WO2016125380A1 - バイオガスエンジン - Google Patents

バイオガスエンジン Download PDF

Info

Publication number
WO2016125380A1
WO2016125380A1 PCT/JP2015/084014 JP2015084014W WO2016125380A1 WO 2016125380 A1 WO2016125380 A1 WO 2016125380A1 JP 2015084014 W JP2015084014 W JP 2015084014W WO 2016125380 A1 WO2016125380 A1 WO 2016125380A1
Authority
WO
WIPO (PCT)
Prior art keywords
biogas
air
gas
engine
combustion chamber
Prior art date
Application number
PCT/JP2015/084014
Other languages
English (en)
French (fr)
Inventor
裕昭 脇坂
松本 健
敦 金田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP15881197.6A priority Critical patent/EP3255272B1/en
Publication of WO2016125380A1 publication Critical patent/WO2016125380A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/18Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids hydrocarbon oils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/10Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot liquids, e.g. lubricants or cooling water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a biogas engine that uses biogas generated in a gasification furnace that generates biogas as fuel.
  • a biogas engine that uses biogas generated in a gasification furnace that generates biogas as fuel usually burns a mixture of biogas and air in a combustion chamber.
  • a malfunction such as a malfunction of the movable member touching the air (for example, a malfunction in which the movable member does not move smoothly due to adhesion of tar) may occur. These are particularly noticeable when biogas and outside air are mixed in a cold region.
  • Patent Document 1 discloses a configuration in which heating means for heating room air is provided in an intake passage of a gas engine using unpurified gas as fuel.
  • Patent Document 1 remains a backup configuration when the outside air temperature is lower than a predetermined temperature. That is, Patent Document 1 does not show anything about a configuration that guides the mixture of biogas and air to the combustion chamber above the dew point.
  • the present invention is a biogas engine that uses biogas generated in a gasification furnace that generates biogas as fuel and burns a mixture of biogas and air in a combustion chamber. It is an object of the present invention to provide a biogas engine capable of guiding an air-fuel mixture to a combustion chamber at a dew point or higher so that at least dew condensation does not occur among dew condensation and tar.
  • the present invention provides a biogas engine that uses the biogas generated in a gasification furnace for generating biogas as fuel and burns a mixture of the biogas and air in a combustion chamber.
  • the biogas supply path from the gasification furnace to the combustion chamber is provided with a biogas cooling section for adjusting the temperature of the biogas, and the intake path for sucking in the air has a temperature at the biogas cooling section.
  • a mixing unit that mixes the biogas and the air that have been adjusted, and in the intake direction of the air, upstream of the mixing unit of the intake path, the air sucked from the intake path,
  • a biogas engine characterized in that a heating unit is provided for heating so that the temperature of the air-fuel mixture is maintained above the dew point.
  • an oil contact part for bringing oil into contact with biogas is added to the biogas cooling part.
  • a biogas engine in which a biogas generated in a gasification furnace for generating biogas is used as a fuel, and a mixture of biogas and air is combusted in a combustion chamber. It is possible to provide a biogas engine capable of guiding the gas to the combustion chamber at a dew point or higher that does not cause at least condensation among condensation and tar.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of a biogas engine according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the correlation between the H 2 content and the dew point in the mixture of biogas and air.
  • FIG. 3 is an explanatory diagram for explaining a specific mode of a heating unit that heats air sucked from an intake path, and (a) is a schematic configuration diagram showing a first mode of an example of the heating unit, (B) is a schematic block diagram which shows the 2nd aspect of an example of a heating part.
  • FIG. 4 is an explanatory diagram illustrating a specific mode of the heating unit that heats the air sucked from the intake passage, and is a schematic configuration diagram illustrating another example of the heating unit.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of a biogas engine 100 according to an embodiment of the present invention.
  • the biogas engine 100 includes a raw material supply device 101, a gasification furnace 102, a cyclone 103, a gas cooler 104, a scrubber 105, a circulating liquid tank 106 (water storage tank), and a cooling system.
  • the raw material supply apparatus 101 includes an input hopper 101a in which biomass B, which is a raw material of the biogas G, is stored, and a raw material input unit 101b in which the biomass B stored in the input hopper 101a is input into the gasification furnace 102. .
  • biomass examples include livestock excrement, food waste, paper, black liquor, sewage sludge, wood waste such as wood chips, unused materials, non-food crops such as rice husks, and resource crops.
  • the raw material charging unit 101b includes a charging conveyor 101b1 and a charging feeder 101b2.
  • the input conveyor 101b1 conveys the biomass B stored in the input hopper 101a to the input feeder 101b2.
  • the input feeder 101b2 inputs the biomass B conveyed by the input conveyor 101b1 into the gasification furnace 102.
  • the gasification furnace 102 generates biogas G from the biomass B input by the raw material supply apparatus 101.
  • the cyclone 103 removes unnecessary substances such as relatively large dust contained in the biogas G generated in the gasification furnace 102.
  • the gas cooler 104 is provided in the biogas supply path from the gasifier 102 to the combustion chamber 10.
  • the gas cooler 104 cleans the biogas G from which unnecessary substances have been removed by the cyclone 103 with the cleaning liquid WL, and further cools it with the cooling water CW.
  • the scrubber 105 is further washed by letting the biogas G washed and cooled by the gas cooler 104 submerge in the washing liquid WL.
  • the circulating liquid tank 106 stores the cleaning liquid WL to be supplied to the gas cooler 104 and the scrubber 105.
  • the cooling tower 107 stores the cooling water CW supplied to the gas cooler 104.
  • the gas filter 108 removes unnecessary substances such as relatively small dust contained in the biogas G washed by the scrubber 105 by filtration.
  • the induction blower 109 sucks the biogas G in the biogas supply path on the gasification furnace 102 side and discharges it to the biogas supply path on the combustion chamber 10 side and the biogas supply path on the surplus gas combustion device 113 side.
  • the pretreatment unit 110 removes impurities in the biogas G discharged to the biogas supply path on the combustion chamber 10 side by the induction blower 109.
  • the combustion chamber 10 burns the biogas G from which impurities have been removed by the pretreatment unit 110.
  • the water sealing tank 112 controls the pressure of the biogas G discharged to the biogas supply path on the combustion chamber 10 side by the induction blower 109.
  • the surplus gas combustion device 113 burns surplus biogas SG that has not been supplied to the combustion chamber 10 and flows when the pressure of the biogas G exceeds the pressure of the water sealing tank 112. It should be noted that a small amount of biogas G as a fuel for the surplus gas combustion device 113 always flows to the surplus gas combustion device 113 via a path (not shown) that bypasses the water sealing tank 112.
  • the biomass B which is a solid carbonaceous material
  • the raw material supply apparatus 101 inputs to the gasification furnace 102 by the raw material supply apparatus 101 and the combustible biogas G is generated in the gasification furnace 102.
  • the biogas G generated in the gasification furnace 102 flows in the order of the cyclone 103, the gas cooler 104, the scrubber 105, the gas filter 108, and the induction blower 109, and the combustion chamber 10 side and surplus gas combustion downstream of the induction blower 109.
  • the flow is branched to the apparatus 113 side, the surplus gas combustion apparatus 113 burns surplus biogas SG, and the combustion chamber 10 burns biogas G.
  • the biomass B is stored in the charging hopper 101a, and the biomass B in the charging hopper 101a is charged into the gasifier 102 by the charging conveyor 101b1 and the charging feeder 101b2 in the raw material charging unit 101b.
  • the biomass B is incompletely burned to generate biogas G.
  • the biogas G generated in the gasification furnace 102 is introduced into the cyclone 103 through the gas pipe 201.
