WO2016124386A1 - Elektrischer energiespeicher mit effizienter wärmeabfuhr - Google Patents

Elektrischer energiespeicher mit effizienter wärmeabfuhr Download PDF

Info

Publication number
WO2016124386A1
WO2016124386A1 PCT/EP2016/050954 EP2016050954W WO2016124386A1 WO 2016124386 A1 WO2016124386 A1 WO 2016124386A1 EP 2016050954 W EP2016050954 W EP 2016050954W WO 2016124386 A1 WO2016124386 A1 WO 2016124386A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
memory cells
energy storage
adjacent memory
heat
Prior art date
Application number
PCT/EP2016/050954
Other languages
English (en)
French (fr)
Inventor
Andreas Meyer
Fabian Quast
Wolfgang Weydanz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55174641&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016124386(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP16700904.2A priority Critical patent/EP3235051A1/de
Priority to US15/548,293 priority patent/US11031642B2/en
Priority to BR112017016265A priority patent/BR112017016265A2/pt
Priority to CA2975937A priority patent/CA2975937A1/en
Priority to CN201680008971.8A priority patent/CN107428256A/zh
Publication of WO2016124386A1 publication Critical patent/WO2016124386A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Electric energy storage device with efficient heat removal The present invention is based on an electrical energy storage device
  • the energy store has a number of prismatic electrical storage cells
  • the memory cells are arranged side by side, so that boundary surfaces of adjacent memory cells are at a distance from each other, so that the boundary surfaces of the adjacent memory cells form a gap.
  • the present invention is also based on a vehicle
  • the vehicle has at least one electric motion ⁇ drive and an electrical energy storage
  • the movement drive is supplied from the energy storage with electrical energy.
  • Electric energy storage devices are becoming increasingly important for both mobile and stationary applications. Furthermore, efforts are being made to store ever larger amounts of energy in the energy storage devices and to obtain ever-larger services from the energy storage devices. For some applications in the mobile sector
  • the individual memory cells often have a substantially cuboidal shape.
  • Several such memory cells are arranged side by side and electrically interconnected. The interconnection can be in series or in parallel as needed.
  • intermediate layers are often arranged in the spaces between adjacent memory cells.
  • the pads fulfill some or all of the following functions:
  • Isolation plates are often incorporated in the prior art for the purpose of isolating and preventing the skipping of critical ⁇ critical reactions.
  • the thermal tasks are often insufficiently fulfilled in the prior art.
  • the reason for this is that the memory cells change their shape during charging and discharging.
  • the changes in shape are uneven.
  • An example in the unloaded state ⁇ exactly cuboidal memory cell often has a slightly bulbous shape in the charged state.
  • changes in shape also occur in the course of the life of the memory cell.
  • the object of the present invention is to provide possibilities by means of which, despite the changes in the shape of the memory cells at any time an efficient Ab ⁇ drove the resulting heat in the memory cells can be guaranteed.
  • an electrical energy store of the type mentioned is configured by
  • a first layer consisting of a compressible, flexible and thermally conductive material is arranged between the boundary surfaces of adjacent memory cells, said layer lying under pressure on one of the two boundary surfaces of the adjacent memory cells,
  • each one of a compressible, flexible and thermally conductive material existing second layer is arranged under pressure at the other the two boundary surfaces of the adjacent memory cells is applied, and
  • a thermally conductive device is angeord ⁇ net, by means of which during charging and / or discharging the memory cells resulting heat energy from the space between the adjacent Memory cells is dissipated.
  • the first layer or the first and second layers are on the one hand compressible and fle ⁇ nets the other hand, bear under pressure on the interfaces of the memory cells, regardless of deformation of the memory cells that occur in the operation of the memory cells, always a good maintained thermal contact of the first layer and the first and the second layer to the memory cells.
  • the layers can therefore absorb and transfer the accumulating heat.
  • the heat-conducting device By means of the heat-conducting device, the removal of the heat arising from the intermediate space.
  • the heat-conducting device is designed as a flexible, heat conducting layer or as a metallic plate, that is, that the thermally conductive device au ⁇ SSER the metallic plate as such within the intermediate space has no further elements.
  • the heat-conducting device is designed as a liquid cooling medium, which flows through cavities of the first layer and / or the second layer.
  • the heat-conducting device comprises means disposed between the first layer and the second layer metallic plate and in addition a liquid cooling medium flows through the cavities of the metal ⁇ metallic plate.
  • the FLÜS ⁇ SiGe cooling medium is preferably an electrically non-conductive and non-flammable liquid, in particular a fire-extinguishing ⁇ medium. It may be in the liquid cooling medium, for example, water, oil or a liquid having a boiling point ⁇ between 30 ° C and 50 ° C. Especially
  • deionized water can not be considered conductive and electrically sufficiently bad lei ⁇ tend in this context as electric.
  • the first layer and / or the second layer can be composed game at ⁇ of a plastic or of silicone.
  • a thermal insulating layer is arranged reasonable. Furthermore, it is also possible that between the first layer and the second layer, a thermal insulating layer is disposed when between the thermal insulating layer and the first layer and the second layer in each case a heat-conducting layer is disposed, ⁇ example, a (thinner or thicker) metal sheet.
  • the first layer and / or the second layer meander around a plurality of the memory cells, so that the first layer abuts two interfaces of one and the same memory cell and / or the boundary surfaces of two adjacent memory cells delimiting one of the interspaces / or the second layer is present at two interfaces of one and the same memory cell and / or at one of the interstices bounding interfaces of two adjacent memory cells.
  • the object is further achieved by a vehicle with the Merkma len of claim 10.
  • the electrical energy storage of the vehicle is designed as an inventive energy storage.
  • FIG. 2 shows a plurality of memory cells in a plan view
  • FIG. 3 to 8 interfaces of adjacent memory cells and the gap between the boundary surfaces
  • FIGS. 9 to 11 show a plurality of memory cells in a plan view
  • FIG. 12 shows a vehicle.
  • a prismatic, electrical Speicherzel le 1 has a substantially cuboid shape.
  • the memory cell 1 has terminals 2 on one of its outer surfaces. About the connections 2 can - depending on the current direction - the memory cell 1 are charged or the memory cell 1 electrical energy are removed.
  • the electrical storage cells may be formed for example as battery cells, as double layer capacitors or as Li ⁇ capacitors. Other embodiments are possible.
  • the memory cells 1 are arranged side by side according to FIG. Interfaces 4 of adjacent memory cells 1 extend at a distance a from each other. The boundary surfaces 4 of adjacent memory cells 1 thereby form a gap 5.
  • a first layer 6 is arranged between the boundary surfaces 4 of adjacent memory cells 1.
  • Layer 6 consists of a compressible, flexible and heat-conducting material.
  • the first layer 6 made of a plastic or silicone.
  • the first layer 6 is under pressure at one of the two boundary surfaces 4 of the adjacent memory cells 1.
  • the pressure can be seen in FIG. 3 in that the first layer 6 has bulges 7 in its outer regions.
  • a second layer 8 is furthermore arranged between the boundary surfaces 4 of adjacent memory cells 1.
  • the second layer 8 also consists of a kompressib ⁇ len, flexible and heat-conducting material. As a rule, it consists of the same material as the first layer 6.
  • the second layer 8 is under pressure at the other of the two boundary surfaces 4 of the adjacent memory cells 2.
  • FIG. 3 Pressure can be seen in FIG. 3 by the fact that the second layer 8 has curvatures 9 in its outer regions.
  • a metallic plate 10 is arranged in the embodiment according to FIG 3 as a thermally conductive Einrich ⁇ processing.
  • me ⁇ -metallic plate 10 is dissipated by heat conduction within the metal plate 10, heat energy from the space 5 between the adjacent memory cells 1, obtained during the loading and / or unloading of the memory cells.
  • a flexible thermally conductive layer could be present.
  • the embodiment of FIG 4 corresponds over long Stre ⁇ CKEN with the embodiment of FIG 3. Next, therefore, discussed in more detail only the differences.
  • the metalli ⁇ specific plate 10 is also provided.
  • the metallic plate 10 has cavities 11.
  • the cavities 11 of the metallic plate 10 are flowed through by a liquid cooling medium 12.
  • the experiencednom ⁇ mene heat energy is then released to the cooling medium 12 and rank ⁇ leads by means of the cooling medium 12 from the intermediate space 5.
  • the heat-conducting device thus comprises, in addition to the metallic plate 10, the liquid cooling medium 12.
  • the liquid cooling medium 12 may be, for example, an electrically nonconductive and nonflammable liquid.
  • the liquid cooling medium 12 may be water, in particular deionized What ⁇ ser.
  • the liquid cooling medium 12 may be an oil, for example transformer oil.
  • there may be in the liquid cooling medium 12 is a liquid with a boiling point between 30 ° C and 50 ° C, in particular a liquid with a boiling point ⁇ between 35 ° C and 45 ° C.
  • the boiling point is -sver ⁇ understandable - relative to normal air pressure.
  • the embodiment of FIG. 5 also corresponds over long distances to the embodiment of FIG. 3. Therefore, only the differences are discussed below. In the embodiment according to FIG 5 no metallic Plat ⁇ te is present.
  • the layers 6, 8 have been produced such that they have continuous cavities 13, 14.
  • the preparation of such layers 6, 8 is known to those skilled in the art.
  • the cavities 13, 14 of the first layer 6 and of the second layer 8 are flowed through directly by the liquid cooling medium 12.
  • the heat-conducting device corresponds directly to the liquid cooling medium 12.
  • the resulting heat energy is thus absorbed directly by the cooling medium 12 and removed from the intermediate space 5 by means of the cooling medium 12.
  • the heat-conducting device comprises exclusively the liquid cooling medium 12.
  • the embodiment of FIG 6 corresponds over long Stre ⁇ CKEN with the embodiment of FIG 5. The following is therefore discussed in more detail only the differences.
  • neither the metallic plate nor the second layer is present. Only the first layer 6 is present.
  • the first layer 6 is not only under pressure at one of the two boundary surfaces 4 of the adjacent memory cells 1, but is also applied to the other of the two boundary surfaces 4 of the adjacent memory cells 1.
  • the cavities 13 of the first layer are still present and are flowed through by the liquid cooling medium 12.
  • the embodiment of FIG 7 corresponds over long Stre ⁇ CKEN with the embodiment of FIG 5. The following is therefore discussed in more detail only the differences.
  • thermal insulation layer 15 may for example consist of cork or a fire-retardant plastic.
  • the presence of the thermal insulation layer 15 causes in case of a malfunction of one of the memory cell 1 is limited to the malfunction of the respective memory cell 1, that does not jump to the neighboring memory cell ⁇ . 1
  • FIG. 8 is based on the embodiment of FIG. 7. Therefore, only the differences will be discussed below.
  • the heat-conducting layers 16 may be formed, for example, analogously to the embodiment of FIGS. 3 and 4, as metallic plates with or without cavities through which a liquid cooling medium flows.
  • Ausgestal ⁇ processing of FIG 8 it is possible that the cavities 13, 14 in the first layer 6 and the second layer 8 be omitted. Alternatively, it is possible that they are present.
  • first layer 6 and possibly also the second layer 8 are each arranged only in a single intermediate space 5.
  • first layer 6 and / or the second layer 8 to meander around a plurality of the memory cells 1, so that the first layer 6 bears against two interfaces 4 of one and the same memory cell 1 and / or the second layer 8 at two boundaries ⁇ surfaces 4 one and the same memory cell 1 is applied.
  • 9 shows a corresponding embodiment in which only the first layer 6 is present.
  • 10 shows a corresponding embodiment, in which in addition to the first layer 6 and the second layer 8 is present.
  • FIG 11 shows a corresponding embodiment, in addition to the first layer 6 and the second layer 8 and metalli ⁇ cal plates 10 are available.
  • the metallic plates 10 may alternatively have or not have the cavities 11.
  • the dissipation of the heat energy from the intermediate space 5 takes place in the embodiment according to FIG 11 orthogonal to the drawing plane, ie to the viewer of FIG 11 to or away from him.
  • flexible heat-conducting layers could again be present here as well.
  • the layers 6, 8 -as alternatively or additionally to the abutment on both boundary surfaces 4 of one and the same memory cell 1 -to abut those boundary surfaces 4 of two memory cells 1 which delimit a specific one of the interspaces 5.
  • the energy store 3 can be, for example, part of a vehicle 17, in particular of an aircraft.
  • the vehicle 17 further comprises an electric motion drive 18, ie a drive, which causes the movement of the vehicle 17 as a whole.
  • an electric motion drive 18 ie a drive, which causes the movement of the vehicle 17 as a whole.
  • egg ⁇ nem road or rail vehicle is in the movement drive 18 to the traction drive.
  • the movement drive 18 is supplied from the energy storage 3 with electrical energy as shown in FIG 12.
  • the present invention thus relates to the following facts:
  • An electrical energy store 3 has a number of prismatic electrical storage cells 1.
  • the memory cells 1 are arranged next to one another, so that boundary surfaces 4 of adjacent memory cells 1 extend at a distance a from each other, so that the boundary surfaces 4 of the adjacent memory cells 1 form a gap 5.
  • Between the boundary surfaces 4 of adjacent memory cells 1 is respectively arranged one of a compressible, flexible and thermally conductive material first layer 6, which rests under pressure at one of the two boundary surfaces 4 of the adjacent memory cells 1.
  • Either the respective first layer 6 is under pressure also at the other of the two boundary surfaces 4 of the adjacent memory cells 1 or between the two interfaces 4 of the adjacent memory cells 1 each one consisting of a compressible, flexible and thermally conductive material second layer 8 is arranged under pressure at the other of the two interfaces 4 of the adjacent memory cells 1 is applied.
  • a heat-conducting device 10, 12, 10 + 12 is arranged, by means of which during loading and / or unloading The heat energy accumulating in the memory cells 1 is dissipated from the intermediate space 5 between the adjacent memory cells 1.
  • the present invention has many advantages.
  • a thickness compensation so that any time a surface contact of the layers 6, 8 with the interfaces 4 consists.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Semiconductor Memories (AREA)
  • Central Heating Systems (AREA)
  • Laminated Bodies (AREA)

Abstract

Ein elektrischer Energiespeicher (3) weist eine Anzahl von prismatischen elektrischen Speicherzellen (1) auf. Die Speicherzellen (1) sind nebeneinander angeordnet, so dass Grenzflächen (4) benachbarter Speicherzellen (1) in einem Abstand (a) voneinander verlaufen, so dass die Grenzflächen (4) der benachbarten Speicherzellen (1) einen Zwischenraum (5) bilden. Zwischen den Grenzflächen (4) benachbarter Speicherzellen (1) ist jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende erste Schicht (6) angeordnet, die unter Druck an einer der beiden Grenzflächen (4) der benachbarten Speicherzellen (1) anliegt. Entweder liegt die jeweilige erste Schicht (6) unter Druck auch an der anderen der beiden Grenzflächen (4) der benachbarten Speicherzellen (1) an oder zwischen den beiden Grenzflächen (4) der benachbarten Speicherzellen (1) ist jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende zweite Schicht (8) angeordnet, die unter Druck an der anderen der beiden Grenzflächen (4) der benachbarten Speicherzellen (1) anliegt. In der ersten Schicht (6) oder in der ersten Schicht (6) und der zweiten Schicht (8) oder zwischen der ersten Schicht (6) und der zweiten Schicht (8) ist eine wärmeleitende Einrichtung (10, 12, 10+12) angeordnet, mittels derer beim Laden und/oder Entladen der Speicherzellen (1) anfallende Wärmeenergie aus dem Zwischenraum (5) zwischen den benachbarten Speicherzellen (1) abgeführt wird.

Description

Beschreibung
Elektrischer Energiespeicher mit effizienter Wärmeabfuhr Die vorliegende Erfindung geht aus von einem elektrischen Energiespeieher,
- wobei der Energiespeicher eine Anzahl von prismatischen elektrischen Speicherzellen aufweist,
- wobei die Speicherzellen nebeneinander angeordnet sind, so dass Grenzflächen benachbarter Speicherzellen in einem Abstand voneinander verlaufen, so dass die Grenzflächen der benachbarten Speicherzellen einen Zwischenraum bilden.
Die vorliegende Erfindung geht weiterhin aus von einem Fahr- zeug,
- wobei das Fahrzeug mindestens einen elektrischen Bewegungs¬ antrieb und einen elektrischen Energiespeicher aufweist,
- wobei der Bewegungsantrieb aus dem Energiespeicher mit elektrischer Energie versorgt wird.
Elektrische Energiespeicher werden sowohl für mobile als auch für stationäre Anwendungen immer wichtiger. Weiterhin ist man bestrebt, in den Energiespeichern immer größere Energiemengen zu speichern und aus den Energiespeichern immer größere Leis- tungen zu beziehen. Für manche Anwendungen im mobilen Bereich
- beispielsweise bei Flugzeugen - werden extreme Anforderungen an die Energiespeicher gestellt. Um eine einwandfreie Funktion, Langlebigkeit und gleichmäßige Alterung der Spei¬ cherzellen zu gewährleisten, ist unter anderem das thermische Management der Speicherzellen von großer Bedeutung.
Die einzelnen Speicherzellen weisen im Stand der Technik oftmals eine im Wesentlichen quaderförmige Gestalt auf. Mehrere derartige Speicherzellen sind nebeneinander angeordnet und elektrisch miteinander verschaltet. Die Verschaltung kann nach Bedarf in Serie oder parallel sein. Im Stand der Technik sind in den Zwischenräumen zwischen benachbarten Speicherzellen oftmals Zwischenlagen angeordnet. Die Zwischenlagen erfüllen einige oder alle der folgenden Funktionen :
- mechanische Separation der Speicherzellen,
- Ableitung der beim Laden und beim Entladen der Speicherzellen anfallenden Wärme nach außen,
- thermischer Ausgleich der Speicherzellen sowohl untereinander als auch innerhalb der Speicherzellen und
- Verhinderung des Überspringens von möglichen sicherheits¬ kritischen Reaktionen von Speicherzelle zu Speicherzelle.
Insbesondere für die Wärmeabfuhr und den Wärmeausgleich werden im Stand der Technik oftmals Metallplatten verwendet. Zur Isolation und Verhinderung des Überspringens von sicherheits¬ kritischen Reaktionen werden im Stand der Technik oftmals Isolierplatten mit eingebaut.
Insbesondere die thermischen Aufgaben werden im Stand der Technik oftmals nur unzureichend erfüllt. Der Grund hierfür ist, dass die Speicherzellen während des Ladens und Entladens ihre Gestalt verändern. Insbesondere sind die Änderungen der Gestalt ungleichmäßig. Eine beispielsweise im ungeladenen Zu¬ stand exakt quaderförmige Speicherzelle weist im geladenen Zustand oftmals eine leicht bauchige Gestalt auf. Weiterhin treten zusätzlich zu derartigen, beim Laden und Entladen der Speicherzelle zyklisch auftretenden Änderungen der Gestalt auch im Laufe der Lebensdauer der Speicherzelle Änderungen der Gestalt auf.
Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, mittels derer trotz der Änderungen der Gestalt der Speicherzellen jederzeit eine effiziente Ab¬ fuhr der in den Speicherzellen anfallende Wärme gewährleistet werden kann.
Die Aufgabe wird durch einen elektrischen Energiespeicher mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestal- tungen des elektrischen Energiespeichers sind Gegenstand der abhängigen Ansprüche 2 bis 9.
Erfindungsgemäß wird ein elektrischer Energiespeicher der eingangs genannten Art dadurch ausgestaltet,
- dass zwischen den Grenzflächen benachbarter Speicherzellen jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende erste Schicht angeordnet ist, die unter Druck an einer der beiden Grenzflächen der be- nachbarten Speicherzellen anliegt,
- dass entweder die jeweilige erste Schicht unter Druck auch an der anderen der beiden Grenzflächen der benachbarten Speicherzellen anliegt oder zwischen den beiden Grenzflächen der benachbarten Speicherzellen jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende zweite Schicht angeordnet ist, die unter Druck an der anderen der beiden Grenzflächen der benachbarten Speicherzellen anliegt, und
- dass in der ersten Schicht oder in der ersten Schicht und der zweiten Schicht oder zwischen der ersten Schicht und der zweiten Schicht eine wärmeleitende Einrichtung angeord¬ net ist, mittels derer beim Laden und/oder Entladen der Speicherzellen anfallende Wärmeenergie aus dem Zwischenraum zwischen den benachbarten Speicherzellen abgeführt wird.
Insbesondere wird dadurch, dass die erste Schicht bzw. die erste und die zweite Schicht einerseits kompressibel und fle¬ xibel sind und andererseits unter Druck an den Grenzflächen der Speicherzellen anliegen, unabhängig von Verformungen der Speicherzellen, die im Betrieb der Speicherzellen auftreten, stets ein guter thermischer Kontakt der ersten Schicht bzw. der ersten und der zweiten Schicht zu den Speicherzellen aufrechterhalten. Die Schichten können daher die anfallende Wärme aufnehmen und weiterleiten. Mittels der wärmeleitenden Einrichtung erfolgt die Abfuhr der anfallenden Wärme aus dem Zwischenraum. Im einfachsten Fall ist die wärmeleitende Einrichtung als flexible, wärmeleitende Schicht oder als metallische Platte ausgebildet, das heißt dass die wärmeleitende Einrichtung au¬ ßer der metallischen Platte als solches innerhalb des Zwi- schenraums keine weiteren Elemente aufweist.
Alternativ ist es möglich, dass die wärmeleitende Einrichtung als flüssiges Kühlmedium ausgebildet ist, das Hohlräume der ersten Schicht und/oder der zweiten Schicht durchströmt.
Auch eine Kombination einer metallischen Platte und eines flüssigen Kühlmedium ist möglich. In diesem Fall umfasst die wärmeleitende Einrichtung eine zwischen der ersten Schicht und der zweiten Schicht angeordnete metallische Platte und zusätzlich ein flüssiges Kühlmedium, das Hohlräume der metal¬ lischen Platte durchströmt.
Falls ein flüssiges Kühlmedium verwendet wird, ist das flüs¬ sige Kühlmedium vorzugsweise eine elektrisch nicht leitende und nicht brennbare Flüssigkeit, insbesondere ein Feuerlösch¬ mittel. Es kann sich bei dem flüssigen Kühlmedium beispielsweise um Wasser, Öl oder eine Flüssigkeit mit einem Siede¬ punkt zwischen 30°C und 50°C handeln. Insbesondere
entionisiertes Wasser kann in diesem Zusammenhang als elekt- risch nicht leitend bzw. elektrisch hinreichend schlecht lei¬ tend angesehen werden.
Die erste Schicht und/oder die zweite Schicht können bei¬ spielsweise aus einem Kunststoff oder aus Silikon bestehen.
Wenn eine erste und eine zweite Schicht vorhanden sind und die wärmeleitende Einrichtung in den Schichten selbst reali¬ siert ist, ist es möglich, dass zwischen der ersten Schicht und der zweiten Schicht eine thermische Isolierschicht ange- ordnet ist. Weiterhin ist auch dann möglich, dass zwischen der ersten Schicht und der zweiten Schicht eine thermische Isolierschicht angeordnet ist, wenn zwischen der thermischen Isolierschicht und der ersten Schicht und der zweiten Schicht jeweils eine wärmeleitende Schicht angeordnet ist, beispiels¬ weise eine (dünnere oder dickere) Metallplatte.
In einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung umschlingen die erste Schicht und/oder die zweite Schicht mehrere der Speicherzellen mäanderartig, so dass die erste Schicht an zwei Grenzflächen ein und derselben Speicherzelle und/oder an den einen der Zwischenräume begrenzenden Grenzflächen zweier benachbarter Speicherzellen anliegt und/oder die zweite Schicht an zwei Grenzflächen ein und derselben Speicherzelle und/oder an den einen der Zwischenräume begrenzenden Grenzflächen zweier benachbarter Speicherzellen anliegt .
Die Aufgabe wird weiterhin durch ein Fahrzeug mit den Merkma len des Anspruchs 10 gelöst. Erfindungsgemäß ist der elektri sehe Energiespeicher des Fahrzeugs als erfindungsgemäßer Energiespeicher ausgebildet. Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die in Verbindung mit den Zeichnungen näher erläutert werden. Hierbei zeigen in schematischer Darstellung:
FIG 1 eine Speicherzelle in perspektivischer An¬ sicht,
FIG 2 mehrere Speicherzellen in einer Draufsicht, FIG 3 bis 8 Grenzflächen benachbarter Speicherzellen und den Zwischenraum zwischen den Grenzflächen, FIG 9 bis 11 mehrere Speicherzellen in einer Draufsicht und FIG 12 ein Fahrzeug.
Gemäß FIG 1 weist eine prismatische, elektrische Speicherzel le 1 eine im Wesentlichen quaderförmige Gestalt auf. Die Speicherzelle 1 weist an einer ihrer Außenflächen Anschlüsse 2 auf. Über die Anschlüsse 2 kann - je nach Stromrichtung - die Speicherzelle 1 geladen werden bzw. der Speicherzelle 1 elektrische Energie entnommen werden. Die elektrischen Speicherzellen können beispielsweise als Akkuzellen, als Doppel¬ schichtkondensatoren oder als Li-Kondensatoren ausgebildet sein. Auch andere Ausgestaltungen sind möglich.
Ein elektrischer Energiespeicher 3 weist gemäß FIG 2 mehrere derartige Speicherzellen 1 auf. Die Speicherzellen 1 sind gemäß FIG 2 nebeneinander angeordnet. Grenzflächen 4 benachbar- ter Speicherzellen 1 verlaufen in einem Abstand a voneinander. Die Grenzflächen 4 benachbarter Speicherzellen 1 bilden dadurch einen Zwischenraum 5.
Nachfolgend wird in Verbindung mit den FIG 3 bis 8 jeweils ein Paar benachbarter Speicherzellen 1 herausgegriffen und näher erläutert. Die entsprechenden Ausführungen sind jedoch auch für die anderen benachbarten Speicherzellen 1 gültig.
Gemäß FIG 3 ist zwischen den Grenzflächen 4 benachbarter Speicherzellen 1 eine erste Schicht 6 angeordnet. Die erste
Schicht 6 besteht aus einem kompressiblen, flexiblen und wärmeleitenden Material. Beispielsweise kann die erste Schicht 6 aus einem Kunststoff oder aus Silikon bestehen. Die erste Schicht 6 liegt unter Druck an einer der beiden Grenzflächen 4 der benachbarten Speicherzellen 1 an. Der Druck ist in FIG 3 dadurch erkennbar, dass die erste Schicht 6 in ihren Außenbereichen Wölbungen 7 aufweist.
Gemäß FIG 3 ist zwischen den Grenzflächen 4 benachbarter Speicherzellen 1 weiterhin eine zweite Schicht 8 angeordnet. Die zweite Schicht 8 besteht ebenfalls aus einem kompressib¬ len, flexiblen und wärmeleitenden Material. In der Regel besteht sie aus demselben Material wie die erste Schicht 6. Die zweite Schicht 8 liegt unter Druck an der anderen der beiden Grenzflächen 4 der benachbarten Speicherzellen 2 an. Der
Druck ist in FIG 3 dadurch erkennbar, dass die zweite Schicht 8 in ihren Außenbereichen Wölbungen 9 aufweist. Zwischen der ersten Schicht 6 und der zweiten Schicht 8 ist bei der Ausgestaltung gemäß FIG 3 als wärmeleitende Einrich¬ tung eine metallische Platte 10 angeordnet. Mittels der me¬ tallischen Platte 10 wird durch Wärmeleitung innerhalb der metallischen Platte 10 Wärmeenergie aus dem Zwischenraum 5 zwischen den benachbarten Speicherzellen 1 abgeführt, die beim Laden und/oder Entladen der Speicherzellen 1 anfällt. Alternativ könnte anstelle der metallischen Platte 10 eine flexible wärmeleitende Schicht vorhanden sein.
Die Ausgestaltung von FIG 4 korrespondiert über weite Stre¬ cken mit der Ausgestaltung von FIG 3. Nachfolgend wird daher nur auf die Unterschiede näher eingegangen. Bei der Ausgestaltung gemäß FIG 4 ist ebenfalls die metalli¬ sche Platte 10 vorhanden. Bei der Ausgestaltung gemäß FIG 4 weist die metallische Platte 10 jedoch Hohlräume 11 auf. Die Hohlräume 11 der metallischen Platte 10 werden von einem flüssigen Kühlmedium 12 durchströmt. Bei der Ausgestaltung gemäß FIG 4 wird somit mittels der metallischen Platte 10 zu¬ nächst die anfallende Wärmeenergie aufgenommen. Die aufgenom¬ mene Wärmeenergie wird sodann an das Kühlmedium 12 abgegeben und mittels des Kühlmediums 12 aus dem Zwischenraum 5 abge¬ führt. Bei der Ausgestaltung gemäß FIG 4 umfasst die wärme- leitende Einrichtung somit zusätzlich zur metallischen Platte 10 das flüssige Kühlmedium 12.
Bei dem flüssigen Kühlmedium 12 kann es sich beispielsweise um eine elektrisch nicht leitende und nicht brennbare Flüs- sigkeit handeln. Alternativ oder zusätzlich kann das flüssige Kühlmedium 12 Wasser sein, insbesondere entionisiertes Was¬ ser. Alternativ zu Wasser kann es sich bei dem flüssigen Kühlmedium 12 um ein Öl handeln, beispielsweise Transforma- torenöl. Auch kann es sich bei dem flüssigen Kühlmedium 12 um eine Flüssigkeit mit einem Siedepunkt zwischen 30°C und 50°C handeln, insbesondere um eine Flüssigkeit mit einem Siede¬ punkt zwischen 35°C und 45°C. Der Siedepunkt ist - selbstver¬ ständlich - auf normalen Luftdruck bezogen. Auch die Ausgestaltung von FIG 5 korrespondiert über weite Strecken mit der Ausgestaltung von FIG 3. Nachfolgend wird daher nur auf die Unterschiede näher eingegangen. Bei der Ausgestaltung gemäß FIG 5 ist keine metallische Plat¬ te vorhanden. Es sind lediglich die erste Schicht 6 und die zweite Schicht 8 vorhanden. Die Schichten 6, 8 sind derart hergestellt worden, dass sie durchgehende Hohlräume 13, 14 aufweisen. Die Herstellung derartiger Schichten 6, 8 ist Fachleuten bekannt. Bei der Ausgestaltung gemäß FIG 5 werden die Hohlräume 13, 14 der ersten Schicht 6 und der zweiten Schicht 8 direkt von dem flüssigen Kühlmedium 12 durchströmt. In diesem Fall korrespondiert die wärmeleitende Einrichtung direkt mit dem flüssigen Kühlmedium 12. Auch bei der Ausge- staltung gemäß FIG 5 wird somit die anfallende Wärmeenergie direkt von dem Kühlmedium 12 aufgenommen und mittels des Kühlmediums 12 aus dem Zwischenraum 5 abgeführt. Bei der Aus¬ gestaltung gemäß FIG 5 umfasst die wärmeleitende Einrichtung ausschließlich das flüssige Kühlmedium 12.
Die Ausgestaltung von FIG 6 korrespondiert über weite Stre¬ cken mit der Ausgestaltung von FIG 5. Nachfolgend wird daher nur auf die Unterschiede näher eingegangen. Bei der Ausgestaltung gemäß FIG 6 ist weder die metallische Platte noch die zweite Schicht vorhanden. Es ist lediglich die erste Schicht 6 vorhanden. Die erste Schicht 6 liegt bei der Ausgestaltung gemäß FIG 6 unter Druck nicht nur an der einen der beiden Grenzflächen 4 der benachbarten Speicherzel- len 1 an, sondern liegt auch an der anderen der beiden Grenzflächen 4 der benachbarten Speicherzellen 1 an. Die Hohlräume 13 der ersten Schicht sind jedoch weiterhin vorhanden und werden von dem flüssigen Kühlmedium 12 durchströmt. Die Ausgestaltung von FIG 7 korrespondiert über weite Stre¬ cken mit der Ausgestaltung von FIG 5. Nachfolgend wird daher nur auf die Unterschiede näher eingegangen. Bei der Ausgestaltung gemäß FIG 7 ist zusätzlich zur ersten Schicht 6 und zur zweiten Schicht 8 eine thermische Isolier¬ schicht 15 vorhanden. Die thermische Isolierschicht 15 kann beispielsweise aus Kork oder einem brandhemmenden Kunststoff bestehen. Das Vorhandensein der thermischen Isolierschicht 15 bewirkt, dass im Falle einer Fehlfunktion einer der Speicherzellen 1 die Fehlfunktion auf die jeweilige Speicherzelle 1 beschränkt bleibt, also nicht auf die benachbarte Speicher¬ zelle 1 überspringt.
Die Ausgestaltung von FIG 8 geht aus von der Ausgestaltung von FIG 7. Nachfolgend wird daher nur auf die Unterschiede näher eingegangen. Bei der Ausgestaltung gemäß FIG 8 ist zwischen der thermischen Isolierschicht 15 und der ersten Schicht 6 und der zweiten Schicht 8 jeweils eine wärmeleitende Schicht 16 ange¬ ordnet. Die wärmeleitenden Schichten 16 können beispielsweise - analog zur Ausgestaltung der FIG 3 und 4 - als metallische Platten mit oder ohne von einem flüssigen Kühlmedium durchströmte Hohlräume ausgebildet sein. Im Falle der Ausgestal¬ tung von FIG 8 ist es möglich, dass die Hohlräume 13, 14 in der ersten Schicht 6 und der zweiten Schicht 8 entfallen. Alternativ ist es möglich, dass sie vorhanden sind.
Es ist möglich, dass die erste Schicht 6 und gegebenenfalls auch die zweite Schicht 8 jeweils nur in einem einzelnen Zwischenraum 5 angeordnet sind. Alternativ ist es möglich, dass die erste Schicht 6 und/oder die zweite Schicht 8 mehrere der Speicherzellen 1 mäanderartig umschlingen, so dass die erste Schicht 6 an zwei Grenzflächen 4 ein und derselben Speicherzelle 1 anliegt und/oder die zweite Schicht 8 an zwei Grenz¬ flächen 4 ein und derselben Speicherzelle 1 anliegt. FIG 9 zeigt eine entsprechende Ausgestaltung, bei der ausschließ- lieh die erste Schicht 6 vorhanden ist. FIG 10 zeigt eine entsprechende Ausgestaltung, bei der zusätzlich zur ersten Schicht 6 auch die zweite Schicht 8 vorhanden ist. FIG 11 zeigt eine entsprechende Ausgestaltung, bei der zusätzlich zur ersten Schicht 6 und zur zweiten Schicht 8 auch metalli¬ sche Platten 10 vorhanden sind. Die metallischen Platten 10 können im Rahmen der Ausgestaltung gemäß FIG 11 alternativ die Hohlräume 11 aufweisen oder nicht aufweisen. Das Abführen der Wärmeenergie aus dem Zwischenraum 5 erfolgt bei der Aus¬ gestaltung gemäß FIG 11 orthogonal zur Zeichenebene, also auf den Betrachter von FIG 11 zu oder von ihm weg. Weiterhin ist es möglich, die mäanderartige Struktur der ersten Schicht 6 und der zweiten Schicht 8 auch in Verbindung mit den Ausge- staltungen der FIG 7 und 8 zu realisieren. Anstelle der metallischen Platten 10 könnten auch hier wieder flexible wärmeleitende Schichten vorhanden sein. Weiterhin ist es möglich, dass die Schichten 6, 8 - alternativ oder zusätzlich zum Anliegen an beiden Grenzflächen 4 ein und derselben Spei- cherzelle 1 - an denjenigen Grenzflächen 4 von zwei Speicherzellen 1 anliegen, die einen bestimmten der Zwischenräume 5 begrenzen .
Der erfindungsgemäße Energiespeicher 3 kann gemäß FIG 12 bei- spielsweise Bestandteil eines Fahrzeugs 17 sein, insbesondere eines Luftfahrzeugs. Das Fahrzeug 17 weist weiterhin einen elektrischen Bewegungsantrieb 18 auf, d.h. einen Antrieb, der die Fortbewegung des Fahrzeugs 17 als Ganzes bewirkt. Bei ei¬ nem Straßen- oder Schienenfahrzeug handelt es sich bei dem Bewegungsantrieb 18 um den Fahrantrieb. Der Bewegungsantrieb 18 wird gemäß FIG 12 aus dem Energiespeicher 3 mit elektrischer Energie versorgt.
Zusammengefasst betrifft die vorliegende Erfindung somit fol- genden Sachverhalt:
Ein elektrischer Energiespeicher 3 weist eine Anzahl von prismatischen elektrischen Speicherzellen 1 auf. Die Speicherzellen 1 sind nebeneinander angeordnet, so dass Grenzflä- chen 4 benachbarter Speicherzellen 1 in einem Abstand a voneinander verlaufen, so dass die Grenzflächen 4 der benachbarten Speicherzellen 1 einen Zwischenraum 5 bilden. Zwischen den Grenzflächen 4 benachbarter Speicherzellen 1 ist jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende erste Schicht 6 angeordnet, die unter Druck an einer der beiden Grenzflächen 4 der benachbarten Speicherzellen 1 anliegt. Entweder liegt die jeweilige erste Schicht 6 unter Druck auch an der anderen der beiden Grenzflächen 4 der benachbarten Speicherzellen 1 an oder zwischen den beiden Grenzflächen 4 der benachbarten Speicherzellen 1 ist jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende zweite Schicht 8 angeordnet, die unter Druck an der anderen der beiden Grenzflächen 4 der benachbarten Speicherzellen 1 anliegt. In der ersten Schicht 6 oder in der ersten Schicht 6 und der zweiten Schicht 8 oder zwischen der ersten Schicht 6 und der zweiten Schicht 8 ist eine wärmeleitende Einrichtung 10, 12, 10+12 angeordnet, mit- tels derer beim Laden und/oder Entladen der Speicherzellen 1 anfallende Wärmeenergie aus dem Zwischenraum 5 zwischen den benachbarten Speicherzellen 1 abgeführt wird.
Die vorliegende Erfindung weist viele Vorteile auf. Insbeson- dere kann auf einfache und zuverlässige Weise über die gesam¬ te Lebensdauer der Speicherzellen 1 hinweg durch die erste Schicht 6 - gegebenenfalls im Zusammenwirken mit der zweiten Schicht 8 - ein Dickenausgleich erfolgen, so dass jederzeit ein flächiger Kontakt der Schichten 6, 8 mit den Grenzflächen 4 besteht. Dadurch kann jederzeit eine effiziente Abfuhr der anfallenden Wärme gewährleistet werden.
Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen .

Claims

Patentansprüche
1. Elektrischer Energiespeicher
- wobei der Energiespeicher eine Anzahl von prismatischen elektrischen Speicherzellen (1) aufweist,
- wobei die Speicherzellen (1) nebeneinander angeordnet sind, so dass Grenzflächen (4) benachbarter Speicherzellen (1) in einem Abstand (a) voneinander verlaufen, so dass die Grenzflächen (4) der benachbarten Speicherzellen (1) einen Zwi- schenraum (5) bilden,
- wobei zwischen den Grenzflächen (4) benachbarter Speicherzellen (1) jeweils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende erste Schicht (6) angeordnet ist, die unter Druck an einer der beiden Grenz- flächen (4) der benachbarten Speicherzellen (1) anliegt,
- wobei entweder die jeweilige erste Schicht (6) unter Druck auch an der anderen der beiden Grenzflächen (4) der benachbarten Speicherzellen (1) anliegt oder zwischen den beiden Grenzflächen (4) der benachbarten Speicherzellen (1) je- weils eine aus einem kompressiblen, flexiblen und wärmeleitenden Material bestehende zweite Schicht (8) angeordnet ist, die unter Druck an der anderen der beiden Grenzflächen (4) der benachbarten Speicherzellen (1) anliegt, und
- wobei in der ersten Schicht (6) oder in der ersten Schicht (6) und der zweiten Schicht (8) oder zwischen der ersten
Schicht (6) und der zweiten Schicht (8) eine wärmeleitende Einrichtung (10, 12, 10+12) angeordnet ist, mittels derer beim Laden und/oder Entladen der Speicherzellen (1) anfallende Wärmeenergie aus dem Zwischenraum (5) zwischen den benachbarten Speicherzellen (1) abgeführt wird.
2. Energiespeicher nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die wärmeleitende Einrichtung (10) als metallische Platte (10) oder als flexible wärmelei- tende Schicht ausgebildet ist.
3. Energiespeicher nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die wärmeleitende Einrichtung (12) als flüssiges Kühlmedium (12) ausgebildet ist, das Hohl¬ räume (13, 14) der ersten Schicht (6) und/oder der zweiten Schicht (8) durchströmt.
4. Energiespeicher nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die wärmeleitende Einrichtung (10+12) eine zwischen der ersten Schicht (6) und der zweiten Schicht (8) angeordnete metallische Platte (10) umfasst und dass die wärmeleitende Einrichtung (10+12) ein flüssiges Kühlmedium (12) umfasst, das Hohlräume (11) der metallischen Platte (10) durchströmt.
5. Energiespeicher nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , dass das flüssige Kühlmedium (12) eine elektrisch nicht leitende und nicht brennbare Flüs¬ sigkeit ist, insbesondere ein Feuerlöschmittel.
6. Energiespeicher nach Anspruch 3, 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , dass das flüssige Kühlmedium (12) Wasser, Öl oder eine Flüssigkeit mit einem Siedepunkt zwischen 30°C und 50°C ist.
7. Energiespeicher nach einem der obigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die erste Schicht (6) und/oder die zweite Schicht (8) aus einem Kunst¬ stoff oder aus Silikon bestehen.
8. Energiespeicher nach einem der obigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zwischen der ersten Schicht (6) und der zweiten Schicht (8) eine thermi¬ sche Isolierschicht (15) angeordnet ist.
9. Energiespeicher nach einem der obigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die erste Schicht (6) und/oder die zweite Schicht (8) mehrere der Spei¬ cherzellen (1) mäanderartig umschlingen, so dass die erste Schicht (6) an zwei Grenzflächen (4) ein und derselben Speicherzelle (1) und/oder an den einen der Zwischenräume (5) be¬ grenzenden Grenzflächen (4) zweier benachbarter Speicherzellen (1) anliegt und/oder die zweite Schicht (8) an zwei
Grenzflächen (4) ein und derselben Speicherzelle (1) und/oder an den einen der Zwischenräume (5) begrenzenden Grenzflächen (4) zweier benachbarter Speicherzellen (1) anliegt.
10. Fahrzeug,
- wobei das Fahrzeug mindestens einen elektrischen Bewegungs¬ antrieb (18) und einen elektrischen Energiespeicher (3) aufweist,
- wobei der Bewegungsantrieb (18) aus dem Energiespeicher (3) mit elektrischer Energie versorgt wird,
d a d u r c h g e k e n n z e i c h n e t , dass der elekt¬ rische Energiespeicher (3) als Energiespeicher (3) nach einem der obigen Ansprüche ausgebildet ist.
PCT/EP2016/050954 2015-02-06 2016-01-19 Elektrischer energiespeicher mit effizienter wärmeabfuhr WO2016124386A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16700904.2A EP3235051A1 (de) 2015-02-06 2016-01-19 Elektrischer energiespeicher mit effizienter wärmeabfuhr
US15/548,293 US11031642B2 (en) 2015-02-06 2016-01-19 Electrical energy storage device with efficient heat dissipation
BR112017016265A BR112017016265A2 (pt) 2015-02-06 2016-01-19 meio de armazenamento de energia elétrica, e veículo
CA2975937A CA2975937A1 (en) 2015-02-06 2016-01-19 Electrical energy storage means with efficient heat dissipation
CN201680008971.8A CN107428256A (zh) 2015-02-06 2016-01-19 具有高效的热排出的电能量存储器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202149.1 2015-02-06
DE102015202149.1A DE102015202149B3 (de) 2015-02-06 2015-02-06 Elektrischer Energiespeicher mit effizienter Wärmeabfuhr

Publications (1)

Publication Number Publication Date
WO2016124386A1 true WO2016124386A1 (de) 2016-08-11

Family

ID=55174641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/050954 WO2016124386A1 (de) 2015-02-06 2016-01-19 Elektrischer energiespeicher mit effizienter wärmeabfuhr

Country Status (7)

Country Link
US (1) US11031642B2 (de)
EP (1) EP3235051A1 (de)
CN (1) CN107428256A (de)
BR (1) BR112017016265A2 (de)
CA (1) CA2975937A1 (de)
DE (1) DE102015202149B3 (de)
WO (1) WO2016124386A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654448A (zh) * 2016-12-13 2017-05-10 北京华特时代电动汽车技术有限公司 电池模组
WO2018132857A1 (de) * 2017-01-19 2018-07-26 Avl List Gmbh Batteriemodul

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219286A1 (de) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit Energiespeicherzellen deren Seitenflächen mit einem Muster versehen sind
DE102016219283A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit zwischen den Zellen angeordneten Kühlplatten zur Notkühlung
DE102016219284A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit einer Notkühleinrichtung
DE102017218250A1 (de) * 2017-10-12 2019-04-18 Volkswagen Aktiengesellschaft Vorrichtung zur Kühlung mindestens einer Batteriezelle eines Batteriemoduls
DE102018209598A1 (de) * 2018-06-14 2019-12-19 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen
DE102019201126A1 (de) * 2019-01-29 2020-07-30 Audi Ag Batteriemodul für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen Batteriemodul
DE102019103283B4 (de) * 2019-02-11 2022-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multizellen-Batteriemodul
DE102019202528A1 (de) * 2019-02-25 2020-08-27 Elringklinger Ag Wärmeleitstruktur, elektrochemische Zelle, elektrochemische Einheit und Verfahren zur Herstellung einer Wärmeleitstruktur
CN112259822A (zh) * 2019-09-29 2021-01-22 蜂巢能源科技有限公司 冷却板套、电池模组和电池包
DE102019130499A1 (de) * 2019-11-12 2021-05-12 Audi Ag Trenneinrichtung für ein Batteriemodul, Batteriemodul und Kraftfahrzeug
US11848433B1 (en) 2022-05-24 2023-12-19 Beta Air, Llc Systems and methods for a double-sided battery pack cooling assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028920A1 (de) * 2009-08-27 2011-03-03 Robert Bosch Gmbh Wiederaufladbare Batterie mit mehreren Batterieelementen
WO2011035990A1 (de) * 2009-09-25 2011-03-31 Sb Limotive Company Ltd. Thermische entkopplung von nachbarzellen in einem batteriesystem
WO2011073425A1 (de) * 2009-12-18 2011-06-23 Magna E-Car Systems Gmbh & Co Og Kühl-/heizelement für einen akkumulator
EP2669917A1 (de) * 2011-01-26 2013-12-04 Sumitomo Heavy Industries, Ltd. Schaufel
US20140220410A1 (en) * 2011-01-06 2014-08-07 Ford Global Technologies, Llc Battery cell separators

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123541B2 (ja) 1997-07-02 2008-07-23 株式会社デンソー 電池冷却装置
US6482542B1 (en) * 1999-03-03 2002-11-19 Matsushita Electric Industrial Co., Ltd. Integrated sealed secondary battery
DE102006021410B4 (de) 2006-05-09 2009-07-16 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung eines Mehrschichtgebildes und Verwendung des Verfahrens
EP2273162B1 (de) 2009-07-06 2019-01-09 Carl Freudenberg KG Dichtungsrahmen zur Verwendung in einer Batterie
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
EP2514002B1 (de) 2009-12-18 2016-03-30 Samsung SDI Co., Ltd. Kühl-/heizelement für einen akkumulator
WO2011088997A1 (de) 2010-01-20 2011-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperierbare batteriezellenanordnung
DE102010046933B4 (de) 2010-09-29 2014-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperlierbare Vorrichtung zur Anordnung einer beliebigen Anzahl einzelner Batteriezellen
DE102010005097A1 (de) * 2010-01-20 2011-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Temperierbare Batteriezellenanordnung
DE102010014915A1 (de) 2010-04-14 2011-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperierbare Batteriezellenanordnung
DE102010021922A1 (de) 2010-05-28 2011-12-01 Li-Tec Battery Gmbh Kühlelement und Verfahren zum Herstellen desselben; elektrochemische Energiespeichervorrichtung mit Kühlelement
DE102011016048A1 (de) 2011-04-04 2012-10-04 Li-Tec Battery Gmbh Energiespeichervorrichtung mit einer Temperiereinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028920A1 (de) * 2009-08-27 2011-03-03 Robert Bosch Gmbh Wiederaufladbare Batterie mit mehreren Batterieelementen
WO2011035990A1 (de) * 2009-09-25 2011-03-31 Sb Limotive Company Ltd. Thermische entkopplung von nachbarzellen in einem batteriesystem
WO2011073425A1 (de) * 2009-12-18 2011-06-23 Magna E-Car Systems Gmbh & Co Og Kühl-/heizelement für einen akkumulator
US20140220410A1 (en) * 2011-01-06 2014-08-07 Ford Global Technologies, Llc Battery cell separators
EP2669917A1 (de) * 2011-01-26 2013-12-04 Sumitomo Heavy Industries, Ltd. Schaufel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654448A (zh) * 2016-12-13 2017-05-10 北京华特时代电动汽车技术有限公司 电池模组
CN106654448B (zh) * 2016-12-13 2019-04-02 北京华特时代电动汽车技术有限公司 电池模组
WO2018132857A1 (de) * 2017-01-19 2018-07-26 Avl List Gmbh Batteriemodul

Also Published As

Publication number Publication date
EP3235051A1 (de) 2017-10-25
DE102015202149B3 (de) 2016-08-11
US11031642B2 (en) 2021-06-08
CN107428256A (zh) 2017-12-01
BR112017016265A2 (pt) 2018-03-27
CA2975937A1 (en) 2016-08-11
US20180013182A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2016124386A1 (de) Elektrischer energiespeicher mit effizienter wärmeabfuhr
DE69824005T2 (de) Thermischer Leiter für elektrochemische Hochenergiezellen
DE102007017018A1 (de) Überbrückung defekter Zellen bei Batterien
DE102018117601A1 (de) Batterie mit temperiereinrichtung
DE102007045183A1 (de) Temperierte Batterieeinrichtung und Verfahren hierzu
DE102011119212A1 (de) Elektroenergie-Speichervorrichtung mit flachen Speicherzellen
DE112016006606B4 (de) Leistungsspeichervorrichtungspack
DE102018221477A1 (de) Batteriemodul aufweisend eine Mehrzahl an Batteriezellen
DE1489661B1 (de) Gleichrichter für halbleitergleichrichter mit zwei getrennten kühlkörpern
EP2165343B1 (de) Elektrisches speichermodul mit kühlkörpern
DE102019216476A1 (de) Vorrichtung zum Kühlen einer Batterie für ein Fahrzeug
DE102015008264A1 (de) Batterie für ein Kraftfahrzeug und Kraftfahrzeug
DE102012221689A1 (de) Batterie mit Verbundstruktur
DE102017109919A1 (de) Akkumulatorpaket
DE102017009640A1 (de) Kühlvorrichtung
WO2021209187A1 (de) Energiespeichereinrichtung, kraftfahrzeug und kühlplattenanordnung
WO2015132327A1 (de) Energiespeichereinheit und batteriesystem
DE102013016100A1 (de) Energiespeicheranordnung
DE112016006632T5 (de) Speicherbatteriemodul
DE102021132874A1 (de) Zelltrennelement, Batteriezellenanordnung und Kraftfahrzeug
DE102017004462A1 (de) Aufnahmevorrichtung zur Aufnahme von Batteriezellen
DE102020008153A1 (de) Leistungselektronisches System mit einer Schalteinrichtung und mit einer Flüssigkeitskühleinrichtung
EP2347466B1 (de) Energiespeichereinheit
DE102018114023A1 (de) Kühlgehäuse für eine Batterie und ein dieses enthaltendes Batteriemodul
DE102017217691A1 (de) Batteriezelle für eine Lithium-Ionen-Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16700904

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016700904

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15548293

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2975937

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017016265

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017016265

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170728