WO2016121915A1 - ユーザ端末、無線基地局、無線通信システム及び無線通信方法 - Google Patents

ユーザ端末、無線基地局、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2016121915A1
WO2016121915A1 PCT/JP2016/052620 JP2016052620W WO2016121915A1 WO 2016121915 A1 WO2016121915 A1 WO 2016121915A1 JP 2016052620 W JP2016052620 W JP 2016052620W WO 2016121915 A1 WO2016121915 A1 WO 2016121915A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
transmission
reception quality
base station
cqi
Prior art date
Application number
PCT/JP2016/052620
Other languages
English (en)
French (fr)
Inventor
一樹 武田
徹 内野
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201680007735.4A priority Critical patent/CN107211420B/zh
Priority to US15/547,146 priority patent/US20180007682A1/en
Priority to EP16743518.9A priority patent/EP3253156B1/en
Priority to JP2016572174A priority patent/JP6412961B2/ja
Priority to PL18209164T priority patent/PL3471475T3/pl
Priority to EP18209164.5A priority patent/EP3471475B1/en
Publication of WO2016121915A1 publication Critical patent/WO2016121915A1/ja
Priority to US16/258,039 priority patent/US11337187B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a user terminal, a radio base station, a radio communication system, and a radio communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 a LTE successor system (also referred to as LTE-A) called LTE Advanced has been studied for the purpose of further broadbanding and speeding up from LTE, and LTE Rel. It is specified as 10/11.
  • LTE Rel. 1 The 10/11 system band includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit.
  • CC Component Carrier
  • CA carrier aggregation
  • MTA multiple timing advance
  • LTE Rel. 12 various scenarios in which a plurality of radio base stations are used in different frequency bands (carriers) are being studied. For example, when a single radio base station forms a plurality of cells, the above-described CA using the MTA is applied, whereas when the radio base stations forming the plurality of cells are completely different, dual connectivity (DC: Dual Connectivity) is being studied.
  • DC Dual Connectivity
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the number of CCs that can be set per user terminal (UE: User Equipment) is limited to a maximum of five.
  • LTE Rel. Is a further successor system of LTE.
  • In 13 in order to realize more flexible and high-speed wireless communication, it is considered to relax the limitation on the number of CCs that can be set per user terminal and to set 6 or more CCs.
  • the transmission method of the existing system (Rel. 10 to 12) as it is.
  • the so-called periodic CQI (P-CQI: Periodic-Channel Quality Indicator) is an uplink control channel using a format based on 5 CC or less.
  • P-CQI Periodic-Channel Quality Indicator
  • PUCCH Physical Uplink Control CHannel
  • the present invention has been made in view of such points, and even when the number of component carriers that can be set in the user terminal is expanded to 6 or more, the user terminal capable of appropriately reporting the channel state,
  • An object is to provide a radio base station, a radio communication system, and a radio communication method.
  • One aspect of the user terminal of the present invention is a user terminal capable of communicating with a radio base station using six or more component carriers, and a measurement unit that measures reception quality of a downlink channel of each component carrier, A transmission unit that periodically transmits information related to the reception quality according to a timing designated by a radio base station, wherein the transmission unit has a PUCCH format of an existing system in which the number of component carriers set is 5 or less Information on reception quality of a plurality of component carriers is transmitted in the same subframe using the PUCCH format or PUSCH having a larger capacity than the above.
  • the channel state can be reported appropriately.
  • FIG. 1 shows carrier aggregation (CA) in LTE successor system (LTE Rel. 12) and LTE Rel. 13 is an explanatory diagram of the CC of CA studied in FIG.
  • LTE Rel. 12 a maximum of five CCs (CC # 1 to CC # 5) are set for each user terminal, whereas LTE Rel. 13, extended carrier aggregation (CA enhancement) in which six or more CCs (cells) are set is being studied.
  • CA enhancement extended carrier aggregation
  • the extended CA as shown in FIG. 1, it is considered to set a maximum of 32 CCs (CC # 1 to CC # 32) per user terminal. In this case, it is possible to communicate with the user terminal using a maximum bandwidth of 640 MHz.
  • the number of CCs used for communication can be increased / decreased or changed, and flexible and high-speed wireless communication can be realized.
  • LTE 13 operation in a license-free frequency band, that is, an unlicensed band is also considered as a target.
  • the unlicensed band for example, the same 2.4 GHz or 5 GHz band as Wi-Fi is used.
  • LTE Rel. 13 considers carrier aggregation (LAA: License-Assisted Access) between a license band and an unlicensed band. For example, a CA combining a license band of 100 MHz and an unlicensed band of 300 MHz is also being studied.
  • LAA License-Assisted Access
  • the P-CQI is transmitted on the uplink control channel (PUCCH) using a format based on 5 CC or less.
  • P-CQI is calculated separately for each CC in the user terminal, and is reported to this radio base station individually (for example, by RRC or the like) at a period set by the radio base station for each CC.
  • P-CQI when there is no transmission data (when there is no PUSCH), P-CQI is transmitted according to PUCCH format 2, and when there is transmission data (when there is PUSCH), P -CQI is transmitted.
  • P-CQIs for a plurality of CCs cannot be transmitted in the same subframe (the same TTI (Transmission Time Interval)).
  • the user terminal reports only one P-CQI according to a predetermined rule and stops (drops) transmission of other P-CQIs.
  • the P-CQI for only one CC is reported in one subframe (1 TTI), so it takes time to report the P-CQI of all CCs. As a result, the P-CQI reporting period corresponding to each CC becomes longer. For example, in CA using 32 CC, even when P-CQI is transmitted in all subframes in the uplink, the shortest period is 32 ms. Normally, since it is desirable for the radio base station side to acquire the CQI of the user terminal in a timely manner, it is not desirable that the P-CQI reporting period of each CC is lengthened.
  • FIG. 2 shows an example table that defines the P-CQI reporting period in the existing system. Although 2, 5, 10, and 20 are defined in the cycle Npd, these cycles cannot be adopted by a CA of 20 CC or more.
  • the present inventors pay attention to such a feature of CA, and the PUCCH format (hereinafter referred to as “large-capacity PUCCH format”) having a larger capacity than the PUCCH format of the existing system in which the number of CC settings is 5 or less.
  • PUCCH format (hereinafter referred to as “large-capacity PUCCH format”) having a larger capacity than the PUCCH format of the existing system in which the number of CC settings is 5 or less.
  • P-CQIs of multiple CCs are transmitted in the same subframe using PUSCH.
  • the number of CCs that can be set per user terminal when performing CA is 32.
  • the number of CCs that can be set per user terminal is not limited to this and can be changed as appropriate.
  • the large-capacity PUCCH format is used for P-CQI reporting, and P-CQIs corresponding to a plurality of CCs are transmitted in the same uplink subframe (same TTI).
  • P-CQIs for 8 CCs are transmitted in one subframe using the large-capacity PUCCH format.
  • the number of CCs transmitted using the large-capacity PUCCH format is not limited to this.
  • the period and timing for P-CQI reporting can be set in advance.
  • CCs # 1 to # 8 are transmitted in a period of 20 ms and the first uplink subframe (first subframe from the left) shown in the figure.
  • Timing is set.
  • CCs # 9 to # 16 a cycle of 20 ms and a timing for transmission in the second uplink subframe (second subframe from the left) shown in the figure are set.
  • CCs # 17 to # 24 a period of 10 ms and a timing for transmission in the third uplink subframe (third subframe from the left) shown in the figure are set.
  • CCs # 25 to # 32 a cycle of 10 ms and a timing for transmission in the fourth uplink subframe (fourth subframe from the left) shown in the figure are set.
  • a plurality of P-CQIs corresponding to CCs # 1 to # 8 are transmitted in the first subframe in FIG. 3, and CCs # 9 to # 16 are supported in the second subframe.
  • a plurality of P-CQIs are transmitted, and in the third subframe, a plurality of P-CQIs corresponding to CCs # 17 to # 24 are transmitted, and in a fourth subframe, CCs # 25 to # 32 are supported.
  • a plurality of P-CQIs to be transmitted are transmitted. Further, since the cycle is set to 10 ms for CCs # 17 to # 24, the latest P-CQI is transmitted also in the 13th subframe of the uplink in FIG. Similarly, for CC # 25 to CC # 32, the latest P-CQI is also transmitted in the 14th subframe.
  • the large-capacity PUCCH is set in the user terminal. Also, the period and timing for P-CQI reporting for each CC are set from the radio base station by RRC or the like.
  • the user terminal transmits P-CQIs for a maximum of 8 CCs in the same subframe (same TTI) using the large-capacity PUCCH format according to the period and timing.
  • a method of reducing orthogonal spreading block codes of PUCCH format 3 is conceivable.
  • the existing PUCCH format 3 the same bit sequence is copied to five or four time symbols and multiplied by an orthogonal spreading code. By multiplying different orthogonal spreading codes for each user, they are orthogonally multiplexed with each other.
  • the orthogonal code length is 1, for example, it is possible to place different information bit sequences on five or four time symbols.
  • the number of users that can be multiplexed on the same PRB is reduced. For example, when the orthogonal code length is 1, the bit sequence length that can be transmitted is five times or four times that of the existing PUCCH format 3, but the number of users that can be multiplexed is one.
  • PUCCH format using frequency resources of 2 PRB or more as a new format (large-capacity PUCCH format).
  • the PUCCH format to be transmitted by 2PRB is defined based on the configuration of the existing PUCCH format 3, it is possible to transmit a bit sequence twice as large as that of the existing PUCCH format 3.
  • Which PRB number is used and which PRB is used for transmission may be determined by the UE according to the number of bits of HARQ-ACK or CSI (CQI, etc.) multiplexed on the PUCCH. It may be designated by higher layer signaling such as RRC, or the base station may instruct each subframe with a control signal such as PDCCH.
  • a PUCCH format that uses multi-level modulation of 16QAM or more as a large capacity PUCCH format.
  • the PUCCH format for 16QAM modulation of uplink control information (UCI) is defined based on the configuration of the existing PUCCH format 3, it is possible to transmit twice as many bit sequences as the existing PUCCH format 3 It becomes.
  • Which modulation method is used may be determined by the UE according to the number of bits of HARQ-ACK or CSI multiplexed on the PUCCH, or may be designated in advance by higher layer signaling such as RRC,
  • the base station may instruct each subframe with a control signal such as PDCCH.
  • the encoding method for UCI such as HARQ-ACK and CSI, the mapping order to radio resources, and the temporal symbol position of the reference signal included in PUCCH format 3 , Etc. means to reuse. It is assumed that a reference signal sequence for generating a reference signal is different from 1PRB. For example, it is conceivable to use a reference signal sequence multiplexed on 2PRB PUSCH defined in the existing LTE.
  • PUSCH as a new format that can multiplex uplink control signals of 6 or more CCs.
  • the user terminal transmits the uplink control signal on the PUSCH even when the PUSCH is not transmitted.
  • the user terminal when UL data transmission and UCI transmission occur in the same subframe, the user terminal applies a method of multiplexing UCI in the PUSCH instructed to perform UL data transmission.
  • PUSCH does not have a configuration in which different users are code-multiplexed on the same PRB, and the number of information bits that can be included per PRB is large. Therefore, even if there is no UL data, if UCI is transmitted by PUSCH, it can be regarded as a large capacity PUCCH format and UCI can be transmitted.
  • PUSCH is transmitted in a specific subframe / specific PRB based on PDCCH / EPDCCH (UL grant defined as DCI format 0, DCI format 4, etc.) and higher layer signaling from the base station. For example, PUSCH transmission can be performed even when only HARQ-ACK or CSI is transmitted.
  • PDCCH / EPDCCH UL grant defined as DCI format 0, DCI format 4, etc.
  • the PUSCH configuration allocation PRB and MCS for transmitting UCI may be specified in advance by upper layer signaling, for example, or specified as PDCCH / EPDCCH (DCI format 1A, DCI format 2D, etc.) instructing downlink data allocation DL assignment) or PDSCH information to which downlink data is transmitted may be determined.
  • PDCCH / EPDCCH DCI format 1A, DCI format 2D, etc.
  • PDSCH information to which downlink data is transmitted may be determined.
  • the user terminal when a PUSCH including UL data is transmitted, the user terminal receives a PHICH corresponding to the PUSCH and determines whether to perform retransmission.
  • HARQ is not applied to PUCCH that transmits HARQ-ACK and CSI. Therefore, when a PUSCH used as a large-capacity PUCCH format is transmitted (that is, when only UCI is included without including UL data), the user terminal does not have to perform reception and detection of PHICH corresponding to the PUSCH. It is also good. By doing in this way, it becomes unnecessary to perform unnecessary PHICH reception by the user terminal, so that the processing burden on the user terminal can be reduced.
  • the user terminal may receive and detect PHICH corresponding to the PUSCH.
  • a PUSCH that does not perform code spreading requires higher reception quality (signal-to-interference noise power ratio: SINR) than PUCCH.
  • SINR signal-to-interference noise power ratio
  • the channel state can be appropriately reported.
  • the period and timing for P-CQI reporting are set in units of CC.
  • a CC group including a plurality of CCs is set in advance, and P-CQI reporting is performed in units of CC groups.
  • the period and timing for CQI reporting may be set. For example, in the CC shown in FIG. 3, CC # 1 to # 8, CC # 9 to # 16, CC # 17 to # 24, CC # 25 to # 32 are classified into CC groups, and each CC group You may set a period and timing.
  • the large-capacity PUCCH format is used for P-CQI reporting as in the first mode, but for each CC, in addition to the period and timing for P-CQI reporting , CCs (cells) in the uplink, for example, CCs used for P-CQI reporting can be set.
  • CC # 1 in the uplink is set.
  • CCs # 9 to # 16 in addition to the 20 ms period and the timing of transmission in the second uplink subframe (second subframe from the left) shown in FIG. # 1 is set.
  • CCs # 17 to # 24 in addition to the 10 ms period and the timing of transmission in the first uplink subframe (first subframe from the left) shown in FIG. # 2 is set.
  • CCs # 25 to # 32 in addition to the 10 ms period and the timing of transmission in the second uplink subframe (second subframe from the left) shown in FIG. # 2 is set.
  • FIG. 4 shows a case where two CCs are set in the uplink
  • the present invention is not limited to this.
  • one of the plurality of CCs to be set can be a PCell.
  • a plurality of P-CQIs corresponding to CC # 1 to # 8 are transmitted in the first subframe, and the second subframe is transmitted. Then, a plurality of P-CQIs corresponding to CCs # 9 to # 16 are transmitted. Furthermore, since a cycle of 20 ms is set for CC # 1 to # 8 and CC # 9 to # 16, CC # 1 to # 8 is used in CC # 1 in the uplink in the 21st subframe. The latest P-CQIs corresponding to CCs # 9 to # 16 are transmitted, and the latest P-CQIs corresponding to CCs # 9 to # 16 are transmitted in the 22nd subframe.
  • uplink CC # 2 a plurality of P-CQIs corresponding to CC # 17 to # 24 are transmitted in the first subframe, and CCs # 25 to # 32 are transmitted in the second subframe. A corresponding plurality of P-CQIs are transmitted. Since CCs # 17 to # 24 and CCs # 25 to # 32 have a period of 10 ms, in the CC # 2 of the uplink, the CC # 2 is used in the 11th, 21st, and 31st subframes. The latest P-CQIs corresponding to 17 to # 24 are transmitted. Also, the latest P-CQIs corresponding to CCs # 25 to # 32 are transmitted in the 12th, 22nd, and 32nd subframes.
  • the large-capacity PUCCH is set in the user terminal.
  • the period and timing for P-CQI reporting for each CC, and the uplink CC are set from the radio base station by RRC or the like.
  • the user terminal transmits P-CQI for a maximum of 8 CCs in the same subframe using the large-capacity PUCCH format according to the cycle, timing, and uplink CC.
  • the user terminal in this 2nd aspect is a user terminal in which UL CA is possible.
  • a user terminal to which the second aspect is applied is capable of UL CA at a specific frequency and can perform P-CQI feedback described in the second aspect at that time. Assume that you have already reported to the base station.
  • the channel state can be appropriately reported even when the number of component carriers that can be set in the user terminal is expanded to 6 or more.
  • P-CQI is reported using a plurality of CCs in the uplink, it is possible to avoid reporting P-CQI biased to a specific CC (for example, CC # 1 of PCell). Also, in the example shown in FIG. 4, it is possible to simultaneously transmit a maximum of 16 CC P-CQIs in 1 TTI, and the transmission amount of P-CQIs in one transmission time can be dramatically improved. Further, since the amount of P-CQI transmission in one transmission time is improved, the time required for P-CQI reporting can be shortened in the user terminal.
  • the P-CQI can be reported flexibly according to the P-CQI acquisition request.
  • P-CQI can be reported by multiple CCs in the uplink as in the second mode, but P-CQI is controlled to be reported by CCell CC # 1 as much as possible.
  • P-CQI is reported by a plurality of CCs as in the second mode. For this reason, a period and timing for P-CQI reporting are set for each CC, and a configuration can be made in which no CC is set in the uplink.
  • the user terminal determines whether or not the transmission amount of P-CQI (or the number of CCs to be transmitted) exceeds a predetermined value when transmitting the P-CQI of the CC having the same timing, and sets the predetermined value.
  • P-CQI is distributed and allocated to PCell CC # 1 and SCell CC # 2 and transmitted. For example, when transmitting a plurality of P-CQIs corresponding to CCs # 1 to # 8 and CCs # 17 to # 24 set with the first subframe as a timing, P for 8 CCs that can be transmitted in a large-capacity PUCCH format -It is determined whether or not the transmission amount of CQI is exceeded.
  • the number of CCs set with the first subframe as a timing is 16, it is determined that the transmission amount of P-CQI for 8 CCs is exceeded, and the P-CQI to be transmitted is CC # 1 of PCell and SCell of SCell. It is distributed and allocated to CC # 2. As a result, as shown in FIG. 5, in the first subframe, P-CQIs corresponding to CCs # 1 to # 8 are assigned to CC # 1, and CCs # 17 to # 24 are assigned to CC # 2. A P-CQI is assigned.
  • the same processing as in the first subframe is performed.
  • P-CQIs corresponding to CCs # 9 to # 16 are assigned to CC # 1
  • CCs # 25 to # 32 are assigned to CC # 2.
  • a P-CQI is assigned. Similar processing is performed in the 21st subframe and the 22nd subframe.
  • uplink CC # 2 a plurality of latest P-CQIs corresponding to CC # 17 to # 24 are transmitted in the first subframe and the 21st subframe, and the second subframe 22 In the first subframe, the latest P-CQIs corresponding to CCs # 25 to # 32 are transmitted.
  • the large-capacity PUCCH is set in the user terminal.
  • the period and timing for P-CQI reporting for each CC are set from the radio base station by RRC or the like.
  • the user terminal performs the above-described determination processing (determination of whether or not the P-CQI transmission amount for 8 CCs that can be transmitted in the large-capacity PUCCH format exceeds the transmission amount) according to the cycle and timing described above, Are allocated to PCell CC # 1 and SCell CC # 2 to secure resources and transmit P-CQI.
  • the user terminal in this 3rd aspect is a user terminal in which UL CA is possible.
  • a user terminal to which the third aspect is applied is capable of UL CA at a specific frequency and can perform P-CQI feedback described in the second aspect at that time. Assume that you have already reported to the base station.
  • the channel state can be appropriately reported.
  • the coverage of the PCell is often good, and the P-CQI is transmitted by this single CC (uplink cell) as much as possible, so that battery consumption in the user terminal can be suppressed. Also, even when all P-CQIs cannot be transmitted by CC # 1 of PCell, P-CQIs that are suspended (dropped) can be suppressed, and channel tracking performance is improved in the radio base station be able to. For each CC, the period and timing for P-CQI reporting are set, and when the CC is not set in the uplink, higher layer signaling for setting the CC compared to the second mode The overhead can be reduced.
  • the PCell P-CQI may always be allocated to the PCell.
  • the CQI of the PCell is important for securing the connection between the radio base station and the user terminal, it is possible to reliably receive the PCQ CQI at the radio base station by assigning it to the PCell. it can.
  • assignment may be made to CCell CC # 1 in ascending order of cell index.
  • information transmitted and received via a cell having a small cell index is often highly important. Therefore, it is possible to transmit a CQI of a CC that receives highly important information using a PCell with good coverage. It becomes.
  • the excess P-CQI according to a predetermined condition Transmission may be canceled.
  • transmission may be stopped from P-CQI related to low priority information according to a predetermined priority.
  • the priority As a method of determining the priority, it can be determined that the priority is higher in order of increasing cell index. In general, information transmitted and received via a cell having a small cell index is often highly important. Therefore, it is possible to transmit a CQI of a CC that receives highly important information using a PCell with good coverage. It becomes.
  • the P-CQI of the specific CC in transmitting the P-CQI for a specific CC, is transmitted using PUCCH format 2, 2a, or 2b (existing transmission format).
  • the PUCCH format used for P-CQI transmission of a specific CC and P-CQI (multiple P-CQI) transmissions of other CCs is changed.
  • Information on a specific CC can be set in the user terminal by higher layer signaling such as RRC.
  • the fourth aspect can be applied to any of the first to third aspects.
  • An example in which the method of transmitting only the P-CQI of a specific CC in the existing PUCCH format is applied to the third aspect will be described with reference to FIG.
  • FIG. 6 shows a case where the specific CC is CC # 1.
  • CC # 1 which is a specific CC, is set with a period of 20 ms and a timing for transmission in the third uplink subframe (third subframe from the left) shown in FIG. Therefore, the user terminal transmits the P-CQI of CC # 1 in the PUCCH format 2 in the third subframe of CC # 1.
  • the P-CQI of CC # 1 is transmitted in PUCCH format 2 in the 23rd subframe.
  • the difference from the third aspect described above is that, in uplink CC # 1, the latest P-frames corresponding to CC # 2 to # 8 in the first subframe and the 21st subframe. This is the point where CQI is transmitted.
  • the above-described large-capacity PUCCH format and the existing PUCCH format are set in the user terminal. Also, a specific CC and a period and timing for P-CQI reporting for each CC are set from the radio base station by RRC or the like.
  • the user terminal transmits a corresponding P-CQI using the existing PUCCH format for the specific CC. Further, the user terminal performs the above-described determination processing (determination of whether or not the transmission amount of P-CQI for 8 CCs that can be transmitted in the large-capacity PUCCH format is exceeded) according to the period and timing. If so, resources are secured by distributing to PCell CC # 1 and SCell CC # 2, and P-CQI is transmitted.
  • the user terminal in this 4th aspect is a user terminal in which UL CA is possible.
  • the fourth aspect it is possible to appropriately report the channel state even when the number of component carriers that can be set in the user terminal is expanded to 6 or more.
  • the radio base station side it is desirable to acquire the CQI of the user terminal in a timely manner, and such a request can be dealt with.
  • the number of CCs is controlled (set) to 5 or less by CC removal or De-activation, etc. (that is, the number of CCs is equal to or less than the CA defined in Rel.12).
  • the P-CQI is transmitted in the PUCCH format 2, 2a, or 2b (existing transmission format) of the existing system.
  • the timings of a plurality of CCs overlap, only the P-CQI of the CC with a low cell index is left, and the transmission of P-CQI to other CCs is stopped.
  • the fifth aspect can be applied to any of the first to fourth aspects.
  • FIG. 7 assumes a case where, in the third aspect, the CC is controlled to 4 (CC # 1, CC # 9, CC # 17, CC # 25) by so-called CC removal and RRC. ing. Or, in case of so-called CC De-activation, the number of CCs activated by the MAC control signal (MAC Control Element) is controlled to 4 (CC # 1, CC # 9, CC # 17, CC # 25). Assumed.
  • the user terminal transmits a P-CQI report in the PUCCH format 2 of the existing system. Also, even when P-CQI is set in different uplink CCs, if the TTI is the same, the user terminal leaves only the P-CQI of the CC with a low cell index, and the P-CQI for other CCs. Transmission of CQI is stopped.
  • the user terminal compares the cell index, transmits the P-CQI of CC # 1 with a low cell index in PUCCH format 2, and stops (drops) transmission of CC # 17 with a high cell index. Similar processing is performed in the 21st TTI.
  • the P-CQI of CC # 9 and the P-CQI of CC # 25 overlap. For this reason, the user terminal compares the cell indexes, transmits the P-CQI of CC # 9 having a low cell index in PUCCH format 2, and stops (drops) transmission of CC # 25 having a high cell index. Similar processing is performed in the 22nd TTI.
  • the P-CQI of CC # 17 is transmitted in PUCCH format 2.
  • the P-CQI of CC # 25 is transmitted in the PUCCH format 2 because there is no duplication of P-CQI in the 12th TTI and the 32nd TTI.
  • the large-capacity PUCCH format is used. Apply P-CQI reporting.
  • the channel state can be appropriately reported. Furthermore, when the number of component carriers is set to 5 or less, the existing communication method is applied, so that backward compatibility can be obtained. When the number of component carriers that can be set in the user terminal is expanded to 6 or more, it is possible to cope with a request from a radio base station that desires to acquire the CQI of the user terminal in a timely manner.
  • Modification In the above first to fifth aspects, several modifications can be considered.
  • processing when P-CQI and scheduling request (SR) overlap may be considered.
  • the scheduling request has priority over the P-CQI and is transmitted on the PCell PUCCH.
  • the user terminal performs control so that the scheduling request is regarded as information having a higher priority than P-CQI.
  • it transmits using PUCCH format 2, 2a, or 2b (existing transmission format).
  • processing when P-CQI and SRS (Sounding Reference Signal) overlap on the same CC may be considered. In this case, transmission of SRS may be stopped.
  • the SRS is a Periodic SRS (P-SRS) in which a cycle or resource is set by higher layer signaling
  • the P-CQI is controlled to be prioritized, and the ARS of the SRS (A-SRS) triggered by the UL grant. In this case, it may be controlled to give priority to A-SRS and stop transmission of P-CQI.
  • FIG. 8 is a schematic configuration diagram showing an example of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 is in a cell formed by a plurality of radio base stations 10 (11 and 12 (12a to 12c)) and each radio base station 10, and each radio base station 10 A plurality of user terminals 20 configured to be able to communicate with each other.
  • Each of the radio base stations 10 is connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the radio base station 11 is composed of, for example, a macro base station having a relatively wide coverage, and forms a macro cell C1.
  • the radio base stations 12 (12a to 12c) are small base stations having local coverage and form a small cell C2.
  • the number of radio base stations 11 and 12 is not limited to the number shown in FIG.
  • the same frequency band may be used, or different frequency bands may be used.
  • the radio base stations 11 and 12 are connected to each other via an inter-base station interface (for example, optical fiber, X2 interface).
  • the macro base station 11 may be referred to as a radio base station, an eNodeB (eNB), a transmission point, or the like.
  • the small base station 12 may be called a pico base station, a femto base station, a Home eNodeB (HeNB), a transmission point, an RRH (Remote Radio Head), or the like.
  • the user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the user terminal 20 can execute communication with other user terminals 20 via the radio base station 10.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Also, a synchronization signal, MIB (Master Information Block), etc. are transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel) and may be used to transmit DCI or the like in the same manner as the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used.
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), a delivery confirmation signal, and the like are transmitted by PUCCH.
  • a random access preamble (RA preamble) for establishing a connection with the cell is transmitted by the PRACH.
  • a channel quality measurement reference signal (SRS: Sounding Reference Signal) and a demodulation reference signal (DM-RS: Demodulation Reference Signal) for demodulating PUCCH and PUSCH are transmitted as uplink reference signals.
  • SRS Sounding Reference Signal
  • DM-RS Demodulation Reference Signal
  • FIG. 9 is a diagram illustrating an example of the overall configuration of the radio base station 10 according to the present embodiment.
  • the radio base station 10 (including the radio base stations 11 and 12) includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, and a call processing unit 105. And a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
  • Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna into a radio frequency band signal and transmits the signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver 103 can apply a transmitter / receiver, a transmitter / receiver circuit, or a transmitter / receiver used in the technical field according to the present invention.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102.
  • Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Further, the transmission path interface 106 may transmit / receive a signal (backhaul signaling) to / from an adjacent radio base station via an interface between base stations (for example, an optical fiber or an X2 interface).
  • a signal backhaul signaling
  • FIG. 10 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the present embodiment. Note that FIG. 10 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the radio base station 10 is configured to include at least a control unit (scheduler) 301, a transmission signal generation unit 302, and a reception processing unit 303.
  • the control unit (scheduler) 301 controls scheduling of downlink data signals transmitted on the PDSCH, downlink control signals transmitted on the PDCCH and / or extended PDCCH (EPDCCH). It also controls scheduling of system information, synchronization signals, downlink reference signals such as CRS and CSI-RS. Further, scheduling of uplink reference signals, uplink data signals transmitted on PUSCH, uplink control signals transmitted on PUCCH and / or PUSCH, and the like is controlled.
  • the control unit 301 can be configured with a controller, a control circuit, or a control device used in the technical field according to the present invention.
  • control unit 301 can control the transmission signal generation unit 302 in order to control the CCs to be measured in the user terminal 20 connected to the radio base station 10. Specifically, the control unit 301 notifies the transmission signal generation unit 302 of the CC information included in the TAG, and performs control so as to generate a signal (for example, higher layer signaling) including the CC information (first layer signaling). Embodiment). In addition, the control unit 301 notifies the transmission signal generation unit 302 of the measurement gap configuration set for each TAG, and performs control so as to generate a signal (for example, higher layer signaling) including the measurement gap configuration (second layer signaling). Embodiment).
  • the transmission signal generator 302 generates a DL signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the controller 301. For example, the transmission signal generation unit 302 generates a signal including the CC information based on the CC information included in the timing advance group (TAG) notified from the control unit 301 (first and second modes). In this case, the transmission signal generation unit 302 can generate a signal including the TAG CC list (first and second modes). Further, the transmission signal generation unit 302 generates a signal including the measurement gap configuration based on the measurement gap configuration set for each TAG notified from the control unit 301 (second mode).
  • TAG timing advance group
  • the transmission signal generation unit 302 can be configured by a signal generator or a signal generation circuit used in the technical field according to the present invention.
  • the reception processing unit 303 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception processing unit 303 performs reception processing (such as measurement of received power (RSRP) and channel state) on the measurement result transmitted from the user terminal 20.
  • the reception processing unit 303 performs reception processing on the measurement result for each TAG transmitted from the user terminal 20 (first mode).
  • the reception process part 303 performs a reception process with respect to the measurement result for every CC transmitted from the user terminal 20 (2nd aspect). Then, the reception processing unit 303 outputs the measurement result after the reception processing to the control unit 301.
  • the reception processing unit 303 can be configured by a signal processor or a signal processing circuit used in the technical field according to the present invention.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device used in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band signal and transmits the signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 can transmit / receive a signal to / from a radio base station that sets a TAG composed of one or more cells.
  • the transmission / reception unit 203 can transmit / receive signals to / from a plurality of radio base stations that each set a cell group (CG) composed of one or more cells.
  • CG cell group
  • FIG. 12 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20. Note that FIG. 12 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the user terminal 20 includes at least a reception signal processing unit 401, a measurement unit 402, a control unit 403, and a transmission signal generation unit 404.
  • the reception signal processing unit 401 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (for example, downlink control signal transmitted from the radio base station, downlink data signal transmitted by PDSCH, etc.). I do.
  • the reception signal processing unit 401 outputs information received from the radio base station 10 to the control unit 403. For example, the reception signal processing unit 401 outputs broadcast information, system information, paging information, RRC signaling, DCI, and the like to the control unit 403.
  • the received signal processing unit 401 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • the measurement unit 402 measures received power (RSRP), reception quality (RSRQ), and channel state using the received signal, and outputs the result to the control unit 403.
  • RSRP received power
  • RSSQ reception quality
  • channel state using the received signal
  • the control unit 403 includes the measurement result of the measurement unit 402 and various information (period, timing, CC, specific CC for P-CQI report) notified from the radio base station 10 via the reception signal processing unit 401. Based on this, a P-CQI is generated. The control unit 403 further instructs the transmission signal generation unit 404 how to allocate the P-CQI to the uplink resource.
  • the user terminal 20 is configured with the large-capacity PUCCH, and uses the large-capacity PUCCH format according to the period and timing, and the P-CQI for a maximum of 8 CCs is the same subframe (the same
  • the control unit 403 instructs the transmission signal generation unit 404 to perform transmission using TTI).
  • control unit 403 instructs the transmission signal generation unit 404 to transmit P-CQI for a maximum of 8 CCs in the same subframe using a large capacity PUCCH format according to the period, timing, and CC. To do.
  • the control unit 403 instructs the transmission signal generation unit 404 to allocate resources to PCell CC # 1 and SCell CC # 2 and to transmit P-CQI.
  • the control unit 403 instructs the transmission signal generation unit 404 to transmit only the P-CQI of the specific CC using the existing PUCCH format (for example, PUCCH format 2).
  • the existing PUCCH format for example, PUCCH format 2.
  • the control unit 403 instructs the transmission signal generation unit 404 to secure resources by distributing to PCell CC # 1 and SCell CC # 2 and to transmit P-CQI.
  • the control unit 403 transmits the P-CQI report in the PUCCH format 2 of the existing system.
  • the generation unit 404 is instructed. At this time, even if the CCs are different, if the P-CQI is duplicated in the same TTI, only the transmission of the P-CQI of the CC with a low cell index is instructed to the transmission signal generator 404, and the other CCs The P-CQI transmission for is stopped.
  • the control unit 403 may be a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 404 generates a UL signal based on an instruction from the control unit 403, performs a mapping process, and outputs the UL signal to the transmission / reception unit 203.
  • the transmission signal generation unit 404 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) and channel state information (CSI) based on an instruction from the control unit 403.
  • the transmission signal generation unit 404 generates an uplink data signal based on an instruction from the control unit 403. For example, the transmission signal generation unit 404 is instructed by the control unit 403 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 may be realized by a computer apparatus including a processor (CPU), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. Good.
  • the processor and memory are connected by a bus for communicating information.
  • the computer-readable recording medium is a storage medium such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, a CD-ROM, a RAM, and a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 301 of the radio base station 10 may be realized by a control program stored in a memory and operated by a processor, and may be similarly realized for other functional blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告する。6個以上のコンポーネントキャリアを利用して無線基地局と通信可能なユーザ端末であって、各コンポーネントキャリアの下りチャネルの受信品質を測定する測定部と、前記無線基地局から指定されたタイミングにしたがって、前記受信品質に関する情報を周期的に送信する送信部と、を備え、前記送信部は、コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで送信する。

Description

ユーザ端末、無線基地局、無線通信システム及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局、無線通信システム及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。そして、LTEからのさらなる広帯域化及び高速化を目的として、LTEアドバンストと呼ばれるLTEの後継システム(LTE-Aとも呼ばれる)が検討され、LTE Rel.10/11として仕様化されている。
 LTE Rel.10/11のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。このように、複数のCCを集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。また、LTE Rel.11においては、CC間で異なるタイミング制御を可能とするマルチプルタイミングアドバンス(MTA:Multiple Timing Advances)が導入されている。このMTAの導入により、実質的に異なる位置に配置された複数の送受信点(例えば、無線基地局とRRH(Remote Radio Head))で形成された複数のCCにおけるCAが実現可能となっている。
 また、LTEのさらなる後継システムであるLTE Rel.12においては、複数の無線基地局が異なる周波数帯(キャリア)で用いられる様々なシナリオが検討されている。例えば、単一の無線基地局が複数のセルを形成する場合には、上述したMTAを適用したCAを適用する一方、複数のセルを形成する無線基地局が完全に異なる場合には、デュアルコネクティビティ(DC:Dual Connectivity)を適用することが検討されている。
 上述したLTEの後継システム(LTE Rel.10~12)におけるCAにおいては、ユーザ端末(UE:User Equipment)当たりに設定可能なCC数が最大5個に制限されている。LTEのさらなる後継システムであるLTE Rel.13においては、より柔軟且つ高速な無線通信を実現するために、ユーザ端末当たりに設定可能なCC数の制限を緩和し、6個以上のCCを設定することが検討されている。
 しかしながら、ユーザ端末に設定可能なCC数が6個以上(例えば、32個)に拡張される場合、既存システム(Rel.10~12)の送信方法をそのまま適用することが困難になると考えられる。例えば、既存システムでは、ユーザ端末からのチャネル状態の周期的な報告にあたって、いわゆる、周期的CQI(P-CQI:Periodic-Channel Quality Indicator)は、5CC以下を前提としたフォーマットを用いて上り制御チャネル(PUCCH:Physical Uplink Control CHannel)で送信される。このため、6個以上のCC数が設定された場合であっても、適切なチャネル状態の報告を実現するための送信手法が必要となることが想定される。
 本発明はかかる点に鑑みてなされたものであり、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができるユーザ端末、無線基地局、無線通信システム及び無線通信方法を提供することを目的の1つとする。
 本発明のユーザ端末の一態様は、6個以上のコンポーネントキャリアを利用して無線基地局と通信可能なユーザ端末であって、各コンポーネントキャリアの下りチャネルの受信品質を測定する測定部と、前記無線基地局から指定されたタイミングにしたがって、前記受信品質に関する情報を周期的に送信する送信部と、を備え、前記送信部は、コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで送信する。
 本発明によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。
既存のキャリアアグリゲーションとそれを拡張したキャリアアグリゲーションとを説明する図である。 既存のP-CQIの報告周期を規定するテーブルを示す図である。 第1の態様におけるP-CQI送信の一例を説明する図である。 第2の態様におけるP-CQI送信の一例を説明する図である。 第3の態様におけるP-CQI送信の一例を説明する図である。 第4の態様におけるP-CQI送信の一例を説明する図である。 第5の態様におけるP-CQI送信の一例を説明する図である。 本発明の一実施形態に係る無線通信システムの概略構成図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。
 図1は、LTEの後継システム(LTE Rel.12)におけるキャリアアグリゲーション(CA)と、LTE Rel.13で検討されるCAのCCの説明図である。図1に示されるように、LTE Rel.12では、ユーザ端末当たりに最大5個のCC(CC#1~CC#5)が設定されているのに対して、LTE Rel.13では、6個以上のCC(セル)を設定する拡張キャリアアグリゲーション(CA enhancement)が検討されている。拡張CAでは、図1に示されるように、ユーザ端末当たりに最大32個のCC(CC#1~CC#32)を設定することが検討されている。この場合には、最大で640MHzの帯域幅を利用してユーザ端末との間で通信することができる。これにより、例えば、通信に利用するCC数を増減又は変更することができ、柔軟且つ高速な無線通信を実現することが可能となる。
 また、Rel.13以降のLTEでは、免許不要の周波数帯、すなわちアンライセンスバンドにおける運用もターゲットとして検討されている。アンライセンスバンドとしては、たとえばWi-Fiと同じ2.4GHzまたは5GHz帯などが使用される。LTE Rel.13では、ライセンスバンドとアンライセンスバンドの間でのキャリアアグリゲーション(LAA:License-Assisted Access)を検討対象としており、例えば、ライセンスバンド100MHzとアンライセンスバンド300MHzを組み合わせたCAも検討されている。
 一方、上述のように、既存システムでは、P-CQIは、5CC以下を前提としたフォーマットを用いて上り制御チャネル(PUCCH)で送信される。このようなP-CQIは、ユーザ端末においてCCごとに別々に算出され、CCごとに無線基地局から設定された周期で個別に(例えば、RRCなどにより)この無線基地局に報告される。P-CQIの送信時に、送信データがない場合(PUSCHがない場合)、PUCCHフォーマット2にしたがってP-CQIが送信され、送信データがある場合(PUSCHがある場合)には、PUSCHを用いてP-CQIが送信される。ただし、上りリンクの1CCにおいて、同一サブフレーム(同一TTI(Transmission Time Interval))で複数CC分のP-CQIを送信することができない。例えば、同一サブフレームで複数CCのP-CQIが重複した場合、ユーザ端末は所定のルールにしたがって1つのP-CQIのみを報告し、他のP-CQIの送信は中止する(ドロップする)。
 このような既存システムのP-CQIの報告手法を、上記LTE Rel.13で検討されているCAに適用した場合、1サブフレーム(1TTI)において、1つのCC分のP-CQIのみが報告されるため、全てのCCのP-CQIを報告するために時間が費やされ、結果、各CCに対応するP-CQIの報告周期が長くなってしまう。例えば、32CCを用いたCAでは、上りリンクにおけるすべてのサブフレームでP-CQIを送信した場合であっても、最短周期が32msとなる。通常、無線基地局側では、適時にユーザ端末のCQIを獲得することが望ましいため、各CCのP-CQIの報告周期が長くなることは望ましいことではない。
 図2には、既存システムにおけるP-CQIの報告周期を規定するテーブル例が示されている。周期Npdには2、5、10、20が規定されているが、これらの周期は20CC以上のCAで採用することができない。
 本発明者等は、このようなCAの特徴に着目し、CCの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット(以下、「大容量PUCCHフォーマット」)又はPUSCHを用いて、複数のCCのP-CQIを同じサブフレームで送信することを着想した。
 以下、本実施の形態について詳細に説明する。なお、以下の説明においては、説明の便宜上、CAを行う際にユーザ端末当たりに設定可能なCC数が32個である場合について説明する。しかしながら、本実施の形態に係る無線通信システムにおいて、ユーザ端末当たりに設定可能なCC数は、これに限定されるものではなく適宜変更が可能である。
(第1の態様)
 第1の態様では、P-CQIの報告にあたって上記大容量PUCCHフォーマットを用い、上りリンクの同一サブフレーム(同一TTI)で複数のCCに対応するP-CQIを送信する。この態様では、大容量PUCCHフォーマットにより、8CC分のP-CQIを1サブフレームで送信する場合について説明する。なお、大容量PUCCHフォーマットを用いて送信するCC数はこれに限られない。
 各CCに対しては、予めP-CQI報告のための周期とタイミングとを設定することができる。例えば、図3に示される例では、CC#1~#8については、20msの周期と、同図に示されている上りリンクの最初のサブフレーム(左から1番目のサブフレーム)で送信するタイミングとが設定されている。CC#9~#16については、20msの周期と、同図に示されている上りリンクの2番目サブフレーム(左から2番目のサブフレーム)で送信するタイミングとが設定されている。CC#17~#24については、10msの周期と、同図に示されている上りリンクの3番目サブフレーム(左から3番目のサブフレーム)で送信するタイミングとが設定されている。CC#25~#32については、10msの周期と、同図に示されている上りリンクの4番目サブフレーム(左から4番目のサブフレーム)で送信するタイミングとが設定されている。
 この結果、上りリンクにおいて、図3における1番目のサブフレームでは、CC#1~#8に対応する複数のP-CQIが送信され、2番目のサブフレームでは、CC#9~#16に対応する複数のP-CQIが送信され、3番目のサブフレームでは、CC#17~#24に対応する複数のP-CQIが送信され、4番目のサブフレームでは、CC#25~#32に対応する複数のP-CQIが送信されることになる。また、CC#17~#24については、周期が10msと設定されているため、図3における上りリンクの13番目のサブフレームにおいても、最新のP-CQIが送信されることになる。同様に、CC#25~#32については、14番目のサブフレームにおいても、最新のP-CQIが送信される。
 第1の態様の制御にあたって、ユーザ端末においては、上記大容量PUCCHが設定される。また、CCごとのP-CQI報告のための周期とタイミングとが無線基地局からRRCなどで設定される。ユーザ端末は、上記周期及びタイミングにしたがって、大容量PUCCHフォーマットを用いて、最大8CC分のP-CQIを同じサブフレーム(同一TTI)で送信する。
 本実施の形態で適用可能な新規フォーマット(大容量PUCCHフォーマット)としては、例えば、PUCCHフォーマット3の直交拡散ブロック符号を減らす方法が考えられる。既存のPUCCHフォーマット3は、同一のビット系列を5つまたは4つの時間シンボルにコピーし、直交拡散符号を乗算する。ユーザ毎に異なる直交拡散符号を乗算することで、互いに直交多重されるものとなっている。この直交符号長を例えば1とすることにより、異なる情報ビット系列を5つまたは4つの時間シンボルに乗せることが可能となる。ただしこの場合、同一PRB上に多重可能なユーザ数は低減する。例えば直交符号長が1の場合、送信できるビット系列長は既存のPUCCHフォーマット3の5倍または4倍となるが、多重可能なユーザ数は1となる。
 新規フォーマット(大容量PUCCHフォーマット)として、2PRB以上の周波数リソースを用いるPUCCHフォーマットを規定することも考えられる。例えば既存のPUCCHフォーマット3の構成を元に、2PRBで送信するPUCCHフォーマットを規定すれば、既存のPUCCHフォーマット3の2倍のビット系列を送信することが可能となる。いずれのPRB数を用いるか、そしてどのPRBを用いて送信するかは、当該PUCCHに多重するHARQ-ACKやCSI(CQIなど)のビット数に応じてUEが判断するものとしても良いし、あらかじめRRC等の上位レイヤシグナリングで指定しても良いし、基地局がPDCCH等の制御信号でサブフレームごとに指示するものとしても良い。
 あるいは、大容量PUCCHフォーマットとして、16QAM以上の多値変調を用いるPUCCHフォーマットを規定することも考えられる。例えば既存のPUCCHフォーマット3の構成を元に、上り制御情報(UCI:Uplink Control Information)を16QAM変調するPUCCHフォーマットを規定すれば、既存のPUCCHフォーマット3の2倍のビット系列を送信することが可能となる。いずれの変調方式を用いるかは、当該PUCCHに多重するHARQ-ACKやCSIのビット数に応じてUEが判断するものとしても良いし、あらかじめRRC等の上位レイヤシグナリングで指定しても良いし、基地局がPDCCH等の制御信号でサブフレームごとに指示するものとしても良い。
 上記説明において、既存のPUCCHフォーマット3の構成を元とするとは、HARQ-ACKやCSIといったUCIに対する符号化方法、無線リソースへのマッピング順序、PUCCHフォーマット3に含まれる参照信号の時間的なシンボル位置、などを再利用することを意味する。参照信号を生成する参照信号系列は、1PRBとは違うものを使うことが想定される。例えば、既存LTEで規定されている2PRBのPUSCHに多重する参照信号系列を用いることが考えられる。
 あるいは、6個以上のCCの上り制御信号を多重可能な新規フォーマットとして、PUSCHを利用することも可能である。この場合、ユーザ端末は、PUSCHの送信を行わない場合であっても上り制御信号の送信をPUSCHで行う。
 既存システムでは、ULデータ送信とUCI送信が同一サブフレームで発生した場合、ユーザ端末は、ULデータ送信を行うよう指示されたPUSCHの中にUCIを多重(Piggyback)する方法を適用している。PUSCHはPUCCHと異なり同一PRBに異なるユーザを符号多重する構成を取っておらず、PRBあたりに含めることができる情報ビット数が大きい。そこで、ULデータが無くても、UCIをPUSCHで送信するようにすれば、これを大容量PUCCHフォーマットとみなしてUCIを送信することが可能となる。
 既存のPUSCHは、基地局からのPDCCH/EPDCCH(DCIフォーマット0やDCIフォーマット4などとして規定されているULグラント)や上位レイヤシグナリングに基づいて特定サブフレーム・特定PRBで送信される。これを、例えばHARQ-ACKやCSIの送信しかない場合でもPUSCH送信を行うことができるようにすることができる。
 UCIを送信するPUSCH構成の割り当てPRBやMCSは、例えば予め上位レイヤシグナリングで指定していても良いし、下りデータ割り当てを指示するPDCCH/EPDCCH(DCIフォーマット1AやDCIフォーマット2Dなどとして規定されているDLアサインメント)や下りデータが送信されるPDSCHの情報などに基づいて定まるものであっても良い。このようにすることで、PUSCH形式の大容量PUCCHフォーマットを送信するPRBを指定するためにPDCCHを送信する必要が無くなるので、制御信号領域のオーバーヘッドを削減できる。
 また、従来、ULデータを含むPUSCHを送信した場合、ユーザ端末は当該PUSCHに対応するPHICHを受信し、再送を行うか否かを決定していた。一方で、HARQ-ACKやCSIの送信を行うPUCCHには、HARQは適用されていない。そこで、大容量PUCCHフォーマットとして使用されるPUSCHを送信する場合(すなわちULデータを含まずUCIしか含まない場合)、ユーザ端末は、当該PUSCHに対応するPHICHの受信・検出を行わなくても良いものとしても良い。このようにすることで、ユーザ端末が不要なPHICH受信を行わなくて良くなるため、ユーザ端末の処理負担を軽減することが可能となる。
 または、大容量PUCCHフォーマットとして使用されるPUSCHを送信する場合(すなわちULデータを含まずUCIしか含まない場合)、ユーザ端末は、当該PUSCHに対応するPHICHの受信・検出を行うものとしても良い。符号拡散を行わないPUSCHは、PUCCHよりも高い受信品質(信号対干渉雑音電力比:SINR)が必要となる。このようにUCIしか含まないPUSCHに対してPHICHで検出結果を通知し、HARQを適用することにより、基地局が高い品質で確実に制御信号を受信できるようになる。
 このような第1の態様によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。特に無線基地局側では、適時にユーザ端末のCQIを獲得することが望ましく、このような要望に対処することができる。
 なお、上記第1の態様では、P-CQI報告のための周期とタイミングとがCC単位で設定されているが、複数のCCを含んだCC群をあらかじめ設定し、このCC群単位で、P-CQI報告のための周期とタイミングとを設定してもよい。例えば、図3に示されるCCにおいて、CC#1~#8、CC#9~#16、CC#17~#24、CC#25~#32を、それぞれCC群に分類し、CC群ごとに周期とタイミングとを設定してもよい。
(第2の態様)
 第2の態様では、第1の態様と同様にP-CQIの報告にあたって上記大容量PUCCHフォーマットが用いられるが、各CCに対しては、P-CQI報告のための周期とタイミングとに加えて、上りリンクにおけるCC(セル)、例えば、P-CQIの報告で使用するCCを設定することができる。
 図4に示される例では、CC#1~#8については、20msの周期と、同図に示されている上りリンクの最初のサブフレーム(左から1番目のサブフレーム)で送信するタイミングとに加えて、上りリンクにおけるCC#1が設定されている。CC#9~#16については、20msの周期と、同図に示されている上りリンクの2番目サブフレーム(左から2番目のサブフレーム)で送信するタイミングとに加えて、上りリンクにおけるCC#1が設定されている。CC#17~#24については、10msの周期と、同図に示されている上りリンクの1番目サブフレーム(左から1番目のサブフレーム)で送信するタイミングとに加えて、上りリンクにおけるCC#2が設定されている。CC#25~#32については、10msの周期と、同図に示されている上りリンクの2番目サブフレーム(左から2番目のサブフレーム)で送信するタイミングとに加えて、上りリンクにおけるCC#2が設定されている。
 なお、図4では、上りリンクにおいて設定するCCを2個とする場合を示しているが、これに限られない。また、設定される複数CCの1つをPCellとすることができる。
 この結果、図4に示されるように、上りリンクのCC#1においては、1番目のサブフレームで、CC#1~#8に対応する複数のP-CQIが送信され、2番目のサブフレームでは、CC#9~#16に対応する複数のP-CQIが送信される。さらに、CC#1~#8とCC#9~#16には、20msの周期が設定されているため、上りリンクのCC#1においては、21番目のサブフレームで、CC#1~#8に対応する最新の複数のP-CQIが送信され、22番目のサブフレームで、CC#9~#16に対応する最新の複数のP-CQIが送信される。
 また、上りリンクのCC#2においては、1番目のサブフレームで、CC#17~#24に対応する複数のP-CQIが送信され、2番目のサブフレームで、CC#25~#32に対応する複数のP-CQIが送信される。CC#17~#24とCC#25~#32には、10msの周期が設定されているため、上りリンクのCC#2においては、11番目、21番目、31番目のサブフレームで、CC#17~#24に対応する最新の複数のP-CQIが送信される。また、12番目、22番目、32番目のサブフレームで、CC#25~#32に対応する最新の複数のP-CQIが送信される。
 第2の態様の制御にあたって、ユーザ端末においては、上記大容量PUCCHが設定される。また、CCごとのP-CQI報告のための周期とタイミングと上りリンクのCCとが無線基地局からRRCなどで設定される。ユーザ端末は、上記周期、タイミング及び上りリンクのCCにしたがって、大容量PUCCHフォーマットを用いて、最大8CC分のP-CQIを同じサブフレームで送信する。なお、この第2の態様におけるユーザ端末は、UL CA可能なユーザ端末であることが好ましい。第2の態様を適用するユーザ端末は、自身が特定の周波数においてUL CA可能であることと、その際に第2の態様に記載されたP-CQIフィードバックが可能であることを、端末能力として基地局にあらかじめ報告しているものとする。
 このような第2の態様によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。特に無線基地局側では、適時にユーザ端末のCQIを獲得することが望ましく、このような要望に対処することができる。
 また、上りリンクにおいて、複数のCCを用いてP-CQIが報告されるため、特定のCC(例えばPCellのCC#1)に偏ってP-CQIが報告されることを避けることができる。また、図4に示される例では、1TTIで、最大16CCのP-CQIを同時に送信することが可能となり、1送信時間におけるP-CQIの送信量を飛躍的に向上することができる。また、1送信時間におけるP-CQIの送信量が向上されるため、ユーザ端末において、P-CQI報告にかかる時間を短縮することができる。また、大容量PUCCHフォーマットの容量(例えば、1CCに対応するP-CQIの情報量を単位とした場合に、いくつ分の容量か)や、上りリンクにおいて設定するCC数を適宜変更することで、P-CQIの獲得要求に応じて、柔軟にP-CQIを報告することができる。
(第3の態様)
 第3の態様では、第2の態様と同様に上りリンクにおいて複数CCでP-CQIを報告することができるが、P-CQIは可能な限りPCellのCC#1で報告するように制御する。ただし、同一サブフレームで報告するP-CQIの量が所定量を超える場合には、上記第2の態様と同様に複数CCでP-CQIを報告する。このため、各CCに対しては、P-CQI報告のための周期とタイミングとが設定され、上りリンクにおけるCCを設定しない構成とすることができる。
 図5に示される例では、CC#1~#8については、20msの周期と、同図に示されている上りリンクの最初のサブフレーム(左から1番目のサブフレーム)で送信するタイミングとが設定されている。CC#9~#16については、20msの周期と、同図に示されている上りリンクの2番目サブフレーム(左から2番目のサブフレーム)で送信するタイミングとが設定されている。CC#17~#24については、10msの周期と、同図に示されている上りリンクの1番目サブフレーム(左から1番目のサブフレーム)で送信するタイミングとが設定されている。CC#25~#32については、10msの周期と、同図に示されている上りリンクの2番目サブフレーム(左から2番目のサブフレーム)で送信するタイミングとが設定されている。
 ユーザ端末では、同じタイミングが設定されたCCのP-CQIの送信にあたって、P-CQIの送信量(または、送信すべきCC数)が所定値を超えているか否かを判断し、所定値を超えている場合に、PCellのCC#1とSCellのCC#2とにP-CQIを分散して割り当てて送信する。例えば、1番目のサブフレームをタイミングとして設定されたCC#1~#8、CC#17~#24に対応する複数のP-CQIの送信にあたり、大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否が判断される。1番目のサブフレームをタイミングとして設定されたCC数は、16であるため、8CC分のP-CQIの送信量を超えると判断され、送信すべきP-CQIはPCellのCC#1とSCellのCC#2とに分散して割り当てられる。この結果、図5に示されるように、1番目のサブフレームにおいては、CC#1にCC#1~#8に対応するP-CQIが割り当てられ、CC#2にCC#17~#24のP-CQIが割り当てられる。
 2番目のサブフレームにおいても、1番目のサブフレームの場合と同様の処理が行われる。この結果、図5に示されるように、2番目のサブフレームにおいては、CC#1にCC#9~#16に対応するP-CQIが割り当てられ、CC#2にCC#25~#32のP-CQIが割り当てられる。同様の処理は、21番目のサブフレームと22番目のサブフレームにおいても行われる。
 一方、11番目のサブフレームにおいても、11番目のサブフレームをタイミングとして設定されたCC#17~#24に対応する複数のP-CQIの送信にあたり、大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否かが判断される。ここで、CC数が8であるため、8CC分のP-CQIの送信量を超えないと判断され、送信すべきP-CQIはPCellのCC#1に割り当てられる。この結果、図5に示されるように、11番目のサブフレームにおいては、CC#1にCC#17~#24のP-CQIが割り当てられて送信される。同様の処理は、12番目のサブフレーム、31番目のサブフレーム、及び、32番目のサブフレームにおいても行われる。
 以上の結果、図5に示されるように、上りリンクのCC#1においては、1番目のサブフレームと21番目のサブフレームで、CC#1~#8に対応する最新の複数のP-CQIが送信され、2番目のサブフレームと22番目のサブフレームでは、CC#9~#16に対応する最新の複数のP-CQIが送信される。また、11番目のサブフレームと31番目のサブフレームとで、CC#17~#24に対応する最新の複数のP-CQIが送信され、12番目のサブフレームと32番目のサブフレームで、CC#25~#32に対応する最新の複数P-CQIが送信される。
 一方、上りリンクのCC#2では、1番目のサブフレームと21番目のサブフレームで、CC#17~#24に対応する最新の複数のP-CQIが送信され、2番目のサブフレームと22番目のサブフレームで、CC#25~#32に対応する最新の複数のP-CQIが送信される。
 第3の態様の制御にあたって、ユーザ端末においては、上記大容量PUCCHが設定される。また、CCごとのP-CQI報告のための周期とタイミングとが無線基地局からRRCなどで設定される。ユーザ端末は、上記周期、タイミングにしたがって、上述の判断処理(大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否の判断)を行い、送信量を超えている場合にPCellのCC#1とSCellのCC#2とに分散してリソースを確保し、P-CQIを送信する。なお、この第3の態様におけるユーザ端末は、UL CA可能なユーザ端末であることが好ましい。第3の態様を適用するユーザ端末は、自身が特定の周波数においてUL CA可能であることと、その際に第2の態様に記載されたP-CQIフィードバックが可能であることを、端末能力として基地局にあらかじめ報告しているものとする。
 このような第3の態様によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。特に無線基地局側では、適時にユーザ端末のCQIを獲得することが望ましく、このような要望に対処することができる。
 また、上りリンクにおいて、PCellのカバレッジは良好である場合が多く、極力この単一のCC(上りリンクセル)でP-CQIが送信されるため、ユーザ端末におけるバッテリ消費を抑えることができる。また、PCellのCC#1で全てのP-CQIを送信できない場合であっても、送信中止となる(ドロップされる)P-CQIを抑えることができ、無線基地局においてチャネル追従性を向上することができる。各CCに対しては、P-CQI報告のための周期とタイミングとが設定され、上りリンクにおけるCCを設定しない構成とする場合、第2の態様と比べてCCを設定する分の上位レイヤシグナリングのオーバーヘッドを削減することができる。
(第3の態様の変形例)
 上述の第3の態様では、大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否の判断を行い、送信量を超えている場合にPCellのCC#1とSCellのCC#2とに分散してリソースを確保し、P-CQIを送信しているが、このような制御にいくつかの条件を付加してもよい。
 例えば、P-CQIをPCellのCC#1とSCellのCC#2とに分散して割り当てる際に、PCellのP-CQIは常にPCellに割り当てられるようにしてもよい。一般に、PCellのCQIは、無線基地局とユーザ端末との間の接続を確保するために重要となるため、これをPCellに割り当てることで、無線基地局において確実にPCellのCQIを受信することができる。
 また、このような付加条件に加えて、セルインデックスの小さい順に、PCellのCC#1に割り当てるようにしてもよい。通常、セルインデックが小さいセルを介して送受される情報は重要性が高い場合が多く、このため、重要度の高い情報を受信するCCのCQIを、カバレッジの良好なPCellで送信することが可能となる。
 また、1サブフレームにおける送信すべきP-CQIの総量が、PCellのCC#1の容量とSCellのCC#2の容量との合計を超える場合、所定の条件にしたがって超過分のP-CQIの送信を中止してもよい。例えば、予め定められた優先度にしたがって、優先度の低い情報に関連するP-CQIから、送信を中止してもよい。優先度の決め方としては、セルインデックスが低い順に優先度が高いものと判断することができる。通常、セルインデックが小さいセルを介して送受される情報は重要性が高い場合が多く、このため、重要度の高い情報を受信するCCのCQIを、カバレッジの良好なPCellで送信することが可能となる。
(第4の態様)
 第4の態様では、特定のCCに対するP-CQIの送信にあたっては、特定CCのP-CQIを、PUCCHフォーマット2、2a、または2b(既存の送信形式)を用いて送信する。第4の態様では、特定CCのP-CQI送信と、他のCCのP-CQI(複数P-CQIの)送信とで使用するPUCCHフォーマットを変更する。特定のCCに関する情報は、RRCなどの上位レイヤシグナリングにより、ユーザ端末に設定することができる。
 第4の態様は、上記第1~第3の態様のいずれにおいても適用することができる。特定CCのP-CQIのみを既存のPUCCHフォーマットで送信する方法を、上記第3の態様に適用した場合の一例について図6を参照して説明する。
 図6では、特定CCがCC#1である場合が示されている。また、特定CCであるCC#1は、20msの周期と、同図に示されている上りリンクの3番目サブフレーム(左から3番目のサブフレーム)で送信するタイミングとが設定されている。このためユーザ端末は、CC#1の3番目のサブフレームにおいて、CC#1のP-CQIをPUCCHフォーマット2で送信する。同様に23番目のサブフレームで、CC#1のP-CQIをPUCCHフォーマット2で送信する。
 このほか、上記第3の態様と異なる点は、上りリンクのCC#1においては、1番目のサブフレームと21番目のサブフレームで、CC#2~#8に対応する最新の複数のP-CQIが送信される点である。
 第4の態様の制御にあたって、ユーザ端末においては、上記大容量PUCCHフォーマットと既存のPUCCHフォーマットが設定される。また、特定CCと、CCごとのP-CQI報告のための周期とタイミングとが無線基地局からRRCなどで設定される。ユーザ端末は、上記特定CCについては、対応するP-CQIを既存のPUCCHフォーマットを用いて送信する。また、ユーザ端末は、上記周期、タイミングにしたがって、上述の判断処理(大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否の判断)を行い、送信量を超えている場合にPCellのCC#1とSCellのCC#2とに分散してリソースを確保し、P-CQIを送信する。なお、この第4の態様におけるユーザ端末は、UL CA可能なユーザ端末であることが好ましい。
 このような第4の態様によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。特に無線基地局側では、適時にユーザ端末のCQIを獲得することが望ましく、このような要望に対処することができる。
 また、ユーザ端末と無線基地局との接続を確保するために重要なCCを特定CCとし、他のCCについてのP-CQI送信サブフレームと異なるサブフレームに設定することで、そのP-CQIのみを既存のPUCCHを用いて1つのサブフレームで報告することができ、無線基地局における受信の確実性を向上することができる。
(第5の態様)
 第5の態様では、CC removalまたはDe-activationなどにより、CC数が5以下に制御(設定)された場合(すなわち、Rel.12で規定済のCAと同じかそれ以下のCC数になった場合)、P-CQIが、既存システムのPUCCHフォーマット2、2a、または2b(既存の送信形式)で送信される。また、複数CCのタイミングが重複した場合には、セルインデックスの低いCCのP-CQIだけ残し、他のCCに対するP-CQIの送信は中止する。第5の態様は、上記第1~第4の態様のいずれにおいても適用することができる。
 具体例を図7を参照して説明する。図7は、上記第3の態様において、CCは、いわゆる、CC removalでRRCによりCC数が4(CC#1、CC#9、CC#17、CC#25)に制御される場合を想定している。もしくは、いわゆるCC De-activationで、MACの制御信号(MAC Control Element)で活性化されるCC数が4(CC#1、CC#9、CC#17、CC#25)に制御される場合を想定している。
 第5の態様の制御にあたって、ユーザ端末は、P-CQIの報告を既存システムのPUCCHフォーマット2で送信する。また、異なる上りリンクCCにおいて、P-CQIが設定される場合であっても、同一のTTIである場合、ユーザ端末は、セルインデックスの低いCCのP-CQIだけ残し、他のCCに対するP-CQIの送信は中止する。
 例えば、図7における最初のTTI(一番左のTTI)では、CC#1のP-CQIとCC#17のP-CQIとが重複している。このため、ユーザ端末は、セルインデックスを比較して、セルインデックの低いCC#1のP-CQIをPUCCHフォーマット2で送信し、セルインデックの高いCC#17の送信を中止する(ドロップする)。同様の処理は、21番目のTTIにおいても行われる。
 また、2番目のTTIでは、CC#9のP-CQIとCC#25のP-CQIとが重複している。このため、ユーザ端末は、セルインデックスを比較して、セルインデックの低いCC#9のP-CQIをPUCCHフォーマット2で送信し、セルインデックの高いCC#25の送信を中止する(ドロップする)。同様の処理は、22番目のTTIにおいても行われる。
 なお、11番目のTTIと31番目のTTIでは、P-CQIの重複が無いため、CC#17のP-CQIがPUCCHフォーマット2で送信される。同様に、12番目のTTIと32番目のTTIでも、P-CQIの重複が無いため、CC#25のP-CQIがPUCCHフォーマット2で送信される。
 また、CC additionやCC activationなどにより、活性化されたCC数が5を超えた場合(すなわちRel.12 CAで規定されていない数のCCが活性化された場合)、大容量PUCCHフォーマットを用いるP-CQI報告を適用する。
 このような第5の態様によれば、ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合であっても、チャネル状態を適切に報告することができる。さらに、コンポーネントキャリア数が5個以下に設定された場合には、既存の通信手法が適用されるため、後方互換性を得ることができる。ユーザ端末に設定可能なコンポーネントキャリア数が6個以上に拡張される場合には、適時にユーザ端末のCQIを獲得することを望む、無線基地局の要望に対処することができる。
(変形例)
 以上の第1~第5の態様においていくつかの変形例も考えられる。
 例えば、大容量PUCCHフォーマットにおいて、P-CQIとスケジューリングリクエスト(SR)がオーバーラップした場合の処理を考慮するようにしてもよい。具体的には、P-CQIとスケジューリングリクエストがオーバーラップした場合に、スケジューリングリクエストをP-CQIに優先し、PCellのPUCCHで送信する。この場合、ユーザ端末では、スケジューリングリクエストをP-CQIよりも優先度の高い情報とみなす制御が行われる。この他、スケジューリングリクエストがある場合には、PUCCHフォーマット2、2a、または2b(既存の送信形式)を用いて送信する。この場合には、複数CCに対するP-CQIを同一サブフレームで送信することができないため、セルインデックスなどを用いた優先度に基づいて1CCのP-CQIのみを送信し、その他のCCに対応するP-CQIの送信は中止する。
 この他、P-CQIとSRS(Sounding Reference Signal)が同一CC上でオーバーラップした場合の処理を考慮するようにしてもよい。この場合、SRSの送信を中止するようにしてもよい。また、当該SRSが上位レイヤシグナリングで周期やリソースが設定されるPeriodic SRS(P-SRS)の場合はP-CQIを優先するよう制御し、ULグラントでトリガされるAperiodic SRS(A-SRS)の場合はA-SRSを優先し、P-CQIの送信を中止するよう制御しても良い。
 この他、複数CCでP-CQIの同時送信(同一TTIでの送信)があり、かつ、ユーザ端末がPower-limitedとなった場合の処理を考慮するようにしてもよい。この場合、1)PCellによるP-CQIの電力(送信)を優先し、SCellで送信するP-CQIを中止(ドロップ)またはPower-scaleするか、2)スケジューリングリクエストを優先するため、スケジューリングリクエストが多重されたP-CQIの電力(送信)を優先し、これ以外のP-CQIを中止またはPower-scaleするか、3)多重されたCC数を比較して、多くのCC数分のP-CQIが多重されているP-CQIの電力(送信)を優先し、それ以外のP-CQIを中止またはPower-scaleしてもよい。
(無線通信システムの構成)
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記第1~第5の態様(変形例を含む)のいずれか又はこれらの組み合わせが適用される。
 図8は、本発明の一実施の形態に係る無線通信システムの一例を示す概略構成図である。図8に示すように、無線通信システム1は、複数の無線基地局10(11及び12(12a~12c))と、各無線基地局10によって形成されるセル内にあり、各無線基地局10と通信可能に構成された複数のユーザ端末20と、を備えている。無線基地局10は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。
 図8において、無線基地局11は、例えば相対的に広いカバレッジを有するマクロ基地局で構成され、マクロセルC1を形成する。無線基地局12(12a~12c)は、局所的なカバレッジを有するスモール基地局で構成され、スモールセルC2を形成する。なお、無線基地局11及び12の数は、図8に示す数に限られない。
 マクロセルC1及びスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、無線基地局11及び12は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して互いに接続される。
 なお、マクロ基地局11は、無線基地局、eNodeB(eNB)、送信ポイント(transmission point)などと呼ばれてもよい。スモール基地局12は、ピコ基地局、フェムト基地局、Home eNodeB(HeNB)、送信ポイント、RRH(Remote Radio Head)などと呼ばれてもよい。
 ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでいてもよい。ユーザ端末20は、無線基地局10を経由して他のユーザ端末20と通信を実行できる。
 上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、同期信号や、MIB(Master Information Block)などが伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどを伝送するために用いられてもよい。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブル(RAプリアンブル)が伝送される。また、上りリンクの参照信号として、チャネル品質測定用の参照信号(SRS:Sounding Reference Signal)、PUCCHやPUSCHを復調するための復調用参照信号(DM-RS:Demodulation Reference Signal)が送信される。
 図9は、本実施の形態に係る無線基地局10の全体構成の一例を示す図である。無線基地局10(無線基地局11及び12を含む)は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部から構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数帯の信号に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野で利用されるトランスミッター/レシーバー、送受信回路又は送受信装置を適用することができる。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)してもよい。
 図10は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。なお、図10では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 図10に示すように、無線基地局10は、制御部(スケジューラ)301と、送信信号生成部302と、受信処理部303と、を少なくとも含んで構成されている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ信号、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御信号のスケジューリングを制御する。また、システム情報、同期信号、CRS、CSI-RSなどの下り参照信号などのスケジューリングの制御も行う。また、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリングを制御する。なお、制御部301は、本発明に係る技術分野で用いられるコントローラ、制御回路又は制御装置で構成することができる。
 また、制御部301は、無線基地局10に接続するユーザ端末20におけるメジャメントの対象となるCCを制御するために、送信信号生成部302を制御することができる。具体的には、制御部301は、TAGに含まれるCC情報を送信信号生成部302に通知し、このCC情報を含む信号(例えば、上位レイヤシグナリング)を生成するように制御する(第1の態様)。また、制御部301は、TAG毎に設定されるメジャメントギャップ構成を送信信号生成部302に通知し、メジャメントギャップ構成を含む信号(例えば、上位レイヤシグナリング)を生成するように制御する(第2の態様)。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下り制御信号、下りデータ信号、下り参照信号など)を生成する。例えば、送信信号生成部302は、制御部301から通知されるタイミングアドバンスグループ(TAG)に含まれるCC情報に基づいて、このCC情報を含む信号を生成する(第1、第2の態様)。この場合、送信信号生成部302は、TAG内CCリストを含む信号を生成することができる(第1、第2の態様)。また、送信信号生成部302は、制御部301から通知されるTAG毎に設定されるメジャメントギャップ構成に基づいて、このメジャメントギャップ構成を含む信号を生成する(第2の態様)。これらの情報は、送受信部103を介して上位レイヤシグナリング(例えば、RRCシグナリング、報知信号等)や下り制御信号によりユーザ端末20へ通知される。なお、送信信号生成部302は、本発明に係る技術分野で利用される信号生成器又は信号生成回路で構成することができる。
 受信処理部303は、ユーザ端末20から送信されるUL信号(上り制御信号、上りデータ信号、上り参照信号など)に対して受信処理(例えば、デマッピング、復調、復号など)を行う。例えば、受信処理部303は、ユーザ端末20から送信されるメジャメント結果に対して受信処理(受信電力(RSRP)やチャネル状態についての測定など)を行う。より具体的には、受信処理部303は、ユーザ端末20から送信されるTAG毎のメジャメント結果に対して受信処理を行う(第1の態様)。また、受信処理部303は、ユーザ端末20から送信されるCC毎のメジャメント結果に対して受信処理を行う(第2の態様)。そして、受信処理部303は、受信処理後のメジャメント結果を制御部301に出力する。なお、受信処理部303は、本発明に係る技術分野で利用される信号処理器又は信号処理回路で構成することができる。
 図11は、本実施の形態に係るユーザ端末20の全体構成の一例を示す図である。図11に示すように、ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野で利用されるトランスミッター/レシーバー、送受信回路又は送受信装置で構成することができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯の信号に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 送受信部203は、1つ以上のセルから構成されるTAGを設定する無線基地局との間で信号を送受信することができる。また、送受信部203は、1つ以上のセルから構成されるセルグループ(CG)をそれぞれ設定する複数の無線基地局との間で信号を送受信することができる。
 図12は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。なお、図12においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 図12に示されるように、ユーザ端末20は、受信信号処理部401と、測定部402と、制御部403と、送信信号生成部404とを少なくとも含んで構成されている。
 受信信号処理部401は、DL信号(例えば、無線基地局から送信された下り制御信号、PDSCHで送信された下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部401は、無線基地局10から受信した情報を、制御部403に出力する。受信信号処理部401は、例えば、報知情報、システム情報、ページング情報、RRCシグナリング、DCIなどを、制御部403に出力する。
 受信信号処理部401は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
 測定部402は、受信した信号を用いて、受信電力(RSRP)、受信品質(RSRQ)やチャネル状態を測定し、その結果を制御部403に出力する。特に、本実施の形態においては、CAのCCそれぞれについて、上記測定が行われる。
 制御部403は、測定部402の測定結果と、受信信号処理部401を介して、無線基地局10から通知された各種情報(P-CQI報告のための周期、タイミング、CC、特定CC)に基づいて、P-CQIを生成する。制御部403は、さらに、上りリンクのリソースにP-CQIをどのように割り当てるかを送信信号生成部404に指示する。
 上記第1の態様では、ユーザ端末20においては、上記大容量PUCCHが設定されており、周期及びタイミングにしたがって、大容量PUCCHフォーマットを用いて、最大8CC分のP-CQIを同じサブフレーム(同一TTI)で送信するよう、制御部403は送信信号生成部404に指示する。
 上記第2の態様では、周期、タイミング及びCCにしたがって、大容量PUCCHフォーマットを用いて、最大8CC分のP-CQIを同じサブフレームで送信するよう、制御部403は送信信号生成部404に指示する。
 上記第3の態様では、周期、タイミングにしたがって、判断処理(大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否の判断)を行い、送信量を超えている場合にPCellのCC#1とSCellのCC#2とに分散してリソースを確保し、P-CQIを送信するよう、制御部403は送信信号生成部404に指示する。
 上記第4の態様では、特定CCについては、特定CCのP-CQIのみを既存のPUCCHフォーマット(例えばPUCCHフォーマット2)を用いて送信するように、制御部403は送信信号生成部404に指示する。また、他のCCのP-CQIについては、判断処理(大容量PUCCHフォーマットで送信可能な8CC分のP-CQIの送信量を超えるか否の判断)を行い、送信量を超えている場合にPCellのCC#1とSCellのCC#2とに分散してリソースを確保し、P-CQIを送信するよう、制御部403は送信信号生成部404に指示する。
 上記第5の態様では、CC removalまたはDe-activationなどにより、CC数が5以下に設定された場合、P-CQIの報告を既存システムのPUCCHフォーマット2で送信するよう、制御部403は送信信号生成部404に指示する。この際、異なるCCであっても、同一のTTIでP-CQIが重複している場合、セルインデックスの低いCCのP-CQIの送信だけを、送信信号生成部404に指示し、他のCCに対するP-CQIの送信は中止する。
 制御部403は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
 送信信号生成部404は、制御部403からの指示に基づいて、UL信号を生成し、マッピング処理を行い、送受信部203に出力する。送信信号生成部404は、制御部403からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。また、送信信号生成部404は、制御部403からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部404は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部403から上りデータ信号の生成を指示される。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM、EPROM、CD-ROM、RAM、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、無線基地局10の制御部301は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年1月29日出願の特願2015-016019に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  6個以上のコンポーネントキャリアを利用して無線基地局と通信可能なユーザ端末であって、
     各コンポーネントキャリアの下りチャネルの受信品質を測定する測定部と、
     前記無線基地局から指定されたタイミングにしたがって、前記受信品質に関する情報を周期的に送信する送信部と、を備え、
     前記送信部は、コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで送信することを特徴とするユーザ端末。
  2.  前記送信部は、コンポーネントキャリアごとに設定されたタイミングと、受信品質に関する情報を送信するコンポーネントキャリアに関する情報とに基づいて、複数のコンポーネントキャリアの受信品質に関する情報を送信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記送信部は、同じサブフレームにおいて複数のコンポーネントキャリアの受信品質に関する情報を送信する際、当該複数のコンポーネントキャリアの受信品質に関する情報量が所定値以下である場合には特定のコンポーネントキャリアで送信し、所定値を超える場合には特定のコンポーネントキャリア及び他のコンポーネントキャリアに分散して送信することを特徴とする請求項1に記載のユーザ端末。
  4.  前記送信部は、前記複数のコンポーネントキャリアの内、セルインデックスに基づいて設定された優先度が高いコンポーネントキャリアに対応する受信品質を示す情報を前記特定のコンポーネントキャリアで優先して送信することを特徴とする請求項3に記載のユーザ端末。
  5.  前記所定値が、前記特定のコンポーネントキャリアの容量と、前記他のコンポーネントキャリアの容量との合計であり、前記送信部は、所定の優先度にしたがって、前記所定値を超過した容量に対応する受信品質を示す情報の送信を中止することを特徴とする請求項3に記載のユーザ端末。
  6.  前記送信部は、1つのサブフレームで1つのコンポーネントキャリアの受信品質を送信する場合、既存システムのPUCCHフォーマット2、2a、または2bを用いて送信を行うことを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  7.  前記複数のコンポーネントキャリアの設定数が5以下になった場合、前記送信部は、各コンポーネントキャリアの受信品質に関する情報を、前記PUCCHフォーマット2、2a、または2bを用いて個別に送信を行うことを特徴とする請求項6に記載のユーザ端末。
  8.  6個以上のコンポーネントキャリアを利用するユーザ端末と通信可能な無線基地局であって、
     前記ユーザ端末において測定される下りチャネルの受信品質に関する情報を周期的に送信するための送信タイミングを、前記ユーザ端末に通知する通知部と、
     コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで受信する受信部と、を備えることを特徴とする無線基地局。
  9.  6個以上のコンポーネントキャリアを利用するユーザ端末と、無線基地局とを具備する無線通信システムであって、
     前記ユーザ端末は、
     各コンポーネントキャリアの下りチャネルの受信品質を測定する測定部と、
     前記無線基地局から指定されたタイミングにしたがって、前記受信品質に関する情報を周期的に送信する送信部と、を含み、
     前記送信部は、コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで送信し、
     前記無線基地局は、
     前記タイミングを前記ユーザ端末に通知する通知部と、
     前記容量が大きいPUCCHフォーマット又はPUSCHを用いて、前記複数のコンポーネントキャリアの受信品質に関する情報を、前記サブフレームで受信する受信部と、を含むことを特徴とする無線通信システム。
  10.  6個以上のコンポーネントキャリアを利用して無線基地局と通信可能なユーザ端末の無線通信方法であって、
     各コンポーネントキャリアの下りチャネルの受信品質を測定する工程と、
     前記無線基地局から指定されたタイミングにしたがって、前記受信品質に関する情報を周期的に送信する工程とを含み、
     前記送信する工程は、コンポーネントキャリアの設定数が5個以下となる既存システムのPUCCHフォーマットと比較して容量が大きいPUCCHフォーマット又はPUSCHを用いて、複数のコンポーネントキャリアの受信品質に関する情報を同じサブフレームで送信することを特徴とする無線通信方法。
PCT/JP2016/052620 2015-01-29 2016-01-29 ユーザ端末、無線基地局、無線通信システム及び無線通信方法 WO2016121915A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680007735.4A CN107211420B (zh) 2015-01-29 2016-01-29 用户终端、无线基站、无线通信系统以及无线通信方法
US15/547,146 US20180007682A1 (en) 2015-01-29 2016-01-29 User terminal, radio base station, radio communication system, and radio communication method
EP16743518.9A EP3253156B1 (en) 2015-01-29 2016-01-29 User terminal, wireless base station, wireless communication system, and wireless communication method
JP2016572174A JP6412961B2 (ja) 2015-01-29 2016-01-29 ユーザ端末及び無線通信方法
PL18209164T PL3471475T3 (pl) 2015-01-29 2016-01-29 Terminal użytkownika, radiowa stacja bazowa, system łączności radiowej i sposób łączności radiowej
EP18209164.5A EP3471475B1 (en) 2015-01-29 2016-01-29 User terminal, radio base station, radio communication system, and radio communication method
US16/258,039 US11337187B2 (en) 2015-01-29 2019-01-25 Terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016019 2015-01-29
JP2015-016019 2015-01-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/547,146 A-371-Of-International US20180007682A1 (en) 2015-01-29 2016-01-29 User terminal, radio base station, radio communication system, and radio communication method
US16/258,039 Continuation US11337187B2 (en) 2015-01-29 2019-01-25 Terminal and radio communication method

Publications (1)

Publication Number Publication Date
WO2016121915A1 true WO2016121915A1 (ja) 2016-08-04

Family

ID=56543519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052620 WO2016121915A1 (ja) 2015-01-29 2016-01-29 ユーザ端末、無線基地局、無線通信システム及び無線通信方法

Country Status (8)

Country Link
US (2) US20180007682A1 (ja)
EP (2) EP3471475B1 (ja)
JP (2) JP6412961B2 (ja)
CN (1) CN107211420B (ja)
ES (1) ES2799273T3 (ja)
HU (2) HUE050429T2 (ja)
PL (1) PL3471475T3 (ja)
WO (1) WO2016121915A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215898A1 (ja) * 2018-05-10 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110622594A (zh) * 2017-08-10 2019-12-27 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196019A2 (ko) * 2016-05-10 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말이 데이터 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2019077727A1 (ja) * 2017-10-19 2019-04-25 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7108027B2 (ja) * 2018-05-10 2022-07-27 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
JP6854354B2 (ja) * 2018-08-03 2021-04-07 アップル インコーポレイテッドApple Inc. New Radio免許不要周波数帯でのデバイス能力に基づくスタンドアローンページング
USD959658S1 (en) 2020-10-12 2022-08-02 Stryker Corportation Medical waste collection unit

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113325B2 (en) * 2007-04-25 2015-08-18 Texas Instruments Incorporated Signaling of random access preamble time-frequency location in wireless networks
KR101590010B1 (ko) * 2009-02-27 2016-01-29 엘지전자 주식회사 무선 통신 시스템에서 하향링크 멀티 캐리어에 대한 채널 품질 정보를 전송하는 방법
KR101670513B1 (ko) * 2009-06-01 2016-10-31 엘지전자 주식회사 무선 통신 시스템에서 측정 결과 보고 방법 및 장치
WO2010148319A1 (en) * 2009-06-19 2010-12-23 Interdigital Patent Holdings, Inc. Signaling uplink control information in lte-a
WO2011074923A2 (ko) * 2009-12-17 2011-06-23 엘지전자 주식회사 다중 반송파 지원 무선 통신 시스템에서 효율적인 채널 상태 정보 전송 방법 및 장치
WO2011085230A2 (en) * 2010-01-08 2011-07-14 Interdigital Patent Holdings, Inc. Channel state information transmission for multiple carriers
US8711714B2 (en) * 2010-03-31 2014-04-29 Fujitsu Limited Method and system for simulating wireless networks
JP2013531431A (ja) * 2010-06-21 2013-08-01 富士通株式会社 無線通信システムに用いるチャネル状態情報フィードバック方法及び設備
CN101908951B (zh) * 2010-08-16 2016-05-11 中兴通讯股份有限公司 一种信道状态信息的报告方法及基站
US9369234B2 (en) * 2010-08-16 2016-06-14 Qualcomm Incorported Channel state information feedback for carrier aggregation
CN101917259B (zh) * 2010-08-16 2016-06-15 中兴通讯股份有限公司 非周期信道状态信息报告的触发方法及基站
US20120127869A1 (en) * 2010-11-22 2012-05-24 Sharp Laboratories Of America, Inc. Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation
KR101995293B1 (ko) * 2011-02-21 2019-07-02 삼성전자 주식회사 반송파 집적 기술을 사용하는 시분할 무선통신시스템에서 부차반송파의 활성화 또는 비활성화 방법 및 장치
WO2013006593A1 (en) * 2011-07-04 2013-01-10 Dinan Esmael Hejazi Broadcast channel in multicarrier systems
US8797985B2 (en) * 2011-10-03 2014-08-05 Telefonaktiebolaget L M Ericsson (Publ) Channel selection and channel-state information collision handling
CN105591718B (zh) * 2011-11-09 2019-10-01 华为技术有限公司 传输信息的方法及装置
EP2797253B1 (en) * 2012-01-27 2016-09-14 LG Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
US10158472B2 (en) * 2012-02-28 2018-12-18 Lg Electronics Inc. Method for transmitting channel state information report and user equipment, and method for receiving channel state information report and base station
JP5743965B2 (ja) * 2012-06-26 2015-07-01 株式会社Nttドコモ ユーザ端末、無線通信システム、無線通信方法及び無線基地局
GB2514574B (en) * 2013-05-29 2015-08-12 Broadcom Corp Method, apparatus and computer program for search and synchronisation
JP6183998B2 (ja) 2013-07-09 2017-08-23 ライオン株式会社 液体消臭剤
CN105493420B (zh) * 2013-08-06 2018-09-28 Lg电子株式会社 用于无线通信的方法和设备
CN118175636A (zh) * 2014-06-09 2024-06-11 艾尔瓦纳有限合伙公司 在无线电接入网络中调度相同的资源
US9935807B2 (en) * 2014-09-26 2018-04-03 Telefonaktiebolaget L M Ericsson (Publ) Discovery signal design
US10575205B2 (en) * 2014-10-20 2020-02-25 Qualcomm Incorporated Transport block size determination

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Multi- cell Periodic CSI Transmission", 3GPP TSG RAN WG1 MEETING #69 R1-122269, 21 May 2012 (2012-05-21), XP050600532 *
NOKIA CORPORATION ET AL.: "New SI Proposal: LTE Carrier Aggregation Enhancement Beyond 5 Carriers", 3GPP TSG RAN MEETING #65 RP-141418, 9 September 2014 (2014-09-09), XP050783751 *
See also references of EP3253156A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622594A (zh) * 2017-08-10 2019-12-27 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
JP2020535668A (ja) * 2017-08-10 2020-12-03 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データを伝送する方法、ネットワーク装置及び端末装置
JP7178368B2 (ja) 2017-08-10 2022-11-25 オッポ広東移動通信有限公司 データを伝送する方法、ネットワーク装置及び端末装置
US11570798B2 (en) 2017-08-10 2023-01-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, network device and terminal device
WO2019215898A1 (ja) * 2018-05-10 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法

Also Published As

Publication number Publication date
US20180007682A1 (en) 2018-01-04
EP3471475A1 (en) 2019-04-17
HUE050689T2 (hu) 2020-12-28
JP6636112B2 (ja) 2020-01-29
CN107211420A (zh) 2017-09-26
CN107211420B (zh) 2021-06-01
JP6412961B2 (ja) 2018-10-24
JPWO2016121915A1 (ja) 2017-11-24
US11337187B2 (en) 2022-05-17
EP3471475B1 (en) 2020-05-20
EP3253156A4 (en) 2018-06-13
HUE050429T2 (hu) 2020-12-28
EP3253156A1 (en) 2017-12-06
PL3471475T3 (pl) 2020-09-21
JP2018201253A (ja) 2018-12-20
EP3253156B1 (en) 2020-08-05
ES2799273T3 (es) 2020-12-16
US20190159198A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6871355B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6291088B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2020025318A (ja) ユーザ端末、無線基地局及び無線通信方法
US9420593B2 (en) Communication system, base station apparatus, mobile terminal apparatus and communication method
JP6479963B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5462203B2 (ja) 非周期的チャネル状態情報通知方法、無線基地局装置、ユーザ端末
JP6412961B2 (ja) ユーザ端末及び無線通信方法
JP6105672B2 (ja) ユーザ端末及び無線通信方法
JP6235174B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016017357A1 (ja) 無線基地局、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572174

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743518

Country of ref document: EP