  • the biogas G is a fuel gas containing carbon monoxide as a main component, and the biogas G contains unnecessary substances such as soot, tar, and dust.
  • the cyclone 103 unnecessary substances such as relatively large dust contained in the biogas G are removed by centrifugation.
  • the biogas G from which unnecessary substances such as relatively large dust are removed by the cyclone 103 is introduced into the gas cooler 104 through the gas pipe 202.
  • a gas pipe (not shown) through which the biogas G flows is provided in the gas cooler 104, and the biogas G in the gas pipe is washed with the cleaning liquid WL and the cooling water CW flowing around the gas pipe. Cooled by.
  • the biogas G cleaned and cooled by the gas cooler 104 is introduced into the scrubber 105 through the gas pipe 203.
  • the cooling water CW supplied to the gas cooler 104 is stored in the cooling tower 107, and the cooling water CW in the cooling tower 107 is introduced into the gas cooler 104 through the water distribution pipe 204.
  • the cooling water CW in the distribution pipe 204 is pumped to the gas cooler 104 side by the pump 205, and the biogas G is cooled by the gas cooler 104.
  • the cooling water CW that has cooled the biogas G is led to the cooling tower 107 through the water distribution pipe 206.
  • the biogas G is cooled to the dew point in the gas cooler 104 or to a temperature near the dew point.
  • the gas cooler 104, the cooling tower 107, the cooling water CW, the water distribution pipe 204, the pump 205, and the water distribution pipe 206 constitute the biogas cooling section 200.
  • the cleaning liquid WL is stored in the scrubber 105, and the biogas G is cleaned by diving through the cleaning liquid WL in the scrubber 105.
  • the biogas G cleaned by the scrubber 105 is introduced into the gas filter 108 through the gas pipe 207.
  • the cleaning liquid WL supplied to the gas cooler 104 and the scrubber 105 is stored in the circulating liquid tank 106.
  • the cleaning liquid WL in the circulating liquid tank 106 is introduced into the gas cooler 104 through the liquid distribution pipe 209 and is introduced into the scrubber 105 through the liquid distribution pipe 210 branched from the liquid distribution pipe 209.
  • the cleaning liquid WL in the distribution pipes 209 and 210 is pumped to the gas cooler 104 side and the scrubber 105 side by the pump 211, and the biogas G is cleaned by the gas cooler 104 and the scrubber 105.
  • the cleaning liquid WL washed with the biogas G by the gas cooler 104 is led to the circulating liquid tank 106 through the liquid distribution pipe 212, while the cleaning liquid WL washed with the biogas G by the scrubber 105 passes through the liquid distribution pipe 213. It is led out to the circulating fluid tank 106.
  • engine oil is used as the cleaning liquid.
  • the circulating liquid tank 106, the pump 211, the liquid distribution pipe 209, and the liquid distribution pipe 212 constitute the oil contact portion 300.
  • a heating unit (for example, a heater or an engine cooling water circuit) may be provided in the circulating liquid tank 106 to heat the engine oil to prevent the biogas G from being cooled to the dew point.
  • the gas filter 108 unnecessary substances such as relatively small dust contained in the biogas G are removed by filtration.
  • the biogas G from which unnecessary substances such as relatively small dust are removed by the gas filter 108 is introduced into the induction blower 109 through the gas pipe 214.
  • the biogas G sucked from the biogas supply path upstream of the attraction blower 109 is discharged to the biogas supply path downstream of the attraction blower 109.
  • the biogas supply path upstream of the induction blower 109 has a negative pressure
  • the biogas supply path downstream of the induction blower 109 has a positive pressure.
  • the biogas G is attracted to the downstream biogas supply path by the attracting blower 109.
  • the surplus biogas SG that has not been supplied to the combustion chamber 10 branches from the gas supply pipe 215 that supplies the biogas G from the induction blower 109 to the combustion chamber 10 side. It is introduced into the surplus gas combustion device 113 through the surplus gas supply pipe 216 and the water sealing tank 112 provided in the surplus gas supply pipe 216.
  • the surplus gas supply pipe 216 is provided on the upstream side of the water sealing tank 112 and is provided on the downstream side of the water sealing tank 112 and the upstream gas supply pipe 216 a that connects the induction blower 109 and the water sealing tank 112.
  • a downstream gas supply pipe 216b that connects the sealing tank 112 and the surplus gas combustion device 113 is provided.
  • water is sealed up to a predetermined water level.
  • the water-sealed tank 112 applies surplus biogas SG discharged from the upstream gas supply pipe 216a to apply surplus biogas in the downstream gas supply pipe 216b from the water-sealed tank 112 to the surplus gas combustion apparatus 113.
  • the supply amount of SG is controlled.
  • the water sealing tank 112 can control the pressure of the biogas G in the gas supply pipe 215.
  • surplus biogas SG sent through the upstream gas supply pipe 216a, the water sealing tank 112 and the downstream gas supply pipe 216b is burned in the surplus gas combustion section 113a.
  • the surplus gas combustion device 113 has a surplus gas combustion section 113a (in this example, a surplus gas combustion tower) that combusts surplus biogas SG.
  • the surplus gas combustion part 113a is installed so that a longitudinal direction may face a predetermined direction (the up-down direction in this example).
  • the end of the downstream gas supply pipe 216b on the surplus gas combustion device 113 side is inserted into one end (the lower end in this example) of the surplus gas combustion unit 113a.
  • a burner portion 217 (flame holding plate) is provided inside one end portion (the lower end portion in this example) of the surplus gas combustion portion 113a.
  • An end portion of the downstream gas supply pipe 216b on the surplus gas combustion device 113 side in the surplus gas combustion portion 113a communicates with a burner portion 217 provided in the surplus gas combustion portion 113a.
  • an ignition part ignites the surplus biogas SG discharged from the discharge port 216c of the surplus gas supply pipe 216 (specifically, the downstream gas supply pipe 216b) on the side surface of the surplus gas combustion part 113a.
  • a pilot burner 218) is provided.
  • the pilot burner 218 supplies a combustible gas g (propane gas in this example) as fuel for igniting the surplus biogas SG into the surplus gas combustion unit 113a from the outside of the surplus gas combustion unit 113a. Yes.
  • a gas cylinder 218 a is connected to the pilot burner 218.
  • the gas cylinder 218 a supplies the combustible gas g to the pilot burner 218.
  • surplus biogas SG that has flowed from the upstream gas supply pipe 216 a to the downstream gas supply pipe 216 b through the water sealing tank 112 is introduced into the surplus gas combustion apparatus 113. Then, the gas is discharged from a burner portion 217 provided at one end portion (the lower end portion in this example) of the surplus gas combustion portion 113a.
  • the surplus biogas SG discharged from the burner unit 217 is ignited and burned by a pilot flame by the combustible gas g supplied from the gas cylinder 218a in the pilot burner 218 provided on the side surface of the surplus gas combustion unit 113a.
  • the engine power generation device 111 includes a gas engine unit 111a having a combustion chamber 10 that uses biogas G as fuel and burns an air-fuel mixture GA of the biogas G and air A.
  • the engine power generation device 111 includes a power generation device 111b driven by the gas engine unit 111a, generates power with the power generation device 111b, and uses the exhaust heat of the gas engine unit 111a for hot water supply, air conditioning, or the like. It is considered as a system.
  • the biogas engine 100 further includes a gas mixer 20 (gas mixer) that functions as a mixing unit that mixes the biogas G and the air A, the temperature of which is adjusted by the biogas cooling unit 200.
  • the gas mixer 20 is provided in an intake passage 219 for intake of air A.
  • the biogas engine 100 includes the heating unit 114 that heats the air A sucked from the intake passage 219 so that the temperature of the mixture GA is maintained at the dew point or higher.
  • the heating unit 114 is provided upstream of the gas mixer 20 in the intake path 219 in the intake direction W of the air A.
  • the air A sucked from the intake passage 219 upstream of the gas mixer 20 in the intake passage 219 in the intake direction W of the air A is converted into the biogas G and the air. Since the heating unit 114 is provided so as to heat the mixture GA with A so that the temperature of the mixture GA is kept above the dew point, the heating unit 114 keeps the temperature of the mixture GA at the dew point above the air A sucked from the intake passage 219. Thus, the air-fuel mixture GA can be guided to the combustion chamber 10 above the dew point. Therefore, the water vapor contained in the gas mixture GA does not condense, and the generation of condensed water (condensation) can be avoided.
  • FIG. 2 is a graph showing the correlation between the H 2 content and the dew point in the mixture GA of biogas G and air A.
  • the correlation between the content of H 2 and the dew point in the mixture GA (FIG. 2).
  • Reference is obtained in advance by experiments or the like.
  • a dew point (for example, 51 ° C.) is obtained in advance using (see FIG. 2).
  • the heating degree of the heating part 114 is preset so that the temperature of the air-fuel mixture GA may maintain the dew point (for example, 51 degreeC) calculated
  • the air A sucked from the intake passage 219 can be heated by the heating unit 114 whose heating degree is set in advance so that the temperature of the air-fuel mixture GA is kept above the dew point.
  • Biogas engine 100 is provided with a storage device and a control device, and the dew point is stored in advance in the storage device, and the control device uses heating dew point 114 stored in the storage device.
  • the degree of heating of the heating unit 114 may be adjusted by controlling the operation of. That is, the control device may be configured to heat the air A sucked from the intake passage 219 so as to keep the temperature of the mixture GA at the dew point or higher by controlling the operation of the heating unit 114.
  • the temperature detection part which detects the temperature of the air-fuel mixture GA is provided, and the control device, based on the detection result of the temperature detection part, specifically, the heating part 114 so that the temperature of the air-fuel mixture GA keeps the dew point or higher.
  • the control device may be configured to obtain the dew point as follows. That is, the air-fuel mixture correlation between the content and the dew point of H 2 in the GA is previously stored in the storage device the conversion elements based on (see FIG. 2) (e.g., conversion table or conversion formula), the controller, H 2
  • the dew point may be obtained from the conversion factor in the storage device using the content ratio of
  • FIG. 3 and FIG. 4 are explanatory diagrams for explaining a specific mode of the heating unit 114 that heats the air A sucked from the intake passage 219.
  • crankcase 11 a crankcase 12, a piston 13, a cylinder head 14, a crankshaft 15, a connecting rod 16, an intake valve 17, an exhaust valve 18, A spark plug 19 is provided.
  • the crankshaft 15 is accommodated in the crankcase 11 so as to be rotatable around the rotation axis 15a.
  • One end of the connecting rod 16 is rotatably connected to a crank pin 15 b provided at a position eccentric from the rotation axis 15 a of the crankshaft 15.
  • the other end of the connecting rod 16 is rotatably connected to a piston pin 13 a provided on the piston 13.
  • the piston 13 is configured to reciprocate within the cylinder 12.
  • the reciprocating motion of the piston 13 is transmitted to the crankshaft 15 by the connecting rod 16, whereby the crankshaft 15 rotates.
  • the combustion chamber 10 is partitioned by a cylinder 12, a piston 13, and a cylinder head 14.
  • An intake valve 17, an exhaust valve 18, and a spark plug 19 are attached to the cylinder head 14.
  • the intake valve 17 opens the intake port 10a opened to the combustion chamber 10 at a predetermined intake timing and closes it at a predetermined exhaust timing.
  • the exhaust valve 18 opens the exhaust port 10b opened to the combustion chamber 10 at a predetermined exhaust timing and closes it at a predetermined intake timing.
  • the spark plug 19 has a discharge part 19a that discharges at a predetermined combustion timing in the combustion chamber 10, and the biogas G and air A are mixed in the gas mixer 20 by the discharge in the discharge part 19a, and the intake path. The air-fuel mixture GA sucked into the combustion chamber 10 through 219 is ignited.
  • a heat source such as a heater may be separately used as the heating unit 114 for the air A sucked from the intake passage 219.
  • a separate component is required and energy is separately consumed. To do.
  • FIG. 3A is a schematic configuration diagram illustrating a first mode of an example of the heating unit 114
  • FIG. 3B is a schematic configuration diagram illustrating a second mode of the example of the heating unit 114.
  • engine waste heat is used as a heat source of the heating unit 114 of the air A sucked from the intake passage 219.
  • engine waste heat includes heat of engine coolant EW that cools the gas engine unit 111a (see FIG. 3A) and heat of exhaust gas EG that is discharged from the gas engine unit 111a (FIG. 3 ( b)).
  • the configuration using the engine waste heat is between the intake passage 219 and the engine waste heat piping 220 (in this example, the piping 221 of the engine coolant EW).
  • the heat exchanger 230 is provided.
  • the configuration using engine waste heat is a heat exchange between the intake passage 219 and the engine waste heat pipe 220 (in this example, the exhaust gas EG pipe 222).
  • a device 230 is provided.
  • the cylinder block 12a provided in the cylinder 12 is provided with a water jacket 12b through which the engine coolant EW passes, and an annular pipe 221 is provided in the water jacket 12b. Is connected.
  • An engine cooling water pump (not shown) is provided in the pipe 221, and the engine cooling water pump circulates the engine cooling water EW in the pipe 221.
  • the heating degree of the heating unit 114 of the first mode shown in FIG. 3A is obtained by adjusting, for example, the number of rotations of an engine cooling water pump (not shown) or the opening of an engine cooling water flow valve (not shown). Can be set. Moreover, the heating degree of the heating part 114 of the 2nd aspect shown in FIG.3 (b) can be set by adjusting the opening degree of the exhaust gas flow valve which abbreviate
  • a conventionally known heat exchanger 230 can be used, and detailed description thereof is omitted here. Moreover, you may make it comprise the heating part 114 combining a 1st aspect and a 2nd aspect.
  • the engine waste heat as the heat source of the heating unit 114 of the air A sucked from the intake passage 219, the engine waste heat can be used, thereby eliminating the need to separately secure the heat source. In addition, it is possible to avoid consuming energy separately.
  • FIG. 4 is a schematic configuration diagram illustrating another example of the heating unit 114.
  • the biogas engine 100 may be provided with a supercharger 115 that raises the pressure of the air A above atmospheric pressure.
  • the supercharger 115 is used as the heating unit 114 for the air A sucked from the intake passage 219.
  • the supercharger 115 includes a compressor 115a, and the compressor 115a is disposed upstream of the gas mixer 20 in the intake passage 219 in the air intake direction W.
  • the supercharger 115 is a turbocharger that uses the pressure (exhaust pressure) of the exhaust gas EG.
  • the supercharger 115 is provided between the intake passage 219 and the engine waste heat pipe 220 (in this example, the exhaust gas EG pipe 222).
  • the supercharger 115 includes a compressor 115a disposed in the intake passage 219, a turbine 115b disposed in the piping 222 of the exhaust gas EG, and a coupling shaft 115c that couples these.
  • the turbine 115b when the turbine 115b is rotated by the pressure of the exhaust gas EG passing through the exhaust gas EG pipe 222, the rotation is transmitted to the compressor 115a by the coupling shaft 115c. Then, the compressor 115 a rotates, compresses the air A in the intake passage 219, and sends it to the gas mixer 20. Thereby, the temperature of the air A sucked from the intake path 219 can be increased.
  • the heating degree of another example of the heating unit 114 shown in FIG. 4 can be set, for example, by adjusting the opening of an exhaust gas flow rate valve (not shown).
  • the supercharger 115 in this example, a turbocharger
  • the air A is compressed from the intake passage 219 by the supercharger 115. It becomes possible to easily raise the temperature of the inhaled air A.
  • the pressure this is related to the engine drive for increasing the temperature of the air A.
  • the pressure of the exhaust gas EG can be used, which makes it possible to omit securing a separate heat source and avoid consuming energy separately.
  • the present invention relates to a biogas engine in which a biogas generated in a gasification furnace for generating biogas is used as a fuel, and a mixture of biogas and air is combusted in a combustion chamber, and in particular, biogas and air To the combustion chamber at least above the dew point at which dew condensation does not occur.

Abstract

 バイオガスを生成するガス化炉で生成したバイオガスを燃料とし、バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンは、ガス化炉から燃焼室へのバイオガス供給経路に、バイオガスの温度を調整するバイオガス冷却部を設け、空気を吸気する吸気経路に、バイオガス冷却部にて温度が調整されたバイオガスと空気とを混合する混合部を設け、空気の吸気方向において吸気経路の混合部よりも上流側に、吸気経路から吸入される空気を、混合気の温度が露点以上を保つように加熱する加熱部を設ける。

Description

バイオガスエンジン
 本発明は、バイオガスを生成するガス化炉で生成したバイオガスを燃料として駆動するバイオガスエンジンに関する。
 バイオガスを生成するガス化炉で生成したバイオガスを燃料として駆動するバイオガスエンジンは、通常、バイオガスと空気との混合気を燃焼室で燃焼させるようになっている。
 このようなバイオガスエンジンにおいては、例えば、バイオガスが冷却されて露点まで低下した後にバイオガスと混合する空気がバイオガスよりも低温の場合、バイオガスと空気との混合気の温度が露点を下回り、次のような不都合がある。
 すなわち、バイオガスと空気との混合気の温度が露点を下回ると、混合気に含まれる水蒸気が凝縮して凝縮水(結露)が発生し、発生した凝縮水(結露)により、燃焼室やバルブ等の混合気に触れる構成部材において錆が発生する恐れがある。また、バイオガスと空気との混合気の温度が低下してバイオガスに含まれるタール分の凝縮点以下になると、タール分が凝縮してタールが析出し、析出したタールにより、バルブ等の混合気に触れる可動部材の動作不良(例えばタールの付着により可動部材が円滑に可動しないといった動作不良)等の不具合が発生する恐れがある。これらのことは、寒冷地域において、バイオガスと外気とを混合する場合に、特に顕著となる。
 従って、バイオガスと空気との混合気を、結露やタールが生じないような露点以上で燃焼室に導く必要がある。
 ところで、特許文献1は、未精製ガスを燃料とするガスエンジンの吸気通路に、室内空気を加熱する加熱手段を設けた構成を開示している。
特許第5314719号公報
 しかしながら、特許文献1に記載の構成は、外気温度が所定温度より低温の場合でのバックアップ的な構成に留まっている。すなわち、特許文献1は、バイオガスと空気との混合気を、露点以上で燃焼室に導く構成については何も示していない。
 そこで、本発明は、バイオガスを生成するガス化炉で生成したバイオガスを燃料とし、バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンであって、バイオガスと空気との混合気を、結露およびタールのうち少なくとも結露が生じないような露点以上で燃焼室に導くことができるバイオガスエンジンを提供することを目的とする。
 本発明は、前記目的を達成するために、バイオガスを生成するガス化炉で生成した前記バイオガスを燃料とし、前記バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンであって、前記ガス化炉から前記燃焼室へのバイオガス供給経路に、前記バイオガスの温度を調整するバイオガス冷却部を設け、前記空気を吸気する吸気経路に、前記バイオガス冷却部にて温度が調整された前記バイオガスと前記空気とを混合する混合部を設け、前記空気の吸気方向において前記吸気経路の前記混合部よりも上流側に、前記吸気経路から吸入される前記空気を、前記混合気の温度が露点以上を保つように加熱する加熱部を設けたことを特徴とするバイオガスエンジンを提供する。
 本発明において、前記吸気経路から吸入される前記空気の前記加熱部の熱源としてエンジン廃熱を使用する態様を例示できる。
 本発明において、前記空気の圧力を大気圧よりも高める過給機を設け、前記吸気経路から吸入される前記空気の前記加熱部として前記過給機を使用する態様を例示できる。
 本発明において、前記バイオガス冷却部にオイルをバイオガスに接触させるオイル接触部を付加する態様を例示できる。
 本発明によると、バイオガスを生成するガス化炉で生成したバイオガスを燃料とし、バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンであって、バイオガスと空気との混合気を、結露およびタールのうち少なくとも結露が生じないような露点以上で燃焼室に導くことができるバイオガスエンジンを提供することができる。
図1は、本発明の実施の形態に係るバイオガスエンジンの全体構成を示す概略構成図である。 図2は、バイオガスと空気との混合気におけるH2の含有率と露点との相関関係を示すグラフである。 図3は、吸気経路から吸気される空気を加熱する加熱部の具体的態様を説明する説明図であって、(a)は、加熱部の一例の第1態様を示す概略構成図であり、(b)は、加熱部の一例の第2態様を示す概略構成図である。 図4は、吸気経路から吸気される空気を加熱する加熱部の具体的態様を説明する説明図であって、加熱部の他の例を示す概略構成図である。
 以下、本発明に係る実施の形態について図面を参照しながら説明する。
 先ず、本発明の実施の形態に係るバイオガスエンジン100(ガスエンジンシステム)の全体構成について説明する。
 図1は、本発明の実施の形態に係るバイオガスエンジン100の全体構成を示す概略構成図である。
 図1に示すように、バイオガスエンジン100は、原料供給装置101と、ガス化炉102と、サイクロン103と、ガス冷却器104と、スクラバー105と、循環液槽106(貯水槽)と、冷却塔107と、ガスフィルター108と、誘引ブロワ109と、前処理ユニット110と、燃焼室10(この例ではエンジン発電装置111における燃焼室)と、水封槽112と、余剰ガス燃焼装置113(フレアスタック)とを備えている。
 原料供給装置101は、バイオガスGの原料となるバイオマスBが貯溜される投入ホッパ101aと、投入ホッパ101aに貯溜されたバイオマスBをガス化炉102に投入する原料投入部101bとを備えている。
 ここで、バイオマスとしては、家畜排泄物、食品廃棄物、紙、黒液、下水汚泥、木質チップ等の木質系廃材、未利用材、籾殻等の農作物非食用物、資源作物等を例示できる。
 原料投入部101bは、この例では、投入コンベア101b1と、投入フィーダー101b2とを備えている。投入コンベア101b1は、投入ホッパ101aに貯溜されたバイオマスBを投入フィーダー101b2に搬送する。投入フィーダー101b2は、投入コンベア101b1にて搬送されてきたバイオマスBをガス化炉102に投入する。
 ガス化炉102は、原料供給装置101にて投入されたバイオマスBからバイオガスGを生成する。サイクロン103は、ガス化炉102にて生成されたバイオガスGに含まれる比較的大きい塵等の不要物を除去する。
 ガス冷却器104は、ガス化炉102から燃焼室10へのバイオガス供給経路に設けられている。ガス冷却器104は、サイクロン103にて不要物が除去されたバイオガスGを、洗浄液WLにより洗浄し、さらに冷却水CWにより冷却する。スクラバー105は、ガス冷却器104にて洗浄されて冷却されたバイオガスGを洗浄液WL中に潜らせることによりさらに洗浄する。循環液槽106は、ガス冷却器104およびスクラバー105に供給する洗浄液WLを貯溜する。冷却塔107は、ガス冷却器104に供給する冷却水CWを貯留する。
 ガスフィルター108は、スクラバー105にて洗浄されたバイオガスGに含まれる比較的小さな塵等の不要物を濾過により除去する。誘引ブロワ109は、ガス化炉102側のバイオガス供給経路におけるバイオガスGを吸入して燃焼室10側のバイオガス供給経路および余剰ガス燃焼装置113側のバイオガス供給経路に吐出する。
 前処理ユニット110は、誘引ブロワ109にて燃焼室10側のバイオガス供給経路に吐出されたバイオガスGにおける不純物を除去する。燃焼室10は、前処理ユニット110にて不純物が除去されたバイオガスGを燃焼する。
 水封槽112は、誘引ブロワ109にて燃焼室10側のバイオガス供給経路に吐出されたバイオガスGの圧力を制御する。余剰ガス燃焼装置113は、バイオガスGの圧力が水封槽112の圧力を超えた場合に流れ込む、燃焼室10に供給されなかった余剰バイオガスSGを燃焼させる。なお、余剰ガス燃焼装置113の種火用燃料として微量のバイオガスGが水封槽112をバイパスする不図示の経路を経由して常に余剰ガス燃焼装置113に流れている。
 以上説明したバイオガスエンジン100では、原料供給装置101にて固体炭素質材料のバイオマスBがガス化炉102に投入されてガス化炉102で可燃性のバイオガスGが生成される。ガス化炉102で生成されたバイオガスGは、サイクロン103、ガス冷却器104、スクラバー105、ガスフィルター108、誘引ブロワ109の順に流れ、誘引ブロワ109の下流側で燃焼室10側と余剰ガス燃焼装置113側とに分岐して流れ、さらに、余剰ガス燃焼装置113で余剰バイオガスSGが燃焼され、燃焼室10でバイオガスGが燃焼される。
 詳しくは、投入ホッパ101aには、バイオマスBが貯溜され、投入ホッパ101a内のバイオマスBが原料投入部101bにおける投入コンベア101b1および投入フィーダー101b2によりガス化炉102内に投入される。
 ガス化炉102では、バイオマスBが不完全燃焼されてバイオガスGが生成される。ガス化炉102で生成されたバイオガスGは、ガス管201を経てサイクロン103に導入される。ここで、バイオガスGは、一酸化炭素を主成分とする燃料ガスであり、バイオガスGには、ススやタール、塵等の不要物が含まれている。
 サイクロン103では、バイオガスGに含まれる比較的大きな塵等の不要物が、遠心分離によって除去される。サイクロン103で比較的大きな塵等の不要物が除去されたバイオガスGは、ガス管202を経てガス冷却器104に導入される。
 ガス冷却器104内には、バイオガスGが流れる図示しないガス管が設けられており、該ガス管内のバイオガスGが、洗浄液WLで洗浄されると共に、該ガス管の周囲を流れる冷却水CWで冷却される。ガス冷却器104で洗浄、冷却されたバイオガスGは、ガス管203を経てスクラバー105に導入される。
 ガス冷却器104に供給される冷却水CWは、冷却塔107に貯溜されており、冷却塔107内の冷却水CWは、配水管204を経てガス冷却器104に導入される。配水管204内の冷却水CWは、ポンプ205によりガス冷却器104側に圧送され、ガス冷却器104でバイオガスGを冷却する。バイオガスGを冷却した冷却水CWは、配水管206を経て冷却塔107に導出される。
 ここで、バイオガスGは、ガス冷却器104内で露点まで、または、露点付近の温度まで冷却される。なお、この例では、ガス冷却器104、冷却塔107、冷却水CW、配水管204、ポンプ205および配水管206がバイオガス冷却部200を構成している。
 スクラバー105内には、洗浄液WLが貯溜されており、バイオガスGがスクラバー105内の洗浄液WL中を潜ることにより洗浄される。スクラバー105で洗浄されたバイオガスGは、ガス管207を経てガスフィルター108に導入される。
 ガス冷却器104およびスクラバー105に供給される洗浄液WLは、循環液槽106に貯溜されている。循環液槽106内の洗浄液WLは、配液管209を経てガス冷却器104に導入されると共に、配液管209から分岐する配液管210を経てスクラバー105に導入される。配液管209,210内の洗浄液WLは、ポンプ211によりガス冷却器104側およびスクラバー105側に圧送され、ガス冷却器104およびスクラバー105でバイオガスGを洗浄する。ガス冷却器104でバイオガスGを洗浄した洗浄液WLは、配液管212を経て循環液槽106に導出される一方、スクラバー105でバイオガスGを洗浄した洗浄液WLは、配液管213を経て循環液槽106に導出される。この例では、洗浄液としてエンジンオイルを利用している。バイオガスGと直に接触(混合)する洗浄液としてエンジンオイルを利用することで水を洗浄液として利用する場合と比較して水分がバイオガスGに追加されることを抑えることができる。そして、循環液槽106、ポンプ211、配液管209および配液管212がオイル接触部300を構成している。ここで、循環液槽106に加熱部(例えばヒータやエンジン冷却水回路等)を設けてエンジンオイルを加熱することでバイオガスGが露点まで冷却されることを防止しても良い。
 ガスフィルター108では、バイオガスGに含まれる比較的小さな塵等の不要物が、濾過によって除去される。ガスフィルター108で比較的小さな塵等の不要物が除去されたバイオガスGは、ガス管214を経て誘引ブロワ109に導入される。
 誘引ブロワ109では、誘引ブロワ109よりも上流側のバイオガス供給経路から吸入されたバイオガスGが誘引ブロワ109よりも下流側のバイオガス供給経路に吐出される。つまり、誘引ブロワ109の上流側のバイオガス供給経路は負圧となる一方、誘引ブロワ109の下流側のバイオガス供給経路は正圧となるため、誘引ブロワ109の上流側のバイオガス供給経路におけるバイオガスGが誘引ブロワ109で下流側のバイオガス供給経路に誘引される。
 ガス化炉102で生成されたバイオガスGのうち燃焼室10に供給されなかった余剰バイオガスSGは、誘引ブロワ109からのバイオガスGを燃焼室10側へ供給するガス供給管215から分岐する余剰ガス供給管216および余剰ガス供給管216に設けられた水封槽112を介して余剰ガス燃焼装置113に導入される。
 余剰ガス供給管216は、水封槽112の上流側に設けられて誘引ブロワ109と水封槽112とを接続する上流側ガス供給管216aと、水封槽112の下流側に設けられて水封槽112と余剰ガス燃焼装置113とを接続する下流側ガス供給管216bとを備えている。
 水封槽112内には、所定の水位まで水が封入されている。水封槽112は、上流側ガス供給管216aから吐出される余剰バイオガスSGに水圧を作用させることにより、水封槽112から余剰ガス燃焼装置113への下流側ガス供給管216bにおける余剰バイオガスSGの供給量を制御する。これにより、水封槽112は、ガス供給管215内のバイオガスGの圧力を制御することができる。
 余剰ガス燃焼装置113では、上流側ガス供給管216a、水封槽112および下流側ガス供給管216bを経て送られてきた余剰バイオガスSGが余剰ガス燃焼部113aで燃焼される。
 余剰ガス燃焼装置113は、余剰バイオガスSGを燃焼させる余剰ガス燃焼部113a(この例では余剰ガス燃焼塔)を有している。余剰ガス燃焼部113aは、長手方向が所定方向(この例では上下方向)に向くように設置されている。下流側ガス供給管216bの余剰ガス燃焼装置113側の端部は、余剰ガス燃焼部113aの一端部(この例では下側端部)の内部に挿入されている。余剰ガス燃焼部113aの一端部(この例では下側端部)の内側には、バーナー部217(保炎板)が設けられている。余剰ガス燃焼部113a内における下流側ガス供給管216bの余剰ガス燃焼装置113側の端部は、余剰ガス燃焼部113a内に設けられたバーナー部217に連通している。
 また、余剰ガス燃焼部113aの側面には、余剰ガス供給管216(具体的には下流側ガス供給管216b)の吐出口216cから吐出される余剰バイオガスSGに着火する着火部(この例ではパイロットバーナー218)が設けられている。パイロットバーナー218は、余剰ガス燃焼部113aの外側から余剰ガス燃焼部113a内に余剰バイオガスSGに着火するための燃料となる可燃性ガスg(この例ではプロパンガス)を供給すようになっている。パイロットバーナー218には、ガスボンベ218aが接続されている。ガスボンベ218aは、可燃性ガスgをパイロットバーナー218に供給する。
 かかる構成を備えた余剰ガス燃焼装置113では、上流側ガス供給管216aから水封槽112を通過して下流側ガス供給管216bに流れてきた余剰バイオガスSGは、余剰ガス燃焼装置113に導入されて余剰ガス燃焼部113aの一端部(この例では下側端部)に設けられたバーナー部217から吐出される。バーナー部217から吐出された余剰バイオガスSGは、余剰ガス燃焼部113aの側面に設けられたパイロットバーナー218においてガスボンベ218aから供給された可燃性ガスgによる種火により着火されて燃焼される。
 一方、誘引ブロワ109で誘引されたバイオガスGは、ガス供給管215およびガス供給管215に設けられた前処理ユニット110を介してエンジン発電装置111における燃焼室10に導入される。燃焼室10には、前処理ユニット110で不純物が除去されたバイオガスGが供給される。本実施の形態では、エンジン発電装置111は、バイオガスGを燃料とし、バイオガスGと空気Aとの混合気GAを燃焼させる燃焼室10を有するガスエンジン部111aを備えている。この例では、エンジン発電装置111は、ガスエンジン部111aにより駆動される発電装置111bを備え、発電装置111bで発電し、かつ、ガスエンジン部111aの排熱を給湯や空調等に利用するコージェネレーションシステムとされている。
 また、バイオガスエンジン100は、バイオガス冷却部200にて温度が調整されたバイオガスGと空気Aとを混合する混合部として作用するガスミキサー20(ガス混合器)をさらに備えている。ガスミキサー20は、空気Aを吸気する吸気経路219に設けられている。
 (加熱部について)
 ところで、バイオガス冷却部200により、バイオガスGが露点まで、または、露点付近の温度まで冷却されているため、バイオガスGと混合する空気AがバイオガスGよりも低温の場合、バイオガスGと空気Aとの混合気GAの温度が露点を下回り、次のような不都合がある。
 すなわち、バイオガスGと空気Aとの混合気GAの温度が露点を下回ると、混合気GAに含まれる水蒸気が凝縮して凝縮水(結露)が発生し、発生した凝縮水(結露)により、燃焼室10やバルブ等の混合気GAに触れる構成部材において錆が発生する恐れがある。また、バイオガスGと空気Aとの混合気GAの温度が低下してバイオガスGに含まれるタール分の凝縮点以下になると、タール分が凝縮してタールが析出し、析出したタールにより、バルブ等の混合気GAに触れる可動部材の動作不良(例えばタールの付着により可動部材が円滑に可動しないといった動作不良)等の不具合が発生する恐れがある。これらのことは、寒冷地域において、バイオガスGと外気(野外の空気A)とを混合する場合に、特に顕著となる。
 この点、本実施の形態では、バイオガスエンジン100は、吸気経路219から吸入される空気Aを、混合気GAの温度が露点以上を保つように加熱する加熱部114を備えている。加熱部114は、空気Aの吸気方向Wにおいて吸気経路219のガスミキサー20よりも上流側に設けられている。
 本実施の形態に係るバイオガスエンジン100によれば、空気Aの吸気方向Wにおいて吸気経路219のガスミキサー20よりも上流側に、吸気経路219から吸入される空気Aを、バイオガスGと空気Aとの混合気GAの温度が露点以上を保つように加熱する加熱部114を設けるので、加熱部114により、吸気経路219から吸入される空気Aを、混合気GAの温度が露点以上を保つように加熱することができ、これにより、混合気GAを、露点以上で燃焼室10に導くことができる。従って、混合気GAに含まれる水蒸気が凝縮することがなく、凝縮水(結露)の発生を回避することができ、ひいては、燃焼室10やバルブ等の混合気GAに触れる構成部材において錆が発生することを効果的に防止することができる。また、バイオガスGに含まれるタール分の凝縮点が露点以下であり、従って、バイオガスGと空気Aとの混合気GAの温度がバイオガスGに含まれるタール分の凝縮点以上であるため、タール分が凝縮することがなく、タールの析出を回避することができ、ひいては、バルブ等の混合気GAに触れる可動部材の動作不良(例えばタールの付着により可動部材が円滑に可動しないといった動作不良)等の不具合が発生することを効果的に防止することができる。これらのことは、寒冷地域において、バイオガスGと外気(野外の空気A)とを混合する場合に、特に有効となる。
 ところで、バイオガスGと空気Aとの混合気GAにおけるH2(水素)の含有率と露点との間には、バイオガスG原料の水分が一定の場合、一定の相関関係を有する。
 図2は、バイオガスGと空気Aとの混合気GAにおけるH2の含有率と露点との相関関係を示すグラフである。
 図2に示すように、混合気GAにおけるH2の含有率と露点との間に一定の相関関係があることがわかる。例えば、混合気GAにおけるH2の含有率が16.5%の場合には、露点は51℃となる。
 本実施の形態に係るバイオガスエンジン100において、吸気経路219から吸入される空気Aを加熱部114により加熱するにあたり、例えば、混合気GAにおけるH2の含有率と露点との相関関係(図2参照)を実験等により予め求めておく。また、混合気GAにおけるH2の含有率(例えば16.5%)を予め測定することで、測定したH2の含有率(例えば16.5%)から実験等により予め求めておいた相関関係(図2参照)を用いて露点(例えば51℃)を予め求めておく。そして、本実施の形態に係るバイオガスエンジン100において、混合気GAの温度が、予め求めておいた露点(例えば51℃)以上を保つように、加熱部114の加熱度合を予め設定しておく。こうすることで、加熱度合が予め設定された加熱部114により、吸気経路219から吸入される空気Aを、混合気GAの温度が露点以上を保つように加熱するができる。
 なお、本実施の形態に係るバイオガスエンジン100において、記憶装置および制御装置を備え、露点を記憶装置に予め記憶しておき、制御装置は、記憶装置に記憶した露点を用いて、加熱部114を作動制御して加熱部114の加熱度合を調整するようになっていてもよい。すなわち、制御装置は、加熱部114を作動制御して、吸気経路219から吸入される空気Aを、混合気GAの温度が露点以上を保つように加熱する構成とされていてもよい。また、混合気GAの温度の検知する温度検知部を備え、制御装置は温度検知部の検知結果に基づいて、具体的には、混合気GAの温度が露点以上を保つように、加熱部114を作動制御して加熱部114の加熱度合を調整するようにしてもよい。また、制御装置は、次のようにして露点を求めるように構成されていてもよい。すなわち、混合気GAにおけるH2の含有率と露点との相関関係(図2参照)に基づく換算要素(例えば換算テーブルや換算式)を記憶装置に予め記憶しておき、制御装置は、H2の含有率をパラメータとして記憶装置における換算要素から露点を求めるように構成されていてもよい。
 (加熱部の具体的態様)
 図3および図4は、吸気経路219から吸気される空気Aを加熱する加熱部114の具体的態様を説明する説明図である。
 (エンジン部の構成)
 まず、本実施の形態に係るバイオガスエンジン100における図3および図4に示すガスエンジン部111aの構成について説明する。
 図3および図4に示すガスエンジン部111aは、クランクケース11と、シリンダ12と、ピストン13と、シリンダヘッド14と、クランクシャフト15と、コンロッド16と、吸気バルブ17と、排気バルブ18と、点火プラグ19とを備えている。
 クランクシャフト15は、クランクケース11内に回転軸線15a回りに回転可能な状態で収容されている。コンロッド16は、一端がクランクシャフト15の回転軸線15aから偏心した位置に設けられたクランクピン15bに回転自在に連結されている。また、コンロッド16は、他端がピストン13に設けられたピストンピン13aに回動自在に連結されている。
 ピストン13は、シリンダ12内で往復運動する構成とされている。ピストン13の往復運動がコンロッド16によってクランクシャフト15に伝達され、これにより、クランクシャフト15が回転する。燃焼室10は、シリンダ12と、ピストン13と、シリンダヘッド14とによって区画されている。シリンダヘッド14には、吸気バルブ17、排気バルブ18および点火プラグ19が取り付けられている。
 吸気バルブ17は、燃焼室10に開口した吸気口10aを所定の吸気タイミングで開放し、所定の排気タイミングで閉塞するようになっている。排気バルブ18は、燃焼室10に開口した排気口10bを所定の排気タイミングで開放し、所定の吸気タイミングで閉塞するようになっている。点火プラグ19は、燃焼室10内で所定の燃焼タイミングで放電する放電部19aを有し、放電部19aでの放電によって、ガスミキサー20にてバイオガスGと空気Aとが混合されて吸気経路219を経て燃焼室10内に吸気された混合気GAに点火する構成とされている。
 (加熱部の一例)
 本実施の形態において、吸気経路219から吸入される空気Aの加熱部114として、ヒーター等の熱源を別途使用してもよいが、この場合、構成部材を別途必要とすると共に、エネルギーを別途消費する。
 かかる観点から、本実施の形態に係るバイオガスエンジン100において、図3に示すような加熱部114の具体的態様を例示できる。
 図3(a)は、加熱部114の一例の第1態様を示す概略構成図であり、図3(b)は、加熱部114の一例の第2態様を示す概略構成図である。
 図3(a)および図3(b)に示す加熱部114の一例では、吸気経路219から吸入される空気Aの加熱部114の熱源としてエンジン廃熱を使用する。
 この例では、エンジン廃熱は、ガスエンジン部111aを冷却するエンジン冷却水EWの熱(図3(a)参照)、および、ガスエンジン部111aから排出される排気ガスEGの熱(図3(b)参照)とされている。
 詳しくは、図3(a)に示す第1態様では、エンジン廃熱を使用する構成は、吸気経路219とエンジン廃熱の配管220(この例ではエンジン冷却水EWの配管221)との間に熱交換器230を設ける構成とされている。
 また、図3(b)に示す第2態様では、エンジン廃熱を使用する構成は、吸気経路219とエンジン廃熱の配管220(この例では排気ガスEGの配管222)との間に熱交換器230を設ける構成とされている。
 ここで、図3(a)に示す第1態様において、シリンダ12に設けられたシリンダブロック12aにはエンジン冷却水EWを通過させるウォータジャケット12bが設けられており、ウォータジャケット12bに環状の配管221が接続されている。配管221には図示を省略したエンジン冷却水ポンプが設けられており、エンジン冷却水ポンプは、配管221内のエンジン冷却水EWを循環させるようになっている。
 図3(a)に示す第1態様の加熱部114の加熱度合は、例えば、図示を省略したエンジン冷却水ポンプの回転数や図示を省略したエンジン冷却水流量バルブの開度を調整することで設定することができる。また、図3(b)に示す第2態様の加熱部114の加熱度合は、例えば、図示を省略した排気ガス流量バルブの開度を調整することで設定することができる。
 なお、何れにしても熱交換器230は、従来公知のものを用いることができ、ここでは詳しい説明を省略する。また、第1態様および第2態様を組み合わせて加熱部114を構成するようにしてもよい。
 このように、吸気経路219から吸入される空気Aの加熱部114の熱源としてエンジン廃熱を使用することで、エンジン廃熱を利用することができ、これにより、熱源を別途確保することを省略することができると共に、エネルギーを別途消費することを回避することが可能となる。
 (加熱部の他の例)
 図4は、加熱部114の他の例を示す概略構成図である。
 本実施の形態において、バイオガスエンジン100には、空気Aの圧力を大気圧よりも高める過給機115が備えられることがある。
 図4に示す加熱部114の他の例では、吸気経路219から吸入される空気Aの加熱部114として、過給機115を使用する。
 過給機115は、コンプレッサ115aを備え、空気の吸気方向Wにおいて吸気経路219のガスミキサー20よりも上流側には、コンプレッサ115aが配置されている。
 本実施の形態では、過給機115は、排気ガスEGの圧力(排気圧)を利用するターボチャージャとされている。
 詳しくは、過給機115は、吸気経路219とエンジン廃熱の配管220(この例では排気ガスEGの配管222)との間を設けられている。
 過給機115は、吸気経路219に配設されたコンプレッサ115aと、排気ガスEGの配管222に配設されたタービン115bと、これらを結合する結合軸115cとを有している。
 過給機115では、排気ガスEGの配管222を通る排気ガスEGの圧力によってタービン115bが回されると、その回転が結合軸115cによってコンプレッサ115aに伝達される。そうすると、コンプレッサ115aが回転し、吸気経路219内の空気Aを圧縮して、ガスミキサー20に送り込む。これにより、吸気経路219から吸入される空気Aの温度を高めることができる。
 図4に示す加熱部114の他の例の加熱度合は、例えば、図示を省略した排気ガス流量バルブの開度を調整することで設定することができる。
 このように、吸気経路219から吸入される空気Aの加熱部114として過給機115(この例ではターボチャージャ)を使用することで、過給機115による空気Aの圧縮効果によって吸気経路219から吸入される空気Aの温度を容易に上昇させることが可能となる。また、過給機115が備えられるバイオガスエンジン100の構成の場合において、加熱部114として過給機115を使用することで、空気Aの温度を上昇させるためにエンジン駆動に関与する圧力(この例では排気ガスEGの圧力)を利用することができ、これにより、熱源を別途確保することを省略することができると共に、エネルギーを別途消費することを回避することが可能となる。
 なお、図3に示すような加熱部114の一例と、図4に示すような加熱部114の他の例とを組み合わせても良い。
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、2015年2月6日に日本で出願された特願2015-021993号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、バイオガスを生成するガス化炉で生成したバイオガスを燃料とし、バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンに係るものであり、特に、バイオガスと空気との混合気を、結露およびタールのうち少なくとも結露が生じないような露点以上で燃焼室に導くための用途に適用できる。
10    燃焼室
10a   吸気口
10b   排気口
11    クランクケース
12    シリンダ
12a   シリンダブロック
12b   ウォータジャケット
13    ピストン
13a   ピストンピン
14    シリンダヘッド
15    クランクシャフト
15a   回転軸線
15b   クランクピン
16    コンロッド
17    吸気バルブ
18    排気バルブ
19    点火プラグ
19a   放電部
20    ガスミキサー(混合部の一例)
100   バイオガスエンジン
101   原料供給装置
101a  投入ホッパ
101b  原料投入部
101b1 投入コンベア
101b2 投入フィーダー
102   ガス化炉
103   サイクロン
104   ガス冷却器
105   スクラバー
106   循環液槽
107   冷却塔
108   ガスフィルター
109   誘引ブロワ
110   前処理ユニット
111   エンジン発電装置
111a  ガスエンジン部
111b  発電装置
112   水封槽
113   余剰ガス燃焼装置
113a  余剰ガス燃焼部
114   加熱部
115   過給機
115a  コンプレッサ
115b  タービン
115c  結合軸
200   バイオガス冷却部
217   バーナー部
218   パイロットバーナー
218a  ガスボンベ
219   吸気経路
220   エンジン排熱の配管
221   エンジン冷却水の配管
222   排気ガスの配管
230   熱交換器
300   オイル接触部
A     空気
B     バイオマス
CW    冷却水
EG    排気ガス
EW    エンジン冷却水
G     バイオガス
GA    混合気
SG    余剰バイオガス
W     吸気方向
WL    洗浄液

Claims (4)

  1.  バイオガスを生成するガス化炉で生成した前記バイオガスを燃料とし、前記バイオガスと空気との混合気を燃焼室で燃焼させるバイオガスエンジンであって、
     前記ガス化炉から前記燃焼室へのバイオガス供給経路に、前記バイオガスの温度を調整するバイオガス冷却部を設け、
     前記空気を吸気する吸気経路に、前記バイオガス冷却部にて温度が調整された前記バイオガスと前記空気とを混合する混合部を設け、
     前記空気の吸気方向において前記吸気経路の前記混合部よりも上流側に、前記吸気経路から吸入される前記空気を、前記混合気の温度が露点以上を保つように加熱する加熱部を設けたことを特徴とするバイオガスエンジン。
  2.  請求項1に記載のバイオガスエンジンであって、
     前記吸気経路から吸入される前記空気の前記加熱部の熱源としてエンジン廃熱を使用することを特徴とするバイオガスエンジン。
  3.  請求項1または請求項2に記載のバイオガスエンジンであって、
     前記空気の圧力を大気圧よりも高める過給機を設け、
     前記吸気経路から吸入される前記空気の前記加熱部として前記過給機を使用することを特徴とするバイオガスエンジン。
  4.  請求項1から請求項3までの何れか1つに記載のバイオガスエンジンであって、
     前記バイオガス冷却部にオイルをバイオガスに接触させるオイル接触部を付加したことを特徴とするバイオガスエンジン。
PCT/JP2015/084014 2015-02-06 2015-12-03 バイオガスエンジン WO2016125380A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15881197.6A EP3255272B1 (en) 2015-02-06 2015-12-03 Biogas engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015021993A JP6453092B2 (ja) 2015-02-06 2015-02-06 バイオガスエンジン
JP2015-021993 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125380A1 true WO2016125380A1 (ja) 2016-08-11

Family

ID=56563737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084014 WO2016125380A1 (ja) 2015-02-06 2015-12-03 バイオガスエンジン

Country Status (3)

Country Link
EP (1) EP3255272B1 (ja)
JP (1) JP6453092B2 (ja)
WO (1) WO2016125380A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428186B2 (en) 2020-02-26 2022-08-30 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11674462B2 (en) 2020-07-09 2023-06-13 Clearflame Engines, Inc. Systems and methods of cylinder deactivation in high-temperature mixing-controlled engines
US11952936B1 (en) 2019-05-15 2024-04-09 Clearflame Engines, Inc. Systems and methods for combusting unconventional fuel chemistries in a diesel engine architecture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018132469B3 (de) * 2018-12-17 2019-11-07 Green Gas Germany Gmbh Verfahren zum Betrieb eines Gasmotors mit einem weniger als 20 Vol-% Methan enthaltenen Schwachgas sowie Gasmotoranordnung
JP7477441B2 (ja) 2020-12-15 2024-05-01 ダイハツ工業株式会社 バイオガスエンジンシステム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223696B2 (ja) * 2001-04-13 2009-02-12 省電システム株式会社 デュアルフューエル・ディーゼルエンジン
JP2012007582A (ja) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd ガスエンジンの給気冷却器のドレン装置
JP4986042B2 (ja) * 2007-06-04 2012-07-25 三井造船株式会社 バイオマス燃料対応型のエンジンシステム
JP5314719B2 (ja) * 2011-02-28 2013-10-16 三菱重工業株式会社 ガスエンジンの給気装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056480B4 (de) * 2006-11-28 2008-09-04 Berthold, Hermann Verfahren und Anlage zur Nutzenergiegewinnung durch Müllvergasung
JP5206361B2 (ja) * 2008-11-26 2013-06-12 株式会社Ihi ガスエンジンの燃料ガス供給装置とそのタール析出防止方法
CN201650446U (zh) * 2010-04-19 2010-11-24 集美大学 高效沼气发动机
KR101652130B1 (ko) * 2011-01-20 2016-08-29 두산인프라코어 주식회사 압축천연가스 엔진 냉각장치
DE102011083120B3 (de) * 2011-09-21 2013-03-07 Highterm Research Gmbh Gemischbildungsvorrichtung zum Mischen von Luft und Synthesegas sowie einen Gasmotor, der die Gemischbildungsvorrichtung enthält
JP6057775B2 (ja) * 2013-02-26 2017-01-11 三菱日立パワーシステムズ株式会社 ガスタービンプラント及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223696B2 (ja) * 2001-04-13 2009-02-12 省電システム株式会社 デュアルフューエル・ディーゼルエンジン
JP4986042B2 (ja) * 2007-06-04 2012-07-25 三井造船株式会社 バイオマス燃料対応型のエンジンシステム
JP2012007582A (ja) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd ガスエンジンの給気冷却器のドレン装置
JP5314719B2 (ja) * 2011-02-28 2013-10-16 三菱重工業株式会社 ガスエンジンの給気装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952936B1 (en) 2019-05-15 2024-04-09 Clearflame Engines, Inc. Systems and methods for combusting unconventional fuel chemistries in a diesel engine architecture
US11428186B2 (en) 2020-02-26 2022-08-30 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11952954B2 (en) 2020-02-26 2024-04-09 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11959434B2 (en) 2020-02-26 2024-04-16 Clearflame Engines, Inc. Fuel agnostic compression ignition engine
US11976606B2 (en) 2020-02-26 2024-05-07 Clearflame Engines, Inc. Full agnostic compression ignition engine
US11674462B2 (en) 2020-07-09 2023-06-13 Clearflame Engines, Inc. Systems and methods of cylinder deactivation in high-temperature mixing-controlled engines

Also Published As

Publication number Publication date
EP3255272B1 (en) 2020-01-29
EP3255272A1 (en) 2017-12-13
EP3255272A4 (en) 2018-01-17
JP2016145529A (ja) 2016-08-12
JP6453092B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2016125380A1 (ja) バイオガスエンジン
RU2245446C2 (ru) Парогазовая энергетическая установка и способ действия такой установки
CA2130676A1 (en) A system for burning biomass to fuel a gas turbine
JP2010101319A (ja) 排気ガス再循環システムにより燃料を加熱するシステム及び方法
FR3090079B1 (fr) Optimisation énergétique et environnementale d’une installation comprenant au moins un appareil à combustion à brûleur
RU2341727C1 (ru) Газогенератор
AU2015326220B2 (en) Gas turbine
FI126564B (fi) Menetelmä ja laitteisto meesan polttamiseksi
CN102853430A (zh) 用于管理再生燃烧器中未燃烧残余物的装置和方法、包括该装置的燃烧器
US7861509B2 (en) Methods and systems for gas turbine syngas warm-up with low emissions
JP2009121779A (ja) 加圧流動焼却設備
JP2009186120A (ja) 熱分解装置
WO2004045012A3 (en) Fuel cell system
KR102067302B1 (ko) 가압유동로 시스템의 기동 방법
RU2373467C1 (ru) Устройство для рециркуляции агента сушки
FR2609150A1 (fr) Generateur thermique poly-combustibles a lit circulant integre, permettant la desulfuration in situ des gaz de combustion
CN104560218B (zh) 一种生物质气化炉和工业燃气锅炉联合高效供热系统
JP6719371B2 (ja) ガス処理システム
JPH0650509A (ja) 加圧流動層ボイラの緊急運転方法
EP0079264B1 (fr) Procédé d'agglomération sur grille de minerai de fer et installation de mise en oeuvre
JP4561807B2 (ja) 炭化炉の加熱方法及び装置
KR20150045923A (ko) 가압유동로 시스템의 운전 방법
JP2004043587A (ja) 炭化装置及び炭化物の製造方法
JP2013200087A5 (ja)
RU2741994C2 (ru) Газотурбинная установка

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881197

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015881197

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE