JP7311990B2 - 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法 - Google Patents

排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法 Download PDF

Info

Publication number
JP7311990B2
JP7311990B2 JP2019054621A JP2019054621A JP7311990B2 JP 7311990 B2 JP7311990 B2 JP 7311990B2 JP 2019054621 A JP2019054621 A JP 2019054621A JP 2019054621 A JP2019054621 A JP 2019054621A JP 7311990 B2 JP7311990 B2 JP 7311990B2
Authority
JP
Japan
Prior art keywords
temperature
water
pipe
heat transfer
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019054621A
Other languages
English (en)
Other versions
JP2020153628A (ja
Inventor
佳祐 三輪
学 野口
栄司 石川
慶 松岡
洋光 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Environmental Plant Co Ltd
Original Assignee
Ebara Environmental Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Environmental Plant Co Ltd filed Critical Ebara Environmental Plant Co Ltd
Priority to JP2019054621A priority Critical patent/JP7311990B2/ja
Priority to CN202080022149.3A priority patent/CN113614447A/zh
Priority to PCT/JP2020/006049 priority patent/WO2020195326A1/ja
Priority to SG11202110427PA priority patent/SG11202110427PA/en
Publication of JP2020153628A publication Critical patent/JP2020153628A/ja
Application granted granted Critical
Publication of JP7311990B2 publication Critical patent/JP7311990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法に関する。
排熱回収ボイラには、熱を回収する過熱器、蒸発器、エコノマイザ(節炭器)等の熱交換器が設けられており、伝熱管が収容されている。排熱回収ボイラのダクトの上流側からは高温となった排ガスが供給され、伝熱管と排ガスとが接触することで、熱交換が行われる。排ガスには、燃焼によって生じた硫黄酸化物(SOx)や、水蒸気(HO)が含まれている。硫黄酸化物の一部は、水蒸気と反応することで、硫酸(HSO)を生成する。このため、熱交換が行われる伝熱管の表面温度が、硫酸の露点以下となると、伝熱管の表面に硫酸が結露してしまい、伝熱管の表面の腐食速度が著しく増加し、伝熱管を構成する鋼材が著しく腐食してしまう。また、都市ごみ焼却炉から発生する排ガスには、塩化水素(HCl)等の塩化物が多く含まれており、塩化水素の露点以下となった時においても、同様に伝熱管が腐食してしまう。さらに、アルカリ金属や重金属を含む塩化物が、伝熱面に付着し、塩化物の潮解、溶融によって伝熱管が腐食する。このため、伝熱管と排ガスとが接触するボイラでは、腐食によるトラブルが懸念されており、腐食を抑制する方法が考えられている。例えば、特許文献1には、腐食速度が制御されるボイラが記載されている。
特許文献1に記載のボイラは、露点腐食モニタリング用プローブと、排ガスダクトと、エコノマイザと、を備える。また、このエコノマイザには、排ガスダクト内に配置された伝熱管と、伝熱管への給水を制御して伝熱管の温度を調整するエコノマイザ温度制御装置と、エコノマイザを制御するシステム制御装置と、が設けられている。
露点腐食モニタリング用プローブは、エコノマイザの伝熱管に近接して配置されており、このボイラは、露点腐食モニタリング用プローブを用いて、腐食速度を測定している。そして、システム制御装置は、腐食速度の測定データから、腐食速度が実用上問題ない値となるように、稼動目標温度を決定する。その後、エコノマイザの伝熱管の温度は、稼動目標温度になるように制御される。この制御方法としては、ボイラで発生する熱量を調整する方法と、エコノマイザ温度制御装置によって制御される、エコノマイザの伝熱管を流れる冷却水の量を調整する方法のいずれかが採用される。これにより、このボイラは、腐食から伝熱管を保護している。
特開2006-258603号公報
上述したように、特許文献1に記載のボイラは、伝熱管の腐食速度が実用上問題ない値となるように、伝熱管の温度を、ボイラで発生する熱量を調整すること又は伝熱管を流れる冷却水の量を調整すること、によって調整している。
しかし、伝熱管を備える排熱回収ボイラをごみ処理施設に用いる場合には、処理したいごみの量が決定しているため、燃焼させるごみの量を増加させることができない場合がある。また、多種多様なごみを焼却するため、ごみから発生する熱量や排ガスの温度、成分を調整するのは困難である。この場合、ボイラで発生する熱量を増加させることができず、伝熱管の腐食を抑止することができない。
また、伝熱管の内部を流れる水の温度は、伝熱管の表面に接触する排ガスの温度よりも
、伝熱管の表面温度に強い影響を与える。このため、伝熱管の内部を流れる水の量を減少させたとしても、この水の温度が一定のままでは、伝熱管の表面温度を大幅に上昇させることができない。このため、伝熱管に流す水の量を調整することは、一定の効果はあるものの、伝熱管の温度を大幅に上昇させることができない。したがって、伝熱管を流れる冷却水の量を調整する方法を採用した場合では、伝熱管の表面温度を、腐食速度が実用上問題ない値となる温度まで、上昇させることが困難な場合がある。この場合、伝熱管の腐食を抑止することができない。
そこで、本発明の目的は、上述した課題を鑑み、ボイラで発生する熱量の調整や、伝熱管を流れる水の量の調整がされなくても、伝熱管の腐食を抑止することができる、排熱回収ボイラ及び排熱回収ボイラの制御方法を提供することである。
(形態1)
形態1に係る排熱回収ボイラは、排ガスが流通する流路を有するダクトと、水入口と水出口とを有し、前記ダクトの内部に配置された伝熱管と、前記伝熱管の前記水入口と接続する水供給配管であって、分流部と、前記分流部よりも下流側に位置する合流部と、前記分流部から前記合流部までの間を形成する第1配管と、前記第1配管と前記分流部で枝分かれをして前記合流部で再び前記第1配管と合流する第2配管と、を有し、前記合流部を通過した水を前記伝熱管の前記水入口へ供給する、水供給配管と、前記伝熱管の前記水出口と流体連通され、前記第2配管の少なくとも一部が内部に配置されているタンクと、前記第1配管を流れる水の流量と前記第2配管を流れる水の流量との比率を調整する水量調整バルブと、前記ダクトの内部の腐食速度、温度及び排ガス成分のうち少なくとも1つを計測する計測装置と、前記計測装置の計測の結果に応じて、前記水量調整バルブを調整する、制御をする制御装置と、を備える。
形態1に係る排熱回収ボイラでは、伝熱管を通過して高温となった水又は水蒸気はタンクへ流れ込む。タンクの内部には、第2配管の少なくとも一部が配置されているため、第2配管を通過した水は、第1配管を通過した水よりも高温となる。また、制御装置が、水量調整バルブを制御することで、第1配管を流れる水の流量と第2配管を流れる水の流量との比率を調整することができる。すなわち、制御装置は、第1配管を通る低温の水の流量と第2配管を通る高温の水の流量とを制御することで、伝熱管に流れ込む水の温度を制御することができる。ここで、伝熱管の表面温度には、伝熱管の表面に接触する排ガスの温度よりも、伝熱管の内部を流れる水の温度が支配的に作用する。このため、この排熱回収ボイラは、伝熱管の表面温度を大幅に変化させることができる。すなわち、制御装置は、腐食速度、温度及び排ガス成分のうち少なくとも1つの計測の結果に応じて、伝熱管の表面温度を大幅に変更する制御ができ、露点近傍において、伝熱管の表面温度と負の相関関係がある伝熱管の腐食速度を調整できる。したがって、この排熱回収ボイラによれば、伝熱管の腐食を抑止することができる。
(形態2)
形態2に係る排熱回収ボイラは、形態1に記載の排熱回収ボイラにおいて、前記タンクは、水と水蒸気とを分離する汽水胴(汽水分離器)である。
排熱回収ボイラは、水蒸気と水との分離に用いられる汽水胴を備える場合がある。形態2に係る排熱回収ボイラによれば、汽水胴が形態1に記載のタンクとして用いられる。すなわち、この排熱回収ボイラは、別のタンクを新たに備えることなく、形態1に係る排熱回収ボイラの構成を実現できる。
(形態3)
形態3に係る排熱回収ボイラは、形態1又は形態2に記載の排熱回収ボイラにおいて、前記第2配管の少なくとも一部が前記タンクの水が溜まる部分に配置されている。
形態3に係る排熱回収ボイラによれば、第2配管の少なくとも一部が、伝熱管を通過し
て高温となった水と直接接触している。このため、タンクの水は、直接、第2配管を加熱できる。すなわち、この排熱回収ボイラは、第2配管がタンクの内部の水蒸気のみと接触する場合と比較して、第2配管を流れる水の温度を高温に上昇させることができる。そして、この排熱回収ボイラは、より高温となった水を伝熱管へと供給することができる。
(形態4)
形態4に係る排熱回収ボイラは、形態1から3のいずれか1つに記載の排熱回収ボイラにおいて、前記水供給配管の前記合流部と前記伝熱管の前記水入口との間の水温を計測する水温計を、さらに備え、前記制御装置は、前記水温計の計測の結果に応じて、前記水量調整バルブを調整、制御する。
形態4に係る排熱回収ボイラによれば、伝熱管に供給される水の水温が、水温計により計測されている。このため、制御装置は、水温計の計測の結果に応じて、水量調整バルブを調整することにより、伝熱管に供給される水の温度を特定の温度へと調整することができる。すなわち、この排熱回収ボイラでは、特定の温度となった水を伝熱管へと供給することができる。
(形態5)
形態5に係る排熱回収ボイラは、形態1から4のいずれか1つに記載の排熱回収ボイラにおいて、前記計測装置は、電極面を前記ダクトの内部に露出する電極部材を備えた腐食センサと、前記電極部材の温度を調整するプローブ温度調整機構と、を有する腐食モニタリング用プローブを備え、前記制御装置は、前記腐食モニタリング用プローブの前記プローブ温度調整機構を制御することで、前記腐食モニタリング用プローブに複数の異なる温度における腐食速度を計測させ、前記複数の異なる温度における腐食速度の計測の結果から、腐食速度が許容値よりも低くなるような前記伝熱管に供給する水の温度を決定し、前記伝熱管に供給する水の温度を決定した温度に調整、制御する。
形態5に係る排熱回収ボイラでは、腐食モニタリング用プローブがプローブ温度調整機構を有しているため、腐食モニタリング用プローブは、異なる温度における腐食速度を計測することができる。これにより、制御装置は、ダクト内の、腐食速度と温度との関係を取得することができ、腐食速度が許容値よりも低くなる温度を決定できる。そして、制御装置は、この決定した温度に応じて、伝熱管に供給する水の温度を制御できる。すなわち、この排熱回収ボイラは、腐食速度が許容値よりも低くなるように制御することができる。
(形態6)
形態6に係る排熱回収ボイラは、形態1から5のいずれか1つに記載の排熱回収ボイラにおいて、前記計測装置は、前記ダクトの内部に露出する電極部材を備え、腐食速度を計測できる、腐食センサを有し、前記制御装置は、前記腐食センサが計測した腐食速度が許容値を超えた時に、前記第1配管を流れる水の流量に対する前記第2配管を流れる水の流量の比率を増加させる制御をする。
形態6に係る排熱回収ボイラによれば、腐食速度が許容値を超えた時に、流量の比率を制御することで、伝熱管に供給される水の温度を上昇させる。このため、この排熱回収ボイラは、腐食速度が許容値を超えることを防止できる。
(形態7)
形態7に係る排熱回収ボイラは、形態1から6のいずれか1つに記載の排熱回収ボイラにおいて、前記計測装置は、伝熱管近傍の温度を計測する温度計を有し、前記制御装置は、前記温度計が計測した伝熱管近傍の温度が所定の基準温度を下回った時に、前記第1配管を流れる水の流量に対する前記第2配管を流れる水の流量の比率を増加させる制御をする。
露点近傍において、温度と腐食速度には、負の相関関係があることが知られている。こ
のため、温度がわかれば、腐食速度が推定される。すなわち、伝熱管の表面温度が一定の温度以上に保たれていれば、腐食速度を一定値以下に保つことができる。形態7に係る排熱回収ボイラは、温度計が計測した温度に応じて、伝熱管に供給される水の温度を上昇させる。このため、この排熱回収ボイラは、腐食速度を一定値以下に保つことができる。
(形態8)
形態8に係る排熱回収ボイラは、形態1から7に記載の排熱回収ボイラにおいて、前記計測装置は、前記ダクトの内部の、排ガス成分である硫黄酸化物濃度を計測するSOx分析計、塩化水素濃度を計測するHCl分析計及び水分濃度を計測する水分計、のうち少なくとも1つを備え、前記制御装置は、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つの計測の結果に応じて、露点温度を予測し、基準温度を決定する。
腐食速度は、温度の他にも、硫黄酸化物濃度、塩化水素濃度及び水分濃度によって、変化することが知られている。このため、排熱回収ボイラは、腐食速度を推定する際に、計測された、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つを考慮することで、より正確な腐食速度を推定できる。
(形態9)
形態9に係る排熱回収ボイラは、形態1から8のいずれか1つに記載の排熱回収ボイラにおいて、前記水量調整バルブは、前記第1配管に取付けられ前記第1配管を流れる水の流量を調整する第1バルブと、前記第2配管に取付けられ前記第2配管を流れる水の流量を調整する第2バルブと、を有する。
形態9に係る排熱回収ボイラは、第1配管を流れる水の流量と、第2配管を流れる水の流量とを異なるバルブにより別個に調整できる。このため、この排熱回収ボイラは、第1配管を流れる水の流量と、第2配管を流れる水の流量との制御が容易にできる。
(形態10)
形態10に係る排熱回収ボイラの伝熱管の温度の制御方法は、排ガスが流通する流路を有するダクトと、水入口と水出口とを有し、前記ダクトの内部に配置された伝熱管と、前記伝熱管の前記水入口と接続する水供給配管であって、分流部と、前記分流部よりも下流側に位置する合流部と、前記分流部から前記合流部までの間を形成する第1配管と、前記第1配管と前記分流部で枝分かれをして前記合流部で再び前記第1配管と合流する第2配管と、を有し、前記合流部を通過した水を前記伝熱管の前記水入口へ供給する、水供給配管と、前記水出口と接続され、前記第2配管の少なくとも一部が内部に配置されているタンクと、を備える排熱回収ボイラを用いて、前記ダクトの内部の腐食速度、温度及び排ガス成分のうち少なくとも1つを計測する計測工程と、前記計測工程の計測の結果に応じて、前記伝熱管に供給する水の温度を決定する温度決定工程と、前記第1配管を流れる水の流量と前記第2配管を流れる水の流量との比率を調整し、前記伝熱管の表面温度を、前記温度決定工程で決定した温度に調整する温度調整工程と、を有する。
形態10に係る排熱回収ボイラの伝熱管の温度の制御方法は、第1配管を通る低温の水の流量と第2配管を通る高温の水の流量とを調整することで、伝熱管に流れ込む水の温度を調整し、前記伝熱管の表面温度を調整する。このため、この排熱回収ボイラの伝熱管の温度の制御方法は、形態1と同様に、伝熱管の表面温度を大幅に変化させることができる。したがって、この排熱回収ボイラの伝熱管の温度の制御方法は、伝熱管の腐食を抑止することができる。
(形態11)
形態11に係る排熱回収ボイラの伝熱管の温度の制御方法は、形態10に記載の排熱回収ボイラの伝熱管の温度の制御方法において、前記計測工程は、前記ダクトの内部における複数の異なる温度における腐食速度を計測する工程を有し、前記温度決定工程は、前記複数の異なる温度における腐食速度の計測の結果から、腐食速度が許容値よりも低い値と
なるような、前記伝熱管に供給する水の温度を決定する工程を有する。
形態11に係る排熱回収ボイラの伝熱管の温度の制御方法は、形態5と同様に、腐食速度を許容値よりも低くすることができる。
本発明の第1実施形態に係る排熱回収ボイラの構成を示す構造図である。 図1で示した排熱回収ボイラのエコノマイザの部分の詳細を示す詳細図である。 図2で示した排熱回収ボイラの腐食モニタリング用プローブの構成を示す断面図である。 図3で示した腐食モニタリング用プローブの要部を示す平面図である。 図1で示した排熱回収ボイラの制御プロセスの一手順を示す流れ図である。
以下、本発明の実施形態について図面を参照して説明する。以下で説明する図面において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
[第1実施形態]
<構成>
図1は、本発明の第1実施形態に係る排熱回収ボイラの構成を示す構造図である。図1を参照すると、排熱回収ボイラ100は、ダクト120、過熱器140、エコノマイザ300、汽水胴160、高圧蒸気溜め180及び蒸発器(図示省略)を備える。排熱回収ボイラ100は、排ガスの熱を利用し水蒸気を発生させる装置である。排熱回収ボイラ100は、一例として、排ガスが竪方向に流れる竪型であるが、排ガスが横方向に流れるガス横流れ式であってもよい。排熱回収ボイラ100で発生した水蒸気は、一例として、蒸気タービン(図示省略)へと供給され、発電機を駆動させるために用いられる。
以下、排熱回収ボイラ100の各構成要素について分説する。
ダクト120の上流側は、一例として、ゴミ焼却炉等の燃焼設備の排ガスダクト(図示省略)と流体連通している。燃焼設備は、排ガスダクトに向かって高温の排ガスを供給する。このため、ダクト120には、排ガスが流通する流路が形成される。排ガスには、燃焼設備の燃焼によって生じた硫黄酸化物、塩化水素、水蒸気等が含まれる。
エコノマイザ300は、後述する過熱器140よりもダクト120に形成される流路の下流側に位置する。エコノマイザ300には、給水部900から水が供給される。そして、エコノマイザ300は、排ガスを利用して、供給された水を予熱し、予熱された水を汽水胴160へ供給する。
汽水胴160は、水及び水蒸気を収容する容器であり、水及び水蒸気を分離する機能を有する。汽水胴160で分離された水蒸気は後述の過熱器140に供給される。一方、汽水胴160で分離された水は蒸発器(図示省略)に供給される。
蒸発器は、汽水胴160から供給された水をさらに加熱する熱交換器である。蒸発器は、供給された水を加熱することで、当該水の少なくとも一部を水蒸気とする。
過熱器140は、供給された水蒸気をさらに過熱する熱交換器である。過熱器140は、供給された水蒸気を過熱蒸気として、高圧蒸気溜め180に供給する。
高圧蒸気溜め180は、過熱蒸気を収容する。また、高圧蒸気溜め180は、一例として、蒸気タービンと接続されており、収容した過熱蒸気を蒸気タービンへ供給する。
このように、排熱回収ボイラ100の各構成要素は、上述の構成を有するため、エコノマイザ300に供給された水を、過熱蒸気へと変換して、蒸気タービンへと供給することができる。
次に、図2を参照して、排熱回収ボイラ100のエコノマイザ300の部分の構成についてより詳細に説明する。図2は、排熱回収ボイラ100のエコノマイザ300の部分の
詳細を示す詳細図である。図2を参照すると、排熱回収ボイラ100は、水供給配管400、水量調整バルブ500、計測装置600、水温計700及び制御装置800を、さらに備える。
エコノマイザ300は、伝熱管320を備える。伝熱管320は、水入口322と水出口324とを有し、水入口322から水出口324に向かって水が流れる。また、伝熱管320は、ダクト120の内部に配置される。別言すれば、伝熱管320は、伝熱管320の表面がダクト120の内部を流れる排ガスと接触できる位置に配置されている。これにより、伝熱管320は、伝熱管320の内部を流れる水と、伝熱管320の表面に接触する排ガスとを熱交換させる機能を有する。
水供給配管400は、給水部900と、伝熱管320の水入口322とに接続されている。水供給配管400は、分流部462と、分流部462よりも下流側に位置する合流部464と、第1配管420と、第2配管440と、を有する。第1配管420は、分流部462から合流部464までの間を形成する。第2配管440は、第1配管420と分流部462で枝分かれをして合流部464で再び第1配管420と合流する。また、水供給配管400は、合流部464を通過した水を伝熱管320の水入口322へ供給する。このため、水供給配管400は、給水部900から供給された水を、分流部462で第1配管420を流れる水と第2配管440を流れる水とに分流し、合流部464で第1配管420を流れる水と第2配管440を流れる水とを合流させることができる。別言すると、水供給配管400は、第1配管420又は第2配管440を通過した水を、水入口322へ供給できる。
水量調整バルブ500は、一例として、第1バルブ520及び第2バルブ540を有する。第1バルブ520は、第1配管420に取付けられている。これにより、第1バルブ520は、第1配管420を流れる水の流量を調整できる。他方、第2バルブ540は、第2配管440に取付けられている。これにより、第2バルブ540は、第2配管440を流れる水の流量を調整できる。すなわち、水量調整バルブ500は、第1配管420を流れる水の流量と第2配管440を流れる水の流量との比率を調整できる。
汽水胴160は、伝熱管320の水出口324と流体連通されている。これにより、汽水胴160には、伝熱管320を通って加熱された水が流れ込む。別言すれば、汽水胴160に収容されている水は、給水部900が供給する水よりも高温である。また、汽水胴160には、第2配管440の少なくとも一部が内部に配置されている。このため、第2配管440を通る水は、汽水胴160の内部の水又は水蒸気によって加熱される。そして、第2配管440を通過した水は、第1配管420を通過した水よりも高温となる。したがって、第1配管420を流れる水の流量と、第2配管440を流れる水の流量との比率が調整されると、伝熱管320に供給される水の温度が変化する。また、本実施形態では、第2配管440の少なくとも一部が汽水胴160の水が溜まる部分に配置されている。すなわち、第2配管440は、汽水胴160に溜まる水と接触する。
計測装置600は、ダクト120の内部の、腐食速度、温度及び排ガス成分のうち少なくとも1つを計測する。より詳細には、計測装置600は、一例として、腐食モニタリングプローブ620(以下、プローブ620と呼ぶ。)を備える。プローブ620は、後述するプローブ温度調整機構624を有するため、設定した温度において、ダクト120の内部における、腐食速度を計測することができる。
ここで、プローブ620の一例について、より詳細に説明する。図3は排熱回収ボイラ100のプローブ620の構成を示す断面図である。また、図4は、プローブ620の要部を示す平面図である。図3及び図4を参照すると、プローブ620は、腐食速度測定用の一対の電極部材622a,622bを備えた腐食センサ、プローブ温度調整機構624
、熱電対等の温度測定用の電極626、ホルダ628、カバー630、導線636、導線637、連絡管638、インピーダンス測定装置640及び温度計測器650を備える。また、プローブ温度調整機構624は、温度調整ガス源648、温度調整バルブ642、ガス供給管644、流量計645及びプローブ電極温度制御装置646を備える。
本実施形態では、電極部材622a,622bは、同一材質の2枚の導体から構成されている。より具体的には、電極部材622a,622bは、一例として、伝熱管320の腐食速度を検知する観点から、伝熱管320と同一の材料から構成されている。また、電極部材622a,622bは、ほぼ正方形の平面形状を有する直方体であり、互いに間を空けて隣接している(図4参照)。これにより、電極部材622a,622bの間の部分には、結露水の液絡を形成するための液絡形成部634が形成されている。また、電極部材622a,622aは、ホルダ628に埋没されている。電極部材622a,622bの一方の面(以下、表側面と呼ぶ。)は、ダクト120の内部にそれぞれ露出し、他方の面(以下、裏側面と呼ぶ。)は、それぞれ導線636に接続されている。そして、導線636は、連絡管638の内部を通り、インピーダンス測定装置640に接続されている。これにより、インピーダンス測定装置640が電極部材622a,622bに交流電圧を印加することで、電極部材622a,622b間のインピーダンスを測定することができる。また、インピーダンス測定装置640は、制御装置800に接続されている。これにより、制御装置800は、測定したインピーダンスを取得できる。そして、制御装置800は、測定されたインピーダンスを周波数解析することで、反応抵抗と溶液抵抗とを区別して求めることができる。さらに、制御装置800は、既知の方法を用いることで、反応抵抗と溶液抵抗から腐食速度を算出できる。すなわち、制御装置800は、腐食速度のデータを取得できる。
温度測定用の電極626は、電極部材622a,622bと同様に、ホルダ628に埋没されている。電極626の一方の面は、ダクト120の内部に露出し、他方の面は、導線637に接続されている。導線637は、連絡管638の内部を通り、温度計測器650と接続されている。これにより、温度計測器650は、電極626の部分の温度、すなわち、腐食速度の測定用の電極部材622a,622bの近傍の温度を測定することができる。また、温度計測器650は、制御装置800に接続されている。これにより、制御装置800は、電極部材622a,622bの近傍の温度のデータを取得できる。
カバー630は、ホルダ628と密着することで、熱媒体空間632を形成する。これにより、電極部材622a,622bの導線636と接続された側の面及び電極626の導線637と接続された側の面は、それぞれ熱媒体空間632に露出する。また、カバー630には、空気や水等の熱媒体を熱媒体空間632に流通させるための連絡管638が取り付けられている。そして、連絡管638には、ガス供給管644が挿通されている。ガス供給管644は、コンプレッサやガスボンベ等の温度調整ガス源648と、熱媒体空間632とを接続している。また、温度調整ガス源648と、熱媒体空間632との間には、温度調整バルブ642及び流量計645が備え付けられている。このため、温度調整バルブ642を調整することで、温度調整ガス源648から供給される温度調整ガスが熱媒体空間632へと供給される。すなわち、熱媒体空間632の温度は、供給される温度調整ガスの温度へと近づく。これにより、プローブ電極温度制御装置646は、腐食速度測定用の電極部材622a,622b及び温度測定用の電極626を設定した温度に調整することができる。すなわち、プローブ620は、プローブ温度調整機構624を用いて、腐食速度測定用の電極部材622a,622bの温度を調整することで、設定した温度における腐食速度を測定することができる。
以上が、計測装置600が備えるプローブ620の説明である。なお、プローブ620は、設定した温度において、ダクト120の内部における、腐食速度を計測することができる機能を有していれば、上述の構成を備えなくてもよい。
再び図2を参照する。排熱回収ボイラ100では、プローブ620は、一例として、伝熱管320の近傍に配置されている。これにより、プローブ620は、伝熱管320の腐食速度に近似した腐食速度を計測することができる。ここで、伝熱管320の近傍とは、伝熱管320と同一材料を当該近傍の位置に配置したときに、伝熱管320と当該近傍の位置に配置した材料とが同一の腐食速度となる位置のことをよぶ。
水温計700は、一例として、水供給配管400の合流部464と伝熱管320の水入口322との間に配置されている。これにより、水温計700は、水供給配管400の合流部464と伝熱管320の水入口322との間の水温を計測する機能を有する。すなわち、水温計700は、伝熱管320に供給される水温を計測できる。
制御装置800は、プローブ620のプローブ温度調整機構624を制御することで、プローブ620に複数の異なる温度における腐食速度を計測させることができる。また、制御装置800は、プローブ620の複数の異なる温度における腐食速度の計測の結果から、腐食速度が許容値よりも低くなるような伝熱管320に供給する水の温度を決定することができる。なお、許容値は、任意に決定することができる値である。より具体的には、許容値は、設備寿命や、運転状況等に応じて、決定することができる。また、制御装置800は、水温計700の計測の結果に応じて、水量調整バルブ500を調整することで、伝熱管320に供給する水の温度を決定した温度に調整、制御する。
<排熱回収ボイラの伝熱管の温度の制御方法>
次に、本実施形態の排熱回収ボイラ100の伝熱管320の温度の制御方法について説明する。排熱回収ボイラ100の伝熱管320の温度の制御方法を説明するにあたり、排熱回収ボイラ100を構成する各構成要素の初期状態を説明する。
初期状態では、ダクト120の内部には排ガスが含まれている。また、給水部900は、水供給配管400に水を供給している。このため、この供給された水は、水供給配管400を介して、伝熱管320へ供給されている。そして、伝熱管320へ供給された水は、伝熱管320で加熱され、汽水胴160へ供給されている。
以上を前提として、図面を参照しつつ、排熱回収ボイラ100の伝熱管320の温度の制御方法を説明する。図5は、排熱回収ボイラ100の伝熱管320の温度の制御方法の一手順を示す流れ図である。
図5を参照すると、ステップS100において、制御装置800は、水温計700を用いて、伝熱管320への給水温度の確認をする。そして、制御装置800は、給水温度の情報を取得する。ステップS200において、プローブ温度調整機構624を制御することで、プローブ620の温度を、所定の温度に変更し、一定時間保持するよう制御する。
次に、ステップS300で、制御装置800は、プローブ620の出力から、プローブ620の温度を取得する。そして、制御装置800は、プローブ620が所定の温度になっていることを確認する。
次に、ステップS400で、制御装置800は、プローブ620の出力から、この温度に対応する腐食速度を一定の時間測定し、腐食速度の情報を取得する。
次に、ステップS500で、制御装置800は、プローブ620の出力から取得した所定の温度における腐食速度が許容値以上であるかを判断する。所定の温度における腐食速度が許容値以上でない場合、制御装置800は、ステップS200へ処理を戻す。そして、再度のステップS200で、制御装置800は、腐食速度を計測していない温度であって、前回のステップS200で設定したプローブ620の温度よりも低い温度を、新しい所定の温度に、設定する。その後、制御装置800は、プローブ温度調整機構624を制御することで、プローブ620の温度を、新しく設定された所定の温度へ低下させる。これにより、次の繰り返しにおいて、制御装置800は、計測していない温度における、腐
食速度の情報を取得できる。
一方、ステップS500で、腐食速度が許容値以上の場合、制御装置800は、ステップS600へ処理を進める。このように、制御装置800がステップS200からステップS400の処理を腐食速度が許容値以上になるまで繰り返すことで、制御装置800は、複数の異なる温度における腐食速度の情報を取得できる。
次に、ステップS600で、制御装置800は、プローブ620の出力から得られた温度及び腐食速度の情報から、温度と腐食速度の関係を把握する。なお、硫酸露点近傍における温度と腐食速度には、負の相関関係があることが知られている。
次に、ステップS700で、制御装置800は、腐食速度が許容値以下になりえる許容温度を決定する。より具体的には、まず、制御装置800は、計測した複数の温度の中で1番目に高い温度に対応する腐食速度と、許容値とを比較する。次に、制御装置800は、計測した複数の温度の中で2番目に高い温度に対応する腐食速度と、許容値とを比較する。そして、次に、制御装置800は、計測した複数の温度の中で3番目に高い温度に対応する腐食速度と、許容値とを比較する。このように、制御装置800は、計測した複数の温度の中で高い温度に対応する腐食速度から順に、許容値と比較する。そして、制御装置800は、計測した温度の中で、腐食速度が最初に許容値を上回るときの温度を見付けだし、この見付けだした温度の次に高い温度を許容温度とする。その後、制御装置800は、この許容温度を給水温度として決定する。なお、腐食速度をより減少させるために、制御装置800は、許容温度よりも一定の温度だけ高い温度を給水温度として決定してもよい。
次に、ステップS800で、制御装置800は、現在給水されている給水温度、すなわち、ステップS100で確認した給水温度が許容温度を超えているか判断する。より具体的には、制御装置800は、ステップS100で確認した給水温度と、ステップS700で決定した給水温度とを比較する。
ステップS100で確認した給水温度が、ステップS700で決定した温度よりも低い場合、制御装置800は、ステップS700で、制御装置800は、現在給水されている給水温度を、ステップS700で決定した給水温度となるように、給水温度を上昇させる。なお、制御装置800は、水量調整バルブ500を制御することで、給水温度を上昇させている。これにより、排熱回収ボイラ100は、腐食速度を許容値以下に保つ制御をしている。
他方、ステップS100で確認した給水温度が、ステップS700で決定した給水温度よりも高い場合、制御装置800は、ステップS800で、制御装置800は、現在給水されている給水温度を、ステップS500で決定した給水温度となるように、低下させる。なお、制御装置800は、水量調整バルブ500を制御することで、給水温度を低下させている。
次に、S900で、水温計700を用いて、伝熱管320への給水温度の確認をする。そして、制御装置800は、給水温度の情報を取得し、給水温度がステップS700で決定した給水温度になっているかを確認する。
制御装置800は、ステップS900の処理を終了すると、S1000で一定時間経過後再び、ステップS100からの処理を繰り返す。これにより、排熱回収ボイラ100は、伝熱管320の表面が高温となりすぎ熱回収量が減少すること、伝熱管320の表面が低温となりすぎ腐食することを防止し熱エネルギーを効率的に回収することが可能な、制御をしている。
<作用・効果>
次に、本実施形態の排熱回収ボイラ100の作用・効果について、以下に説明する。
(第1の効果)
本実施形態に係る排熱回収ボイラ100は、プローブ620が計測した腐食速度に応じ
て、伝熱管320に供給する水の温度を制御する制御装置800を備えている。このため、排熱回収ボイラ100は、伝熱管320に供給する水の温度を調整することで、伝熱管320の表面温度を大幅に変化させることができる。また、伝熱管320の表面温度を変化させるにあたり、排熱回収ボイラ100は、伝熱管320と接触する排ガスの温度を上昇させる必要や、ダクト120を流れる排ガスの流量を増加させる必要がない。したがって、排熱回収ボイラ100は、伝熱管320の腐食速度を許容値以下に保つことができ、伝熱管320の腐食を抑止することができる。
(第2の効果)
また、熱回収に用いられた排ガスは、伝熱管320で熱回収を行われた後に、ダクト120から排出される。伝熱管320の表面が高温となりすぎると、排ガスの温度と伝熱管320の表面の温度とが近くなるために、伝熱管320の位置における排ガスからの熱回収量が減少する。このため、排熱回収ボイラ100は、高温の排ガスを破棄することになる。高温の排ガスを破棄することは、排熱回収ボイラ100で回収できる熱エネルギーを回収しないことと等しい。しかし、排熱回収ボイラ100は、腐食速度に応じて、伝熱管320に供給する水の温度を制御しているため、ダクト120から排出されるガスの温度が高温になりすぎない。すなわち、排熱回収ボイラ100は、限られた伝熱面積において、排ガスの熱エネルギーを必要以上に破棄することなく、効果的に回収することができる。
(第3の効果)
また、水供給配管400の第2配管440の一部は、汽水胴160の内部に配置されている。これにより、第2配管440を通る水は、汽水胴160の内部の高温の水や水蒸気によって加熱される。すなわち、排熱回収ボイラ100は、伝熱管320に供給される水を加熱する別の加熱手段を備えなくても、伝熱管320に供給される水の温度を上昇させることができる。
(第4の効果)
また、第2配管440の一部は、汽水胴160内部の高温となった水と接触している。このため、第2配管440を通る水は、汽水胴160に溜まる水と第2配管440が接触しないとき(第2配管440が汽水胴160内部の水蒸気によって加熱されるとき)よりも速く加熱される。すなわち、第2配管440を通る水の流量が同じならば、第2配管440が汽水胴160に溜まる水と接触する構成の方が、第2配管440が汽水胴160に溜まる水と接触しない構成よりも、第2配管440を通過した水の温度は高温となる。したがって、排熱回収ボイラ100は、第2配管440を通過した水をより高温にできる。
(第5の効果)
また、排熱回収ボイラ100は、伝熱管320に供給される水温を計測できる水温計700を備える。そして、制御装置800は、水温計700の計測の結果に応じて、伝熱管320に供給する水の温度を制御する。これにより、排熱回収ボイラ100は、特定の温度の水を伝熱管320に供給でき、伝熱管320の温度調整を容易に行うことができる。
<変形例>
次に、本実施形態の排熱回収ボイラ100の変形例について、以下に説明する。
(第1の変形例)
また、排熱回収ボイラ100は、汽水胴160に加えて、伝熱管320の水出口324と流体連通されているタンクを備えてもよい。この場合、第2配管440の少なくとも一部は、このタンクの内部に配置される。このような場合でも、タンクの内部の水又は水蒸気は、第2配管440を流れる水を加熱することができるからである。また、水出口324と流体連通されているタンクを用いることで、排熱回収ボイラ100は、伝熱管320
によって加熱された水や、この水がさらに加熱された水蒸気を、第2配管440の加熱用の熱源とすることができる。すなわち、排熱回収ボイラ100は、ヒータ等の別の加熱手段を備えることなく、伝熱管320に供給される水を加熱することができる。なお、ここでタンクとは、水及び水蒸気のうち少なくとも一方を収容する設備のことを呼び、汽水胴160はタンクの一例である。また、高圧蒸気溜め180もタンクの一例である。
(第2の変形例)
また、本実施形態では、プローブ620は、伝熱管320の近傍に配置されている。しかし、プローブ620は、伝熱管320の腐食速度の推定に必要なデータを計測できるのならば、ダクト120の内部のいずれの場所に配置されてもよい。例えば、排ガス流れが偏り、ダクト内部の温度分布が均一でないと考えられる場合は、ダクト内部の温度分布を予め把握したうえで、伝熱管320の腐食速度の推定に最も適すると考えられる場所にプローブを配置すればよい。プローブ620が計測したデータを用いて、伝熱管320の腐食速度を推定できれば、それに応じて、伝熱管320に供給する水の温度を決定することが可能だからである。
(第3の変形例)
また、計測装置600は、伝熱管320の近傍の腐食速度を計測する腐食センサを有してもよい。この場合、制御装置800は、腐食センサが計測した腐食速度が許容値を超えた時に、第1配管420を流れる水の流量に対する第2配管440を流れる水の流量の比率を増加させる制御をする。これにより、排熱回収ボイラ100は、プローブ620を備えていなくても、ダクト120の内部の限られた空間に腐食センサを設置し、伝熱管320の腐食速度が許容値を超えることを防止することができ、伝熱管320の過度な腐食を抑止することができるからである。
(第4の変形例)
本実施形態では腐食センサは一対の電極部材622a,622bを備え、電極部材622a,622b間のインピーダンスを測定し、解析することで腐食速度のデータを取得したが、測定手法及びセンサの構造はこの限りではない。異種電極が凝縮相によって短絡したときの短絡電流を測定してもよいし、電極表面における水晶振動子の共振周波数を計測してもよい。いずれのセンサの出力を解析することで、腐食速度のデータが取得できる。また、腐食センサは伝熱管320と同一の材料の電極部材を用いることで、腐食センサの出力から伝熱管320の腐食速度を推定することが可能である。なお、電極材料を伝熱管320の材料よりも腐食性の高い材料に変更することで、伝熱管320の腐食傾向を事前に把握することが可能になる。
(第5の変形例)
また、計測装置600は、伝熱管320の近傍の温度を計測する温度計を有してもよい。この場合、制御装置800は、温度計が計測した温度が所定の基準温度を下回った時に、第1配管420を流れる水の流量に対する前記第2配管440を流れる水の流量の比率を増加させる制御をする。上述したように、硫酸露点近傍における温度と腐食速度には、負の相関関係があることが知られている。このため、伝熱管320の部分の温度を計測することで、腐食速度を推定できる。したがって、排熱回収ボイラ100は、プローブ620を備えていなくても、温度計が計測した温度に応じて伝熱管320に供給される水の温度を制御することで伝熱管320の腐食を抑止することができる。なお、基準温度は、温度と腐食速度との関係に鑑みて、任意に決定してよい。
(第6の変形例)
計測装置600は、変形例4の温度計に加えて、伝熱管320の近傍の、硫黄酸化物濃度を計測するSOx分析計、塩化水素濃度を計測するHCl分析計及び水分濃度を計測する
水分計のうち少なくとも1つを備えてもよい。この場合、制御装置800は、計測された、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つの計測の結果に応じて、温度計が計測した温度と比較を行う基準温度を決定する。そして、制御装置800は、温度計が計測した温度がこの基準温度を下回った時に、第1配管420を流れる水の流量に対する前記第2配管440を流れる水の流量の比率を増加させる制御をする。
上述したように、腐食速度は、温度の他にも、硫黄酸化物濃度、塩化水素濃度及び水分濃度によって、変化することが知られている。このように、計測された、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つを考慮することで、より正確な腐食速度を推定できる。そして、排熱回収ボイラ100は、より正確な腐食速度を考慮に入れて、伝熱管320の腐食を抑止することができる。
(第7の変形例)
また、変形例6において、制御装置800は、大塚の式を用いることで、硫黄酸化物濃度及び水分濃度から硫酸露点を予測し、硫酸露点を基準温度としてもよい。なお、大塚の式は、式(1)で示される。
Figure 0007311990000001

ここで、
Figure 0007311990000002

である。
大塚の式を用いることで、硫黄酸化物濃度及び水分濃度から硫酸露点が計算できることが知られている。これにより、排熱回収ボイラ100は、伝熱管320の近傍の温度が硫酸露点を下回ることを防止することができ、伝熱管320の腐食を抑止することができる。なお、伝熱管320の腐食をさらに抑止するために、制御装置800は、硫酸露点の温度よりも高い温度を基準温度としてもよい。また、大塚の式は、一例であり、制御装置800は、他の式を用いて、排ガス成分から、露点温度を予測してもよい。なお、排ガス成分には、硫黄酸化物、塩化水素、水分等が含まれる。
(第8の変形例)
計測装置600は、伝熱管320の近傍の、硫黄酸化物濃度を計測するSOx分析計、塩化水素濃度を計測するHCl分析計及び水分濃度を計測する水分計のうち少なくとも1つを備える場合に、変形例4の温度計を備えなくてもよい。この場合、制御装置800は、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つの計測の結果が、所定の値を上回った時又は下回った時に、第1配管420を流れる水の流量に対する前記第2配管440を流れる水の流量の比率を増加させる制御をする。
上述したように、排ガス成分から露点温度が予測できることが知られている。このため、ダクト120の内部の温度が、略一定である等の予測可能な場合には、排ガス成分から予測された露点温度と、ダクト120の内部の予測温度とを比較することができる。これにより、排熱回収ボイラ100は、ダクト120の内部の予測温度が予測された露点温度を下回ることを防止することができ、伝熱管320の腐食を抑止することができる。つまり、計測装置600が排ガス成分を計測することができれば、排熱回収ボイラ100は、伝熱管320の腐食を抑止することができる。なお、計測装置600の計測の結果と比較をする所定の値は任意に決定してよい。
(第9の変形例)
また、変形例8の場合において、制御装置800は、排ガス成分から予測された露点温度よりも伝熱管320に供給される水の温度が高くなるように、第1配管420を流れる水の流量に対する前記第2配管440を流れる水の流量の比率を増加させる制御をしてもよい。
これにより、排熱回収ボイラ100は、伝熱管320の内部を流れる水の温度を露点温度よりも高い温度とすることができる。また、伝熱管320と接触する排ガスの温度は、排ガスから伝熱管320の内部を流れる水によって熱回収がされるため、伝熱管320の内部を流れる水の温度よりも高い。つまり、伝熱管320の内部を流れる水の温度及び伝熱管320と接触する排ガスの温度は、共に露点温度よりも高くなり、伝熱管320の表面の温度は、当然に露点温度よりも高い温度となる。このため、排熱回収ボイラ100は、伝熱管320の腐食を抑止することができる。
(第10の変形例)
本実施形態では、水量調整バルブ500は第1バルブ520と第2バルブ540とを有していた。しかし、水量調整バルブ500は、第1バルブ520又は第2バルブ540の一方を有していなくてもよい。水量調整バルブ500が、第1バルブ520又は第2バルブ540の一方しか備えていなくても、第1配管420と第2配管440を流れる水の流量の比率を調整することが可能だからである。そして、排熱回収ボイラ100は、この流量の比率を調整することができれば、伝熱管320に供給する水の温度を調整することができるからである。また、水量調整バルブ500は、第1配管420又は第2配管440のいずれかに水を流す三方弁を備えていてもよい。同様に、三方弁は、第1配管420と第2配管440を流れる水の流量の比率を調整することが可能だからである。水量調整バルブ500が第1配管420を流れる水の流量と第2配管440を流れる水の流量との比率を調整することができれば、水量調整バルブ500はいかなる構成であってもよい。
100:排熱回収ボイラ
120:ダクト
140:過熱器
160:汽水胴
300:エコノマイザ
320:伝熱管
322:水入口
324:水出口
400:水供給配管
420:第1配管
440:第2配管
462:分流部
464:合流部
500:水量調整バルブ
520:第1バルブ
540:第2バルブ
600:計測装置
620:プローブ
624:プローブ温度調整機構
700:水温計
800:制御装置
900:給水部

Claims (11)

  1. 排ガスが流通する流路を有するダクトと、
    水入口と水出口とを有し、前記ダクトの内部に配置された伝熱管と、
    前記伝熱管の前記水入口と接続する水供給配管であって、分流部と、前記分流部よりも下流側に位置する合流部と、前記分流部から前記合流部までの間を形成する第1配管と、前記第1配管と前記分流部で枝分かれをして前記合流部で再び前記第1配管と合流する第2配管と、を有し、前記合流部を通過した水を前記伝熱管の前記水入口へ供給する、水供給配管と、
    前記伝熱管の前記水出口と流体連通され、前記第2配管の少なくとも一部が内部に配置されているタンクと、
    前記第1配管を流れる水の流量と前記第2配管を流れる水の流量との比率を調整する水量調整バルブと、
    前記ダクトの内部の腐食速度、温度及び排ガス成分のうち少なくとも1つを計測する計測装置と、
    前記計測装置の計測の結果に応じて、前記水量調整バルブを調整する、制御をする制御装置と、
    を備え、
    前記第2配管が、前記タンクの内部で水又は水蒸気によって加熱されて前記第1配管よりも高温となるように構成され、
    前記制御装置は、前記第1配管を流れる水の流量と、前記第2配管を流れる水の流量との比率を調整し、前記伝熱管に供給される水の温度を変化させるように構成されている、
    排熱回収ボイラ。
  2. 請求項1に記載の排熱回収ボイラにおいて、
    前記タンクは、水と水蒸気とを分離する汽水胴である、
    排熱回収ボイラ。
  3. 請求項1又は請求項2に記載の排熱回収ボイラにおいて、
    前記第2配管の少なくとも一部が前記タンクの水が溜まる部分に配置されている、
    排熱回収ボイラ。
  4. 請求項1から3のいずれか1項に記載の排熱回収ボイラにおいて、
    前記水供給配管の前記合流部と前記伝熱管の前記水入口との間の水温を計測する水温計を、さらに備え、
    前記制御装置は、前記水温計の計測の結果に応じて、前記水量調整バルブを調整、制御する、
    排熱回収ボイラ。
  5. 請求項1から4のいずれか1項に記載の排熱回収ボイラにおいて、
    前記計測装置は、電極面を前記ダクトの内部に露出する電極部材を備えた腐食センサと、前記電極部材の温度を調整するプローブ温度調整機構と、を有する腐食モニタリング用プローブを備え、
    前記制御装置は、前記腐食モニタリング用プローブの前記プローブ温度調整機構を制御することで、前記腐食モニタリング用プローブに複数の異なる温度における腐食速度を計測させ、前記複数の異なる温度における腐食速度の計測の結果から、腐食速度が許容値よりも低くなるような前記伝熱管に供給する水の温度を決定し、前記伝熱管に供給する水の温度を決定した温度に調整、制御する、
    排熱回収ボイラ。
  6. 請求項1から5のいずれか1項に記載の排熱回収ボイラにおいて、
    前記計測装置は、前記ダクトの内部に露出する電極部材を備え、腐食速度を計測できる、腐食センサを有し、
    前記制御装置は、前記腐食センサが計測した腐食速度が許容値を超えた時に、前記第1配管を流れる水の流量に対する前記第2配管を流れる水の流量の比率を増加させる制御をする、
    排熱回収ボイラ。
  7. 請求項1から6のいずれか1項に記載の排熱回収ボイラにおいて、
    前記計測装置は、伝熱管近傍の温度を計測する温度計を有し、
    前記制御装置は、前記温度計が計測した伝熱管近傍の温度が所定の基準温度を下回った時に、前記第1配管を流れる水の流量に対する前記第2配管を流れる水の流量の比率を増加させる制御をする、
    排熱回収ボイラ。
  8. 請求項7に記載の排熱回収ボイラにおいて、
    前記計測装置は、前記ダクトの内部の、排ガス成分である硫黄酸化物濃度を計測するSOx分析計、塩化水素濃度を計測するHCl分析計及び水分濃度を計測する水分計、のうち少なくとも1つを備え、
    前記制御装置は、硫黄酸化物濃度、塩化水素濃度及び水分濃度のうち少なくとも1つの計測の結果に応じて、露点温度を予測し、前記基準温度を決定する、
    排熱回収ボイラ。
  9. 請求項1から8のいずれか1項に記載の排熱回収ボイラにおいて、
    前記水量調整バルブは、前記第1配管に取付けられ前記第1配管を流れる水の流量を調整する第1バルブと、前記第2配管に取付けられ前記第2配管を流れる水の流量を調整する第2バルブと、を有する、
    排熱回収ボイラ。
  10. 排ガスが流通する流路を有するダクトと、
    水入口と水出口とを有し、前記ダクトの内部に配置された伝熱管と、
    前記伝熱管の前記水入口と接続する水供給配管であって、分流部と、前記分流部よりも下流側に位置する合流部と、前記分流部から前記合流部までの間を形成する第1配管と、前記第1配管と前記分流部で枝分かれをして前記合流部で再び前記第1配管と合流する第2配管と、を有し、前記合流部を通過した水を前記伝熱管の前記水入口へ供給する、水供給配管と、
    前記水出口と接続され、前記第2配管の少なくとも一部が内部に配置されているタンクと、
    を備える排熱回収ボイラを用いて、
    前記ダクトの内部の腐食速度、温度及び排ガス成分のうち少なくとも1つを計測する計測工程と、
    前記計測工程の計測の結果に応じて、前記伝熱管に供給する水の温度を決定する温度決定工程と、
    前記第2配管が、前記タンクの内部で水又は水蒸気によって加熱されて前記第1配管よりも高温となる工程と、
    前記第1配管を流れる水の流量と前記第2配管を流れる水の流量との比率を調整し、前記伝熱管に供給される水の温度を変化させ、前記伝熱管の表面温度を前記温度決定工程で決定した温度に調整する温度調整工程と、
    を有する、
    排熱回収ボイラの伝熱管の温度の制御方法。
  11. 請求項10に記載の排熱回収ボイラの伝熱管の温度の制御方法において、
    前記計測工程は、前記ダクトの内部における複数の異なる温度における腐食速度を計測する工程を有し、
    前記温度決定工程は、前記複数の異なる温度における腐食速度の計測の結果から、腐食速度が許容値よりも低い値となるような、前記伝熱管に供給する水の温度を決定する工程を有する、
    排熱回収ボイラの伝熱管の温度の制御方法。
JP2019054621A 2019-03-22 2019-03-22 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法 Active JP7311990B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019054621A JP7311990B2 (ja) 2019-03-22 2019-03-22 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法
CN202080022149.3A CN113614447A (zh) 2019-03-22 2020-02-17 废热回收锅炉及废热回收锅炉的传热管的温度的控制方法
PCT/JP2020/006049 WO2020195326A1 (ja) 2019-03-22 2020-02-17 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法
SG11202110427PA SG11202110427PA (en) 2019-03-22 2020-02-17 Exhaust heat recovery boiler and method for controlling temperature of heat transfer pipe of exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054621A JP7311990B2 (ja) 2019-03-22 2019-03-22 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法

Publications (2)

Publication Number Publication Date
JP2020153628A JP2020153628A (ja) 2020-09-24
JP7311990B2 true JP7311990B2 (ja) 2023-07-20

Family

ID=72558462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054621A Active JP7311990B2 (ja) 2019-03-22 2019-03-22 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法

Country Status (4)

Country Link
JP (1) JP7311990B2 (ja)
CN (1) CN113614447A (ja)
SG (1) SG11202110427PA (ja)
WO (1) WO2020195326A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137244B1 (ja) 2021-03-24 2022-09-14 株式会社プランテック 廃棄物処理設備の排熱回収システム及び排熱回収方法
JP7392687B2 (ja) * 2021-06-10 2023-12-06 Jfeスチール株式会社 ボイラ燃料の予熱装置及び予熱方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258603A (ja) 2005-03-17 2006-09-28 Ebara Corp 露点腐食モニタリング用プローブおよびそれを用いた燃焼設備
JP2017032166A (ja) 2015-07-29 2017-02-09 三菱日立パワーシステムズ株式会社 排ガスの潜熱回収装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140014A (ja) * 1983-12-27 1985-07-24 Mitsubishi Heavy Ind Ltd 排ガスエコノマイザにおける煤除去方法
JP6632198B2 (ja) * 2015-02-05 2020-01-22 三菱日立パワーシステムズ株式会社 熱交換器及び熱交換器の制御方法
JP6552833B2 (ja) * 2015-02-10 2019-07-31 三菱重工業株式会社 ボイラ給水システム及びそれを備えたボイラ、ボイラ給水方法
JP6053839B2 (ja) * 2015-02-10 2016-12-27 三菱重工業株式会社 ボイラ給水システム及びそれを備えたボイラ、並びにボイラ給水システムの制御方法
CN107631287A (zh) * 2017-09-29 2018-01-26 苏州海陆重工股份有限公司 锅炉省煤器的给水装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258603A (ja) 2005-03-17 2006-09-28 Ebara Corp 露点腐食モニタリング用プローブおよびそれを用いた燃焼設備
JP2017032166A (ja) 2015-07-29 2017-02-09 三菱日立パワーシステムズ株式会社 排ガスの潜熱回収装置

Also Published As

Publication number Publication date
CN113614447A (zh) 2021-11-05
WO2020195326A1 (ja) 2020-10-01
JP2020153628A (ja) 2020-09-24
SG11202110427PA (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP7311990B2 (ja) 排熱回収ボイラ及び排熱回収ボイラの伝熱管の温度の制御方法
CA2548211C (en) Method and apparatus for controlling soot blowing using statistical process control
KR101135168B1 (ko) 열교환 증기 튜브의 크리프 및 감육 손상을 감시하기 위한 방법 및 시스템
KR102221878B1 (ko) 배기 가스 처리 시스템
JP2006258603A (ja) 露点腐食モニタリング用プローブおよびそれを用いた燃焼設備
CN102734783A (zh) 一种电站超临界锅炉各级受热面监测数据参数的校验方法
JP5773708B2 (ja) 熱交換器及び熱交換器の余寿命推定方法
JP2012215335A5 (ja)
JP3836659B2 (ja) 燃焼機器
JP6598003B2 (ja) 給湯装置
JP6504525B2 (ja) 過熱装置
JP5980630B2 (ja) 蒸気過熱システム
JP4301746B2 (ja) 排熱回収装置
JP2006258601A (ja) 露点腐食モニタリング用プローブおよび露点腐食モニタリング方法
JP2006258602A (ja) 露点腐食モニタリング用プローブ
JP4494817B2 (ja) 超臨界圧ボイラの運転方法
JP2008039224A (ja) 定圧貫流ボイラ構成とその運用方法
WO2020230373A1 (ja) 腐食管理システム、水処理装置、及び発電プラント、並びに腐食管理方法、並びに腐食管理プログラム
JP2000111171A (ja) 給湯器
JP2011094901A (ja) ガスガスヒータ及びガスガスヒータの制御方法
JP4405640B2 (ja) ドレン回収ボイラにおけるブロー率算出方法及びブロー制御装置
JP6707058B2 (ja) 廃熱ボイラ、廃熱回収システム、及び廃熱回収方法
KR100544237B1 (ko) 화력발전용 보일러의 화울링 측정장치
JP2022175908A (ja) 伝熱管監視システム
JP2009204224A (ja) 火炉併設ボイラ設備の灰付着防止方法及び火炉併設ボイラ設備

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R150 Certificate of patent or registration of utility model

Ref document number: 7311990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150