WO2016125353A1 - 熱交換器及び熱交換器の制御方法 - Google Patents

熱交換器及び熱交換器の制御方法 Download PDF

Info

Publication number
WO2016125353A1
WO2016125353A1 PCT/JP2015/081040 JP2015081040W WO2016125353A1 WO 2016125353 A1 WO2016125353 A1 WO 2016125353A1 JP 2015081040 W JP2015081040 W JP 2015081040W WO 2016125353 A1 WO2016125353 A1 WO 2016125353A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
exhaust gas
medium
heat exchange
unit
Prior art date
Application number
PCT/JP2015/081040
Other languages
English (en)
French (fr)
Inventor
剛之 宮地
晴治 香川
直行 神山
哲 牛久
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020177021574A priority Critical patent/KR101892887B1/ko
Priority to US15/548,619 priority patent/US10436096B2/en
Priority to CN201580075318.9A priority patent/CN107208888B/zh
Priority to EP15881170.3A priority patent/EP3255340A4/en
Publication of WO2016125353A1 publication Critical patent/WO2016125353A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/08Arrangements of devices for treating smoke or fumes of heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a heat exchanger and a heat exchanger control method, for example, a heat exchanger provided with a preheating unit for preheating exhaust gas to be introduced into a reheater, and a heat exchanger control method.
  • the exhaust gas in a wet state that has passed through the wet desulfurization apparatus is preheated and dried in a preheating unit to which a heat medium heated by a heat recovery unit and a heating unit is supplied.
  • the exhaust gas is dried to reduce the adhesion of dust in the exhaust gas inside the reheater body and the corrosion due to the wet components in the exhaust gas.
  • the heat exchanger is installed so that the exhaust gas temperature at the exhaust gas outlet portion of the heat recovery device and the heat medium temperature at the heat medium outlet portion of the reheater are within predetermined ranges, respectively. I have control.
  • the gas temperature and the gas flow rate of the exhaust gas introduced into the exhaust gas treatment device are lowered due to the change in the power generation load accompanying the change in the operating conditions, and the amount of heat of the exhaust gas recovered by the heat recovery device fluctuates.
  • the temperature of the heat medium at the inlet of the reheater may decrease.
  • the preheating of the exhaust gas in the preheating portion of the reheater becomes insufficient and is accompanied by the wet exhaust gas from the desulfurization apparatus.
  • dust becomes more likely to adhere to the heat transfer tube in the reheater using mist contained in the exhaust gas as a binder and the gas differential pressure rises between the inlet and outlet of the reheater and corrosion inside the reheater proceeds There is.
  • the present invention has been made in view of such circumstances, and is a heat exchanger that can reduce the adhesion of soot in exhaust gas and the corrosion of heat transfer tubes inside the reheater even when the operating conditions fluctuate. And it aims at providing the control method of a heat exchanger.
  • the heat exchanger includes a heat recovery unit that causes the heat medium to recover the heat of the exhaust gas by first heat exchange in which the exhaust gas from the combustion engine and a heat transfer tube through which the heat medium flows are in contact with each other, and the first heat exchange.
  • a reheater comprising a heating unit for heating the exhaust gas after the second heat exchange by a third heat exchange for bringing the exhaust gas into contact with the heat medium after the second heat exchange; the heat recovery device; and the reheating
  • a circulation line that circulates the heat medium between the heat exchanger and the amount of heat recovered from the exhaust gas by the first heat exchange in the heat recovery device, and the first heat exchange based on the calculated amount of recovered heat
  • a control unit that controls the temperature of the heating medium later within a predetermined range. And wherein the door.
  • the temperature of the heat medium supplied to the preheating part of the reheater is controlled based on the amount of heat recovered by the heat recovery device from the exhaust gas introduced into the heat recovery device, so that the heat recovery from the exhaust gas. It becomes possible to make the temperature of the heat medium supplied to the preheating part quickly fall within a predetermined range in accordance with the change in the amount of recovered heat recovered by the vessel. Accordingly, a heat exchanger and a heat exchanger control method that can reduce the adhesion of soot in the exhaust gas and the heat transfer tube in the preheating portion even when the operating conditions of the boiler or the like fluctuate. It can be realized.
  • the control unit is at least one selected from the group consisting of a gas temperature of the exhaust gas introduced into the heat exchanger, a gas flow rate of the exhaust gas, and an operating load of the combustion engine. It is preferable to calculate the amount of recovered heat based on the seed. With this configuration, the accuracy of calculating the amount of recovered heat by the control unit is improved, so that it is possible to further reduce the adhesion of soot in the exhaust gas and the heat transfer tube in the preheating unit inside the reheater.
  • the control unit heats the heat medium after the first heat exchange when the recovered heat amount becomes less than a predetermined value.
  • the heat medium can be heated according to the amount of recovered heat, so that it is possible to reduce the adhesion of soot in the exhaust gas and the heat transfer tube in the preheating section inside the reheater.
  • the control unit supplies steam from the steam supply unit to the heat medium after the first heat exchange so that the temperature of the heat medium after the first exchange is within a predetermined range. It is preferable to do. With this configuration, since the heat medium can be heated with steam, the heat medium can be easily heated.
  • the circulation line includes a bypass line that bypasses the heat exchanger, and the control unit passes the bypass line through the bypass line when the amount of recovered heat exceeds a predetermined value. It is preferable that the temperature of the heat medium is within a predetermined range by circulating the heat medium between the heat exchanger and the reheater. With this configuration, even when the amount of heat recovered by the heat recovery unit is too large, the amount of heat recovered by the heat recovery unit can be reduced and the temperature of the heat medium can be within a predetermined range.
  • the heat transfer tubes of the heating unit are arranged in a tetragonal lattice shape with respect to the flow direction of the exhaust gas.
  • the heat exchanger control method of the present invention includes a heat recovery unit that recovers heat of the exhaust gas by the heat medium by first heat exchange in which exhaust gas from a combustion engine and a heat transfer tube through which the heat medium flows are brought into contact with each other. After the first heat exchange by heat of the heat medium after the first heat exchange by the second heat exchange in which the exhaust gas after the first heat exchange and the heat transfer tube through which the heat medium after the first heat exchange flows are brought into contact with each other.
  • a heat exchanger control method comprising: a step of calculating a recovered heat amount recovered from the exhaust gas by a first heat exchange in the heat recovery unit; and the calculated recovered heat amount Is less than a predetermined value, the heat after the first heat exchange
  • the heated characterized in that it comprises a step of controlling the temperature of the heating medium within a predetermined range.
  • the temperature of the heat medium supplied to the preheating part of the reheater is controlled based on the amount of heat recovered by the heat recovery device from the exhaust gas introduced into the heat recovery device. It becomes possible to make the temperature of the heat medium supplied to the preheating part quickly fall within a predetermined range in accordance with the change in the amount of recovered heat recovered by the vessel. Accordingly, a heat exchanger and a heat exchanger control method that can reduce the adhesion of soot in the exhaust gas and the heat transfer tube in the preheating portion even when the operating conditions of the boiler or the like fluctuate. It can be realized. With this configuration, even when the amount of heat recovered by the heat recovery unit is too large, the amount of heat recovered by the heat recovery unit can be reduced and the temperature of the heat medium can be within a predetermined range.
  • the heat medium when the calculated amount of recovered heat exceeds a predetermined value, the heat medium is allowed to flow through a bypass line that bypasses the heat recovery device.
  • a step of controlling the temperature of the medium within a predetermined range.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of the heat exchanger control method according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a heat exchanger according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart of the heat exchanger control method according to the embodiment of the present invention.
  • FIG. 6A is a diagram showing an example of the configuration of the reheater according to the embodiment of the present invention.
  • FIG. 6B is a diagram showing another example of the configuration of the reheater according to the exemplary embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system 10 according to a first embodiment of the present invention.
  • the exhaust gas treatment system 10 according to the present embodiment treats exhaust gas discharged from a thermal power plant, a chemical plant, and the like, so that nitrogen oxides (NOx), dust, And an exhaust gas treatment system that removes and discharges sulfur oxides (SOx).
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • An exhaust gas treatment system 10 is provided in a boiler 11 installed in a thermal power plant, a chemical plant, and the like, a denitration device 12 provided in a subsequent stage of the boiler 11, and a subsequent stage in the denitration device 12.
  • An air heater (AH) 13 an electric dust collector 14 provided downstream of the air heater 13, a blower 15 provided downstream of the electric dust collector 14, a desulfurization device 16 provided downstream of the blower 15, And a chimney 17 provided at the rear stage of the desulfurization device 16.
  • a heat recovery unit 21 of the heat exchanger 20 according to the present embodiment is disposed between the air heater 13 and the electric dust collector 14, and the heat according to the present embodiment is interposed between the desulfurization device 16 and the chimney 17.
  • a reheater 22 of the exchanger (gas gas heater) 20 is arranged inside the heat exchanger 21, a fin tube 21a is provided as a heat transfer tube through which a heat medium flows.
  • the reheater 22 includes a preheating unit 221 that preheats the exhaust gas introduced into the reheater 22, a low temperature heating unit 222 that is preheated by the preheating unit 221 but heats the exhaust gas, and an exhaust gas heated by the low temperature heating unit 222. And a high-temperature heating unit 223 for further heating.
  • a tube 221a as a heat transfer bare tube is disposed in the preheating unit 221.
  • a fin tube 222 a as a heat transfer tube is disposed in the low temperature heating unit 222.
  • a fin tube 223a as a heat transfer tube is disposed in the high-temperature heating unit 223.
  • a circulation line L that circulates the heat medium M between the heat recovery device 21 and the reheater 22 is provided between the heat recovery device 21 and the reheater 22.
  • the circulation line L is provided with a liquid feed pump P that circulates the heat medium M in the circulation line L between the heat recovery device 21 and the reheater 22.
  • the heat recovery device 21 and the reheater 22 are mutually heat-exchanged by the heat transfer medium P flowing through the circulation line L by the liquid feed pump P.
  • Exhaust gas G 0, which is discharged from the boiler 11 is introduced into the denitration unit 12 that the catalyst is filled.
  • the exhaust gas G 0 introduced into the denitration device 12 is rendered harmless by the reduction of nitrogen oxides contained in the exhaust gas G 0 into water and nitrogen by ammonia (NH 3 ) injected into the denitration device 12 as a reducing agent. Is done.
  • the exhaust gas G 1 discharged from the denitration device 12 is introduced into an air heater (AH) 13.
  • Air heater 13 exhaust gas G 1 introduced into the by heat exchange with the air for example, be cooled to a temperature below 0.99 ° C. 130 ° C. or higher.
  • Air heater exhaust gas G 2 discharged from 13 is introduced into the heat recovery unit 21 of the heat exchanger (gas-gas heater) 20 according to this embodiment.
  • Exhaust gas G 2 which has been introduced into the heat recovery unit 21, the heat medium in contact with the fin tube 21a which heat medium M flows (e.g., water) and is heat-exchanged to be cooled is heat recovery.
  • EP electrostatic precipitator
  • Exhaust gas G 4 discharged from the electrostatic precipitator 14 is boosted by the blower 15 driven by an electric motor.
  • the blower 15 is not necessarily provided. Moreover, you may provide the air blower 15 in the back
  • Exhaust gas G 5 boosted by the blower 15 is introduced into the desulfurization apparatus 16.
  • a limestone absorption liquid elaborate dissolved slurried, sulfur oxides in the exhaust gas G 5 are absorbed and removed, gypsum (not shown) is produced as a byproduct.
  • the exhaust gas G 6 discharged from the desulfurization apparatus 16 becomes a wet state by absorbing moisture absorbing liquid, temperature, for example, reduced to about 50 ° C..
  • Exhaust gas G 6 discharged from the desulfurization apparatus 16 is introduced into the heat recovery vessel 21 of the heat exchanger (gas-gas heater) 20 according to this embodiment.
  • Exhaust gas G 5 which is introduced into the heat recovery unit 21, preheat unit 221, the tube 221a in the low temperature heating unit 222 and the high temperature heating unit 223, and, with the heat medium and the heat exchanger are sequentially in contact with the fin tubes 222a and 223a Heated.
  • the humidity of the wet exhaust gas G 6 is reduced by heating to a temperature above a pre-50 ° C.
  • the exhaust gas G 6 wet preheating unit 221, dust which is entrained in the exhaust gas G 6 at a low temperature heating unit 222 etc. it is possible to prevent the corrosion of the low temperature heating unit 222 by the mist of the absorbing liquid in the attachment and in the exhaust gas G 6 of.
  • the exhaust gas G 6 heat-exchanged by the reheater 22 is discharged through the chimney 17.
  • FIG. 2 is a schematic diagram of the heat exchanger 20 according to the present embodiment.
  • the heat exchanger 20 according to the present embodiment, the heat exhaust gas G 2 which has been introduced from the air heater 13 while heating the heat medium M by recovering the heating medium M, after heat recovery
  • the heat exchanger 20 that discharges the cooled exhaust gas G 3 to the electrostatic precipitator 14 and the wet exhaust gas G 6 introduced from the desulfurization device 16 are heated by the heating medium M, and the heated exhaust gas G 7 is sent to the chimney 17.
  • a reheater 22 for discharging and a steam supply unit 23 for supplying steam S to the heat medium M in the circulation line L for supplying the heat medium M from the heat exchanger 20 toward the reheater 22 are provided.
  • the heat medium M heated by the heat exchanger 20 is sent to the reheater 22 by the liquid feed pump P through the circulation line L.
  • the heat medium M cooled by the reheater 22 is sent to the heat recovery device 21 by the liquid feed pump P through the circulation line L.
  • the heat medium M is supplied from the heat medium tank 24 to the circulation line L that supplies the heat medium M from the reheater 22 toward the heat recovery unit 21 as necessary.
  • the heat recovery device 21 includes a fin tube 21a as a heat transfer tube in which a plurality of fins, which are heat radiating plates, are provided on a tubular member.
  • a circulation line L for circulating the heat medium M between the heat recovery device 21 and the reheater 22 is connected to the fin tube 21a.
  • the heat exchanger 20 is a heat exhaust gas G 2 was recovered in the heating medium M by the first heat exchange against the exhaust gas G 2 and the fin tubes 21a introduced from the air heater 13 to the internal heat recovery vessel 21 heating medium M Heat.
  • the heated heating medium M is fed toward the reheater 22 by a liquid feeding pump P provided in the circulation line L.
  • the reheater 22 includes a preheating portion 221 in which a tube 221a as a heat transfer bare tube that is a tubular member is disposed, and a fin tube 222a as a heat transfer tube in which a plurality of fins that are heat sinks are provided in the tubular member.
  • the low temperature heating part 222 arrange
  • One end of the tube 221a is connected to the circulation line L, and the other end is connected to one end of the fin tube 223a via the circulation line L.
  • the other end of the fin tube 223a is connected to one end of the fin tube 222a through the circulation line L.
  • the other end of the fin tube 222a is connected to the circulation line L. That is, in the reheater 22, the heat medium M after the first heat exchange supplied from the heat recovery device 21 is sequentially fed in the order of the preheating unit 221, the high temperature heating unit 223, and the low temperature heating unit 222.
  • the heat medium M supplied to the low-temperature heating unit 222 is sent to the heat recovery device 21 via the circulation line L.
  • the preheating unit 221 has a second heat that brings the wet exhaust gas G 6 introduced from the desulfurization device 16 into the reheater 22 and the heated heat medium M after the first heat exchange supplied from the heat recovery device 21. with lowering the humidity of the wet exhaust gas G 6 to heat the exhaust gas G 6 by exchange, to cool the heat medium M. Further, the preheating unit 221 supplies the exhaust gas G 6 having a reduced moisture after the second heat exchanger to the low temperature heating unit 222 and the high temperature heating unit 223, the cooled heat medium M after the second heat exchanger the hot Supply to the heating unit 223.
  • the low temperature heating unit 222 further heats the exhaust gas G 6 by the third heat exchange in which the exhaust gas G 6 supplied from the preheating unit 221 and the heating medium M supplied from the high temperature heating unit 223 are brought into contact with each other. Cool down.
  • the exhaust gas G 6 wet preheating unit 221 and humidity is in the exhaust gas G 6 was reduced by heating, the adhesion and corrosion by the mist of the dust entrained in the exhaust gas G 6 in the tube 221a of the preheating unit 221 It becomes possible to prevent.
  • the low temperature heating unit 222 supplies the third exhaust gas G 6 after the heat exchange in the high temperature heating unit 223, and supplies the cooled heat medium M after the third heat exchanger toward the heat recovery vessel 21.
  • High temperature heating unit 223, the exhaust gas G 6, which is heated is supplied from the low temperature heating unit 222, which is heated by the fourth heat exchange against a heat medium M of the second rear heat exchanger which is supplied from the preheating unit 221 with further heat the exhaust gas G 6, to cool the heat medium M. Further, the high temperature heating unit 223 supplies the exhaust gas G 6 after the third heat exchange to the high temperature heating unit 223 and supplies the cooled heat medium M after the third heat exchange toward the heat recovery unit 21.
  • the exhaust gas G 6 supplied from the preheating unit 221 is heated to a sufficient temperature by the low temperature heating unit 222 and the high temperature heating unit 223, the generation of white smoke from the exhaust gas G 7 discharged toward chimney 17 It becomes possible to prevent.
  • steam supply unit 23 is heated by supplying steam S in the heating medium M flowing through the circulation line in the L, the amount of heat recovered from the exhaust gas G 0 supplied from the boiler 11 by the heat recovery unit 21 Even if it is insufficient, the heating medium M supplied to the preheating unit 221 can be heated to a predetermined temperature range.
  • the heat exchanger 20 since the exhaust gas G 6 wet in the preheating unit 221 of the reheater 22 can be sufficiently heated, the adhesion of dust in the exhaust gas G 6 for tubes 221a of the preheating unit 221 and It becomes possible to prevent corrosion of the tube 221a based on mist.
  • the heat exchanger 20 according to the present embodiment is measured by the exhaust gas measuring unit 31 provided at the introduction part of the exhaust gas G 2 introduced from the air heater 13 to the heat recovery unit 21 in the heat recovery unit 21 and the exhaust gas measurement unit 31. And a control unit 32 that controls the temperature of the heat medium M flowing in the circulation line L based on the measured value.
  • the exhaust gas measurement unit 31 measures the gas flow rate of the exhaust gas G 2 introduced into the heat recovery unit 21, the gas temperature of the exhaust gas G 2 , and transmits the measured values to the control unit 32.
  • the control unit 32 includes various measured values transmitted from the exhaust gas measurement unit 31, an induction fan (IDF, not shown) for blowing the exhaust gas G 0 from the boiler 11 after combustion, and a desulfurization fan (BUF) provided in the desulfurization device 16. not shown), air quantity and heat from the exhaust gas G 2 by the first heat exchanger from the introduction condition of the exhaust gas G 2 to the heat recovery device 21 based on such combustion load in the boiler 11 with heat exchanger 20 is supplied to the boiler 11 The amount of recovered heat recovered in the medium M is calculated.
  • IDF induction fan
  • BAF desulfurization fan
  • the control unit 32 based on the calculated quantity of heat recovered, so that the temperature measured by the temperature measuring device T 1 of the outlet section of the circulation line L from the inside heat recovery unit 21 becomes a predetermined range, the steam supply unit 23 and controlling the flow rate of the steam S supplied to the heat medium M by the flow control valve V 1.
  • the heat exchanger 20 to rapidly calculate the quantity of heat recovered by the first heat exchange by the heat exchanger 20 based on the delivery conditions of the exhaust gas G 2 to the heat recovery device 21 calculated by the control unit 32 It becomes possible.
  • the temperature T 3 of the temperature T 2 and the outlet portion of the reheater 22 of the outlet portion of the heat recovery vessel 21 can be within a predetermined range, even when the quantity of heat recovered by the heat exchanger 20 is varied, again It is possible to quickly bring the temperature of the heating medium M supplied to the preheating unit 221 of the heater 22 within a predetermined range, and it is possible to early suppress dust adhesion and corrosion on the fin tube 221a of the preheating unit 221. It becomes.
  • FIG. 3 is a flowchart of the control method of the heat exchanger 20 according to the present embodiment.
  • the control method of the heat exchanger 20 according to the present embodiment includes a first step of calculating the amount of recovered heat in the heat exchanger 20, and whether the calculated amount of recovered heat is less than a predetermined value.
  • a fourth step of stopping the supply of the steam S to the heat medium M and are included.
  • the control unit 32 After starting the operation of the heat exchanger 20, the control unit 32, various measurements are transmitted from the exhaust gas measuring unit 31, attraction blower for blowing exhaust gas G 0 from the boiler 11 after combustion (IDF, not shown), desulfurizer 16 provided is desulfurized blower (BUF, not shown), air quantity supplied to the boiler 11 and the heat exchanger from the introduction condition of the exhaust gas G 2 to the heat recovery device 21 based on such combustion load in the boiler 11 20 in calculating the quantity of heat recovered is recovered in the heating medium M from the exhaust gas G 2 by the first heat exchanger (step ST11).
  • attraction blower for blowing exhaust gas G 0 from the boiler 11 after combustion IDF, not shown
  • desulfurizer 16 provided is desulfurized blower (BUF, not shown)
  • air quantity supplied to the boiler 11 and the heat exchanger from the introduction condition of the exhaust gas G 2 to the heat recovery device 21 based on such combustion load in the boiler 11 20 in calculating the quantity of heat recovered is recovered in the heating medium M from the exhaust gas G 2 by
  • the control unit 32 determines whether or not the recovered heat amount calculated by comparing the calculated recovered heat amount with a preset predetermined threshold is less than a predetermined value (step ST12). Then, the control unit 32, when the calculated quantity of heat recovered is less than the predetermined value (step ST12: Yes), starts the supply of the steam S from the steam supply unit 23, flow control valve of the steam supply line L 1 supplying steam S to open the V 1 to the heating medium M circulation line L (step ST13). Accordingly, since the temperature of the heating medium M to be supplied to the preheating unit 221 of the reheater 22 may be within a predetermined range, adhesion and corrosion dust portion of the exhaust gas G 6 the fin tube 221a of the preheating unit 221 Can be prevented.
  • the control unit 32 when the calculated quantity of heat recovered is greater than the predetermined value (step ST12: No), stops the supply of the steam S from the steam supply unit 33, flow control valve of the steam supply line L 1 close the V 1 to stop the supply of steam S to the heating medium M circulation line L (step ST14).
  • the preheating unit 221 of the reheater 22 is supplied to the preheating unit 221 of the reheater 22 on the basis of the quantity of heat recovered from the exhaust gas G 2 which is introduced into the heat recovery vessel 21 is recovered in the heat recovery unit 21 since controlling the temperature of Runetsunakadachi M, to a temperature of the heat medium M fed quickly to the preheating unit 221 in response to a change in quantity of heat recovered from the exhaust gas G 2 is recovered by the heat recovery device 21 in a predetermined range Is possible. Accordingly, even if the operating conditions such as boiler 11 is changed, reheater of dust in the exhaust gas G 6 at 22 inside the deposition and the heat exchanger and the heat exchanger can reduce the tube 221a of the preheating unit 221 A control method can be realized.
  • FIG. 4 is a schematic diagram of the heat exchanger 20 according to the second embodiment of the present invention.
  • the heat exchanger 20 heats the heat medium M from the reheater 22 to the heat recovery device 21 and heat from the heat recovery device 21 to the reheater 22.
  • a bypass line L 2 provided between the circulation line L for supplying a medium M.
  • the bypass line L 2 the flow control valve V 2 to adjust the flow rate of the heating medium M flowing through the bypass line L 2 is provided.
  • the flow control valve V 2 is provided to be opened and closed by the control unit 32.
  • the control unit 32 in accordance with the quantity of heat recovered in heat recovery unit 21, which is calculated by the control unit 32 adjusts the opening degree of the flow regulating valve V 2 , it becomes possible to control the flow rate of the heat medium M flowing through the bypass line L 2, even when the gas flow rate and the gas temperature of the exhaust gas G 2 which is supplied from the air heater 13 is high, the heat recovery vessel 21 It is possible to prevent excessive heat recovery and control the amount of recovered heat recovered by the heat medium M within a predetermined range.
  • description is abbreviate
  • FIG. 5 is a flowchart of a method for controlling the heat exchanger 20 according to the present embodiment.
  • the control method of the heat exchanger 20 according to the present embodiment includes a first step of calculating the amount of recovered heat in the heat exchanger 20, and whether the calculated amount of recovered heat is less than a predetermined range.
  • the control unit 32 After starting the operation of the heat exchanger 20, the control unit 32, various measurements are transmitted from the exhaust gas measuring unit 31, attraction blower for blowing exhaust gas G 0 from the boiler 11 after combustion (IDF, not shown), desulfurizer 16 provided is desulfurized blower (BUF, not shown), air quantity supplied to the boiler 11 and the heat exchanger from the introduction condition of the exhaust gas G 2 to the heat recovery device 21 based on such combustion load in the boiler 11 20 in calculating the quantity of heat recovered is recovered in the heating medium M from the exhaust gas G 2 by the first heat exchanger (step ST21).
  • attraction blower for blowing exhaust gas G 0 from the boiler 11 after combustion IDF, not shown
  • desulfurizer 16 provided is desulfurized blower (BUF, not shown)
  • air quantity supplied to the boiler 11 and the heat exchanger from the introduction condition of the exhaust gas G 2 to the heat recovery device 21 based on such combustion load in the boiler 11 20 in calculating the quantity of heat recovered is recovered in the heating medium M from the exhaust gas G 2 by
  • the control unit 32 determines whether or not the recovered heat amount calculated by comparing the calculated recovered heat amount with a preset predetermined threshold is less than a predetermined range (step ST22). Then, the control unit 32, when the calculated quantity of heat recovered is less than the predetermined range (step ST22: Yes), starts the supply of the steam S from the steam supply unit 23, flow control valve of the steam supply line L 1 supplying steam S to open the V 1 to the heating medium M circulation line L (step ST23). Accordingly, since the temperature of the heating medium M to be supplied to the preheating unit 221 of the reheater 22 may be within a predetermined range, adhesion and corrosion dust portion of the exhaust gas G 6 the fin tube 221a of the preheating unit 221 Can be prevented.
  • the control unit 32 when the calculated quantity of heat recovered is greater than the predetermined range (step ST22: No), stops the supply of the steam S from the steam supply unit 23, flow control valve of the steam supply line L 1 close the V 1 to stop the supply of steam S to the heating medium M circulation line L (step ST24).
  • the control unit 32 determines whether or not the recovered heat amount calculated by comparing the calculated recovered heat amount with a predetermined threshold value exceeds a predetermined range (step ST25). Then, the control unit 32, when the calculated quantity of heat recovered is greater than the predetermined range (step ST25: Yes), the bypass line flow control valve V 2 of the bypass line L 2 to open without using the heat recovery vessel 21 through L 2 circulating reheater 22 a portion of the heat medium M (step ST26). As a result, the heat exchanger 20 can prevent recovery of an excessive amount of heat from the exhaust gas G 2 introduced into the heat recovery unit 21, and thus the heat medium supplied to the preheating unit 221 of the reheater 22.
  • step ST25 when the calculated quantity of heat recovered is not within the predetermined range (step ST25: No), the heating medium M without passing through the bypass line L 2 to close the flow control valve V 2 of the bypass line L 2 Is circulated between the reheater 22 and the heat recovery unit 21 (step ST27).
  • a quantity of heat recovered from the exhaust gas G 2 which is introduced into the heat recovery vessel 21 is recovered in the heat recovery unit 21 on the basis of whether or not within a predetermined range, reheater and controls the supply of heating medium M 22 to the heat medium M of temperature and heat recovery unit 21 to be supplied to the preheating unit 221, the quantity of heat recovered from the exhaust gas G 2 is recovered in heat recovery unit 21 is a predetermined value or more even if it is possible to the temperature of the heating medium M fed quickly to the preheating unit 221 in response to a change in quantity of heat recovered from the exhaust gas G 2 is recovered by the heat recovery device 21 in a predetermined range.
  • positioning structure of the tube 221a of the preheating part 221 of the reheater 22, the fin tube 222a of the low temperature heating part 222, and the fin tube 223a of the high temperature heating part 223 in the 1st Embodiment mentioned above and 2nd Embodiment. for it is not particularly limited as long as it can heat the exhaust gas G 6 which is introduced into the reheater 22 to a predetermined temperature.
  • FIG. 6A is a diagram illustrating an example of the configuration of the reheater 22.
  • 6A schematically shows a vertical cross section with respect to the extending direction of the tube 221a and the fin tubes 222a and 223a in the preheating unit 221, the low temperature heating unit 222, and the high temperature heating unit 223 in the reheater 22.
  • FIG. 6A schematically shows a vertical cross section with respect to the extending direction of the tube 221a and the fin tubes 222a and 223a in the preheating unit 221, the low temperature heating unit 222, and the high temperature heating unit 223 in the reheater 22.
  • position so that it may become child shape.
  • FIG. 6B is a diagram illustrating another example of the configuration of the reheater 22.
  • 6B schematically shows a vertical cross section with respect to the extending direction of the tube 221a and the fin tubes 222a and 223a in the preheating unit 221, the low temperature heating unit 222, and the high temperature heating unit 223 in the reheater 22, similarly to FIG. 6A. It shows.
  • the tube 221a and the fin tube 223a in the preheating unit 221 and the high-temperature heating unit 223 are each in a staggered pattern with respect to the flow directions of the exhaust gases G 6 and G 7 in a cross-sectional view.
  • the fin tubes 222a of the low-temperature heating unit 222 are arranged so as to have a tetragonal lattice shape with respect to the flow direction of the exhaust gases G 6 and G 7 in a sectional view.
  • the example in which only the fin tubes 222a of the low-temperature heating unit 222 are arranged so as to have a tetragonal lattice shape has been described, but the fin tubes 223a of the high-temperature heating unit 223 are also arranged in a tetragonal lattice shape. Also good.
  • the gas flow rate of the exhaust gas G 6 flowing through the high-temperature heating unit 223 is further improved, so that the exhaust gas G 6 can be efficiently heated and discharged as the exhaust gas G 7. It becomes possible to further reduce corrosion due to dust adhesion and mist on the tube 222a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

 運転条件が変動した場合であっても、再加熱器内部における排ガス中の煤塵の付着及び伝熱管の腐食を低減できる熱交換器及び熱交換器の制御方法を提供すること。熱交換器20は、排ガスと熱媒Mが流れるフィンチューブ21aとを接触させる第1熱交換により熱媒Mに排ガスGの熱を回収させる熱回収器21と、第1熱交換後の排ガスGと第1熱交換後の熱媒Mが流れるチューブ221aとを接触させる第2熱交換により排ガスGを予熱する予熱部221、及び、第2熱交換後の排ガスGと第2熱交換後の熱媒Mとを接触させる第3熱交換により排ガスGを加熱する加熱部222,223を備えた再加熱器22と、熱媒Mを循環させる循環ラインLと、熱回収器21における第1熱交換で排ガスGから回収される回収熱量を算出して第1熱交換後の熱媒Mの温度を所定範囲内に制御する制御部32とを備える。

Description

熱交換器及び熱交換器の制御方法
 本発明は、熱交換器及び熱交換器の制御方法に関し、例えば、再加熱器に導入する排ガスを予熱する予熱部を備えた熱交換器及び熱交換器の制御方法に関する。
 火力発電プラント及び化学プラントでは、排ガス流路の上流側から下流側に向けて、脱硝装置、空気予熱器エアヒータ、再加熱用熱交換器(ガスガスヒータ)の熱回収器、乾式電気集塵機、湿式脱硫装置、再加熱用熱交換器の再加熱器及び煙突が順次設けられた排ガス処理装置が用いられている。このような排ガス処理装置に用いられる熱交換器としては、再加熱器の排ガス導入部に再加熱器本体に導入する排ガスを予熱する予熱部を設けたガスガスヒータが提案されている(例えば、特許文献1参照)。この特許文献1に記載のガスガスヒータにおいては、湿式脱硫装置を通過した湿潤状態の排ガスを、熱回収器及び加熱部で加熱された熱媒が供給される予熱部で予熱して乾燥させることにより、排ガスを乾燥して再加熱器本体内部における排ガス中の煤塵の付着及び排ガス中の湿潤成分に基づく腐食を低減している。
特開2011-094901号公報
 ところで、特許文献1に記載のガスガスヒータにおいては、熱回収器の排ガス出口部分の排ガス温度及び再加熱器の熱媒出口部分の熱媒温度が、それぞれ所定範囲内となるように熱交換器を制御している。
 しかしながら、火力発電プラントなどでは、運転条件の変動に伴う発電負荷の変化によって排ガス処理装置に導入される排ガスのガス温度及びガス流量が低下し、熱回収器で回収される排ガスの熱量が変動して再加熱器の熱媒入口部分の熱媒温度が低下する場合がある。このように再加熱器の熱媒入口部分(予熱部)の熱媒温度が低下すると、再加熱器の予熱部における排ガスの予熱が不十分となり、脱硫装置からの湿潤状態の排ガスに同伴される煤塵が排ガスに含まれるミストをバインダーとして再加熱器内の伝熱管に付着しやすくなり、再加熱器の入口部分と出口部分とのガス差圧の上昇及び再加熱器内部の腐食が進行する場合がある。
 本発明は、このような実情に鑑みてなされたものであり、運転条件が変動した場合であっても、再加熱器内部における排ガス中の煤塵の付着及び伝熱管の腐食を低減できる熱交換器及び熱交換器の制御方法を提供することを目的とする。
 本発明の熱交換器は、燃焼機関からの排ガスと熱媒が流れる伝熱管とを接触させる第1熱交換により前記熱媒に前記排ガスの熱を回収させる熱回収器と、前記第1熱交換後の排ガスと前記第1熱交換後の前記熱媒が流れる伝熱管とを接触させる第2熱交換により前記第1熱交換後の排ガスを予熱する予熱部、及び、前記第2熱交換後の排ガスと前記第2熱交換後の前記熱媒とを接触させる第3熱交換により前記第2熱交換後の排ガスを加熱する加熱部を備えた再加熱器と、前記熱回収器と前記再加熱器との間で前記熱媒を循環させる循環ラインと、前記熱回収器における第1熱交換で前記排ガスから回収される回収熱量を算出し、算出した回収熱量に基づいて、前記第1熱交換後の前記熱媒の温度を所定範囲内に制御する制御部とを備えたことを特徴とする。
 この構成によれば、熱回収器に導入される排ガスから熱回収器で回収される回収熱量に基づいて再加熱器の予熱部に供給される熱媒の温度を制御するので、排ガスから熱回収器で回収される回収熱量の変化に応じて速やかに予熱部に供給される熱媒の温度を所定範囲にすることが可能となる。これにより、ボイラなどの運転条件が変動した場合であっても、再加熱器内部における排ガス中の煤塵の付着及び予熱部の伝熱管の付着を低減できる熱交換器及び熱交換器の制御方法を実現することが可能となる。
 本発明の熱交換器においては、前記制御部は、前記熱交換器に導入される前記排ガスのガス温度、前記排ガスのガス流量、及び前記燃焼機関の稼働負荷からなる群から選択された少なくとも1種に基づいて前記回収熱量を算出することが好ましい。この構成により、制御部による回収熱量の算出精度が向上するので、再加熱器内部における排ガス中の煤塵の付着及び予熱部の伝熱管の付着をより一層低減できる。
 本発明の熱交換器においては、前記制御部は、前記回収熱量が所定値未満となった際に、前記第1熱交換後の前記熱媒を加熱することが好ましい。この構成により、回収熱量に応じて熱媒を加熱できるので、再加熱器内部における排ガス中の煤塵の付着及び予熱部の伝熱管の付着を低減できる。
 本発明の熱交換器においては、前記制御部は、前記第1熱交換後の前記熱媒に蒸気供給部から蒸気を供給して前記第1交換後の前記熱媒の温度を所定範囲内とすることが好ましい。この構成により、蒸気で熱媒を加熱できるので、熱媒を簡易に加熱することが可能となる。
 本発明の熱交換器においては、前記循環ラインは、前記熱交換器をバイパスするバイパスラインを備え、前記制御部は、前記回収熱量が所定値を超えた際に、前記バイパスラインを介して前記熱媒を前記熱交換器と前記再加熱器との間で循環させることにより、前記熱媒の温度を所定範囲内とすることが好ましい。この構成により、熱回収器での回収熱量が大きすぎる場合であっても、熱回収器での熱回収量を低減して熱媒の温度を所定範囲内とすることができる。
 本発明の熱交換器においては、前記再加熱器は、前記加熱部の伝熱管が排ガスの流れ方向に対して四方格子状に配置されたことが好ましい。この構成により、加熱部の排ガスのガス流速が向上するので、加熱部における排ガスの煤塵の付着及び配管の付着をより一層低減できる。
 本発明の熱交換器の制御方法は、燃焼機関からの排ガスと熱媒が流れる伝熱管とを接触させる第1熱交換により前記熱媒に前記排ガスの熱を回収させる熱回収器と、前記第1熱交換後の排ガスと前記第1熱交換後の前記熱媒が流れる伝熱管とを接触させる第2熱交換により前記第1熱交換後の前記熱媒の熱によって前記第1熱交換後の排ガスを予熱する予熱部、及び、前記第2熱交換後の排ガスと前記第2熱交換後の前記熱媒とを接触させる第3熱交換により前記第2熱交換後の排ガスを加熱する加熱部を備えた再加熱器と、を備えた熱交換器の制御方法であって、前記熱回収部における第1熱交換で前記排ガスから回収される回収熱量を算出するステップと、算出した前記回収熱量が所定値未満となった際に、前記第1熱交換後の前記熱媒を加熱して前記熱媒の温度を所定範囲内に制御するステップとを含むことを特徴とする。
 この方法によれば、熱回収器に導入される排ガスから熱回収器で回収される回収熱量に基づいて再加熱器の予熱部に供給される熱媒の温度を制御するので、排ガスから熱回収器で回収される回収熱量の変化に応じて速やかに予熱部に供給される熱媒の温度を所定範囲にすることが可能となる。これにより、ボイラなどの運転条件が変動した場合であっても、再加熱器内部における排ガス中の煤塵の付着及び予熱部の伝熱管の付着を低減できる熱交換器及び熱交換器の制御方法を実現することが可能となる。この構成により、熱回収器での回収熱量が大きすぎる場合であっても、熱回収器での熱回収量を低減して熱媒の温度を所定範囲内とすることができる。
 本発明の熱交換器の制御方法においては、さらに、算出した前記回収熱量が所定値超えとなった際に、前記熱回収器をバイパスするバイパスラインを介して前記熱媒を流すことにより前記熱媒の温度を所定範囲内に制御するステップとを含むことが好ましい。
 本発明によれば、運転条件が変動した場合であっても、再加熱器内部における排ガス中の煤塵の付着及び伝熱管の腐食を低減できる熱交換器及び熱交換器の制御方法を実現することができる。
図1は、本発明の第1の実施の形態に係る排ガス処理システムの概略図である。 図2は、本発明の第1の実施の形態に係る熱交換器の模式図である。 図3は、本発明の第1の実施の形態に係る熱交換器の制御方法のフロー図である。 図4は、本発明の第2の実施の形態に係る熱交換器の模式図である。 図5は、本発明の実施の形態に係る熱交換器の制御方法のフロー図である。 図6Aは、本発明の実施の形態に係る再加熱器の構成の一例を示す図である。 図6Bは、本発明の実施の形態に係る再加熱器の構成の他の例を示す図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は適宜組み合わせて実施可能である。また、各実施の形態において共通する構成要素には同一の符号を付し、説明の重複を避ける。
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る排ガス処理システム10の概略図である。図1に示すように、本実施の形態に係る排ガス処理システム10は、火力発電プラント及び化学プラントなどから排出される排ガスを処理して、排ガス中に含まれる窒素酸化物(NOx)、煤塵、及び硫黄酸化物(SOx)を除去して排出する排ガス処理システムである。
 本実施の形態に係る排ガス処理システム10は、火力発電プラント及び化学プラントなどに設置されたボイラ11と、このボイラ11の後段に設けられた脱硝装置12と、この脱硝装置12の後段に設けられたエアヒータ(AH)13と、このエアヒータ13の後段に設けられた電気集塵機14と、この電気集塵機14の後段に設けられた送風機15と、この送風機15の後段に設けられた脱硫装置16と、この脱硫装置16の後段に設けられた煙突17とを備える。
 エアヒータ13と電気集塵機14との間には、本実施の形態に係る熱交換器20の熱回収器21が配置され、脱硫装置16と煙突17との間には、本実施の形態に係る熱交換器(ガスガスヒータ)20の再加熱器22が配置される。熱交換器21の内部には、熱媒体が流れる伝熱管としてのフィンチューブ21aが設けられている。再加熱器22は、再加熱器22に導入された排ガスを予熱する予熱部221と、予熱部221で予熱されたが排ガスを加熱する低温加熱部222と、低温加熱部222で加熱された排ガスを更に加熱する高温加熱部223とを備える。予熱部221内には、伝熱裸管としてのチューブ221aが配置される。低温加熱部222内には、伝熱管としてのフィンチューブ222aが配置される。高温加熱部223内には、伝熱管としてのフィンチューブ223aが配置される。熱回収器21と再加熱器22との間には、熱回収器21と再加熱器22との間で熱媒Mを循環させる循環ラインLが設けられている。循環ラインLには、循環ラインL内の熱媒Mを熱回収器21と再加熱器22との間で循環させる送液ポンプPが設けられている。熱回収器21と再加熱器22とは、送液ポンプPによって循環ラインLを流れる熱媒Mにより相互に熱交換されている。
 ボイラ11から排出された排ガスGは、触媒が充填された脱硝装置12に導入される。脱硝装置12に導入された排ガスGは、還元剤として脱硝装置12に注入されるアンモニア(NH)により、排ガスG中に含まれる窒素酸化物が水と窒素とに還元されて無害化される。
 脱硝装置12から排出された排ガスGは、エアヒータ(AH)13に導入される。エアヒータ13に導入された排ガスGは、空気との間での熱交換により、例えば、130℃以上150℃以下の温度に冷却される。
 エアヒータ13から排出された排ガスGは、本実施の形態に係る熱交換器(ガスガスヒータ)20の熱回収器21に導入される。熱回収器21に導入された排ガスGは、熱媒Mが流れるフィンチューブ21aと接触して熱媒体(例えば、水など)と熱交換されて熱回収されて冷却される。熱回収器21での熱交換後の排ガスGの温度は、例えば、85℃以上110℃以下である。
 熱回収器21から排出された排ガスGは、電気集塵機(EP)14に導入されて煤塵が除去される。ここでは、熱交換器21での熱交換によって冷却された排ガスG中のフライアッシュなどの煤塵を除去するので、電気集塵機14での集塵効率が向上する。
 電気集塵機14から排出された排ガスGは、電動機により駆動される送風機15により昇圧される。なお、この送風機15は、必ずしも設ける必要はない。また、送風機15は、熱交換器20の再加熱器22の後段に設けてもよい。
 送風機15により昇圧された排ガスGは、脱硫装置16に導入される。脱硫装置16では、石灰石をスラリー状に溶かし込んだ吸収液により、排ガスG中の硫黄酸化物が吸収除去され、副生成物として石膏(不図示)が生成される。ここでは、脱硫装置16から排出される排ガスGは、吸収液の水分を吸収して湿潤状態となり、温度が、例えば、約50℃に低下する。
 脱硫装置16から排出された排ガスGは、本実施の形態に係る熱交換器(ガスガスヒータ)20の熱回収器21に導入される。熱回収器21に導入された排ガスGは、予熱部221、低温加熱部222及び高温加熱部223内のチューブ221a、並びに、フィンチューブ222a及び223aと順次接触して熱媒と熱交換して加熱される。ここでは、予熱部221によって湿潤状態の排ガスGを予め50℃を超える温度に加熱することにより湿潤状態排ガスGの湿度が低下されるので、低温加熱部222における排ガスGに同伴した煤塵の付着及び排ガスG中の吸収液のミストなどによる低温加熱部222の腐食を防ぐことが可能となる。再加熱器22で熱交換された排ガスGは、煙突17を介して排出される。
 図2は、本実施の形態に係る熱交換器20の模式図である。図2に示すように、本実施の形態に係る熱交換器20は、エアヒータ13から導入された排ガスGの熱を熱媒Mに回収させて熱媒Mを加熱すると共に、熱回収後の冷却された排ガスGを電気集塵機14に排出する熱交換器20と、脱硫装置16から導入された湿潤な排ガスGを熱媒Mによって加熱すると共に、加熱後の排ガスGを煙突17に排出する再加熱器22と、熱交換器20から再加熱器22に向けて熱媒Mを供給する循環ラインL内の熱媒Mに蒸気Sを供給する蒸気供給部23とを備える。熱交換器20で加熱された熱媒Mは、循環ラインLを介して送液ポンプPによって再加熱器22に送液される。また、再加熱器22で冷却された熱媒Mは、循環ラインLを介して送液ポンプPによって熱回収器21に送液される。再加熱器22から熱回収器21に向けて熱媒Mを供給する循環ラインLには、熱媒タンク24から必要に応じて熱媒Mが供給される。
 熱回収器21は、放熱板であるフィンが管状部材に複数設けられた伝熱管としてのフィンチューブ21aが内部に配置されている。このフィンチューブ21aには、熱回収器21と再加熱器22との間で熱媒Mを循環させる循環ラインLが接続される。熱交換器20は、エアヒータ13から熱回収器21内部に導入された排ガスGとフィンチューブ21aとを接触させる第1熱交換によって排ガスGの熱を熱媒Mに回収させて熱媒Mを加熱する。この加熱後の熱媒Mは、循環ラインLに設けられた送液ポンプPによって再加熱器22に向けて送液される。
 再加熱器22は、管状部材である伝熱裸管としてのチューブ221aが配置された予熱部221と、放熱板であるフィンが管状部材に複数設けられた伝熱管としてのフィンチューブ222aが内部に配置された低温加熱部222と、放熱板であるフィンが管状部材に複数設けられた伝熱管としてのフィンチューブ223aが内部に配置された高温加熱部223とを備える。チューブ221aは、一端が循環ラインLに接続され、他端が循環ラインLを介してフィンチューブ223aの一端に接続される。フィンチューブ223aの他端は、循環ラインLを介してフィンチューブ222aの一端に接続される。フィンチューブ222aの他端は、循環ラインLに接続される。すなわち、この再加熱器22においては、熱回収器21から供給される第1熱交換後の熱媒Mが、予熱部221、高温加熱部223及び低温加熱部222の順に順次送液される。低温加熱部222に供給された熱媒Mは、循環ラインLを介して熱回収器21に送液される。
 予熱部221は、脱硫装置16から再加熱器22に導入された湿潤な排ガスGと熱回収器21から供給された第1熱交換後の加熱された熱媒Mとを接触させる第2熱交換により排ガスGを加熱して湿潤状態排ガスGの湿度を低下させると共に、熱媒Mを冷却する。また、予熱部221は、第2熱交換後の湿度を低下させた排ガスGを低温加熱部222及び高温加熱部223に供給すると共に、第2熱交換後の冷却された熱媒Mを高温加熱部223に供給する。
 低温加熱部222は、予熱部221から供給された排ガスGと、高温加熱部223から供給された熱媒Mとを接触させる第3熱交換により排ガスGを更に加熱すると共に、熱媒Mを冷却する。ここでは、予熱部221によって湿潤状態の排ガスGが加熱により湿度が低下した排ガスGとなっているので、予熱部221のチューブ221aにおける排ガスGに同伴する煤塵の付着及びミストによる腐食を防ぐことが可能となる。また、低温加熱部222は、第3熱交換後の排ガスGを高温加熱部223に供給すると共に、第3熱交換後の冷却された熱媒Mを熱回収器21に向けて供給する。
 高温加熱部223は、低温加熱部222から供給された加熱された排ガスGと、予熱部221から供給された第2熱交換後の熱媒Mとを接触させる第4熱交換により加熱された排ガスGを更に加熱すると共に、熱媒Mを冷却する。また、高温加熱部223は、第3熱交換後の排ガスGを高温加熱部223に供給すると共に、第3熱交換後の冷却された熱媒Mを熱回収器21に向けて供給する。ここでは、予熱部221から供給される排ガスGが低温加熱部222及び高温加熱部223によって十分な温度に加熱されるので、煙突17に向けて排出される排ガスGによる白煙の発生を防ぐことが可能となる。
 蒸気供給部(加熱部)23は、蒸気供給ラインLを介して熱回収器21から再加熱器22に向けて熱媒Mを供給する循環ラインLに設けられた熱交換部24に向けて蒸気Sを供給する。蒸気供給ラインLには、蒸気供給部23から熱交換部24に向けて供給される蒸気の流量を制御する流量制御弁Vが設けられている。このように、循環ラインL内を流れる熱媒Mに蒸気供給部23が蒸気Sを供給して加熱することにより、ボイラ11から供給される排ガスGから熱回収器21によって回収される熱量が不足した場合であっても、予熱部221に供給される熱媒Mを所定の温度範囲まで加熱することができる。これにより、熱交換器20は、再加熱器22の予熱部221における湿潤状態の排ガスGを十分に加熱することができるので、予熱部221のチューブ221aに対する排ガスG中の煤塵の付着及びミストに基づくチューブ221aの腐食を防ぐことが可能となる。
 本実施の形態に係る熱交換器20は、熱回収器21におけるエアヒータ13から熱回収器21に導入される排ガスGの導入部分に設けられた排ガス測定部31と、排ガス測定部31によって測定された測定値に基づいて循環ラインL内を流れる熱媒Mの温度を制御する制御部32とを備える。
 排ガス測定部31は、熱回収器21に導入される排ガスGのガス流量、及び排ガスGのガス温度などを測定し、測定した測定値を制御部32に伝達する。制御部32は、排ガス測定部31から伝達された各種測定値、燃焼後のボイラ11からの排ガスGを送風する誘引送風機(IDF、不図示)、脱硫装置16に設けられる脱硫送風機(BUF、不図示)、ボイラ11に供給される空気量及びボイラ11における燃焼負荷などに基づいた熱回収器21への排ガスGの導入条件から熱交換器20で排ガスGから第1熱交換によって熱媒Mに回収される回収熱量を算出する。そして、制御部32は、算出した回収熱量に基づいて、熱回収器21内から循環ラインLの出口部分の温度測定装置Tによって測定される温度が所定範囲となるように、蒸気供給部23及び流量調整弁Vにより熱媒Mに供給する蒸気Sの流量を制御する。これにより、熱交換器20は、制御部32によって算出された熱回収器21への排ガスGの導入条件に基づいて熱交換器20による第1熱交換による回収熱量を迅速に算出することが可能となる。そして、熱回収器21の出口部分の温度T及び再加熱器22の出口部分の温度Tを所定範囲内にできるので、熱交換器20による回収熱量が変動した場合であっても、再加熱器22の予熱部221に供給される熱媒Mの温度を早期に所定範囲内にすることが可能となり、予熱部221のフィンチューブ221aにおける煤塵の付着及び腐食を早期に抑制することが可能となる。
 次に、図3を参照して、本実施の形態に係る熱交換器20の制御方法について詳細に説明する。図3は、本実施の形態に係る熱交換器20の制御方法のフロー図である。図3に示すように、本実施の形態に係る熱交換器20の制御方法は、熱交換器20における回収熱量を算出する第1ステップと、算出した回収熱量が所定値未満であるか否かを判定する第2ステップと、算出した回収熱量が所定値未満である場合に、熱媒Mに蒸気Sの供給を開始する第3ステップと、算出した回収熱量が所定値超えである場合に、熱媒Mに蒸気Sの供給を停止する第4ステップと(ステップST14)とを含む。
 まず、熱交換器20の運転開始後、制御部32は、排ガス測定部31から伝達された各種測定値、燃焼後のボイラ11からの排ガスGを送風する誘引送風機(IDF、不図示)、脱硫装置16に設けられる脱硫送風機(BUF、不図示)、ボイラ11に供給される空気量及びボイラ11における燃焼負荷などに基づいた熱回収器21への排ガスGの導入条件から熱交換器20で排ガスGから第1熱交換によって熱媒Mに回収される回収熱量を算出する(ステップST11)。
 次に、制御部32は、算出した回収熱量と予め設定された所定の閾値とを比較して算出した回収熱量が所定値未満であるか否かを判定する(ステップST12)。そして、制御部32は、算出した回収熱量が所定値未満である場合には(ステップST12:Yes)、蒸気供給部23から蒸気Sの供給を開始すると共に、蒸気供給ラインLの流量調整弁Vを開いて循環ラインLの熱媒Mに蒸気Sを供給する(ステップST13)。これにより、再加熱器22の予熱部221に供給される熱媒Mの温度を所定範囲内にすることができるので、予熱部221のフィンチューブ221aにおける排ガスG中の煤塵部の付着及び腐食を防ぐことが可能となる。また、制御部32は、算出した回収熱量が所定値超えである場合には(ステップST12:No)、蒸気供給部33から蒸気Sの供給を停止すると共に、蒸気供給ラインLの流量調整弁Vを閉じて循環ラインLの熱媒Mへの蒸気Sの供給を停止する(ステップST14)。
 以上説明したように、上記実施の形態によれば、熱回収器21に導入される排ガスGから熱回収器21で回収される回収熱量に基づいて再加熱器22の予熱部221に供給される熱媒Mの温度を制御するので、排ガスGから熱回収器21で回収される回収熱量の変化に応じて速やかに予熱部221に供給される熱媒Mの温度を所定範囲にすることが可能となる。これにより、ボイラ11などの運転条件が変動した場合であっても、再加熱器22内部における排ガスG中の煤塵の付着及び予熱部221のチューブ221aを低減できる熱交換器及び熱交換器の制御方法を実現することが可能となる。
(第2の実施の形態)
 次に、本発明の第2の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
 図4は、本発明の第2の実施の形態に係る熱交換器20の模式図である。図4に示すように、本実施の形態に係る熱交換器20は、再加熱器22から熱回収器21に熱媒Mを供給する循環ラインLと熱回収器21から再加熱器22に熱媒Mを供給する循環ラインLとの間に設けられたバイパスラインLを備える。このバイパスラインLには、バイパスラインLを流れる熱媒Mの流量を調整する流量調整弁Vが設けられている。この流量調整弁Vは、制御部32によって開閉可能に設けられている。すなわち、本実施の形態に係る熱交換器20においては、制御部32によって算出された熱回収器21での回収熱量に応じて制御部32が流量調整弁Vの開度を調整することにより、バイパスラインLを流れる熱媒Mの流量を制御することが可能となるので、エアヒータ13から供給される排ガスGのガス流量及びガス温度が高い場合であっても、熱回収器21における過剰な熱回収を防いで熱媒Mに回収される回収熱量を所定範囲に制御することが可能となる。その他の構成については、上述した第1の実施の形態に係る熱交換器20と同一のため説明を省略する。
 次に、図5を参照して、本実施の形態に係る熱交換器20の制御方法について詳細に説明する。図5は、本実施の形態に係る熱交換器20の制御方法のフロー図である。図5に示すように、本実施の形態に係る熱交換器20の制御方法は、熱交換器20における回収熱量を算出する第1ステップと、算出した回収熱量が所定範囲未満であるか否かを判定する第2ステップと、算出した回収熱量が所定範囲未満以下である場合に、熱媒Mに蒸気Sの供給を開始する第3ステップと、算出した回収熱量が所定範囲内である場合に、熱媒Mに蒸気Sの供給を停止する第4ステップと、算出した回収熱量が所定範囲超えであるか否かを判定する第5ステップと、算出した回収熱量が所定範囲超えである場合に、バイパスラインLを開放する第6ステップと、算出した回収熱量が所定範囲内である場合に、バイパスラインLを閉止する第7ステップとを含む。
 まず、熱交換器20の運転開始後、制御部32は、排ガス測定部31から伝達された各種測定値、燃焼後のボイラ11からの排ガスGを送風する誘引送風機(IDF、不図示)、脱硫装置16に設けられる脱硫送風機(BUF、不図示)、ボイラ11に供給される空気量及びボイラ11における燃焼負荷などに基づいた熱回収器21への排ガスGの導入条件から熱交換器20で排ガスGから第1熱交換によって熱媒Mに回収される回収熱量を算出する(ステップST21)。
 次に、制御部32は、算出した回収熱量と予め設定された所定の閾値とを比較して算出した回収熱量が所定範囲未満であるか否かを判定する(ステップST22)。そして、制御部32は、算出した回収熱量が所定範囲未満である場合には(ステップST22:Yes)、蒸気供給部23から蒸気Sの供給を開始すると共に、蒸気供給ラインLの流量調整弁Vを開いて循環ラインLの熱媒Mに蒸気Sを供給する(ステップST23)。これにより、再加熱器22の予熱部221に供給される熱媒Mの温度を所定範囲内にすることができるので、予熱部221のフィンチューブ221aにおける排ガスG中の煤塵部の付着及び腐食を防ぐことが可能となる。また、制御部32は、算出した回収熱量が所定範囲超えである場合には(ステップST22:No)、蒸気供給部23から蒸気Sの供給を停止すると共に、蒸気供給ラインLの流量調整弁Vを閉じて循環ラインLの熱媒Mへの蒸気Sの供給を停止する(ステップST24)。
 続いて、制御部32は、算出した回収熱量と予め設定された所定の閾値とを比較して算出した回収熱量が所定範囲超えであるか否かを判定する(ステップST25)。そして、制御部32は、算出した回収熱量が所定範囲超えである場合には(ステップST25:Yes)、バイパスラインLの流量調整弁Vを開いて熱回収器21を介さずにバイパスラインLを介して熱媒Mの一部を再加熱器22に循環する(ステップST26)。これにより、熱交換器20は、熱回収器21に導入される排ガスGからの過剰な熱量の回収を防ぐことが可能となるので、再加熱器22の予熱部221に供給される熱媒Mの温度を所定範囲内にすることができ、予熱部221のチューブ221aにおける排ガスG中の煤塵部の付着及び腐食を防ぐことが可能となる。また、制御部32は、算出した回収熱量が所定範囲内でない場合には(ステップST25:No)、バイパスラインLの流量調整弁Vを閉じてバイパスラインLを介さずに熱媒Mを再加熱器22と熱回収器21との間で循環する(ステップST27)。
 以上説明したように、本実施の形態によれば、熱回収器21に導入される排ガスGから熱回収器21で回収される回収熱量が所定範囲内か否かに基づいて、再加熱器22の予熱部221に供給される熱媒Mの温度及び熱回収器21への熱媒Mの供給を制御するので、排ガスGから熱回収器21で回収される回収熱量が所定値以上の場合であっても、排ガスGから熱回収器21で回収される回収熱量の変化に応じて速やかに予熱部221に供給される熱媒Mの温度を所定範囲にすることが可能となる。これにより、ボイラ11などの運転条件が変動した場合であっても、再加熱器22内部における排ガスG中の煤塵の付着及び予熱部221のフィンチューブ221aを低減できる熱交換器及び熱交換器の制御方法を実現することが可能となる。
 なお、上述した第1の実施の形態及び第2の実施の形態における再加熱器22の予熱部221のチューブ221a、低温加熱部222のフィンチューブ222a及び高温加熱部223のフィンチューブ223aの配置構成については、再加熱器22に導入される排ガスGを所定温度まで加熱できるものであれば特に制限はない。
 図6Aは、再加熱器22の構成の一例を示す図である。なお、図6Aにおいては、再加熱器22における予熱部221、低温加熱部222及び高温加熱部223におけるチューブ221a及びフィンチューブ222a、223aの延在方向に対する垂直断面を模式的に示している。
 図6Aに示すように、予熱部221、低温加熱部222及び高温加熱部223におけるチューブ221a及びフィンチューブ222a、223aは、断面視において排ガスG、Gの流れ方向に対して、それぞれ千鳥格子状となるように配置してもよい。このように配置することにより、再加熱器22に導入された排ガスGに対するチューブ221a及びフィンチューブ222a、223aの接触面積が増大するので、排ガスGを効率良く加熱して排ガスGとして排出することが可能となる。
 図6Bは、再加熱器22の構成の他の例を示す図である。なお、図6Bにおいては、図6Aと同様に、再加熱器22における予熱部221、低温加熱部222及び高温加熱部223におけるチューブ221a及びフィンチューブ222a、223aの延在方向に対する垂直断面を模式的に示している。
 図6Bに示す例では、予熱部221、及び高温加熱部223におけるチューブ221a及びフィンチューブ223aは、断面視において排ガスG、Gの流れ方向に対して、それぞれ千鳥格子状となるように配置し、低温加熱部222のフィンチューブ222aは、断面視において排ガスG、Gの流れ方向に対して、それぞれ四方格子状となるように配置されている。このように配置することにより、再加熱器22に導入された排ガスGに対するチューブ221a及びフィンチューブ223aの接触面積が増大して十分な接触面積を確保できると共に、低温加熱部222では、排ガスGとフィンチューブ222aとの接触面積を適度に低減し、低温加熱部222を通過する排ガスGの流速が向上することで、排ガスGを効率良く加熱して排ガスGとして排出することが可能となる。これにより、予熱部221及び高温加熱部223での十分な熱交換効率を確保しつつ、低温加熱部222のフィンチューブ222aにおける排ガスG中の煤塵の付着及びミストに基づく腐食を防ぐことが可能となる。なお、図6Bに示す例では、低温加熱部222のフィンチューブ222aのみを四方格子状となるように配置した例について説明したが、高温加熱部223のフィンチューブ223aも四方格子状に配置してもよい。この場合には、高温加熱部223を流れる排ガスGのガス流速が更に向上することで、排ガスGを効率良く加熱して排ガスGとして排出することが可能となり、低温加熱部222のフィンチューブ222aにおける煤塵の付着及びミストに基づく腐食を更に低減することが可能となる。
 10 排ガス処理システム
 11 ボイラ
 12 脱硝装置
 13 エアヒータ
 14 電気集塵機
 15 送風機
 16 脱硫装置
 17 煙突
 20 熱交換器
 21 熱回収器
 21a フィンチューブ
 22 再加熱器
 221 予熱部
 222 低温加熱部
 223 高温加熱部
 221a チューブ
 222a,223a フィンチューブ
 G,G,G,G,G,G,G,G,G 排ガス
 L 循環ライン
 L 蒸気供給ライン
 M 熱媒
 P 送液ポンプ
 S 蒸気
 V,V 流量制御弁

Claims (8)

  1.  燃焼機関からの排ガスと熱媒が流れる伝熱管とを接触させる第1熱交換により前記熱媒に前記排ガスの熱を回収させる熱回収器と、
     前記第1熱交換後の排ガスと前記第1熱交換後の前記熱媒が流れる伝熱管とを接触させる第2熱交換により前記第1熱交換後の排ガスを予熱する予熱部、及び、前記第2熱交換後の排ガスと前記第2熱交換後の前記熱媒とを接触させる第3熱交換により前記第2熱交換後の排ガスを加熱する加熱部を備えた再加熱器と、
     前記熱回収器と前記再加熱器との間で前記熱媒を循環させる循環ラインと、
     前記熱回収器における第1熱交換で前記排ガスから回収される回収熱量を算出し、算出した回収熱量に基づいて、前記第1熱交換後の前記熱媒の温度を所定範囲内に制御する制御部とを備えたことを特徴とする、熱交換器。
  2.  前記制御部は、前記熱交換器に導入される前記排ガスのガス温度、前記排ガスのガス流量、及び前記燃焼機関の稼働負荷からなる群から選択された少なくとも1種に基づいて前記回収熱量を算出する、請求項1に記載の熱交換器。
  3.  前記制御部は、前記回収熱量が所定値未満となった際に、前記第1熱交換後の前記熱媒を加熱する、請求項1又は請求項2に記載の熱交換器。
  4.  前記制御部は、前記第1熱交換後の前記熱媒に蒸気供給部から蒸気を供給して前記第1交換後の前記熱媒の温度を所定範囲内とする、請求項3に記載の熱交換器。
  5.  前記循環ラインは、前記熱交換器をバイパスするバイパスラインを備え、
     前記制御部は、前記回収熱量が所定値を超えた際に、前記バイパスラインを介して前記熱媒を前記熱交換器と前記再加熱器との間で循環させることにより、前記熱媒の温度を所定範囲内とする、請求項1から請求項4のいずれか1項に記載の熱交換器。
  6.  前記再加熱器は、前記加熱部の伝熱管が排ガスの流れ方向に対して四方格子状に配置された、請求項1から請求項5のいずれか1項に記載の熱交換器。
  7.  燃焼機関からの排ガスと熱媒が流れる伝熱管とを接触させる第1熱交換により前記熱媒に前記排ガスの熱を回収させる熱回収器と、
     前記第1熱交換後の排ガスと前記第1熱交換後の前記熱媒が流れる伝熱管とを接触させる第2熱交換により前記第1熱交換後の前記熱媒の熱によって前記第1熱交換後の排ガスを予熱する予熱部、及び、前記第2熱交換後の排ガスと前記第2熱交換後の前記熱媒とを接触させる第3熱交換により前記第2熱交換後の排ガスを加熱する加熱部を備えた再加熱器と、を備えた熱交換器の制御方法であって、
     前記熱回収部における第1熱交換で前記排ガスから回収される回収熱量を算出するステップと、
     算出した前記回収熱量が所定値未満となった際に、前記第1熱交換後の前記熱媒を加熱して前記熱媒の温度を所定範囲内に制御するステップとを含むことを特徴とする、熱交換器の制御方法。
  8.  さらに、算出した前記回収熱量が所定値超えとなった際に、前記熱回収器をバイパスするバイパスラインを介して前記熱媒を流すことにより前記熱媒の温度を所定範囲内に制御するステップとを含む、請求項7に記載の熱交換器の制御方法。
PCT/JP2015/081040 2015-02-05 2015-11-04 熱交換器及び熱交換器の制御方法 WO2016125353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021574A KR101892887B1 (ko) 2015-02-05 2015-11-04 열 교환기 및 열 교환기의 제어 방법
US15/548,619 US10436096B2 (en) 2015-02-05 2015-11-04 Heat exchanger and method for controlling heat exchanger
CN201580075318.9A CN107208888B (zh) 2015-02-05 2015-11-04 热交换器以及热交换器的控制方法
EP15881170.3A EP3255340A4 (en) 2015-02-05 2015-11-04 Heat exchanger and method for controlling heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015021429A JP6632198B2 (ja) 2015-02-05 2015-02-05 熱交換器及び熱交換器の制御方法
JP2015-021429 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125353A1 true WO2016125353A1 (ja) 2016-08-11

Family

ID=56563712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081040 WO2016125353A1 (ja) 2015-02-05 2015-11-04 熱交換器及び熱交換器の制御方法

Country Status (6)

Country Link
US (1) US10436096B2 (ja)
EP (1) EP3255340A4 (ja)
JP (1) JP6632198B2 (ja)
KR (1) KR101892887B1 (ja)
CN (1) CN107208888B (ja)
WO (1) WO2016125353A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718525B2 (ja) * 2017-01-30 2020-07-08 三菱日立パワーシステムズ株式会社 ガスガス熱交換器
CN109028569B (zh) * 2018-09-09 2024-01-05 无锡博众热能环保设备有限公司 一种烟气全循环热风炉
CN109237505A (zh) * 2018-09-13 2019-01-18 华电电力科学研究院有限公司 一种烟气分级余热回收冷凝收水消白的装置及其工作方法
JP7311990B2 (ja) * 2019-03-22 2023-07-20 荏原環境プラント株式会社 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法
CN111911947A (zh) * 2020-08-21 2020-11-10 邯郸学院 一种烟气除湿系统
JP7203069B2 (ja) * 2020-09-08 2023-01-12 三菱重工パワー環境ソリューション株式会社 熱交換器および排煙処理装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122438A (ja) * 1995-10-31 1997-05-13 Babcock Hitachi Kk 排ガス処理システム及びその運転方法
JP2000161647A (ja) * 1998-12-01 2000-06-16 Babcock Hitachi Kk 排ガス処理装置とガス再加熱器
JP2002370012A (ja) * 2001-06-13 2002-12-24 Babcock Hitachi Kk 排煙処理装置
JP2004154683A (ja) * 2002-11-06 2004-06-03 Babcock Hitachi Kk 排ガス処理装置とその運用方法
US20060099902A1 (en) * 2002-09-09 2006-05-11 Hirofumi Kikkawa Exhaust smoke-processing system
JP3852820B2 (ja) * 2000-12-07 2006-12-06 バブコック日立株式会社 排煙処理装置
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
US7507381B2 (en) * 2002-11-05 2009-03-24 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus
US7833501B2 (en) * 2006-12-27 2010-11-16 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
JP2011094901A (ja) * 2009-10-30 2011-05-12 Ihi Corp ガスガスヒータ及びガスガスヒータの制御方法
WO2011142376A1 (ja) * 2010-05-12 2011-11-17 バブコック日立株式会社 二酸化炭素化学吸収設備を有する排ガス処理システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406772C2 (de) 1994-03-02 1997-07-24 Gea Luftkuehler Happel Gmbh Verfahren zur Kühlung von schadstoffbeladenem heißem Rohgas und Vorrichtung zur Durchführung des Verfahrens
ATE221179T1 (de) * 1998-02-03 2002-08-15 Miturbo Umwelttechnik Gmbh & C Verfahren und vorrichtung für wärmetransformation zur erzeugung von heizmedien
JP2001074229A (ja) * 1999-09-03 2001-03-23 Babcock Hitachi Kk 排煙処理装置とその運転方法
US6832475B2 (en) * 2000-01-21 2004-12-21 Honda Giken Koygo Kabushi Kaisha Combustion gas purifier and internal combustion engine
JP4229560B2 (ja) * 2000-01-21 2009-02-25 本田技研工業株式会社 熱交換器
JP4229559B2 (ja) * 2000-01-21 2009-02-25 本田技研工業株式会社 多気筒内燃機関の熱交換装置
JP2004333033A (ja) 2003-05-08 2004-11-25 Babcock Hitachi Kk ガスガス熱交換器の熱媒体循環装置と方法
US7588440B2 (en) * 2005-04-13 2009-09-15 Babcock & Wilcox Power Generation Group, Inc. Carrier air heating system for SCR
CN1920387A (zh) * 2006-09-05 2007-02-28 山东大学 锅炉低压省煤器
US8220274B2 (en) * 2008-05-15 2012-07-17 Johnson Matthey Inc. Emission reduction method for use with a heat recovery steam generation system
JP5460407B2 (ja) * 2010-03-25 2014-04-02 バブコック日立株式会社 排ガス処理装置及び排ガス処理装置の運転方法
JP2012181069A (ja) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd 熱交換器の漏洩検査方法
JP2013119982A (ja) * 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd 運転管理システム
JP2014206329A (ja) * 2013-04-12 2014-10-30 中国電力株式会社 排ガス処理装置
TWI526655B (zh) * 2013-07-23 2016-03-21 財團法人工業技術研究院 廢熱回收裝置以及廢熱回收方法
CN104208995B (zh) * 2014-09-05 2016-08-24 中电投科学技术研究院有限公司 一种提高锅炉湿法脱硫净烟气温度的热力装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122438A (ja) * 1995-10-31 1997-05-13 Babcock Hitachi Kk 排ガス処理システム及びその運転方法
JP2000161647A (ja) * 1998-12-01 2000-06-16 Babcock Hitachi Kk 排ガス処理装置とガス再加熱器
JP3852820B2 (ja) * 2000-12-07 2006-12-06 バブコック日立株式会社 排煙処理装置
JP2002370012A (ja) * 2001-06-13 2002-12-24 Babcock Hitachi Kk 排煙処理装置
US20060099902A1 (en) * 2002-09-09 2006-05-11 Hirofumi Kikkawa Exhaust smoke-processing system
US7507381B2 (en) * 2002-11-05 2009-03-24 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treating apparatus
JP2004154683A (ja) * 2002-11-06 2004-06-03 Babcock Hitachi Kk 排ガス処理装置とその運用方法
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
US7833501B2 (en) * 2006-12-27 2010-11-16 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
JP2011094901A (ja) * 2009-10-30 2011-05-12 Ihi Corp ガスガスヒータ及びガスガスヒータの制御方法
WO2011142376A1 (ja) * 2010-05-12 2011-11-17 バブコック日立株式会社 二酸化炭素化学吸収設備を有する排ガス処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255340A4 *

Also Published As

Publication number Publication date
CN107208888A (zh) 2017-09-26
KR20170102515A (ko) 2017-09-11
KR101892887B1 (ko) 2018-10-04
US20180010504A1 (en) 2018-01-11
EP3255340A1 (en) 2017-12-13
EP3255340A4 (en) 2018-02-21
JP6632198B2 (ja) 2020-01-22
CN107208888B (zh) 2022-01-07
JP2016142515A (ja) 2016-08-08
US10436096B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2016125353A1 (ja) 熱交換器及び熱交換器の制御方法
KR100366873B1 (ko) 선택적 촉매 시스템을 위한 재열 연도 가스
RU2543096C1 (ru) СПОСОБ И УСТРОЙСТВО ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ NOx В ЭНЕРГЕТИЧЕСКОМ КОТЛЕ
CN102918324B (zh) 废气的余热回收装置
RU2522704C2 (ru) Объединение раздельных потоков воздухонагревателя с водяным теплообменником и экономайзера
CN104208995B (zh) 一种提高锅炉湿法脱硫净烟气温度的热力装置及方法
JP2014504548A5 (ja)
CN204388102U (zh) 一种烟气余热利用装置
JP2011190696A (ja) 石炭火力発電プラント及び石炭火力発電プラントの運転方法
US10471382B2 (en) Air pollution control system
US20160238245A1 (en) Flue gas heat recovery system
CN207006114U (zh) 一种锅炉的节能系统
JP2010002079A (ja) ボイラ及びボイラの制御方法
CN108870433A (zh) 一种回转式空气预热器本体热风传递防堵装置
CN208595552U (zh) 一种回转式空气预热器本体热风传递防堵装置
CN209013228U (zh) 基于燃用烟煤、无烟煤锅炉回转式空预器的热一次风循环防堵装置
JP2020121267A (ja) 排ガス処理装置
CN105841177A (zh) 低温废气的脱硫脱硝洁净排放系统
CN105889899A (zh) 一种适用于scr低负荷下投运的过热汽温调节系统及方法
JP2009216279A (ja) ガスガス熱交換装置及びその熱交換方法
CN205560808U (zh) 低温废气的脱硫脱硝洁净排放装置
KR200234751Y1 (ko) 배열회수시스템용순환수장치
CN205560807U (zh) 低温废气的脱硫脱硝洁净排放系统
JP2019090559A (ja) ボイラ排ガス用熱交換器の温度制御装置
CN105841176A (zh) 低温废气的脱硫脱硝洁净排放装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021574

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015881170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15548619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE