtained. Which state is entered depends on the program setting of the control unit 45. When coordinated control is inactive, state 2 is entered.
  • the control unit 45 has the above-described control modes 1 to 4 as in the second embodiment.
  • FIG. 13 A processing example of the control unit 45 relating to control of the front wheel electric motor 13 and the rear wheel electric motor 14 will be described with reference to FIG. 13 and FIGS. 10A to 10D described above.
  • FIG. 13 the same reference numerals are assigned to steps in which the same processing as each step shown in FIG. 9 is performed.
  • the control unit 45 acquires a signal from the remote control unit 65. Specifically, the control unit 45 acquires the states of the first switch 61 and the second switch 62 and the operation amount of the adjustment volume 63 (step S11). The control unit 45 controls the front wheel drive according to the state of the first and second switches 62 (steps S12, S13, S16) and according to any of the control modes 1 to 4 (steps S14, S15, S17, S18). Torque command values for the motor 13 and the rear wheel electric motor 14 are generated.
  • the control unit 45 controls the sensor switching unit 57 to state 1 or state 3 described above (step S19). Accordingly, the front wheel torque command value and the rear wheel torque command value are generated using the output signal of the pedal force sensor 41 or the accelerator sensor 42 as the operation input signal.
  • the traction control switching unit 58 is turned on.
  • the control unit 45 delays the output signal (operation input signal) of the pedal force sensor 41 by the first delay unit 71 (step S25).
  • the control unit 45 delays the output signal (operation input signal) of the accelerator sensor 42 by the second delay unit 72.
  • the front wheel drive torque command value is calculated based on the delayed operation input signal (steps S37, S38, S39).
  • control unit 45 controls the sensor switching unit 57 to the state 2 described above. Thereby, both the output signal of the accelerator sensor 42 and the output signal of the pedaling force sensor 41 are acquired (step S20).
  • the traction control switching unit 58 is turned on. In this case, for example, traction control is performed only for the rear wheel 4.
  • FIG. 10B Other operations in mode 2 are as shown in FIG. 10B.
  • the output signal of the accelerator sensor 42 is given to the front wheel torque command value calculation unit 53 without being delayed by the second delay unit 72. That is, the front wheel drive torque command value is calculated based on the accelerator sensor output signal (operation input signal) without delay. Further, the output signal of the pedal force sensor 41 is input to the rear wheel torque command value calculation unit 54. The rear wheel torque command value is calculated based on the output signal (operation input signal) of the pedal force sensor 41. Thus, the front wheel torque command value and the rear wheel torque command value are generated based on different operation input signals.
  • the control unit 45 controls the sensor switching unit 57 to state 1 or 3 described above. Accordingly, the front wheel torque command value and the rear wheel torque command value are generated using the output signal of the pedal force sensor 41 or the accelerator sensor 42 as the operation input signal.
  • the traction control switching unit 58 is turned off.
  • the control unit 45 delays the output signal (operation input signal) of the pedal force sensor 41 by the first delay unit 71. Further, when the sensor switching unit 57 is in the state 3, the control unit 45 delays the output signal (operation input signal) of the accelerator sensor 42 by the second delay unit 72.
  • the front wheel drive torque command value is calculated based on the delayed operation input signal.
  • the control unit 45 controls the sensor switching unit 57 to the state 2 described above. Thereby, both the output signal of the accelerator sensor 42 and the output signal of the tread force sensor 41 are acquired (step S22).
  • the traction control switching unit 58 is turned off. Accordingly, no traction control is performed on either the front wheel 3 or the rear wheel 4.
  • FIG. 10D Other operations in mode 4 are as shown in FIG. 10D.
  • the output signal of the accelerator sensor 42 is input to the front wheel torque command value calculation unit 53 without being delayed by the second delay unit 72. That is, the front wheel torque command value is generated based on the accelerator sensor output signal (operation input signal) without delay.
  • the output signal of the pedal force sensor 41 is input to the rear wheel torque command value calculation unit 54.
  • the rear wheel torque command value is calculated based on the output signal (operation input signal) of the pedal force sensor 41.
  • the front wheel torque command value and the rear wheel torque command value are generated based on different operation input signals.
  • the driving torque of the front wheels 3 can be generated or increased behind the generation or increase of the driving torque of the rear wheels 4.
  • the mode 1 and the mode 3 it is possible to easily get over the obstacle and advance the vehicle.
  • the driver 21 lifts the front wheel 3 and rides on the obstacle, then applies a driving torque to the front wheel 3 and operates the front wheel 3 to lift the vehicle body to the obstacle.
  • the obstacle can be easily overcome by operating as follows. Specifically, the driver 21 once sets the pedal depression force to zero to stop the generation of the driving torque from the front wheel electric motor 13 so that the front wheel 3 is in a freely rotating state. From this state, the driver 21 depresses the pedal 20. As a result, as shown by a line L22 in FIG. 14, the rear wheel torque command value rises, and the rear wheel 4 is applied with human power from the human power drive system 31 and auxiliary force generated by the rear wheel electric motor 14. On the other hand, while the pedal force sensor output signal is delayed by the first delay unit 71, the front wheel torque command value is kept at zero and the front wheel 3 is kept in the free rotation state as shown by the line L21 in FIG. It is.
  • the driver 21 pulls up the handle bar 27 using this delay time.
  • the front wheel 3 can be floated easily.
  • the vehicle body moves forward toward the obstacle by the driving force (human power and auxiliary force) applied to the rear wheel 4, so that the front wheel 3 can ride on the obstacle.
  • the front wheel torque command value rises, and a front wheel torque command value corresponding to the delayed pedal force sensor output is generated.
  • the front wheel electric motor 13 generates a torque corresponding to the pedal force sensor output. Therefore, when the front wheel 3 contacts the obstacle and the torque is transmitted to the obstacle, the front wheel 3 pulls the vehicle body and rides on the obstacle.
  • the electric motorcycle 81 can easily get over obstacles.
  • the obstacle can be easily overcome by operating as follows.
  • the driver 21 sets the accelerator grip 28R as the initial position, sets the accelerator operation amount to zero, stops the generation of the drive torque from the front wheel electric motor 13, and puts the front wheel 3 into a freely rotating state. From this state, the driver 21 operates the accelerator grip 28R to increase the accelerator operation amount. Accordingly, the rear wheel torque command value increases, so that the rear wheel electric motor 14 generates torque and drives the rear wheel 3.
  • the accelerator sensor output signal is delayed by the second delay unit 72, the front wheel torque command value is kept at zero, and the front wheel 3 is kept in the free rotation state.
  • the driver 21 pulls up the handle bar 27 using this delay time.
  • the front wheel 3 can be floated easily.
  • the vehicle body moves forward toward the obstacle by the driving force applied to the rear wheel 4 from the rear wheel electric motor 14, so that the front wheel 3 can ride on the obstacle.
  • the front wheel torque command value rises, and a front wheel torque command value corresponding to the delayed accelerator sensor output is generated.
  • the front wheel torque command value increases after an increase in the rear wheel torque command value, and a torque corresponding to the front wheel torque command value is generated from the front wheel electric motor 13. Therefore, when the front wheel 3 contacts the obstacle and the torque is transmitted to the obstacle, the front wheel 3 pulls the vehicle body and rides on the obstacle.
  • the electric motorcycle 1 can easily get over obstacles.
  • the accelerator operation amount does not necessarily need to be zero before lifting the front wheel 3 and may be a minute value larger than zero.
  • the delay time or the delay rotation angle in the delay units 71 and 72 can be adjusted by the adjustment volume 63 after the control unit 45 is set to the setting mode.
  • the adjustment volume 63 is an example of a time difference adjustment unit that outputs a time difference command signal.
  • the control unit 45 variably sets the delay time or the delay rotation angle in the delay units 71 and 72 according to a command from the adjustment volume 63, thereby increasing the time difference in driving force between the front wheel electric motor 13 and the rear wheel electric motor 14. Is variably set.
  • FIG. 15 is a block diagram for illustrating an electrical configuration of an electric motorcycle 91 according to the fourth embodiment of the present invention.
  • the corresponding parts of the above-mentioned parts in FIG. 12 are denoted by the same reference numerals. In the description of this embodiment, reference is again made to FIG. 6 and FIG.
  • the sensor switching unit 57 is configured to be able to give the output signal of the pedal force sensor 41 to the front wheel torque command value calculation unit 53 without passing through the delay by the first delay unit 71.
  • the second switch 62 for switching on / off of the cooperative control is configured to be able to select the first cooperative control on state, the second cooperative control on state, and the cooperative control off state. The state corresponding to can be taken.
  • the sensor switching unit 57 can take the following states.
  • the output signal of the pedal force sensor 41 is given to both the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54, and the output signal of the accelerator sensor 42 is the torque command value. It is not given to any of the arithmetic units 53 and 54.
  • the output signal of the pedal force sensor 41 is supplied to the front wheel torque command value calculation unit 53 without being delayed by the first delay unit 71.
  • State 1-2 The output signal of the pedal force sensor 41 is given to both the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54, and the output signal of the accelerator sensor 42 is sent to the torque command value calculation units 53, 54. Neither is given.
  • the output signal of the pedal force sensor 41 is delayed by the first delay unit 71 and supplied to the front wheel torque command value calculation unit 53.
  • the sensor switching unit 57 When the first cooperative control ON state is selected by the second switch 62, the sensor switching unit 57 is set to the state 1-1 or the state 3-1. Which state is entered depends on the program setting of the control unit 45. When the second cooperative control ON state is selected by the second switch 62, the sensor switching unit 57 is set to the state 1-2 or the state 3-2. Which state is entered depends on the program setting of the control unit 45. When the cooperative control OFF state is selected by the second switch 62, the sensor switching unit 57 is set to the state 2.
  • State 1-2 corresponds to state 1 in the above-described second embodiment
  • state 3-2 corresponds to state 3 in the above-described second embodiment.
  • the output signal (operation input signal) of the pedal force sensor 41 is supplied to the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 at the same timing. Therefore, the front wheel electric motor 13 and the rear wheel electric motor 14 generate torque at the same time and increase the torque at the same time in response to an operation of depressing the pedal 20.
  • the output signal (operation input signal) of the accelerator sensor 42 is supplied to the front wheel torque command value calculation unit 53 and the rear wheel torque command value calculation unit 54 at the same timing. Accordingly, the front wheel electric motor 13 and the rear wheel electric motor 14 simultaneously generate torque and increase torque simultaneously in response to the operation of the accelerator grip 28R.
  • the sensor switching unit 57 replaces the state 1 in the second embodiment with the state 1-1 or the state 1 according to the selection operation by the second switch 62. -2 is set. In modes 1 and 3, the sensor switching unit 57 is set to the state 3-1 or the state 3-2 instead of the state 1 in the second embodiment according to the selection operation by the second switch 62.
  • the driver 21 selects a time difference driving mode in which the front wheel driving force is generated and increased behind the rear wheel driving force and a synchronous driving mode in which the front wheel driving force and the rear wheel driving force are generated and increased in synchronization. it can. Switching between the time difference drive mode and the synchronous drive mode can be performed by operating the second switch 62. That is, the second switch 62 is an example of a mode switching operation unit operated by an operator to switch between the synchronous drive mode and the time difference drive mode.
  • the two-wheeled vehicle having one front wheel and one rear wheel is exemplified as the saddle-ride type vehicle.
  • the number of front wheels and rear wheels may be one or more. That is, a plurality of front wheels may be provided, and similarly, a plurality of rear wheels may be provided.
  • An example of a saddle-ride type vehicle having a plurality of front wheels or rear wheels is an ATV (All Terrain Vehicle).
  • the accelerator pedal, the accelerator grip, and the foot pedal are exemplified as the operation input unit for calculating the torque command value.
  • other types of operation input units such as an accelerator lever may be used.
  • the front wheel electric motor and the rear wheel electric motor are controlled by one control unit.
  • two control units respectively corresponding to the front wheel electric motor and the rear wheel electric motor may be provided.
  • the human power drive system 31 may be omitted.
  • the speed increasing mechanism 35, the speed change mechanism 36, and the one-way clutch 37 may be omitted.
  • a rotation resistance unit that provides rotation resistance to the crank 23 is preferably provided.
  • the pedaling force applied to the pedal 20 is detected by the pedaling force sensor 41, so that the pedal 20 can be used as the rear wheel input unit. Therefore, the rear wheel driving force corresponding to the pedaling force applied to the pedal 20 can be generated from the rear wheel 4.
  • the human power drive system 31 may not include the one-way clutch 37.
  • the control unit 140 when the accelerator pedal 130 and the accelerator grip 110 are operated at the same time or with a time difference within a certain time, the control unit 140 first generates or increases the rear wheel torque command value, and then determines in advance. The front wheel torque command value may be generated or increased after the delay time. When the accelerator pedal 130 and the accelerator grip 110 are operated with a time difference exceeding the predetermined time, the control unit 140 generates or increases the rear wheel torque command value at the operation timing of the accelerator pedal 130, and the accelerator grip 110 The front wheel torque command value may be generated or increased at the operation timing.
  • the control unit 45 first generates or increases the rear wheel torque command value, and then the front wheel torque after a predetermined delay time.
  • the command value may be generated or increased.
  • the control unit 45 When the pedal 20 and the accelerator grip 28R are operated with a time difference exceeding the predetermined time, the control unit 45 generates or increases the rear wheel torque command value at the operation timing of the pedal 20, and operates the accelerator grip 28R.
  • the front wheel torque command value may be generated or increased at the timing.
  • the delay units 71 and 72 may always delay the input signal, but may be configured to delay the input signal when a predetermined condition is satisfied. . Specifically, the delay units 71 and 72 may delay the input signal only in a low-speed rotation state or a stop state in which the front wheel rotation speed and / or the rear wheel rotation speed are equal to or less than a predetermined threshold. Thereby, the front wheel drive can be delayed from the rear wheel drive only when an operation input (accelerator operation or pedal depression operation) is performed from the low speed running state or the stopped state.
  • an operation input acceleration operation or pedal depression operation
  • the front wheel torque command value may be decreased after the rear wheel torque command value is generated or increased.
  • the front wheel torque command value may be decreased after the rear wheel torque command value is generated or increased.
  • the front wheel torque command value in the negative direction by operating the accelerator grip 110 (i.e., (Decrease).
  • the rear wheel electric motor 114 is in a power running state and applies torque in the forward rotation direction to the rear wheel 104, while the front wheel electric motor 113 is in a regenerative state and applies torque in the reverse rotation direction to the front wheel 103.
  • the grip of the front wheel 103 can be recovered.
  • the user operates the accelerator grip 110 to set the forward torque command value to a positive value and to set the forward electric motor 113 in the power running state, and to generate torque in the forward rotation direction from the front wheel 103. May be.
  • the positive front wheel torque command value indicated by the line L1 in FIG. 5 is generated, if the front wheel 103 slips, the user can decrease the front wheel torque command value by operating the accelerator grip 110. Can be negative.
  • the front wheel electric motor 113 is brought into a regenerative state, and torque in the reverse rotation direction is generated from the front wheel 103, so that the grip recovery of the front wheel 103 can be achieved.
  • the front wheel torque command value (line L21 in FIG. 14) does not need to rise monotonously.
  • a positive or negative front wheel torque command value is set according to the slip state of the front wheel 103.
  • the front wheel torque command value may be increased or decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 鞍乗り型の車両は、鞍乗り型の車体と、前記車体を支持する前輪と、前記車体を支持する後輪と、前記前輪に駆動力を与える前輪電動モータと、前記後輪に駆動力を与える後輪電動モータと、前記前輪電動モータを駆動する前輪モータ駆動ユニットと、前記後輪電動モータを駆動する後輪モータ駆動ユニットと、制御ユニットとを含む。制御ユニットは、前記前輪モータ駆動ユニットに前輪駆動指令を与え、前記後輪モータ駆動ユニットに前記前輪駆動指令とは異なる後輪駆動指令を与えて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるようにプログラムされている。

Description

鞍乗り型車両
 この発明は、使用者が跨がって乗車する鞍乗り型車体を有する車両に関する。
 特許文献1は、車体、前輪、後輪、前輪用電動モータおよび後輪用電動モータを備えた電動自転車を開示している。この電動自転車は、「OFF」、「後輪駆動」、「前輪駆動」および「前後輪駆動」の走行パターンを選択できるように構成されている。「OFF」は、前輪用電動モータおよび後輪用電動モータのいずれにも電力を供給しない走行パターンである。「後輪駆動」は、電動アシスト式自転車としての走行パターンであり、足踏みペダルを踏んで電動自転車を走行させることにより、クランク軸にかかるトルクに応じて後輪用電動モータに電力が供給される。「前輪駆動」は、変速操作スイッチの操作位置に応じて前輪用電動モータに通電する一方で、後輪用電動モータには通電しない走行パターンである。「前後輪駆動」は、前輪用電動モータおよび後輪用電動モータに通電することにより、走破性を高めた走行モードであり、足踏みペダルに加える踏力と後輪用電動モータへの給電とは無関係である。
特開2007-112406号公報
 特許文献1の電動自転車では、「前後輪駆動」のとき、前輪用電動モータおよび後輪用電動モータは同様に駆動され、前輪で電動自転車を前方に牽引しつつ、後輪で後から電動自転車を押すことになる。これにより、雪道、砂利道等の悪路においても、優れた走破性を発揮する。
 しかし、本願発明者の最新の研究によれば、前輪および後輪が同様に駆動されることで、却って、走破しづらい場合もある。たとえば、オフロード等の悪路を走行するときには、障害物を乗り越えて車両を前進させたい場合がある。推進用の電動モータを備えていない自転車の場合には、使用者(ライダー)は、前輪を持ち上げながらペダルを踏み込んで、前輪を地面から浮き上がらせて障害物に乗り上げ、それによって、障害物を乗り越えていくことができる。
 ところが、特許文献1の「前後輪駆動」の場合には、前輪を持ち上げようとしても、容易には前輪が浮き上がらない。なぜなら、前輪は車体を前方に向けて牽引しているので、前輪の前進を後輪の前進に比較して遅らせることが容易ではないからである。したがって、特許文献1の電動自転車では、走破性の高い「前後輪駆動」では、障害物を乗り越えることができないから、走破できる路面状況に制限がある。
 そのほかにも、特許文献1の「前後輪駆動」は、前後輪が同様に駆動されるので、使用者が望む駆動力が発揮されない場合がある。
 この発明の一実施形態は、鞍乗り型の車体と、前記車体を支持する前輪と、前記車体を支持する後輪と、前記前輪に駆動力を与える前輪電動モータと、前記後輪に駆動力を与える後輪電動モータと、前記前輪電動モータを駆動する前輪モータ駆動ユニットと、前記後輪電動モータを駆動する後輪モータ駆動ユニットと、前記前輪モータ駆動ユニットに前輪駆動指令を与え、前記後輪モータ駆動ユニットに前記前輪駆動指令とは異なる後輪駆動指令を与えて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるようにプログラムされた制御ユニットとを含む、鞍乗り型車両を提供する。
 この構成によれば、前輪電動モータによって前輪を駆動でき、後輪電動モータによって後輪を駆動できる。前輪電動モータおよび後輪電動モータは、前輪モータ駆動ユニットおよび後輪モータ駆動ユニットによってそれぞれ駆動される。制御ユニットは、前輪電動モータおよび後輪電動モータの駆動力の変化に時間差を付けるように、前輪モータ駆動ユニットおよび後輪モータ駆動ユニットに前輪駆動指令および後輪駆動指令をそれぞれ与えることができる。これにより、前輪駆動力の変化タイミングと、後輪駆動力の変化タイミングとをずらすことができるので、前輪および後輪の駆動力をそれぞれ適切なタイミングで変化させることができる。それによって、走行性能を高めることができる。
 この発明の一実施形態では、前記制御ユニットが、前記後輪電動モータの駆動力の変化に遅れて前記前輪電動モータの駆動力の変化が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、後輪駆動力が変化し、それに遅れて前輪駆動力が変化する。これにより、走破性を高めることができる。
 より具体的には、前記制御ユニットが、前記後輪電動モータの駆動力の増加に遅れて前記前輪電動モータの駆動力の増加が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされていてもよい。この場合、障害物を乗り越える場合に、後輪駆動力が増加してから前輪駆動力が増加するまでの間に、前輪を持ち上げて障害物に乗り上げることができる。その後、前輪の駆動力が増加することにより、前輪が車体を牽引する。それにより、車両は、障害物を乗り越えて進むことができる。前輪を持ち上げるときに前輪の駆動力が増加していないことで、前輪を持ち上げやすくなる。したがって、障害物を乗り越えやすい。
 この発明の一実施形態では、前記制御ユニットが、前記後輪電動モータの駆動力発生に遅れて前記前輪電動モータの駆動力が発生するように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、後輪駆動力が発生し、それに遅れて前輪駆動力が発生する。それにより、走破性を高めることができる。具体的には、障害物を乗り越える場合に、後輪駆動力が発生してから前輪駆動力が発生するまでの間に、前輪を持ち上げて障害物に乗り上げることができる。その後、前輪の駆動力が発生することにより、前輪が車体を牽引する。それにより、車両は、障害物を乗り越えて進むことができる。前輪を持ち上げるときに前輪の駆動力が発生していないので、前輪を持ち上げやすい。したがって、障害物を乗り越えやすい。
 この発明の一実施形態では、前記鞍乗り型車両は、使用者によって操作され、その操作に応じた信号を出力する前輪用入力ユニットと、使用者によって操作され、その操作に応じた信号を出力する後輪用入力ユニットとをさらに含む。そして、前記制御ユニットは、前記前輪用入力ユニットからの入力に応じて前記前輪駆動指令を生成し、前記後輪用入力ユニットからの入力に応じて前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、前輪用入力ユニットの操作に応じた前輪駆動指令が発生し、後輪用入力ユニットに対応した後輪駆動指令が発生する。
 制御ユニットは、前輪用入力ユニットおよび後輪用入力ユニットの操作に応じたタイミングで前輪駆動力および後輪駆動力をそれぞれ変化させてもよい。より具体的には、制御ユニットは、前輪用入力ユニットおよび後輪用入力ユニットの操作に応じたタイミングで前輪駆動力および後輪駆動力をそれぞれ増加させてもよい。この場合、たとえば、障害物を乗り越える場合には、使用者は、後輪用入力ユニットを操作して後輪駆動力を発生または増加させる一方で、前輪用入力ユニットは前輪駆動力が発生しないかまたは増加させない操作状態とする。この状態では、使用者は、容易に前輪を持ち上げ、かつ後輪駆動力によって車両を障害物に向かって移動させることができ、それによって、前輪を障害物に乗り上げさせることができる。その後、使用者が前輪用入力ユニットを操作して前輪駆動力を発生させたり増加させたりすれば、前輪が車体を牽引するので、車両は障害物を乗り越えて行くことができる。
 また、制御ユニットは、前輪用入力ユニットおよび後輪用入力ユニットの操作に応答して、それらの操作タイミングによらずに、前輪電動モータおよび後輪電動モータの駆動力の変化に予め定める時間差をつけてもよい。たとえば、同時または一定時間内に前輪用入力ユニットおよび後輪用入力ユニットの両方が操作された場合に、制御ユニットは、前輪電動モータおよび後輪電動モータの駆動力の変化に予め定める時間差をつけてもよい。
 この発明の一実施形態では、前記後輪用入力ユニットが、使用者によって足踏みされるペダルと、前記ペダルに加えられた踏力を検出してその踏力に応じた信号を出力する踏力センサとを含む。そして、前記鞍乗り型車両が、前記ペダルに加えられた踏力を後輪に伝達する人力駆動機構をさらに含む。
 この構成では、使用者がペダルに加えた踏力が人力駆動機構によって後輪に伝達される。そして、踏力を検出する踏力センサが、後輪用入力ユニットとして用いられる。すなわち、使用者がペダルに加えた踏力に応じた後輪駆動指令が生成される。この場合、後輪電動モータは、使用者の踏力を補助するための補助力を後輪に与える。踏力に応じた後輪駆動力の変化と、前輪駆動力の変化とに時間差が付けられるので、走行路の状況等に応じて、前輪および後輪に適切なタイミングで適切な駆動力を与えることができ、それによって、車両の走行性能を高めることができる。
 この発明の一実施形態では、前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力の変化に遅れて前記前輪電動モータの駆動力の変化が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、使用者が後輪用入力ユニットを操作し、その後に前輪用入力ユニットを操作すると、後輪駆動力が変化し、その後に前輪駆動力が変化する。
 たとえば、前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力の増加に遅れて前記前輪電動モータの駆動力の増加が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされていてもよい。この場合、前輪駆動力が増加するまでの間に、使用者は、前輪を容易に持ち上げて障害物に乗り上げさせることができる。その後に、前輪駆動力が増加すると、前輪によって車体が牽引されるので、障害物を乗り越えて行くことができる。
 制御ユニットは、同時または一定時間内に前輪用入力ユニットおよび後輪用入力ユニットの両方が操作された場合に、前輪電動モータおよび後輪電動モータの駆動力の変化に予め定める時間差をつけるようにプログラムされていてもよい。そして、前輪用入力ユニットの操作が前記一定時間を超えて後輪用入力ユニットの操作に遅れた場合には、制御ユニットは、その操作遅れ時間に応じた時間差で後輪駆動力および前輪駆動力を順に変化させてもよい。
 この発明の一実施形態では、前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力発生に遅れて前記前輪電動モータの駆動力が発生するように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、使用者が後輪用入力ユニットを操作し、その後に前輪用入力ユニットを操作すると、後輪駆動力が発生し、その後に前輪駆動力が発生する。したがって、前輪駆動力が発生するまでの間に、使用者は、前輪を容易に持ち上げて障害物に乗り上げさせることができる。その後に、前輪駆動力が発生すると、前輪によって車体が牽引されるので、障害物を乗り越えて行くことができる。
 この発明の一実施形態では、前記制御ユニットが、個別制御モードおよび共通制御モードを有し、前記個別制御モードにおいて、前記前輪用入力ユニットからの入力に応じて前記前輪駆動指令を生成し、かつ前記後輪用入力ユニットからの入力に応じて前記後輪駆動指令を生成し、前記共通制御モードにおいて、前記前輪用入力ユニットおよび前記後輪用入力ユニットのうちの一つからの入力に応じて、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。そして、前記鞍乗り型車両が、使用者によって操作され、前記個別制御モードと前記共通制御モードとを切り換えるモード切換操作ユニットをさらに含む。
 この構成により、前輪用入力ユニットおよび後輪用入力ユニットによって前輪駆動力および後輪駆動力を個別に制御できる個別制御モードと、一つの入力ユニットからの入力で前輪駆動力および後輪駆動力を共通に制御できる共通制御モードとを切り換えることができる。それにより、走行路の状況等に応じて、適切な制御モードを選択できるので、走行性能を一層向上できる。
 この発明の一実施形態では、前記鞍乗り型車両は、使用者によって操作され、その操作に応じた信号を出力する入力ユニットをさらに含む。そして、前記制御ユニットは、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている。
 この構成によれば、使用者が入力ユニットを操作したとき、制御ユニットは、前輪駆動力の変化と後輪駆動力の変化との間に時間差をつけることができる。これにより、走行性能を高めることができる。
 前記入力ユニットは、前輪および後輪の駆動力を増減するために共通に用いられる入力ユニットであってもよい。より具体的には、前記入力ユニットは、前輪電動モータおよび後輪電動モータの駆動力を増減するための単一の入力ユニットであってもよい。
 たとえば、制御ユニットは、使用者による入力ユニットの操作に応答して、後輪駆動力を増加させ、その後、時間をおいて、前輪駆動力を増加させるようにプログラムされていてもよい。また、制御ユニットは、使用者による入力ユニットの操作に応答して、後輪駆動力を発生させ、その後、時間をおいて、前輪駆動力を発生させるようにプログラムされていてもよい。これらの構成により、前輪駆動力が増加または発生するまでの間に、使用者は、前輪を容易に持ち上げることができるので、障害物を乗り越えることができる。
 この発明の一実施形態では、前記制御ユニットが、同期駆動モードおよび時間差駆動モードを有する。前記同期駆動モードにおいては、前記制御ユニットは、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化が同期して生じるように、前記前輪駆動指令および前記後輪駆動指令を生成する。前記時間差駆動モードにおいては、前記制御ユニットは、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるように、前記前輪駆動指令および前記後輪駆動指令を生成する。そして、前記鞍乗り型車両が、使用者によって操作され、前記同期駆動モードと前記時間差駆動モードとを切り換えるモード切換操作ユニットをさらに含む。
 この構成により、前輪駆動力および後輪駆動力が同期して変化する同期駆動モードと、前輪駆動力および後輪駆動力の変化に時間差が生じる時間差駆動モードとを切り換えることができる。それにより、走行路の状況等に応じて、適切な制御モードを選択できるので、走行性能を一層向上できる。
 この発明の一実施形態では、前記鞍乗り型車両が、前記時間差を調整するために使用者によって操作される時間差調整ユニットをさらに含む。そして、前記制御ユニットが前記時間差調整ユニットから入力される時間差指令信号に応じて前記時間差を可変設定するようにプログラムされている。
 この構成によれば、時間差調整ユニットの操作によって、前輪駆動力の変化と後輪駆動力の変化との時間差を調整できる。それによって、より使い勝手がよくなり、使用者の好みや、走行路の状況に応じた時間差で前輪駆動力および後輪駆動力の変化を生じさせることができる。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の第1の実施形態に係る電動二輪車の構成を説明するための側面図である。 図2は、前記電動二輪車の電気的構成を説明するためのブロック図である。 図3は、前記電動二輪車に備えられた制御ユニットによる制御動作を説明するためのフローチャートである。 図4は、前記電動二輪車で障害物を乗り越える様子を説明するための図である。 図5は、障害物を乗り越えるときの前輪トルク指令値および後輪トルク指令値の時間変化の一例を示す図である。 図6は、この発明の第2の実施形態に係る電動二輪車の構成を説明するための側面図である。 図7は、前記電動二輪車に備えられたリモートコントロールユニットの構成例を示す平面図である。 図8は、前記電動二輪車の制御システムの構成を説明するためのブロック図である。 図9は、前輪電動モータおよび後輪電動モータの制御例を説明するためのフローチャートである。 図10Aは、モード1(トラクションコントロールオン、協調制御オン)における制御ユニットの具体的な動作例を説明するためのフローチャートである。 図10Bは、モード2(トラクションコントロールオン、協調制御オフ)における制御ユニットの具体的な動作例を説明するためのフローチャートである。 図10Cは、モード3(トラクションコントロールオフ、協調制御オン)における制御ユニットの具体的な動作例を説明するためのフローチャートである。 図10Dは、モード4(トラクションコントロールオフ、協調制御オフ)における制御ユニットの具体的な動作例を説明するためのフローチャートである。 図11は、障害物を乗り越えるときの前輪トルク指令値および後輪トルク指令値の時間変化の一例を示す図である。 図12は、この発明の第3の実施形態に係る電動二輪車の電気的構成を説明するためのブロック図である。 図13は、前輪電動モータおよび後輪電動モータの制御例を説明するためのフローチャートである。 図14は、障害物を乗り越えるときの前輪トルク指令値および後輪トルク指令値の時間変化の一例を示す図である。 図15は、この発明の第4の実施形態に係る電動二輪車の電気的構成を説明するためのブロック図である。
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
 [第1実施形態]
 図1は、この発明の第1の実施形態に係る鞍乗り型車両である電動二輪車の構成を説明するための側面図である。以下の説明では、前後左右の方向は、シートに着座した運転者(ライダー)から見た方向を言う。すなわち、図1には、電動二輪車101の右側面が表れている。
 電動二輪車101は、鞍乗り型の車体である車体フレーム102と、車体フレーム102を支持する前輪103および後輪104とを含む。車体フレーム102の前部には、図示しないステアリングシャフトが回転可能に取り付けられている。そのステアリングシャフトには、ハンドルバー107と、一対のフロントフォーク108とが結合されている。ハンドルバー107の左右には、使用者が左右の手で握るグリップ110が設けられている。たとえば、右グリップ110は、ハンドル軸に対して回動可能に結合されており、使用者によって操作されるアクセルグリップである。一対のフロントフォーク108の下端部に、前輪103が回転可能に取り付けられている。前輪103のハブに、前輪103を駆動するための前輪電動モータ113が組み込まれている。
 車体フレーム102の上部に、使用者が跨がって着座するシート111が取り付けられている。車体フレーム102の後方下部には、ピボット軸117が設けられており、このピボット軸117に、リヤアーム118が上下方向に揺動可能に取り付けられている。リヤアーム118の後端部に、後輪104が回転可能に取り付けられている。リヤアーム118と車体フレーム102の上部との間には、クッションユニット119が配置されている。
 車体フレーム102は、クッションユニット119の前方に、動力ユニット120を保持している。動力ユニット120は、後輪電動モータ114と、動力伝達ギヤ115と、駆動スプロケット116とを含む。後輪電動モータ114の駆動力は、動力伝達ギヤ115、駆動スプロケット116および動力伝達機構121を介して後輪104に伝達される。動力伝達機構121は、後輪104に固定された従動スプロケット122と、無端のチェーン123とを含む。チェーン123は、駆動スプロケット116および従動スプロケット122に巻き掛けられている。
 動力ユニット120の上方には、前輪電動モータ113および後輪電動モータ114に電力を供給するバッテリ112が配置されている。バッテリ112は、車体フレーム102に結合されたバッテリ支持部材125によって支持されており、シート111の下方に位置している。
 車体フレーム102の下方部左右には、左右のフートレスト126が配置されている。たとえば、右フートレスト126の近くには、使用者の右足によって操作可能なアクセルペダル130が配置されている。
 図2は、電動二輪車101の電気的構成を説明するためのブロック図である。電動二輪車101は、制御ユニット140と、前輪モータ駆動ユニット143と、後輪モータ駆動ユニット144とを含む。
 制御ユニット140には、前輪アクセルセンサ153の出力信号と、後輪アクセルセンサ154の出力信号とが入力されている。前輪アクセルセンサ153は、アクセルグリップ110の操作量を検出し、その操作量を表す信号を出力する。アクセルグリップ110および前輪アクセルセンサ153は、前輪用入力ユニットの一例である。後輪アクセルセンサ154は、アクセルペダル130の操作量を検出し、その操作量を表す信号を出力する。アクセルペダル130および後輪アクセルセンサ154は、後輪用入力ユニットの一例である。
 制御ユニット140は、前輪トルク指令値演算ユニット141および後輪トルク指令値演算ユニット142を含む。前輪トルク指令値演算ユニット141は、前輪アクセルセンサ153の出力信号に基づいて、前輪電動モータ113が発生すべき前輪トルク指令値を演算する。後輪トルク指令値演算ユニット142は、後輪アクセルセンサ154の出力信号に基づいて、後輪電動モータ114が発生すべき後輪トルク指令値を演算する。これらの演算された前輪トルク指令値および後輪トルク指令値に基づいて、制御ユニット140は、前輪モータ駆動ユニット143に前輪トルク指令を与え、後輪モータ駆動ユニット144に後輪トルク指令を与える。
 制御ユニット140は、マイクロコンピュータを含み、前輪トルク指令値演算ユニット141および後輪トルク指令値演算ユニット142としての機能を含む、複数の機能を実現するようにプログラムされている。より具体的には、制御ユニット140は、プロセッサ(CPU)と、プロセッサが実行するプログラムを記憶した記憶媒体(メモリ)とを含む。
 前輪モータ駆動ユニット143は、前輪電動モータ113に駆動電力を供給するモータ駆動回路を含む。後輪モータ駆動ユニット144は、後輪電動モータ114に駆動電力を供給するモータ駆動回路を含む。前輪モータ駆動ユニット143は、制御ユニット140から与えられる前輪トルク指令に応じた電力を前輪電動モータ113に供給する。後輪モータ駆動ユニット144は、制御ユニット140から与えられる後輪トルク指令に応じた電力を後輪電動モータ114に供給する。
 図2では、図示を省略するけれども、前輪モータ駆動ユニット143および後輪モータ駆動ユニット144には、バッテリ112(図1参照)が接続されている。
 図3は、制御ユニット140による制御動作を説明するためのフローチャートであり、制御ユニット140が所定の制御周期で繰り返す処理を示している。
 制御ユニット140は、前輪アクセルセンサ153によって検出されるアクセルグリップ操作量(前輪アクセル操作量)を取得し(ステップS1)、その取得した前輪アクセル操作量に応じた前輪トルク指令値を生成する(ステップS3)。制御ユニット140は、前輪アクセル操作量が大きいほど、大きな駆動トルクが前輪電動モータ113から発生するように、前輪トルク指令値を生成する。この前輪トルク指令値に基づいて、前輪モータ駆動ユニット143により、前輪電動モータ113が駆動される(ステップS5)。たとえば、PWM(パルス幅変調)制御によって、前輪電動モータ113に供給される電圧が制御される。
 また、制御ユニット140は、後輪アクセルセンサ154によって検出されるアクセルペダル操作量(後輪アクセル操作量)を取得し(ステップS2)、その取得した後輪アク操作量に応じた後輪トルク指令値を生成する(ステップS4)。制御ユニット140は、後輪アクセル操作量が大きいほど、大きな駆動トルクが後輪電動モータ114から発生するように、後輪トルク指令値を生成する。この後輪トルク指令値に基づいて、後輪モータ駆動ユニット144により、前輪電動モータ113が駆動される(ステップS5)。たとえば、PWM制御によって、後輪電動モータ114に供給される電圧が制御される。
 図4は、電動二輪車101で障害物100を乗り越える様子を説明するための図である。電動二輪車101の走行路に丸太等の障害物100があるとき、地面に接したまま前輪103の前部を障害物100に当接させても、障害物100を乗り越えにくい場合がある。具体的には、障害物100に対する前輪103の当接位置が、前輪103の車軸103aと同程度の高さかそれよりも高い場合である。そこで、図4に示すように、前輪103を持ち上げ、前輪103の車軸103aの高さを、前輪103と障害物100との当接位置99に比較して充分に高い状態とする。この状態で前輪電動モータ113を駆動すると、前輪103は電動二輪車101を障害物100上へと牽引する力を発生する。これにより、電動二輪車101は、障害物100を乗り越えて進むことができる。
 使用者(運転者)が前輪103を持ち上げようとするときに、前輪103に大きな駆動トルクが作用していると、前輪103は、上方よりもむしろ前方に推進しようとする。それにより、使用者は、前輪103が地面に吸い付くようなフィーリングを覚える。そのため、前輪103を持ち上げる操作が難しく、前輪103を障害物100上へと容易に乗り上げることができない。
 本願発明者は、前輪103の駆動力を後輪104の駆動力よりも遅れて発生させることにより、上記の課題を解決できることを見出した。すなわち、使用者は、アクセルペダル130を踏み込んで後輪104の駆動力を発生させながら、アクセルグリップ110を非操作状態に保って、ハンドルバー107を持ち上げる。それにより、前輪103を容易に持ち上げることができる。前輪103が持ち上がった状態で、後輪104に駆動力が与えられることによって、電動二輪車101が障害物100に向かって前進し、前輪103を障害物100に乗り上げることができる。
 前輪103が浮き上がった後(前輪103が障害物100に接する前でも後でもよい。)に、使用者はアクセルグリップ110を操作して、前輪電動モータ113の駆動力を発生させる。それにより、前輪103が駆動され、この前輪103の駆動力によって車体が前方へと牽引される。こうして、車体が障害物100上へと引き上げられ、さらに、後輪104が障害物100を越えていくことによって、電動二輪車101は障害物100を乗り越えて前進することができる。
 図5は、前述のようにして障害物を乗り越えるときの前輪トルク指令値および後輪トルク指令値の時間変化の一例を示す図である。線L1で示す前輪トルク指令値が零の状態で、線L2で示す後輪トルク指令値が零から立ち上がる。これにより、前輪103を自由回転状態として、後輪電動モータ114によって後輪104にトルクを与えることができるので、前輪103が浮き上がりやすい状態となる。それに合わせて使用者がハンドルバー107を引き上げることにより、前輪103を浮上させることができる。その後、使用者のアクセルグリップ110の操作に応答して、前輪トルク指令値が、後輪トルク指令値に遅れて立ち上がる。
 このように、前輪電動モータ113のトルクが後輪電動モータ114のトルクに遅れて発生および増加するように、アクセルグリップ110およびアクセルペダル130を操作することによって、電動二輪車101は障害物100を容易に乗り越えていくことができる。
 なお、前輪103を持ち上げるときの前輪トルク指令値は零である必要はない。すなわち、前輪トルク指令値が充分に小さく、後輪トルク指令値が充分に大きければ、前輪103を持ち上げる操作は比較的容易である。
 [第2実施形態]
 図6は、この発明の第2の実施形態に係る車両の構成を説明するための側面図である。以下の説明では、前後左右の方向は、サドルに着座した使用者から見た方向を言う。すなわち、図6には、電動二輪車1の右側面が表れている。
 この車両は、電動モータの駆動力を車輪に伝達する構成を備えた電動車両であり、より具体的には、前輪3および後輪4を備えた電動二輪車1である。さらに、この電動二輪車1は、人力によって後輪4を駆動するための人力駆動系を備えている。
 電動二輪車1は、鞍乗り型の車体を構成する車体フレーム2と、車体フレーム2に取り付けられた前輪3と、同じく車体フレーム2に取り付けられた後輪4とを備えている。この実施形態では、前輪3および後輪4は、互いに外径が等しい。車体フレーム2は、ヘッドパイプ5、上部パイプ6、フロントパイプ7、シートパイプ8、左右一対のリヤパイプ9、および左右一対の下部パイプ10を備えている。ヘッドパイプ5から後方に延びるように、上部パイプ6が設けられている。フロントパイプ7は、上部パイプ6の下方に配置され、ヘッドパイプ5から後方に向けて、斜め下方に延びている。フロントパイプ7の後端部から上方に延びるようにシートパイプ8が設けられている。上部パイプ6の後端部は、シートパイプ8に結合されている。シートパイプ8の上端部にサドル11が取り付けられている。サドル11の下方において、シートパイプ8にバッテリ12が取り付けられている。
 上部パイプ6の後端部から後方かつ斜め下方に延びるように、一対のリヤパイプ9が互いにほぼ平行に設けられている。一方、フロントパイプ7の後端部から後方にほぼ水平に延びるように一対の下部パイプ10が互いにほぼ平行に設けられている。一対のリヤパイプ9の後端部と一対の下部パイプ10の後端部とが、それぞれ互いに結合されている。リヤパイプ9と下部パイプ10との結合部分に、後輪スプロケット15および後輪4が回転自在に取り付けられている。後輪4のハブには、後輪電動モータ14が組み込まれている。後輪電動モータ14は、後輪4に駆動力を与えるように構成されている。
 フロントパイプ7とシートパイプ8との結合部には、左右に水平に延びるようにクランク軸16が回転自在に取り付けられている。クランク軸16には、駆動スプロケット17が取り付けられている。駆動スプロケット17と後輪スプロケット15とに、無端のチェーン18が巻き掛けられている。したがって、クランク軸16の回転は、駆動スプロケット17からチェーン18を介して後輪スプロケット15に伝達される。クランク軸16の両端部には、一対のクランクアーム19がそれぞれ取り付けられている。クランク軸16および一対のクランクアーム19は、クランク23を構成している。一対のクランクアーム19に一対のペダル20がそれぞれ取り付けられている。運転者21がペダル20を操作することにより、クランク軸16を回転することができ、それによって、人力によって後輪4を駆動することができる。
 ヘッドパイプ5には、ステアリング軸25が回転自在に挿入されている。ステアリング軸25の下端部には、一対のフロントフォーク26が互いにほぼ平行に取り付けられている。一対のフロントフォーク26の下端部には、前輪3が回転自在に取り付けられている。前輪3のハブには前輪電動モータ13が組み込まれている。前輪電動モータ13は、前輪3に駆動力を与えるように構成されている。ステアリング軸25の上端にはハンドルバー27が取り付けられている。
 ハンドルバー27は、ほぼ水平に延びており、運転者21の右手および左手によってそれぞれ握持される一対のグリップ28L,28R(図7を併せて参照)を有している。運転者21がハンドルバー27を左右に回動操作することによって、ステアリング軸25がヘッドパイプ5の軸心を中心に回動し、それに伴って、フロントフォーク26および前輪3が一体的に左右に回動する。それによって、電動二輪車1が操舵される。
 運転者21から見て右側のグリップ28Rは、ハンドルバー27の軸に対して回転可能に設けられており、後輪電動モータ14および前輪電動モータ13の出力を調節するためのアクセルグリップである。
 この電動二輪車1は、前輪3または後輪4のスリップ状態を検出して、すみやかにグリップ力を回復するトラクションコントロール機能を備えている。たとえば、前輪3がマンホール蓋60に差し掛かった場合など、前輪3および後輪4がそれぞれ接する路面の状態が異なる場合に、摩擦係数の小さい路面上にある車輪のスリップが生じやすい。
 図7は、ハンドルバー27に備えられたリモートコントロールユニット65の構成例を示す平面図である。リモートコントロールユニット65は、使用者によって操作される第1スイッチ61、第2スイッチ62、および調整ボリウム63を含む。第1スイッチ61および第2スイッチ62は、制御モードを切り換えるためのスイッチである。
 第1スイッチ61は、たとえば、トラクションコントロールをオン/オフするためのスイッチである。トラクションコントロールをアクティブにすると、たとえば、制御モードに応じて、前輪3および後輪4のトラクションコントロール、または後輪4のみのトラクションコントロールが行われる。すなわち、前輪3および/または後輪4のスリップを検出すると、スリップした車輪の駆動力を減少させて、その車輪のグリップを回復させるための駆動力制御が行われる。
 第2スイッチ62は、前後輪3,4の協調制御をオン/オフするためのスイッチである。協調制御をアクティブにすると、アクセルグリップ28Rの操作量またはペダル20に加えられた踏力のいずれかの操作入力に応じて、前輪駆動力および後輪駆動力が制御される。協調制御を非アクティブにすると、前輪3および後輪4の駆動力が独立に制御される。より具体的には、協調制御が非アクティブのときには、前輪電動モータ13はアクセルグリップ28Rの操作量に応じたトルクを発生し、後輪電動モータ14はペダル踏力に応じたトルクを発生する。
 協調制御をオン/オフする第2スイッチ62は、モード切換操作ユニットの一例である。
 トラクションコントロールのオン/オフと、協調制御のオン/オフとの組み合わせにより、次に示すモード1~4の4つの制御モードを選択できる。
 モード1:トラクションコントロールオン、協調制御オン
 モード2:トラクションコントロールオン、協調制御オフ
 モード3:トラクションコントロールオフ、協調制御オン
 モード4:トラクションコントロールオフ、協調制御オフ
 これらのうち、協調制御がアクティブとなるモード1およびモード3は、共通制御モードの一例である。また、協調制御が非アクティブとなるモード2およびモード4は、個別制御モードの一例である。
 調整ボリウム63は、ペダル踏力に対するアシスト力の割合を調整するための調整操作ユニットである。協調制御がオフのとき、ペダル踏力に対する後輪駆動力の割合は、調整ボリウム63による設定に従う。協調制御がオンのとき、ペダル踏力が操作入力として用いられる場合には、ペダル踏力に対する前後輪の全駆動力の割合は、調整ボリウム63による設定に従う。
 図8は、電動二輪車1の制御システムの構成を説明するためのブロック図である。電動二輪車1は、運転者21(使用者)によりペダル20に加えられた踏力を所定の変速比で変速して後輪4に供給する人力駆動系31と、後輪電動モータ14および前輪電動モータ13の駆動力をそれぞれ後輪4および前輪3に供給する電動駆動系32とを有している。人力駆動系31は、人力駆動機構の一例である。
 人力駆動系31は、ペダル20に加えられた踏力によって回転するクランク23と、増速機構35と、変速機構36と、ワンウェイクラッチ37とを含む。増速機構35は、駆動スプロケット17、チェーン18および後輪スプロケット15を含む。駆動スプロケット17と後輪スプロケット15との歯数比に応じて、クランク23の回転が増速される。変速機構36は、たとえば、後輪ハブ内に収容され、後輪スプロケット15に結合された入力軸の回転を複数段(たとえば3段)の変速比のいずれかで変速して出力軸に出力するように構成されている。ワンウェイクラッチ37は、変速機構36の出力軸の一方向(前進方向)の回転力を後輪4に伝達し、他方向(後退方向)の回転は伝達しない。したがって、クランク23に加えられる前進方向の回転力(人力トルク)が、増速機構35によって増速された後、変速機構36によって変速され、ワンウェイクラッチ37を介して後輪4に伝達される。
 電動駆動系32は、踏力センサ41の出力および/またはアクセルセンサ42の出力に応じて、後輪電動モータ14および前輪電動モータ13を駆動する。また、電動駆動系32は、第1および第2スイッチ61,62によって設定される制御モード(前述のモード1~4のいずれか)に従って、前輪電動モータ13および後輪電動モータ14を制御する。また、電動駆動系32は、調整ボリウム63の操作量に応じた割合の補助力が発生するように前輪電動モータ13および後輪電動モータ14を制御する。
 踏力センサ41は、クランク23に加えられる踏力(トルク)を検出し、その踏力に応じた踏力信号を出力する。アクセルセンサ42は、アクセルグリップ28Rの操作量を検出し、その操作量に応じたアクセル信号を出力する。ペダル20およびアクセルグリップ28Rは、電動モータ13,14が発生する駆動トルクを設定するために操作者によって操作される駆動トルク操作子の例である。また、踏力センサ41およびアクセルセンサ42は、その駆動トルク操作子の操作量(操作力または変位量)を検出するための操作量センサの例である。
 電動駆動系32は、リモートコントロールユニット65、踏力センサ41、アクセルセンサ42、前輪電動モータ13、後輪電動モータ14、前輪減速機構43、後輪減速機構44、および制御ユニット45を含む。制御ユニット45は、リモートコントロールユニット65、踏力センサ41および/またはアクセルセンサ42の出力に応じて前輪電動モータ13および後輪電動モータ14を駆動する。前輪電動モータ13の回転は、前輪減速機構43によって減速されて、前輪3に伝達される。後輪電動モータ14の回転は、後輪減速機構44によって減速されて、後輪4に伝達される。
 制御ユニット45の或る制御モードにおいて、ペダル20および踏力センサ41は、後輪電動モータ14のトルク指令値を演算するために用いられる操作入力を入力する後輪用入力ユニットとして機能する。また、別の制御モードにおいて、ペダル20および踏力センサ41は、前輪電動モータ13および後輪電動モータのトルク指令値をそれぞれ演算するために共通に用いられる操作入力を入力する入力ユニットとして機能する。
 また、制御ユニット45の或る制御モードにおいて、アクセルグリップ28Rおよびアクセルセンサ42は、前輪電動モータ13のトルク指令値を演算するために用いられる操作入力を入力する前輪用入力ユニットとして機能する。また、別の制御モードにおいて、アクセルグリップ28Rおよびアクセルセンサ42は、前輪電動モータ13および後輪電動モータのトルク指令値をそれぞれ演算するために共通に用いられる操作入力を入力する入力ユニットとして機能する。
 制御ユニット45は、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54を備えている。前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54は、リモートコントロールユニット65、踏力センサ41および/またはアクセルセンサ42の出力に応じて、前輪トルク指令値および後輪トルク指令値をそれぞれ演算する。
 制御ユニット45は、前輪トルク指令値に対応する前輪トルク指令(前輪駆動指令)を前輪モータ駆動ユニット55に与える。また、制御ユニットは、後輪トルク指令値に対応する後輪トルク指令(後輪駆動指令)を後輪モータ駆動ユニット56に与える。前輪モータ駆動ユニット55は、前輪トルク指令に基づいて前輪電動モータ13を駆動する駆動回路を含む。後輪モータ駆動ユニット56は、後輪トルク指令に基づいて後輪電動モータ14を駆動する駆動回路を含む。
 前輪トルク指令値は、前輪電動モータ13が発生すべき駆動トルクの指令値である。後輪トルク指令値は、後輪電動モータ14が発生すべき駆動トルクの指令値である。前輪モータ駆動ユニット55および後輪モータ駆動ユニット56は、前輪トルク指令値および後輪トルク指令値にそれぞれ対応するデューティー比でバッテリ12(図6参照)からの駆動電圧をPWM(パルス幅変調)制御する。このPWM制御された駆動電圧が前輪電動モータ13および後輪電動モータ14に印加される。それによって、前輪電動モータ13および後輪電動モータ14に、前輪トルク指令値および後輪トルク指令値にそれぞれ対応した駆動電流が流れる。
 制御ユニット45は、さらに、前輪3のスリップ状態および後輪4のスリップ状態を検出するスリップ検出ユニット50を備えている。制御ユニット45は、また、前輪電動モータ13の回転速度から前輪回転速度を演算する前輪回転速度演算ユニット51と、後輪電動モータ14の回転速度から後輪回転速度を演算する後輪回転速度演算ユニット52とを備えている。スリップ検出ユニット50は、前輪回転速度演算ユニット51および後輪回転速度演算ユニット52によってそれぞれ演算される前輪回転速度および後輪回転速度に基づいて、前輪3のスリップ状態および後輪4のスリップ状態を検出する。前輪および後輪減速機構43,44の減速比が互いに等しければ、前輪および後輪回転速度演算ユニット51,52は、前輪および後輪電動モータ13,14の回転速度を、それぞれ前輪回転速度および後輪回転速度を表す情報として出力してもよい。
 踏力センサ41の出力信号は、センサ切換ユニット57を介して、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54に与えることができる。同様に、アクセルセンサ42の出力信号は、センサ切換ユニット57を介して、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54に与えることができる。
 センサ切換ユニット57は、たとえば、次の状態をとることができる。
 状態1:踏力センサ41の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられ、アクセルセンサ42の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられない。
 状態2:踏力センサ41の出力信号が後輪トルク指令値演算ユニット54に与えられ、アクセルセンサ42の出力信号が前輪トルク指令値演算ユニット53に与えられる。
 状態3:踏力センサ41の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられず、アクセルセンサ42の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられる。
 センサ切換ユニット57は、リモートコントロールユニット65の第2スイッチ62の操作によって切り換わる。具体的には、第2スイッチ62によって、協調制御がアクティブにされたときは、状態1または状態3となる。状態1および状態3のいずれとなるかは、制御ユニット45が実行するプログラムの設定に従う。協調制御が非アクティブのときは、センサ切換ユニット57は、状態2となる。
 スリップ検出ユニット50による検出結果は、トラクションコントロール切換ユニット58を介して、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54に入力されている。トラクションコントロール切換ユニット58は、オン状態とオフ状態とで切り換わる。オン状態では、スリップ検出ユニット50の検出結果が、トルク指令値演算ユニット53,54に与えられ、それに基づいてトラクションコントロールが実行される。オフ状態では、スリップ検出ユニット50の検出結果はトルク指令値演算ユニット53,54に伝達されず、トラクションコントロールは実行されない。
 トラクションコントロール切換ユニット58は、リモートコントロールユニット65の第1スイッチ61によって切り換えられる。すなわち、第1スイッチ61によってトラクションコントロールが有効にされたときは、トラクションコントロール切換ユニット58はオン状態となり、第1スイッチ61によってトラクションコントロールが無効にされたときは、トラクションコントロール切換ユニット58はオフ状態となる。
 制御ユニット45は、マイクロコンピュータを含み、複数の機能を実現するようにプログラムされている。より具体的には、制御ユニット140は、プロセッサ(CPU)と、プロセッサが実行するプログラムを記憶した記憶媒体(メモリ)とを含む。前記複数の機能は、スリップ検出ユニット50、前輪回転速度演算ユニット51、後輪回転速度演算ユニット52、前輪トルク指令値演算ユニット53、後輪トルク指令値演算ユニット54、センサ切換ユニット57およびトラクションコントロール切換ユニット58としての機能を含む。
 図9および図10A~図10Dは、前輪電動モータ13および後輪電動モータ14の制御に関する制御ユニット45の処理例を説明するためのフローチャートであり、制御ユニット45が所定の制御周期で繰り返す処理を示す。
 制御ユニット45は、リモートコントロールユニット65からの信号を取得する(ステップS11)。具体的には、制御ユニット45は、第1スイッチ61および第2スイッチ62の状態と、調整ボリウム63の操作量とを取得する。制御ユニット45は、第1および第2スイッチ61,62の状態に応じて、モード1~4のいずれかの制御モードに従って、前輪電動モータ13および後輪電動モータ14のためのトルク指令値を生成する。
 すなわち、第1スイッチ61によってトラクションコントロールがアクティブにされている場合(ステップS12)に、第2スイッチ62によって協調制御がアクティブにされていれば(ステップS13)、制御モードがモード1に設定される(ステップS14)。また、第1スイッチ61によってトラクションコントロールがアクティブにされている場合(ステップS12)に、第2スイッチ62によって協調制御が非アクティブにされていれば(ステップS13)、制御モードがモード2に設定される(ステップS15)。さらに、第1スイッチ61によってトラクションコントロールが非アクティブにされている場合(ステップS12)に、第2スイッチ62によって協調制御がアクティブにされていれば(ステップS16)、制御モードがモード3に設定される(ステップS17)。そして、第1スイッチ61によってトラクションコントロールが非アクティブにされている場合(ステップS12)に、第2スイッチ62によって協調制御が非アクティブにされていれば(ステップS16)、制御モードがモード4に設定される(ステップS18)。
 モード1では、制御ユニット45は、センサ切換ユニット57を前述の状態1または状態3に制御する。いずれの状態とするかは、制御ユニット45が実行するプログラムの設定による。センサ切換ユニット57が状態1に制御される場合には、踏力センサ41の出力信号が操作入力信号として取得され(ステップS19)、その操作入力信号に基づいて、前輪トルク指令値および後輪トルク指令値が生成される。センサ切換ユニット57が状態3に制御される場合には、アクセルセンサ42の出力信号が操作入力信号として取得され(ステップS19)、その操作入力信号に基づいて、前輪トルク指令値および後輪トルク指令値が生成される。
 したがって、センサ切換ユニット57が状態1に制御される場合には、電動二輪車1は、ペダル踏力に応じて前輪3および後輪4に補助駆動力が加えられる、電動補助自転車として動作する。ペダル踏力に対する補助駆動力の割合は、調整ボリウム63による設定に従う。センサ切換ユニット57が状態3に制御される場合には、電動二輪車1は、電動モータ13,14の駆動力だけで走行する電動車両として動作する。モード1では、トラクションコントロール切換ユニット58はオン状態とされる。
 モード2では、制御ユニット45は、センサ切換ユニット57を前述の状態2に制御する。それにより、アクセルセンサ42の出力信号および踏力センサ41の出力信号が取得される(ステップS20)。アクセルセンサ42の出力信号に基づいて前輪トルク指令値が生成され、踏力センサ41の出力信号に基づいて後輪トルク指令値が生成される。したがって、前輪駆動トルクおよび後輪駆動トルクは、異なるセンサ入力信号に基づいて生成される。トラクションコントロール切換ユニット58はオン状態とされる。この場合、たとえば、後輪4についてのみ、トラクションコントロールが行われてもよい。
 モード3では、制御ユニット45は、センサ切換ユニット57を前述の状態1または3に制御する。いずれの状態とするかは、制御ユニット45が実行するプログラムの設定に従う。センサ切換ユニット57が状態1に制御される場合には、踏力センサ41の出力信号が操作入力信号として取得され(ステップS21)、その操作入力信号に基づいて、前輪トルク指令値および後輪トルク指令値が生成される。センサ切換ユニット57が状態3に制御される場合には、アクセルセンサ42の出力信号(操作入力信号)が取得され(ステップS21)、その操作入力信号に基づいて、前輪トルク指令値および後輪トルク指令値が生成される。センサ切換ユニット57を状態1とすれば、電動二輪車1は、電動補助自転車として動作する。ペダル踏力に対する補助駆動力の割合は、調整ボリウム63による設定に従う。センサ切換ユニット57を状態3とすれば、電動二輪車1は、電動モータ13,14の駆動力だけで走行する電動車両として動作する。トラクションコントロール切換ユニット58はオフ状態とされる。
 モード4では、制御ユニット45は、センサ切換ユニット57を前述の状態2に制御する。それにより、アクセルセンサ42の出力信号が操作入力信号として取得され(ステップS22)、それに基づいて前輪トルク指令値が生成される。また、踏力センサ41の出力信号が操作入力信号として取得され(ステップS22)、それに基づいて後輪トルク指令値が生成される。したがって、前輪駆動トルクおよび後輪駆動トルクは、異なるセンサ入力信号に基づいて生成される。トラクションコントロール切換ユニット58はオフ状態とされる。したがって、前輪3および後輪4のいずれについてもトラクションコントロールは行われない。
 図10Aは、モード1(トラクションコントロールオン、協調制御オン)における制御ユニット45の具体的な動作例を説明するためのフローチャートである。
 スリップ検出ユニット50は、前輪回転速度から後輪回転速度を減算して得られる前後輪回転速度差の絶対値が所定の閾値を超えているときには(ステップS31:YES)、前輪3または後輪4のいずれかがスリップ状態であると判定する(ステップS32)。さもなければ(ステップS31:NO)、スリップ検出ユニット50は、前輪3および後輪4のいずれもがスリップ状態でないと判定する(ステップS33)。
 前輪3または後輪4のいずれかがスリップ状態であると判定された場合(ステップS32)、スリップ検出ユニット50は、さらに、前後輪回転速度差が正であれば(ステップS34:YES)、前輪3がスリップ状態であると判定する(ステップS35。前輪スリップ検出)。一方、前後輪回転速度差が負であれば(ステップS34:NO)、スリップ検出ユニット50は、後輪4がスリップ状態であると判定する(ステップS36。後輪スリップ検出)。すなわち、スリップ検出ユニット50は、前輪3および後輪4の回転速度差の絶対値が閾値よりも大きいときに、前輪3および後輪4のうちで回転速度の大きな方をスリップ状態であると判定する。
 前輪トルク指令値演算ユニット53は、前輪3および後輪4が非スリップ状態である場合(ステップS33)には、非スリップモード(通常モード)による前輪トルク指令値演算を行う(ステップS37)。また、前輪トルク指令値演算ユニット53は、前輪3がスリップ状態であるとき(ステップS35)には、前輪スリップモードによる前輪トルク指令値演算を行う(ステップS38)。また、前輪トルク指令値演算ユニット53は、後輪4がスリップ状態である場合(ステップS36)には、後輪スリップモードによる前輪トルク指令値演算を行う(ステップS39)。
 同様に、後輪トルク指令値演算ユニット54は、前輪3および後輪4が非スリップ状態である場合(ステップS33)には、非スリップモード(通常モード)による後輪トルク指令値演算を行う(ステップS40)。また、後輪トルク指令値演算ユニット54は、前輪3がスリップ状態であるとき(ステップS35)には、前輪スリップモードによる後輪トルク指令値演算を行う(ステップS41)。また、後輪トルク指令値演算ユニット54は、後輪4がスリップ状態である場合(ステップS36)には、後輪スリップモードによる後輪トルク指令値演算を行う(ステップS42)。
 そして、前輪モータ駆動ユニット55は、前輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、前輪電動モータ13に前輪トルク指令値に対応した電流を流す(ステップS43)。同様に、後輪モータ駆動ユニット56は、後輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、後輪電動モータ14に後輪トルク指令値に対応した電流を流す(ステップS44)。以後、所定の制御周期で同様の動作が繰り返される。
 前輪トルク指令値演算ユニット53は、非スリップモード(ステップS33)では、踏力センサ41またはアクセルセンサ42の出力信号(操作入力信号)が大きいほど大きな前輪トルク指令値を演算する。具体的には、踏力またはアクセル操作量(操作入力)に比例した前輪トルク指令値が演算される。同様に、後輪トルク指令値演算ユニット54は、非スリップモード(ステップS33)では、踏力センサ41またはアクセルセンサ42の出力信号(操作入力信号)が大きいほど大きな後輪トルク指令値を演算する。具体的には、踏力またはアクセル操作量(操作入力)に比例した後輪トルク指令値が演算される。操作入力に対する前輪トルク指令値および後輪トルク指令値の比例係数は、調整ボリウム63による設定に従う。
 前輪トルク指令値演算ユニット53は、前輪スリップモード(ステップS38)では、たとえば、第1値と、それよりも小さな第2値との間で交互に繰り返しパルス的に変動する前輪トルク指令値を演算する。第1値は、非スリップモードのときの前輪トルク指令値(踏力センサ41またはアクセルセンサ42の出力(操作入力)に応じた値)に等しくてもよく、非スリップモードのときの値よりも小さな値であってもよい。第2値は、零であってもよい。この場合、前輪トルク指令値は、間欠的に有意な値(前輪3に前進駆動力を与える値)となるパルス的な変動を示す。より具体的には、前輪トルク指令値は、第1値をとる時間長が徐々に短くなるようにパルス幅を定めたパルス波形を有する変動を示し、それによって、前輪トルク指令値の時間平均値が漸減するように定められてもよい。前記第2値は負の値(制動側にトルクを与える値)であってもよい。前輪トルク指令値演算ユニット53は、前輪トルク指令値が2回以上(少なくとも2回)前記第2値となるように、第1値と第2値とで交互に繰り返し変動する前輪トルク指令値を生成することが好ましい。
 一方、後輪トルク指令値演算ユニット54は、前輪スリップモード(ステップS41)では、前輪トルク指令値の時間平均値の減少を補うように増加する特性の後輪トルク指令値を生成する。この場合の後輪トルク指令値は、パルス的な変動を示すよりも、連続的な変動を示すように設定されることが好ましい。
 後輪トルク指令値演算ユニット54は、後輪スリップモード(ステップS42)では、たとえば、第3値と、それよりも小さな第4値との間で交互に繰り返しパルス的に変動する後輪トルク指令値を演算する。第3値は、非スリップモードのときの後輪トルク指令値(踏力センサ41またはアクセルセンサ42の出力(操作入力)に応じた値)に等しくてもよく、非スリップモードのときの値よりも小さな値であってもよい。第4値は、零であってもよい。この場合、後輪トルク指令値は、間欠的に有意な値(後輪4に前進駆動力を与える値)となるパルス的な変動を示す。より具体的には、後輪トルク指令値は、第3値をとる時間長が徐々に短くなるようにパルス幅を定めたパルス波形を有する変動を示し、それによって、後輪トルク指令値の時間平均値が漸減するように定められてもよい。前記第4値は負の値(制動側にトルクを与える値)であってもよい。後輪トルク指令値演算ユニット54は、後輪トルク指令値が2回以上(少なくとも2回)前記第4値となるように、第3値と第4値とで交互に繰り返し変動する後輪トルク指令値を生成することが好ましい。
 一方、前輪トルク指令値演算ユニット53は、後輪スリップモード(ステップS39)では、後輪トルク指令値の時間平均値の減少を補うように増加する特性の前輪トルク指令値を生成する。この場合の前輪トルク指令値は、パルス的な変動を示すよりも、連続的な変動を示すように設定されることが好ましい。
 このように、モード1では、踏力センサ41およびアクセルセンサ42のうちのいずれか一方の出力信号を操作入力信号として共通に用いて、後輪トルク指令値および前輪トルク指令値が演算される。そして、前輪3または後輪4のスリップが生じたときに、スリップが生じた車輪のグリップを回復するためのトラクションコントロールが行われる。
 図10Bは、モード2(トラクションコントロールオン、協調制御オフ)における制御ユニット45の具体的な動作例を説明するためのフローチャートである。モード2では、センサ切換ユニット57が状態2に制御される(図9のステップS20)。それに応じて、制御ユニット45は、アクセルセンサ42の出力信号、すなわちアクセル操作量を取得する(図9のステップS20)。また、制御ユニット45は、踏力センサ41の出力信号、すなわち、踏力値を取得する(図9のステップS20)。
 モード2では、協調制御が非アクティブであり、前輪3についてはトラクションコントロールが行われない。したがって、前輪トルク指令値演算ユニット53は、専らアクセルセンサ42の出力信号(アクセル操作量)に基づいて、前輪トルク指令値を求める(ステップS51)。
 後輪トルク指令値演算ユニット54は、踏力センサ41が検出する踏力値に対応した通常後輪トルク指令値を生成する(ステップS52)。踏力に対する通常後輪トルク指令値の割合は、調整ボリウム63によって設定することができる。
 一方、スリップ検出ユニット50は、後輪回転速度演算ユニット52によって求められる後輪回転速度に基づいて、後輪4がスリップ状態かどうかを判断する(ステップS53)。たとえば、スリップ検出ユニット50は、後輪4の回転加速度が所定の閾値を超えたときに、後輪4がスリップ状態であると判定してもよい。回転加速度は、後輪回転速度を時間微分することによって求めることができる。
 後輪4がスリップ状態でないと判定されると(ステップS53:NO)、通常後輪トルク指令値がそのまま後輪トルク指令値として用いられる。その一方、後輪4がスリップ状態であると判定されると(ステップS53:YES)、後輪トルク指令値演算ユニット54は、通常後輪トルク指令値を補正して、それよりも小さな後輪トルク指令値を生成する(ステップS54)。
 前輪モータ駆動ユニット55は、前輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、前輪電動モータ13に前輪トルク指令値に対応した電流を流す(ステップS55)。同様に、後輪モータ駆動ユニット56は、後輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、後輪電動モータ14に後輪トルク指令値に対応した電流を流す(ステップS56)。
 このようにして、前輪電動モータ13は、アクセル操作量に応じたトルクを発生する。また、後輪電動モータ14は、ペダル踏力に応じたトルクを発生する。後輪電動モータ14は、後輪4がスリップ状態でなければ、通常後輪トルク指令値に応じたトルクを発生する。その一方で、後輪4がスリップ状態であれば、後輪電動モータ14は、非スリップ時よりも小さなトルクを発生して、後輪4のグリップを回復させる。
 後輪4のスリップ状態が検出されたときに、通常後輪トルク指令値を減少補正する代わりに、後輪トルク指令値を零または微小な一定値としてもよい。それによって、より確実に、後輪4のスリップ状態を解消できる。
 図10Cは、モード3(トラクションコントロールオフ、協調制御オン)における制御ユニット45の具体的な動作例を説明するためのフローチャートである。モード2では、センサ切換ユニット57が状態1または状態3に設定される。そして、状態1の場合には、制御ユニット45は、踏力センサ41の出力を操作入力として取得し、状態3の場合には、制御ユニット45は、アクセルセンサ42の出力を操作入力として取得する(図9のステップS21)。
 モード3では、前輪トルク指令値演算ユニット53は、取得された操作入力に基づいて、前輪トルク指令値を求める(ステップS61)。また、後輪トルク指令値演算ユニット54は、取得された操作入力に基づいて、後輪トルク指令値を生成する(ステップS62)。
 前輪モータ駆動ユニット55は、前輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、前輪電動モータ13に前輪トルク指令値に対応した電流を流す(ステップS63)。同様に、後輪モータ駆動ユニット56は、後輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、後輪電動モータ14に後輪トルク指令値に対応した電流を流す(ステップS64)。
 センサ切換ユニット57が状態1の場合、前輪トルク指令値および後輪トルク指令値は、いずれも、踏力センサ41の出力に基づいて演算される。具体的には、調整ボリウム63によって設定される前輪補助比率および後輪補助比率に基づいて、踏力に比例した前輪トルク指令値および後輪トルク指令値が演算される。これにより、踏力に対応した補助トルクが前輪3および後輪4にそれぞれ与えられ、ペダル20に加えられた人力に対応する補助力が前輪3および後輪4から発生される。
 センサ切換ユニット57が状態2の場合、前輪トルク指令値および後輪トルク指令値は、いずれも、アクセルセンサ42の出力に基づいて演算される。具体的には、アクセルセンサ42の操作量に比例した前輪トルク指令値および後輪トルク指令値が演算される。これにより、アクセルセンサ42の操作量に対応した駆動トルクが前輪3および後輪4に加えられる。
 トラクションコントロールが非アクティブであるので、前輪3または後輪4がスリップした場合でも、トラクションコントロールは行われない。すなわち、スリップ状態の解消は、専ら使用者のペダル操作またはアクセル操作に委ねられる。
 図10Dは、モード4(トラクションコントロールオフ、協調制御オフ)における制御ユニット45の具体的な動作例を説明するためのフローチャートである。モード4では、センサ切換ユニット57が状態2に制御される(図9のステップS22)。それに応じて、制御ユニット45は、アクセルセンサ42の出力信号、すなわちアクセル操作量を取得する(図9のステップS22)。また、制御ユニット45は、踏力センサ41の出力信号、すなわち、踏力値を取得する(図9のステップS22)。
 モード4では、協調制御が非アクティブであり、トラクションコントロールも行われない。したがって、前輪トルク指令値演算ユニット53は、専らアクセルセンサ42の出力信号(アクセル操作量)に基づいて、前輪トルク指令値を求める(ステップS71)。また、後輪トルク指令値演算ユニット54は、踏力センサ41が検出する踏力値に対応した後輪トルク指令値を生成する(ステップS72)。踏力に対する後輪トルク指令値の割合は、調整ボリウム63による設定に従う。
 前輪モータ駆動ユニット55は、前輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、前輪電動モータ13に前輪トルク指令値に対応した電流を流す(ステップS73)。同様に、後輪モータ駆動ユニット56は、後輪トルク指令値に対応したデューティー比で駆動電圧をPWM制御することにより、後輪電動モータ14に後輪トルク指令値に対応した電流を流す(ステップS74)。
 このように、前輪トルク指令値は、アクセルセンサ42の出力に基づいて演算される。具体的には、アクセルセンサ42の操作量に比例した前輪トルク指令値が演算される。これにより、アクセルセンサ42の操作量に対応した駆動トルクが前輪3に加えられる。
 一方、後輪トルク指令値は、踏力センサ41の出力に基づいて演算される。具体的には、調整ボリウム63によって設定される後輪補助比率に基づいて、踏力に比例した後輪トルク指令値が演算される。これにより、踏力に比例した補助トルクが後輪4に与えられ、ペダル20に加えられた人力に対応する補助力が後輪4から発生される。
 こうして、モード4では、前輪トルク指令値はアクセル操作量に対応し、後輪トルク指令値はペダルに加えられる踏力に対応する。それにより、前輪電動モータ13および後輪電動モータ14の駆動および発生トルクを、使用者の操作に応じて、個別に制御することができる。
 図11は、電動二輪車1の走行路に存在する障害物(丸太等)を乗り越えるときの、前輪トルク指令値および後輪トルク指令値の時間変化の一例を示す図である。線L11は前輪トルク指令値を示し、線L12は後輪トルク指令値を示す。
 運転者21は、第2スイッチ62を操作して協調制御をオフとし、モード2またはモード4を選択する。それにより、前輪駆動力および後輪駆動力を互いに独立にコントロールできる。前述の第1の実施形態に関して参照した図4の場合と同様に、運転者21は、前輪3を浮き上がらせて障害物に乗り上げ後、前輪3に駆動トルクを加え、前輪3によって車体を障害物に引き上げるように操作する。
 具体的には、運転者21は、アクセル操作量を零として、前輪電動モータ13がトルクを発生せずに自由回転する状態として、ペダル20を踏み込む。これにより、後輪トルク指令値が立ち上がる。それによって、後輪4には、人力駆動系31からの人力と、後輪電動モータ14が発生する補助力とが加わる。このときに、運転者21は、ハンドルバー27を引き上げる。それによって、前輪3を容易に浮上させることができる。その状態で、後輪4に加えられる駆動力(人力および補助力)によって、車体は障害物に向かって前進する。それにより、前輪3を障害物に乗り上げることができる。前輪3が地面から浮き上がった後に、運転者21は、アクセルグリップ28Rを操作して、アクセル操作量を増大させる。それによって、前輪トルク指令値が増大し、前輪電動モータ13がアクセル操作量に応じたトルクを発生する。したがって、前輪3が障害物に接地してそのトルクが障害物に伝達されると、前輪3が車体を牽引して障害物の上へと乗り上げる。
 こうして、後輪駆動力に遅れて前輪駆動力が発生および増加するようにペダル20およびアクセルグリップ28Rを操作することによって、電動二輪車1は障害物を容易に乗り越えていくことができる。
 なお、前輪3を持ち上げるときの前輪トルク指令値は零である必要はない。すなわち、前輪トルク指令値が充分に小さく、後輪トルク指令値が充分に大きければ、前輪3を持ち上げる操作は比較的容易である。
 [第3実施形態]
 図12は、この発明の第3の実施形態に係る電動二輪車81の電気的構成を説明するためのブロック図である。図12において、前述の図8の各部の対応部分は同一参照符号で示す。また、この実施形態の説明において、前述の図6、図7および図10A~10Dを再び参照する。
 この実施形態では、制御ユニット45は、踏力センサ41の出力信号を遅延させる第1遅延ユニット71と、アクセルセンサ42の出力信号を遅延させる第2遅延ユニット72とを含む。すなわち、制御ユニット45は、第1遅延ユニット71および第2遅延ユニット72としての機能を実現するようにプログラムされている。
 第1遅延ユニット71は、入力された信号を第1所定時間遅延させてもよい。第2遅延ユニット72は、入力された信号を第2所定時間遅延させてもよい。第1および第2所定時間は、等しくても異なっていてもよい。第1および第2所定時間は、たとえば、0秒~1.5秒程度(好ましくは0.5秒~1.5秒程度)に設定されてもよい。また、制御ユニット45を所定の設定モードとすることにより、調整ボリウム63によって、または調整ボリウム63とは別の操作ユニットの入力に応じて、第1所定時間および/または第2所定時間が調整可能とされていてもよい。
 また、第1遅延ユニット71は、後輪4が所定の第1遅延回転角だけ回転するのに要する時間、入力された信号を遅延させてもよい。第2遅延ユニット72は、後輪4が所定の第2遅延回転角だけ回転するのに要する時間、入力された信号を遅延させてもよい。第1および第2遅延回転角は、等しくても異なっていてもよい。第1および第2遅延回転角は、たとえば、90度程度に設定されてもよい。また、制御ユニット45を所定の設定モードとすることにより、調整ボリウム63によって、または調整ボリウム63とは別の操作ユニットの入力に応じて、第1遅延回転角および/または第2遅延回転角が調整可能とされていてもよい。後輪4が遅延回転角だけ回転するのに要する時間は、後輪回転速度演算ユニット52によって演算される後輪回転速度から求めることができる。制御ユニット45は、その求められた時間に基づいて、第1および第2遅延ユニット71,72における信号遅延時間を設定する。
 踏力センサ41の出力信号は、センサ切換ユニット57を介して、後輪トルク指令値演算ユニット54に与えることができる。また、踏力センサ41の出力信号は、第1遅延ユニット71で遅延させた後、センサ切換ユニット57を介して、前輪トルク指令値演算ユニット53に与えることができる。一方、アクセルセンサ42の出力信号は、センサ切換ユニット57を介して、後輪トルク指令値演算ユニット54に与えることができる。また、アクセルセンサ42の出力信号は、第2遅延ユニット72で遅延させた後、センサ切換ユニット57を介して、前輪トルク指令値演算ユニット53に与えることができる。さらに、アクセルセンサ42の出力信号は、第2遅延ユニット72での遅延を経ることなく、センサ切換ユニット57を介して、前輪トルク指令値演算ユニット53に与えることができる。
 センサ切換ユニット57は、この実施形態では、たとえば、次の状態をとることができる。
 状態1(図12に示す):踏力センサ41の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられ、アクセルセンサ42の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられない。踏力センサ41の出力信号は、第1遅延ユニット71によって遅延されて前輪トルク指令値演算ユニット53に供給される。
 状態2:踏力センサ41の出力信号が後輪トルク指令値演算ユニット54に与えられ、アクセルセンサ42の出力信号が、遅延ユニット71,72による遅延を経ることなく、前輪トルク指令値演算ユニット53に与えられる。
 状態3:踏力センサ41の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられず、アクセルセンサ42の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられる。アクセルセンサ42の出力信号は、第2遅延ユニット72によって遅延されて前輪トルク指令値演算ユニット53に供給される。
 センサ切換ユニット57は、リモートコントロールユニット65の第1スイッチ61の操作によって切り換わる。具体的には、第1スイッチ61によって、協調制御がアクティブにされたときは、状態1または状態3となる。いずれの状態となるかは、制御ユニット45のプログラムの設定に従う。協調制御が非アクティブのときは、状態2となる。
 その他の構成は、前述の第2の実施形態と同様である。
 制御ユニット45は、第2の実施形態と同様に、前述のモード1~モード4の制御モードを有している。
 図13および前述の図10A~図10Dを参照して、前輪電動モータ13および後輪電動モータ14の制御に関する制御ユニット45の処理例を説明する。図13において、前述の図9に示された各ステップと同様の処理が行われるステップには同一参照符号を付す。
 制御ユニット45は、リモートコントロールユニット65からの信号を取得する。具体的には、制御ユニット45は、第1スイッチ61および第2スイッチ62の状態と、調整ボリウム63の操作量とを取得する(ステップS11)。制御ユニット45は、第1および第2スイッチ62の状態に応じて(ステップS12,S13,S16)、モード1~4のいずれかの制御モードに従って(ステップS14,S15,S17,S18)、前輪電動モータ13および後輪電動モータ14のためのトルク指令値を生成する。
 モード1が選択されると、制御ユニット45は、センサ切換ユニット57を前述の状態1または状態3に制御する(ステップS19)。それにより、踏力センサ41またはアクセルセンサ42の出力信号を操作入力信号として用いて、前輪トルク指令値および後輪トルク指令値が生成される。トラクションコントロール切換ユニット58はオン状態とされる。センサ切換ユニット57が状態1の場合には、制御ユニット45は、踏力センサ41の出力信号(操作入力信号)を第1遅延ユニット71によって遅延させる(ステップS25)。また、センサ切換ユニット57が状態3の場合には、制御ユニット45は、アクセルセンサ42の出力信号(操作入力信号)を第2遅延ユニット72で遅延させる。
 モード1におけるその他の動作は、図10Aに示されているとおりである。前輪駆動トルク指令値は、遅延された操作入力信号に基づいて演算される(ステップS37,S38,S39)。
 モード2が選択されると、制御ユニット45は、センサ切換ユニット57を前述の状態2に制御する。それにより、アクセルセンサ42の出力信号と、踏力センサ41の出力信号との両方が取得される(ステップS20)。トラクションコントロール切換ユニット58はオン状態とされる。この場合、たとえば、後輪4についてのみ、トラクションコントロールが行われる。
 モード2におけるその他の動作は、図10Bに示されているとおりである。アクセルセンサ42の出力信号は、第2遅延ユニット72による遅延を受けることなく、前輪トルク指令値演算ユニット53に与えられる。すなわち、前輪駆動トルク指令値は、遅延のないアクセルセンサ出力信号(操作入力信号)に基づいて演算される。また、踏力センサ41の出力信号は、後輪トルク指令値演算ユニット54に入力される。後輪トルク指令値は、その踏力センサ41の出力信号(操作入力信号)に基づいて演算される。このようにして、前輪トルク指令値および後輪トルク指令値は、異なる操作入力信号に基づいて生成される。
 モード3が選択されると、制御ユニット45は、センサ切換ユニット57を前述の状態1または3に制御する。それにより、踏力センサ41またはアクセルセンサ42の出力信号を操作入力信号として用いて、前輪トルク指令値および後輪トルク指令値が生成される。トラクションコントロール切換ユニット58はオフ状態とされる。センサ切換ユニット57が状態1の場合には、制御ユニット45は、踏力センサ41の出力信号(操作入力信号)を第1遅延ユニット71によって遅延させる。また、センサ切換ユニット57が状態3の場合には、制御ユニット45は、アクセルセンサ42の出力信号(操作入力信号)を第2遅延ユニット72によって遅延させる。
 モード3におけるその他の動作は、図10Cに示されているとおりである。前輪駆動トルク指令値は、遅延された操作入力信号に基づいて演算される。
 モード4(トラクションコントロールオフ、協調制御オフ)が選択されると、制御ユニット45は、センサ切換ユニット57を前述の状態2に制御する。それにより、アクセルセンサ42の出力信号と、踏力センサ41の出力信号との両方が取得される(ステップS22)。トラクションコントロール切換ユニット58はオフ状態とされる。したがって、前輪3および後輪4のいずれについてもトラクションコントロールが行われない。
 モード4におけるその他の動作は、図10Dに示されているとおりである。アクセルセンサ42の出力信号は、第2遅延ユニット72による遅延を受けることなく、前輪トルク指令値演算ユニット53に入力される。すなわち、前輪トルク指令値は、遅延のないアクセルセンサ出力信号(操作入力信号)に基づいて生成される。また、踏力センサ41の出力信号は、後輪トルク指令値演算ユニット54に入力される。後輪トルク指令値は、その踏力センサ41の出力信号(操作入力信号)に基づいて演算される。このようにして、前輪トルク指令値および後輪トルク指令値は、異なる操作入力信号に基づいて生成される。
 次に、電動二輪車81の走行路に存在する障害物(丸太等)を乗り越えるときの動作について説明する。モード2またはモード4を選択したときの動作は、前述の第2の実施形態の場合と同様である。
 この実施形態では、協調制御が実行されるモード1およびモード3においても、後輪4の駆動トルクの発生または増加に遅れて、前輪3の駆動トルクを発生または増加させることができる。これにより、モード1およびモード3においても、容易に障害物を乗り越えて車両を前進させることができる。
 運転者21は、前輪3を浮き上げて障害物に乗り上げ、その後、前輪3に駆動トルクを加え、前輪3によって車体を障害物に引き上げるように操作する。
 たとえば、センサ切換ユニット57が状態1の場合には、次のように操作することによって、障害物を容易に乗り越えて行くことができる。具体的には、運転者21は、一旦、ペダル踏力を零として前輪電動モータ13からの駆動トルクの発生を停止させ、前輪3を自由回転状態とする。その状態から、運転者21は、ペダル20を踏み込む。これにより、図14の線L22に示すように、後輪トルク指令値が立ち上がり、後輪4には、人力駆動系31からの人力と、後輪電動モータ14が発生する補助力とが加わる。その一方で、第1遅延ユニット71によって踏力センサ出力信号が遅延されている間、図14の線L21に示すように、前輪トルク指令値は零に保たれ、前輪3は自由回転状態に保たれる。
 この遅延時間を利用して、運転者21はハンドルバー27を引き上げる。それによって、前輪3を容易に浮上させることができる。後輪4に加えられる駆動力(人力および補助力)によって、車体は、障害物に向かって前進するので、前輪3を障害物に乗り上げることができる。前輪3が地面から浮き上がった後に、前輪トルク指令値が立ち上がり、遅延された踏力センサ出力に対応した前輪トルク指令値が生成される。それに応じて、前輪電動モータ13が踏力センサ出力に応じたトルクを発生する。したがって、前輪3が障害物に接地してそのトルクが障害物に伝達されると、前輪3が車体を牽引して障害物の上へと乗り上げる。こうして、前輪駆動力が後輪駆動力に遅れて発生および増加するので、電動二輪車81は障害物を容易に乗り越えていくことができる。
 センサ切換ユニット57が状態3の場合には、次のように操作することによって、障害物を容易に乗り越えて行くことができる。たとえば、運転者21は、アクセルグリップ28Rを初期位置として、アクセル操作量を零とし、前輪電動モータ13からの駆動トルクの発生を停止させて、前輪3を自由回転状態とする。その状態から、運転者21は、アクセルグリップ28Rを操作してアクセル操作量を増加させる。それに応じて、後輪トルク指令値が増加するので、後輪電動モータ14がトルクを発生し、後輪3を駆動する。その一方で、第2遅延ユニット72によってアクセルセンサ出力信号が遅延されている間、前輪トルク指令値は零に保たれ、前輪3は自由回転状態に保たれる。
 この遅延時間を利用して、運転者21はハンドルバー27を引き上げる。それによって、前輪3を容易に浮上させることができる。後輪電動モータ14から後輪4に加えられる駆動力によって、車体は、障害物に向かって前進するので、前輪3を障害物に乗り上げることができる。前輪3が地面から浮き上がった後に、前輪トルク指令値が立ち上がり、遅延されたアクセルセンサ出力に対応した前輪トルク指令値が生成される。したがって、後輪トルク指令値の増加から遅れて前輪トルク指令値が増加し、その前輪トルク指令値に応じたトルクが前輪電動モータ13から発生される。したがって、前輪3が障害物に接地してそのトルクが障害物に伝達されると、前輪3が車体を牽引して障害物の上へと乗り上げる。こうして、前輪駆動力が後輪駆動力に遅れて発生および増加するので、電動二輪車1は障害物を容易に乗り越えていくことができる。
 前輪3を持ち上げる前にアクセル操作量を必ずしも零にする必要はなく、零よりも大きな微小値としてもよい。
 前述のとおり、遅延ユニット71,72における遅延時間または遅延回転角は、制御ユニット45を設定モードとしたうえで、調整ボリウム63によって調整することができる。このように、この実施形態では、調整ボリウム63が、時間差指令信号を出力する時間差調整ユニットの一例である。制御ユニット45は、調整ボリウム63からの指令に応じて遅延ユニット71,72における遅延時間または遅延回転角を可変設定し、それによって、前輪電動モータ13および後輪電動モータ14の駆動力増加の時間差を可変設定する。
 [第4実施形態]
 図15は、この発明の第4の実施形態に係る電動二輪車91の電気的構成を説明するためのブロック図である。図15において、前述の図12の各部の対応部分は同一参照符号で示す。また、この実施形態の説明において、前述の図6、図7等を再び参照する。
 この実施形態では、センサ切換ユニット57は、踏力センサ41の出力信号を、第1遅延ユニット71による遅延を経ることなく、前輪トルク指令値演算ユニット53に与えることができるように構成されている。また、協調制御のオン/オフを切り換える第2スイッチ62は、第1協調制御オン状態、第2協調制御オン状態および協調制御オフ状態を選択可能に構成されており、センサ切換ユニット57は、これらに対応する状態をとることができる。
 具体的には、センサ切換ユニット57は、次の状態をとることができる。
 状態1-1(図15に示す):踏力センサ41の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられ、アクセルセンサ42の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられない。踏力センサ41の出力信号は、第1遅延ユニット71による遅延を経ることなく、前輪トルク指令値演算ユニット53に供給される。
 状態1-2:踏力センサ41の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられ、アクセルセンサ42の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられない。踏力センサ41の出力信号は、第1遅延ユニット71によって遅延されて前輪トルク指令値演算ユニット53に供給される。
 状態2:踏力センサ41の出力信号が後輪トルク指令値演算ユニット54に与えられ、アクセルセンサ42の出力信号が、遅延ユニット71,72による遅延を経ることなく、前輪トルク指令値演算ユニット53に与えられる。
 状態3-1:踏力センサ41の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられず、アクセルセンサ42の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられる。アクセルセンサ42の出力信号は、第2遅延ユニット72によって遅延を経ることなく、前輪トルク指令値演算ユニット53に供給される。
 状態3-2:踏力センサ41の出力信号がトルク指令値演算ユニット53,54のいずれにも与えられず、アクセルセンサ42の出力信号が前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54の両方に与えられる。アクセルセンサ42の出力信号は、第2遅延ユニット72によって遅延されて前輪トルク指令値演算ユニット53に供給される。
 第2スイッチ62によって第1協調制御オン状態が選択されているとき、センサ切換ユニット57は、状態1-1または状態3-1に設定される。いずれの状態となるかは、制御ユニット45のプログラムの設定に従う。第2スイッチ62によって第2協調制御オン状態が選択されているとき、センサ切換ユニット57は、状態1-2または状態3-2に設定される。いずれの状態となるかは、制御ユニット45のプログラムの設定に従う。第2スイッチ62によって協調制御オフ状態が選択されているとき、センサ切換ユニット57は、状態2に設定される。
 状態1-2は前述の第2の実施形態における状態1に相当し、状態3-2は前述の第2の実施形態における状態3に相当する。
 状態1-1では、踏力センサ41の出力信号(操作入力信号)が、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54に同じタイミングで供給される。したがって、前輪電動モータ13および後輪電動モータ14は、ペダル20を踏み込む操作に応答して、同時にトルクを発生し、同時にトルクを増大させる。
 状態3-1では、アクセルセンサ42の出力信号(操作入力信号)が、前輪トルク指令値演算ユニット53および後輪トルク指令値演算ユニット54に同じタイミングで供給される。したがって、前輪電動モータ13および後輪電動モータ14は、アクセルグリップ28Rの操作に応答して、同時にトルクを発生し、同時にトルクを増大させる。
 協調制御がアクティブとなるモード1およびモード3においては、第2スイッチ62による選択操作に応じて、センサ切換ユニット57は、第2の実施形態における状態1に代えて、状態1-1または状態1-2に設定される。また、モード1およびモード3において、センサ切換ユニット57は、第2スイッチ62による選択操作に応じて、第2の実施形態における状態1に代えて、状態3-1または状態3-2に設定される。
 このように、この実施形態では、協調制御がアクティブのときに、前輪トルク指令値および後輪トルク指令値の演算に共通に用いられる操作入力信号の遅延の有無を選択できる。それにより、前輪駆動力が後輪駆動力に遅れて発生および増加する時間差駆動モードと、前輪駆動力と後輪駆動力とが同期して発生および増加する同期駆動モードとを運転者21が選択できる。時間差駆動モードおよび同期駆動モードの切換えは、第2スイッチ62の操作によって行うことができる。すなわち、第2スイッチ62は、同期駆動モードと時間差駆動モードとを切り換えるために操作者によって操作されるモード切換操作ユニットの一例である。
 [その他の実施形態]
 以上、この発明の4つの実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。以下に、いくつかの変形形態を例示する。
 1.前述の実施形態では、鞍乗り型車両として、一つの前輪および一つの後輪を有する二輪車両を例示したけれども、前輪および後輪の車輪の数は一つ以上であればよい。すなわち、前輪は複数個であってもよいし、同様に、後輪は複数個であってもよい。複数個の前輪または後輪を有する鞍乗り型車両の一例として、ATV(All Terrain Vehicle:全地形対応車)が挙げられる。
 2.前述の実施形態では、トルク指令値の演算のための操作入力ユニットとして、アクセルペダル、アクセルグリップおよび足踏みペダルを例示した。しかし、アクセルレバー等の他の形態の操作入力ユニットが用いられてもよい。
 3.前述の実施形態では、一つの制御ユニットによって前輪電動モータおよび後輪電動モータが制御されている。しかし、前輪電動モータおよび後輪電動モータにそれぞれ対応する2つの制御ユニットが備えられてもよい。
 4.第2、第3および第4の実施形態において、人力駆動系31は省かれてもよい。具体的には、増速機構35、変速機構36およびワンウェイクラッチ37が省かれてもよい。この場合に、クランク23に対して回転抵抗を与える回転抵抗ユニットが備えられることが好ましい。これにより、ペダル20に加えられる踏力が踏力センサ41によって検出されるので、ペダル20を後輪用入力ユニットとして用いることができる。したがって、ペダル20に加えられる踏力に応じた後輪駆動力を後輪4から発生させることができる。
 5.人力駆動系31は、ワンウェイクラッチ37を含まなくてもよい。
 6.第1の実施形態において、アクセルペダル130およびアクセルグリップ110が同時または一定時間内の時間差で操作された場合に、制御ユニット140は、まず後輪トルク指令値を発生または増加させ、その後、予め定める遅延時間の後に前輪トルク指令値を発生または増加させてもよい。そして、前記一定時間を超える時間差でアクセルペダル130およびアクセルグリップ110が操作された場合には、制御ユニット140は、アクセルペダル130の操作タイミングで後輪トルク指令値を発生または増加させ、アクセルグリップ110の操作タイミングで前輪トルク指令値を発生または増加させてもよい。
 第2、第3および第4の実施形態におけるモード2およびモード4についても同様である。すなわち、ペダル20およびアクセルグリップ28Rが同時または一定時間内の時間差で操作された場合に、制御ユニット45は、まず後輪トルク指令値を発生または増加させ、その後、予め定める遅延時間の後に前輪トルク指令値を発生または増加させてもよい。そして、前記一定時間を超える時間差でペダル20およびアクセルグリップ28Rが操作された場合には、制御ユニット45は、ペダル20の操作タイミングで後輪トルク指令値を発生または増加させ、アクセルグリップ28Rの操作タイミングで前輪トルク指令値を発生または増加させてもよい。
 7.第3および第4の実施形態において、遅延ユニット71,72は、常時、入力信号を遅延させてもよいが、所定の条件が成立したときに入力信号を遅延させるように構成されていてもよい。具体的には、遅延ユニット71,72は、前輪回転速度および/または後輪回転速度が所定の閾値以下である低速回転状態または停止状態においてのみ、入力信号を遅延させてもよい。それにより、低速走行状態または停止状態から操作入力(アクセル操作またはペダル踏込み操作)を行ったときにだけ、前輪の駆動を後輪の駆動から遅延させることができる。
 8.前述の実施形態では、後輪トルク指令値を発生または増加させ、その後に前輪トルク指令値を発生または増加させる例について主として説明した。しかし、後輪トルク指令値を発生または増加させた後に、前輪トルク指令値を減少させてもよい。たとえば、第1の実施形態において、使用者は、アクセルペダル130を踏み込んで後輪トルク指令値を増加させた後に、アクセルグリップ110の操作によって、前輪トルク指令値を負の方向に増加(すなわち、減少)させてもよい。この場合、後輪電動モータ114が力行状態となり、後輪104に前進回転方向のトルクを与える一方で、前輪電動モータ113は回生状態となり、前輪103に後進回転方向のトルクを与える。これにより、たとえば、前輪103が障害物100上でスリップしたときに、前輪103のグリップの回復を図ることができる。前輪103のグリップが回復したときには、使用者は、アクセルグリップ110の操作によって、前進トルク指令値を正の値として、前進電動モータ113を力行状態とし、前輪103から前進回転方向のトルクを発生させてもよい。図5の線L1に示す正の前輪トルク指令値を発生させているときにも、前輪103にスリップが生じたりすれば、使用者は、アクセルグリップ110の操作によって、前輪トルク指令値を減少させて負の値とすることもできる。それにより、前輪電動モータ113を回生状態として、前輪103から後進回転方向のトルクを発生させ、前輪103のグリップ回復を図ることができる。第2の実施形態についても同様の動作が可能である。第3および第4の実施形態においても、前輪トルク指令値(図14の線L21)が単調に立ち上がる必要はなく、たとえば、前輪103のスリップ状態に応じて、正または負の前輪トルク指令値を発生させたり、前輪トルク指令値を増減させてもよい。
 この出願は、2015年2月6日に日本国特許庁に提出された特願2015-022373号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
101  :電動二輪車(第1の実施形態)
102  :車体フレーム
103  :前輪
104  :後輪
107  :ハンドルバー
110  :アクセルグリップ
111  :シート
112  :バッテリ
113  :前輪電動モータ
114  :後輪電動モータ
130  :アクセルペダル
140  :制御ユニット
141  :前輪トルク指令値演算ユニット
142  :後輪トルク指令値演算ユニット
143  :前輪モータ駆動ユニット
144  :後輪モータ駆動ユニット
153  :前輪アクセルセンサ
154  :後輪アクセルセンサ
1    :電動二輪車(第2の実施形態)
2    :車体フレーム
3    :前輪
4    :後輪
11   :サドル
12   :バッテリ
13   :前輪電動モータ
14   :後輪電動モータ
20   :ペダル
21   :運転者
23   :クランク
27   :ハンドルバー
28R  :アクセルグリップ
31   :人力駆動系
32   :電動駆動系
41   :踏力センサ
42   :アクセルセンサ
45   :制御ユニット
50   :スリップ検出ユニット
53   :前輪トルク指令値演算ユニット
54   :後輪トルク指令値演算ユニット
55   :前輪モータ駆動ユニット
56   :後輪モータ駆動ユニット
57   :センサ切換ユニット
58   :トラクションコントロール切換ユニット
61   :第1スイッチ
62   :第2スイッチ
63   :調整ボリウム
65   :リモートコントロールユニット
71   :第1遅延ユニット
72   :第2遅延ユニット
81   :電動二輪車(第3の実施形態)
91   :電動二輪車(第4の実施形態)

Claims (13)

  1.  鞍乗り型の車体と、
     前記車体を支持する前輪と、
     前記車体を支持する後輪と、
     前記前輪に駆動力を与える前輪電動モータと、
     前記後輪に駆動力を与える後輪電動モータと、
     前記前輪電動モータを駆動する前輪モータ駆動ユニットと、
     前記後輪電動モータを駆動する後輪モータ駆動ユニットと、
     前記前輪モータ駆動ユニットに前輪駆動指令を与え、前記後輪モータ駆動ユニットに前記前輪駆動指令とは異なる後輪駆動指令を与えて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるようにプログラムされた制御ユニットと
    を含む、鞍乗り型車両。
  2.  前記制御ユニットが、前記後輪電動モータの駆動力の変化に遅れて前記前輪電動モータの駆動力の変化が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項1に記載の鞍乗り型車両。
  3.  前記制御ユニットが、前記後輪電動モータの駆動力の増加に遅れて前記前輪電動モータの駆動力の増加が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項2に記載の鞍乗り型車両。
  4.  前記制御ユニットが、前記後輪電動モータの駆動力発生に遅れて前記前輪電動モータの駆動力が発生するように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項1~3のいずれか一項に記載の鞍乗り型車両。
  5.  使用者によって操作され、その操作に応じた信号を出力する前輪用入力ユニットと、
     使用者によって操作され、その操作に応じた信号を出力する後輪用入力ユニットとをさらに含み、
     前記制御ユニットは、前記前輪用入力ユニットからの入力に応じて前記前輪駆動指令を生成し、前記後輪用入力ユニットからの入力に応じて前記後輪駆動指令を生成するようにプログラムされている、請求項1~4のいずれか一項に記載の鞍乗り型車両。
  6.  前記後輪用入力ユニットが、使用者によって足踏みされるペダルと、前記ペダルに加えられた踏力を検出してその踏力に応じた信号を出力する踏力センサとを含み、
     前記鞍乗り型車両が、前記ペダルに加えられた踏力を後輪に伝達する人力駆動機構をさらに含む、請求項5に記載の鞍乗り型車両。
  7.  前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力の変化に遅れて前記前輪電動モータの駆動力の変化が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項5または6に記載の鞍乗り型車両。
  8.  前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力の増加に遅れて前記前輪電動モータの駆動力の増加が生じるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項7に記載の鞍乗り型車両。
  9.  前記制御ユニットが、使用者が前記後輪用入力ユニットの操作に遅れて前記前輪用入力ユニットを操作することにより、その操作に応じて、前記後輪電動モータの駆動力発生に遅れて前記前輪電動モータの駆動力が発生するように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項5~8のいずれか一項に記載の鞍乗り型車両。
  10.  前記制御ユニットが、
     個別制御モードおよび共通制御モードを有し、
     前記個別制御モードにおいて、前記前輪用入力ユニットからの入力に応じて前記前輪駆動指令を生成し、かつ前記後輪用入力ユニットからの入力に応じて前記後輪駆動指令を生成し、
     前記共通制御モードにおいて、前記前輪用入力ユニットおよび前記後輪用入力ユニットのうちの一つからの入力に応じて、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされており、
     前記鞍乗り型車両が、使用者によって操作され、前記個別制御モードと前記共通制御モードとを切り換えるモード切換操作ユニットをさらに含む、請求項5~9のいずれか一項に記載の鞍乗り型車両。
  11.  使用者によって操作され、その操作に応じた信号を出力する入力ユニットをさらに含み、
     前記制御ユニットは、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされている、請求項1~4のいずれか一項に記載の鞍乗り型車両。
  12.  前記制御ユニットが、
     同期駆動モードおよび時間差駆動モードを有し、
     前記同期駆動モードにおいて、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化が同期して生じるように、前記前輪駆動指令および前記後輪駆動指令を生成し、
     前記時間差駆動モードにおいて、前記入力ユニットからの入力に応じて、前記前輪電動モータおよび前記後輪電動モータの駆動力の変化に時間差をつけるように、前記前輪駆動指令および前記後輪駆動指令を生成するようにプログラムされており、
     前記鞍乗り型車両が、使用者によって操作され、前記同期駆動モードと前記時間差駆動モードとを切り換えるモード切換操作ユニットをさらに含む、請求項11に記載の鞍乗り型車両。
  13.  前記時間差を調整するために使用者によって操作される時間差調整ユニットをさらに含み、
     前記制御ユニットが前記時間差調整ユニットから入力される時間差指令信号に応じて前記時間差を可変設定するようにプログラムされている、請求項11または12に記載の鞍乗り型車両。
PCT/JP2016/053051 2015-02-06 2016-02-02 鞍乗り型車両 WO2016125789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,818 US10322769B2 (en) 2015-02-06 2016-02-02 Saddle riding vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022373 2015-02-06
JP2015-022373 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125789A1 true WO2016125789A1 (ja) 2016-08-11

Family

ID=56564130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053051 WO2016125789A1 (ja) 2015-02-06 2016-02-02 鞍乗り型車両

Country Status (2)

Country Link
US (1) US10322769B2 (ja)
WO (1) WO2016125789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220823A1 (ja) * 2020-04-27 2021-11-04 Wakuta Koji 電動自転車
WO2023188201A1 (ja) * 2022-03-30 2023-10-05 本田技研工業株式会社 電動鞍乗型車両

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146385B2 (ja) * 2017-11-15 2022-10-04 株式会社シマノ 人力駆動車両用制御装置
US11697340B1 (en) * 2018-11-30 2023-07-11 Robert P Thomas Electric portal wheel hub system
JP7324694B2 (ja) * 2019-11-25 2023-08-10 株式会社シマノ 人力駆動車用の判別装置および人力駆動車用の制御装置
CN111645797B (zh) * 2020-06-04 2022-03-25 广东高标电子科技有限公司 一种两轮电动车驱动系统
US11407298B1 (en) 2021-11-15 2022-08-09 Amos Power, Inc. Removable battery unit for an electric vehicle
US11364959B1 (en) 2021-12-27 2022-06-21 Amos Power, Inc. Modular robotic vehicle
USD1014569S1 (en) 2022-04-01 2024-02-13 Amos Power, Inc. Robotic vehicle
USD1014573S1 (en) 2022-04-01 2024-02-13 Amos Power, Inc. Removable track unit for a robotic vehicle
US11547035B1 (en) 2022-05-24 2023-01-10 Amos Power, Inc. Lift assist for an electrically driven hitch on an robotic vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167091A (ja) * 1989-11-28 1991-07-18 Suzuki Motor Corp 前後輪駆動自動二輪車の駆動装置
JP2013533821A (ja) * 2010-05-27 2013-08-29 ボックス コーポレーション 全輪駆動システムを有する2輪車
JP2015098227A (ja) * 2013-11-18 2015-05-28 ヤマハ発動機株式会社 電動補助車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167901A (ja) 1989-11-27 1991-07-19 Matsushita Electric Works Ltd 導波管コーナー
JPH09301264A (ja) 1996-05-08 1997-11-25 Aisan Ind Co Ltd 補助駆動装置
JP2000006874A (ja) 1998-06-23 2000-01-11 Hisaki Sekkei Kk 電動補助自転車
JP2007112406A (ja) 2005-10-19 2007-05-10 Masashi Sato 電動車輛
ITMI20060111A1 (it) 2006-01-24 2007-07-25 Piaggio & C Spa Veicolo a due ruote a trazione elettrica integrale
US9090207B2 (en) 2010-05-27 2015-07-28 Boxx Corp. Two wheeled vehicle with lighting system that generates defined image on riding surface
WO2012086459A1 (ja) * 2010-12-22 2012-06-28 マイクロスペース株式会社 モータ駆動制御装置
JP5689849B2 (ja) * 2012-05-18 2015-03-25 マイクロスペース株式会社 モータ駆動制御装置
JP5602186B2 (ja) * 2012-05-28 2014-10-08 マイクロスペース株式会社 モータ駆動制御装置
JP6604148B2 (ja) * 2015-11-05 2019-11-13 スズキ株式会社 前後輪駆動車両の駆動制御システムおよびその駆動制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167091A (ja) * 1989-11-28 1991-07-18 Suzuki Motor Corp 前後輪駆動自動二輪車の駆動装置
JP2013533821A (ja) * 2010-05-27 2013-08-29 ボックス コーポレーション 全輪駆動システムを有する2輪車
JP2015098227A (ja) * 2013-11-18 2015-05-28 ヤマハ発動機株式会社 電動補助車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220823A1 (ja) * 2020-04-27 2021-11-04 Wakuta Koji 電動自転車
JPWO2021220823A1 (ja) * 2020-04-27 2021-11-04
WO2023188201A1 (ja) * 2022-03-30 2023-10-05 本田技研工業株式会社 電動鞍乗型車両

Also Published As

Publication number Publication date
US10322769B2 (en) 2019-06-18
US20180015986A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
WO2016125789A1 (ja) 鞍乗り型車両
JP6361079B2 (ja) 車両
US10173749B2 (en) Electrically assisted bicycle
JP2015098227A (ja) 電動補助車両
EP3109089B1 (en) Electrically assisted bicycle
TWI735815B (zh) 車輛
JP2017154564A (ja) 電動アシスト自転車
KR101473180B1 (ko) 전기 자전거 및 그 제어방법
JP7160617B2 (ja) 制御装置および変速システム
JP2004243921A (ja) 電動補助車両の補助力制御装置
JP3169458U (ja) 手漕ぎ式自転車
TWI684546B (zh) 車輛
JP6748211B2 (ja) 車両
WO2017082240A1 (ja) 二輪車
JP2016106869A (ja) 電動アシスト機能付き足漕ぎ式車椅子
CN212529906U (zh) 电动三轮车
CN212243693U (zh) 电动三轮车
CN212243694U (zh) 电动三轮车
JP2020196314A (ja) 電動三輪車
JP2020196315A (ja) 電動三輪車
JP2020196313A (ja) 電動三輪車
WO2017082239A1 (ja) リーン車両
JP2020196312A (ja) 電動三輪車
JP2020164072A (ja) 電動三輪車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP