WO2016121841A1 - 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 - Google Patents

近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 Download PDF

Info

Publication number
WO2016121841A1
WO2016121841A1 PCT/JP2016/052399 JP2016052399W WO2016121841A1 WO 2016121841 A1 WO2016121841 A1 WO 2016121841A1 JP 2016052399 W JP2016052399 W JP 2016052399W WO 2016121841 A1 WO2016121841 A1 WO 2016121841A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
infrared absorbing
fine particles
dispersion
absorbing fine
Prior art date
Application number
PCT/JP2016/052399
Other languages
English (en)
French (fr)
Inventor
美香 岡田
英昭 福山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2016572121A priority Critical patent/JP6519596B2/ja
Priority to US15/546,923 priority patent/US10604665B2/en
Priority to AU2016213101A priority patent/AU2016213101B2/en
Priority to CN201680007427.1A priority patent/CN107429098B/zh
Priority to EP16743444.8A priority patent/EP3252113B1/en
Publication of WO2016121841A1 publication Critical patent/WO2016121841A1/ja
Priority to US16/708,600 priority patent/US11084949B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/06Printing inks based on fatty oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides

Definitions

  • the present invention relates to a near-infrared absorbing fine particle dispersion having an absorption capability in the near-infrared region and applicable to offset printing, a method for producing the same, an anti-counterfeit ink composition using the near-infrared absorbing fine particle dispersion, and a near infrared
  • the present invention relates to an anti-counterfeit printed matter using absorbent fine particles.
  • the “near-infrared absorbing fine particles” in the present invention and the “near-infrared absorbing material fine particles” in the previous application based on priority are the same fine particles.
  • offset printing is characterized by being capable of high-definition printing and suitable for mass printing.
  • the pigment dispersion used from the printing principle is required to be oleophilic and not to dissolve the rubber blanket to which the dispersion is transferred during the offset printing.
  • the infrared absorbing material is transparent in the visible light region, it cannot be visually determined that the infrared absorbing material is printed as a pigment. For this reason, it is preferable from the viewpoint of forgery prevention and the like, and since it does not visually disturb the original print display, it is also preferable from the viewpoint of visibility and aesthetics.
  • Patent Document 1 proposes a material using a phthalocyanine compound.
  • Patent Document 2 proposes one using tin-doped indium oxide.
  • Patent Document 3 and Patent Document 4 disclose a coating solution for a selectively permeable membrane dispersed in the above.
  • Patent Document 5 an anti-counterfeit ink in which the anti-counterfeit ink composition containing the hexaboride fine particles as a near-infrared absorbing material is dispersed in a solvent.
  • the organic pigment such as the phthalocyanine compound used in Patent Document 1 has a problem that its infrared absorption characteristics change due to the influence of temperature, ultraviolet rays, etc., and is inferior in durability. have.
  • the infrared absorbing material using tin-doped indium oxide used in Patent Document 2 has insufficient contrast between the wavelength region that transmits or reflects as visible light and the wavelength region that absorbs as infrared light. For this reason, when the near-infrared absorbing fine particle dispersion using the tin-doped indium oxide is applied to offset printing, there is a problem in that the reading accuracy of the printing unit is lowered.
  • the present inventors use a vegetable oil or a compound derived from vegetable oil used as a solvent for offset printing as a solvent, and add to the solvent a general formula XB a (wherein element X is La, Ce, Pr, Nd, Gd, At least one element selected from Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, or Ca, and hexaboron represented by 4.0 ⁇ a ⁇ 6.2) Attempts were made to add dispersion fine particles to form a dispersion. However, it has been found that there is a problem that the viscosity of the obtained dispersion increases and it is difficult to pulverize or disperse the hexaboride fine particles in a solvent.
  • the present invention has been made under such circumstances, and a problem to be solved is a near-infrared ray that has an absorption capability in the near-infrared region, has a clear contrast, and can be applied to offset printing.
  • the object is to provide an absorbent fine particle dispersion and a method for producing the same.
  • this anti-counterfeit ink composition containing this near-infrared absorbing fine particle dispersion it is possible to perform offset printing, and copying cannot be performed by copying or the like. It is an object to provide a forgery-preventing printed matter that can determine authenticity, has few design restrictions, and has an excellent anti-counterfeit effect.
  • the near-infrared absorbing fine particles are added to one or more solvents selected from vegetable oils or compounds derived from vegetable oils, and then pulverized and dispersed.
  • the near-infrared absorbing fine particles are one or more solvents selected from alcohols, ethers, esters, ketones, aromatic hydrocarbons, glycol ethers and having a boiling point of 180 ° C. or lower.
  • One kind selected from a vegetable oil or a vegetable oil-derived compound added to a solvent hereinafter sometimes referred to as “first solvent” in the present invention), pulverized and dispersed.
  • the present inventors have conceived a configuration in which the solvent is replaced with the above solvent (hereinafter sometimes referred to as “second solvent” in the present invention) to obtain a near-infrared absorbing fine particle dispersion.
  • the counterfeit-preventing ink composition for offset printing containing the near-infrared absorbing fine particle dispersion, or containing a pigment usually used in general offset printing ink together with the near-infrared absorbing fine particle dispersion, and the offset printing
  • An anti-counterfeit printed matter printed using the anti-counterfeit ink composition for printing was also conceived to complete the present invention.
  • the first invention for solving the above-described problem is One or more solvents selected from vegetable oils or compounds derived from vegetable oils; Hexaboride fine particles (element X formula is denoted by XB a is, La, Ce, Pr, Nd , Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and At least one selected from Ca, one or more near-infrared absorbing fine particles selected from 4.0 ⁇ a ⁇ 6.2), One or more solvents selected from alcohols, ethers, esters, ketones, aromatic hydrocarbons, glycol ethers and having a boiling point of 180 ° C.
  • XB a is, La, Ce, Pr, Nd , Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and At least one selected from Ca, one or more near-infrared absorbing fine particles selected from 4.0 ⁇ a ⁇ 6.2
  • the second invention is The near-infrared absorbing fine particle dispersion further comprises a dispersant that is soluble in one or more solvents selected from the vegetable oil or the vegetable oil-derived compound and has a fatty acid in its structure,
  • the near-infrared absorbing fine particle dispersion according to the first aspect wherein the concentration of hexaboride in the near-infrared absorbing fine particle dispersion is 25% by mass or more and 75% by mass or less.
  • the third invention is The near-infrared absorbing fine particle dispersion according to the second invention, wherein the anchor portion of the dispersant has one or more selected from a secondary amino group, a tertiary amino group, and a quaternary ammonium group It is a liquid.
  • the fourth invention is: The near-infrared absorbing fine particle dispersion according to the second or third invention, wherein the dispersant has an acid value of 1 mgKOH / g or more.
  • the fifth invention is: The near-infrared absorbing fine particle dispersion liquid according to any one of the first to fourth inventions, wherein the near-infrared absorbing fine particle has a dispersed particle diameter of 1 nm to 200 nm.
  • the sixth invention is: The near-infrared absorbing fine particle dispersion according to any one of the first to fifth inventions, wherein the near-infrared absorbing fine particles have a lattice constant of 0.4100 nm to 0.4160 nm.
  • the seventh invention The near infrared ray according to any one of the first to sixth inventions, wherein the surface of the near infrared ray absorbing fine particles is coated with one or more compounds selected from Si, Ti, Al, and Zr. Absorption fine particle dispersion.
  • the eighth invention The near-infrared absorbing fine particle dispersion according to any one of the first to seventh inventions, wherein the vegetable oil is one or more kinds of vegetable oil selected from drying oil and semi-drying oil.
  • the ninth invention The near-infrared absorbing fine particle dispersion according to any one of the first to eighth inventions, further comprising a binder.
  • the tenth invention is Hexaboride fine particles (element X formula is denoted by XB a is, La, Ce, Pr, Nd , Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and At least one selected from Ca, one or more near-infrared absorbing fine particles selected from 4.0 ⁇ a ⁇ 6.2), alcohols, ethers, esters, ketones, aromatic hydrocarbons A process of obtaining a first dispersion by mixing and dispersing in a solvent having a boiling point of 180 ° C.
  • the eleventh invention is The near-infrared absorbing fine particle dispersion according to the tenth invention, wherein the near-infrared absorbing fine particle concentration in the first dispersion is 5% by mass or more and 50% by mass or less.
  • the twelfth invention is One or more solvents selected from alcohols, ethers, esters, ketones, aromatic hydrocarbons, glycol ethers and having a boiling point of 180 ° C. or lower, and selected from vegetable oil or compounds derived from vegetable oil Mixing one or more kinds of solvents to obtain a mixed solvent; Hexaboride fine particles (element X formula is denoted by XB a is, La, Ce, Pr, Nd , Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and At least one selected from Ca and one or more near-infrared absorbing fine particles selected from 4.0 ⁇ a ⁇ 6.2) are mixed and dispersed in the mixed solvent to obtain a third dispersion.
  • solvents selected from alcohols, ethers, esters, ketones, aromatic hydrocarbons, glycol ethers and having a boiling point of 180 ° C. or lower, and selected from vegetable oil or compounds derived from
  • the thirteenth invention is The near-infrared absorbing fine particle dispersion according to the twelfth invention is characterized in that the concentration of near-infrared absorbing fine particles in the third dispersion is 5% by mass or more and 50% by mass or less.
  • the fourteenth invention is Dispersants having a fatty acid in the structure and soluble in the solvent are added to at least one of the one or more solvents selected from the vegetable oil or the vegetable oil-derived compound.
  • the fifteenth invention A forgery-preventing ink composition comprising the near-infrared absorbing fine particle dispersion according to any one of the first to ninth inventions.
  • the sixteenth invention is The anti-counterfeit ink composition according to the fifteenth aspect of the invention, further comprising a pigment.
  • the seventeenth invention The pigment described in the sixteenth invention is an inorganic pigment, and carbon black, white pigment, extender pigment, red pigment, yellow pigment, green pigment, blue pigment, purple pigment, fluorescent pigment, temperature pigment, pearl pigment, metal powder pigment It is an anti-counterfeit ink composition characterized by being at least one selected from The eighteenth invention
  • the pigment according to the sixteenth invention is an organic pigment and is at least one selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment, It is a composition.
  • the anti-counterfeit ink composition according to any one of the fifteenth to eighteenth inventions, comprising one or more selected from a plasticizer, an antioxidant, a thickener, and a wax.
  • the twentieth invention is On one or both sides of the substrate, a printed matter having a printing pattern, hexaboride particles (element X formula is denoted by XB a said printed pattern, La, Ce, Pr, Nd , Gd, Tb At least one selected from Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and Ca, and at least one selected from 4.0 ⁇ a ⁇ 6.2) An anti-counterfeit printed matter containing infrared absorbing fine particles.
  • the twenty-first invention 20 The forgery-preventing printed matter according to the twentieth invention, wherein the printed pattern further contains a pigment.
  • the twenty-second invention relates to The pigment is an inorganic pigment, and one or more selected from carbon black, white pigment, extender pigment, red pigment, yellow pigment, green pigment, blue pigment, purple pigment, fluorescent pigment, temperature pigment, pearl pigment, metal powder pigment.
  • the twenty-third invention The forgery prevention according to the twenty-first invention, wherein the pigment is an organic pigment and is at least one selected from an azo lake pigment, an insoluble azo pigment, a condensed azo pigment, a phthalocyanine pigment, and a condensed polycyclic pigment. It is printed matter.
  • the twenty-fourth invention is The value obtained by dividing the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the anti-counterfeit printed matter by the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of a blank not containing near-infrared absorbing fine particles is 0.84 or less.
  • the anti-counterfeit printed matter according to any one of the twentieth to the twenty-third inventions.
  • the near-infrared absorbing fine particle dispersion according to the present invention By using the near-infrared absorbing fine particle dispersion according to the present invention, offset printing having a near-infrared absorption capability and a clear contrast can be easily performed.
  • the anti-counterfeit ink composition that can be offset printed by using the near-infrared absorbing fine particle dispersion according to the present invention and the copy cannot be reproduced by copying, etc. Therefore, it is possible to provide a forgery-preventing printed matter with less design restrictions and excellent anti-counterfeiting effect.
  • near infrared absorbing fine particles solvent, dispersant, dispersion method of near infrared absorbing fine particles in solvent, near infrared absorbing fine particle dispersion, anti-counterfeiting ink composition for offset printing, printing method
  • the near-infrared absorbing fine particles used in the present invention are hexaboride fine particles whose general formula is represented by XB a (4.0 ⁇ a ⁇ 6.2).
  • the element X is at least one selected from La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr and Ca. .
  • lanthanum hexaboride LaB 6 cerium hexaboride CeB 6 , praseodymium hexaboride PrB 6 , neodymium hexaboride NdB 6 , gadolinium hexaboride GdB 6 , terbium hexaboride TbB 6 , hexaboride Dysprosium DyB 6 , holmium hexaboride HoB 6 , yttrium hexaboride YB 6 , samarium hexaboride SmB 6 , europium hexaboride EuB 6 , erbium hexaboride ErB 6 , thulium hexaboride TmB 6 , hexaboro It is preferably at least one selected from ytterbium iodide YbB 6 , lutetium hexaboride LuB 6 ,
  • the surface of the hexaboride fine particles is preferably not oxidized. However, usually, the surface is often slightly oxidized, and oxidation of the surface in the fine particle dispersion process is unavoidable to some extent. However, even in that case, the effectiveness of developing the heat ray shielding effect is not changed, and therefore, hexaboride fine particles having an oxidized surface can be used.
  • the higher the crystallinity of the hexaboride fine particles the greater the heat ray shielding effect.
  • the basic bonds inside the fine particles are composed of bonds of each metal and boron, If the lattice constant is 0.4100 nm to 0.4160 nm, the desired heat ray shielding effect is exhibited, so that the present invention can be preferably applied in the present invention.
  • the lattice constant can be obtained, for example, by performing Rietveld analysis based on XRD pattern data.
  • the surface of the hexaboride fine particles is coated with a silane coupling agent. Since the surface of the hexaboride fine particles is coated with a silane coupling agent, excellent dispersibility of the hexaboride fine particles can be obtained. As a result, in the near-infrared absorbing fine particle dispersion according to the present invention, an excellent near-infrared absorbing function and transparency in the visible light region can be obtained.
  • the light transmittance has a maximum value between wavelengths of 400 nm and 700 nm, and has a minimum value between wavelengths of 700 nm and 1800 nm. Furthermore, it has been observed that the difference between the maximum value and the minimum value in the light transmittance is 15 points or more.
  • such a heat ray shielding transparent resin molded article is effective for visible light. It can be seen that it has the characteristic of effectively reflecting and absorbing other heat rays.
  • the hexaboride fine particles according to the present invention greatly absorb light in the near-ultraviolet region with a wavelength of about 350 to 400 nm and near-infrared region with a wavelength of about 650 to 1300 nm, particularly about 1000 nm. For this reason, the transmission color tone is often colorless to green.
  • the dispersed particle size of the hexaboride fine particles according to the present invention can be selected depending on the purpose of use.
  • the dispersed particle diameter is made sufficiently small in order to exhibit absorption in the near infrared region. This is because the light absorption property of hexaboride is due to localized surface plasmon resonance, which is a phenomenon unique to nanoparticles.
  • the dispersed particle size means the aggregated particle size of boride fine particles in a solvent, and can be measured by various commercially available particle size distribution analyzers.
  • ELS-800 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering, is sampled from a dispersion in which boride fine particles are dispersed in a solvent in the presence of aggregates of boride fine particles. Can be measured. For example, if the dispersed particle diameter is 1500 nm or less, the hexaboride fine particles have absorption in the near infrared region. When the dispersed particle size is approximately 800 nm or less, the absorption in the near-infrared region becomes strong, and if it is 200 nm or less, stronger absorption is exhibited, and if it is 100 nm or less, strong absorption is exhibited.
  • the hexaboride fine particles according to the present invention transparency and non-scattering properties in the visible light region can be obtained by suppressing light scattering caused by the fine particles.
  • Light scattering includes geometric optical scattering, Mie scattering, and Rayleigh scattering depending on the ratio of the particle diameter to the wavelength of light.
  • geometrical optical scattering is almost negligible if the dispersed particle diameter of the hexaboride fine particles is 1000 nm or less. If the dispersed particle diameter is 200 nm or less, Mie scattering is weakened, and if it is 100 nm or less, it is further weakened.
  • Rayleigh scattering is the main scattering factor in the region where the dispersed particle size of the fine particles is smaller. Since the Rayleigh scattering intensity decreases in inverse proportion to the sixth power of the dispersed particle diameter, the scattered light can be reduced by further reducing the dispersed particle diameter of the fine particles, which is preferable.
  • the dispersed particle size of the hexaboride fine particles according to the present invention is 200 nm or less. Preferably there is. If the dispersed particle diameter is 200 nm or less, the near-infrared absorption of hexaboride by localized surface plasmon resonance is sufficiently exhibited and the light scattering of visible light is sufficiently reduced. This is because the contrast of [reflection / absorption] or [transmission / absorption] in light or transmitted light is improved. On the other hand, if the dispersed particle diameter is 1 nm or more, industrial production is easy.
  • the surface of the hexaboride fine particles according to the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al. preferable.
  • the first solvent used in the present invention is a solvent suitable for the step of pulverizing the hexaboride according to the present invention into fine particles and dispersing it in the solvent.
  • alcohols such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone,
  • Various solvents such as ketones such as ethyl isobutyl ketone and methyl isobutyl ketone, aromatic hydrocarbons such as toluene, xylene and benzene, and glycol ethers such as propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether.
  • solvents such as alcohols and glycol ethers are preferable from the viewpoints of safety and operability in the process because of their low health hazards to the human body.
  • methyl isobutyl ketone and toluene are excellent in workability and are preferable solvents from the viewpoint of improving productivity.
  • Offset printing is a printing method that uses the property of repelling water and oil, and the plate consists of an oleophilic layer to which printing ink is applied and a new water layer to which water is not applied and ink is not applied. Therefore, offset printing ink and water are required to be hardly soluble.
  • the first solvents alcohols and glycol ethers are highly polar and easily soluble in water, and therefore, the offset printing ink is required to contain a predetermined amount or less. Specifically, the content is preferably 1.0% by mass or less.
  • solvents other than alcohols and glycol ethers have low polarity and are hardly soluble in water, but may dissolve rubber blankets to which fine particle dispersions are transferred during offset printing.
  • the offset printing ink is required to contain a predetermined amount or less.
  • the content is preferably 1.0% by mass or less. Accordingly, it is preferable that the content of the first solvent is sufficiently reduced after the step of pulverizing the hexaboride according to the present invention into fine particles and dispersing it in the solvent is completed. Specifically, using a low boiling point solvent as the first solvent, providing a difference in boiling point with a second solvent described later, and reducing the content of the first solvent by heating distillation Conceivable. If the solvent substitution is performed by the heating distillation, it is considered preferable to use a solvent having a boiling point of 180 ° C. or less as the first solvent.
  • the second solvent used in the present invention is insoluble in water, and is required not to dissolve a rubber blanket used in offset printing.
  • one or more solvents selected from vegetable oils and vegetable oil-derived compounds can be used.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil and tung oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil and rice bran oil, and non-drying oils such as olive oil, coconut oil, palm oil and dehydrated castor oil. Used.
  • examples of the vegetable oil-derived compounds include fatty acid monoesters and ethers obtained by directly esterifying a fatty acid of a vegetable oil with a monoalcohol.
  • the above-mentioned vegetable oil and the compound derived from vegetable oil have a double bond in the fatty acid which is a constituent component of the contained fat. This double bond reacts with oxygen in the air, so that a polymerization reaction between oil and fat molecules and a double bond such as a pigment component proceeds.
  • the coating film after offset printing is solidified by the polymerization reaction proceeding by the polymerization of the oil / fat molecules or by the polymerization of the oil / fat and a pigment component for offset printing.
  • the solidification of the coating film after offset printing becomes faster as the number of double bonds in the fatty acid that is a constituent of vegetable oil and vegetable oil-derived compounds increases, but the number of double bonds in the fatty acid is evaluated by the iodine value.
  • the solidification of the coating film becomes faster as the iodine value of the vegetable oil or the compound derived from the vegetable oil is higher.
  • dry oil has an iodine value of 130 or more
  • semi-dry oil has 130 to 100
  • non-dry oil has 100 or less.
  • a vegetable oil used for offset printing and a compound derived from a vegetable oil, 1 or more types selected from drying oils, such as a semi-drying oil, the linseed oil which has an iodine value of 130 or more, sunflower oil, a tung oil, are preferable.
  • Dispersant From the viewpoint of improving workability and operability, to the first solvent, the second solvent, or the first and second mixed solvents in which the hexaboride fine particles according to the present invention are dispersed. It is also a preferred configuration to reduce the viscosity by adding a dispersant. In addition, from the viewpoint of reducing the viscosity of the solvent, the dispersant according to the present invention to be added preferably has a fatty acid in the structure.
  • the dispersant according to the present invention is required to be soluble in the above-described first and second solvents according to the present invention. Furthermore, it is preferable that the acid value of the dispersant according to the present invention is 1 mgKOH / g or more because the ability to disperse the above-described near-infrared absorbing fine particles in the solvent according to the present invention is high.
  • the structure of the dispersant according to the present invention is not particularly limited, but it is preferable to use a polymer dispersant having a basic anchor portion.
  • the anchor portion is a site (group) in the molecule of the polymer dispersant, and is a site (group) that is adsorbed on the surface of the near-infrared absorbing fine particles.
  • a polymer dispersant having a basic anchor portion because the storage stability of the anti-counterfeit ink for offset printing is improved.
  • the basic site (group) serving as the anchor portion include sites (groups) such as (secondary amino group, tertiary amino group, and quaternary ammonium group).
  • FIG. 5 shows one embodiment of the polymer dispersant used in the present invention.
  • A1 and A2 are portions (anchor portions) adsorbed on the solid fine particles. If the anchor portion has at least one point (adsorption point) that adsorbs to the solid fine particles, the structure is not particularly limited. For example, a chain, a ring, a condensed polycyclic ring, or a combination thereof Composed. A1 and A2 may be the same or different.
  • X, Y, and Z are polymer chain portions that are solvated and dissolve in the liquid from the surface of the solid fine particles, and hereinafter, X and Z are referred to as a tail portion, and Y is referred to as a loop portion.
  • a homopolymer composed of a single monomer or a copolymer composed of a plurality of monomers is used for the tail portion and the loop portion.
  • the polymer dispersant used in the present invention may be a compound having the general formula [X-A1-Y-A2-Z] in which the loop portion (Y) does not exist. A1-A2-Z].
  • Y shown in FIG. 6 does not exist, and a structure in which two tail portions are bonded to one anchor portion can be taken.
  • the general formula [X-A3-Z] is obtained.
  • a structure in which Z shown in FIG. 7 does not exist and one tail portion is bonded to one anchor portion can be taken.
  • the general formula [X-A4] is obtained.
  • a constituting the polymer dispersant used in the present invention examples include, for example, hydrogen bonding, acid, It has at least one functional group (adsorption point) having an adsorption interaction with the solid particle surface by base interaction or the like.
  • A1 and A2 may be the same or different, but considering the adsorptivity to the solid fine particles, those having the same functional group as the functional group (adsorption point) having the adsorption interaction are preferable. Further, from the viewpoint of production of the polymer dispersant, it is preferable that A1 and A2 are the same.
  • X, Y, and Z constituting the polymer dispersant used in the present invention may be composed of different chemical species, and at least two may be composed of the same chemical species.
  • Such tail portions and loop portions are portions that are solvated and dissolve in the liquid from the surface of the solid fine particles, and therefore, a polymer chain having affinity for the solvent in which the solid fine particles are dispersed is used.
  • the hexaboride fine particles according to the present invention are added in an amount of 25% by mass or more and 75% by mass by adding the dispersant to one or more solvents selected from vegetable oils or compounds derived from vegetable oils.
  • the fluidity of the dispersion liquid dispersed exhibits a dispersion ability that allows it to be secured.
  • Dispersic As a preferred specific example of the dispersant according to the present invention, if it is a commercially available dispersant, Dispersic (DISPERBYK) 142; Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, Dispersic 170 Dispersic 180, Dispersic 182, Dispersic 184, Dispersic 190, Dispersic 2155 (above, manufactured by BYK Japan KK); EFKA-46, EFKA-47, EFKA-48, EFKA-49 (above, BASF); Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 2000 Solsperse 24000, Solsperse 27000, Solsperse 28000, Solsperse 32000, Solsperse 33000, Solsperse 39000, Solsperse 56000, Solsperse 71000 (manufactured by Nippon Lu
  • the addition amount of the dispersant according to the present invention is preferably 30 parts by weight or more and 200 parts by weight or less with respect to 100 parts by weight of the hexaboride fine particles.
  • the said dispersing agent does not contain the solvent which may melt
  • (1) Method for producing first near-infrared absorbing fine particle dispersion The step of mixing the hexaboride fine particles into the first solvent and dispersing the mixture using a wet medium mill or the like to obtain a first dispersion; Adding to and mixing one or more solvents selected from vegetable oils or vegetable oil-derived compounds to the first dispersion to obtain a second dispersion; and from the second dispersion, And a step of removing the first solvent in the previous period until the content of the first solvent is 5% by mass or less. Details will be described below.
  • the dispersion method for obtaining the first dispersion by dispersing the hexaboride fine particles according to the present invention in one or more kinds of the first solvent is arbitrary as long as the fine particles are uniformly dispersed in the solvent. Can be selected. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
  • the first solvent is a solvent having a boiling point of 180 ° C. or lower, preferably 150 ° C. or lower.
  • the concentration of the hexaboride fine particles in the first dispersion is 5% by mass or more, the productivity in producing the anti-counterfeit ink composition for offset printing is excellent.
  • the concentration of the hexaboride fine particles is 50% by mass or less, the viscosity of the first dispersion does not become too high, and the operation of pulverizing and dispersing the hexaboride fine particles is easy.
  • the concentration of the hexaboride fine particles in the first dispersion is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 20 to 30% by mass.
  • One or more kinds of second solvents selected from vegetable oil or vegetable oil-derived compounds are added to and mixed with the first dispersion in which hexaboride fine particles are dispersed to obtain a second dispersion.
  • the fluidity of the near-infrared absorbing fine particle dispersion according to the present invention obtained is maintained, recovery is facilitated, and productivity is maintained.
  • the second solvent is 270 parts by weight or less with respect to 100 parts by weight of the hexaboride fine particles contained in the first dispersion
  • the near-infrared absorbing fine particle dispersion according to the present invention finally obtained
  • the concentration of fine hexaboride particles in the inside is guaranteed. Therefore, it is possible to avoid a situation in which a large amount of the near-infrared absorbing fine particle dispersion according to the present invention is added, and the viscosity of the ink can be secured. As a result, viscosity adjustment is unnecessary, which is preferable because the process is simplified and an increase in manufacturing cost can be avoided.
  • the mixing of the first dispersion and the second solvent is such that the second solvent is 2.5 to 270 weights with respect to 100 parts by weight of the hexaboride fine particles contained in the first dispersion.
  • Parts preferably 70 to 270 parts by weight, more preferably 92 to 204 parts by weight.
  • the above-described hexaboride fine particles are dispersed in one or more kinds of the first solvent to obtain a first hexaboride fine particle dispersion, and one or more kinds of the second solvent are added and mixed therewith.
  • the step of obtaining the second dispersion when it is desired to further suppress the increase in the viscosity of the first and second dispersions, it is also preferable to add the above-described dispersant.
  • a dispersant is added to the first solvent
  • a dispersant is added to the second solvent in advance to form a dispersant solution
  • the dispersant solution is added to the first solvent.
  • the method of adding to 1 dispersion liquid, (iii) adding a dispersing agent to 1st dispersion liquid in parallel with 2nd solvent addition, etc. can be taken.
  • a dispersant that is soluble in the first solvent is selected.
  • the near-infrared absorbing fine particle dispersion according to the present invention is prepared by removing the first solvent from the second dispersion and setting the first solvent content in the second dispersion to 5% by mass or less. obtain.
  • a heating distillation method using a difference in boiling points between the first and second solvents can be used.
  • the reduced pressure heating distillation method in which a reduced pressure operation is added to the heated distillation method is a preferable configuration from the viewpoint of safety, energy cost, and quality stabilization.
  • One or more of the first solvent and one or more of the second solvent are mixed in advance to obtain a mixed solvent.
  • a solvent compatible with each other as the first solvent and the second solvent.
  • the dispersion method for obtaining the third dispersion by dispersing the hexaboride fine particles according to the present invention in the mixed solvent can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solvent.
  • a wet medium mill such as a bead mill or a ball mill.
  • the concentration of the hexaboride fine particles in the third dispersion is 5% by mass or more, the productivity in producing the forgery prevention ink composition for offset printing is excellent.
  • the concentration of the hexaboride fine particles is 50% by mass or less, the viscosity of the third dispersion does not become too high, and the pulverization and dispersion operations of the hexaboride fine particles are easy.
  • the concentration of the hexaboride fine particles in the third dispersion is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and still more preferably 20 to 30% by mass.
  • the above-described dispersant it may be added to the mixed solvent before the dispersing operation of the hexaboride fine particles.
  • the first solvent is removed from the mixed solvent in which the hexaboride fine particles are dispersed, and the first solvent content in the mixed solvent in which the hexaboride fine particles are dispersed is 5% by mass or less.
  • a near-infrared absorbing fine particle dispersion according to the invention is obtained.
  • a heating distillation method using a difference in boiling point between the first and second solvents and a decompression operation is used. I can do it. Specifically, in the heating distillation method in which a decompression operation is also added, the second dispersion is distilled under reduced pressure while stirring, and the first solvent is separated from the second dispersion.
  • the apparatus used for the heating distillation with the decompression operation added include a vacuum stirring type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
  • the temperature during the heating distillation is preferably 35 to 200 ° C.
  • it is 40 to 150 ° C., particularly preferably 60 to 120 ° C. If the temperature during the heating distillation is 35 ° C. or higher, the solvent removal rate can be secured. On the other hand, if the temperature at the time of heating distillation is 200 ° C. or less, a situation in which the dispersant is altered can be avoided.
  • the degree of vacuum in the case of using a decompression operation in combination with the above-described heating distillation is ⁇ 0.05 MPa or less, more preferably ⁇ 0.06 MPa or less in terms of gauge pressure.
  • gauge pressure is ⁇ 0.05 MPa or less
  • the removal rate of the first solvent is increased, and the productivity is good.
  • the reduced-pressure distillation method the removal efficiency of the solvent is improved, the near-infrared absorbing fine particle dispersion according to the present invention is not exposed to high temperature for a long time, and aggregation of dispersed hexaboride fine particles, It is preferable that the second solvent does not deteriorate. Furthermore, productivity is increased, and it is easy to collect the evaporated organic solvent, which is preferable from the environmental consideration.
  • the near-infrared absorbing fine particle dispersion according to the present invention can be obtained by the production method described above.
  • the higher the concentration of hexaboride fine particles in the near-infrared absorbing fine particle dispersion according to the present invention is, the easier it is to prepare an anti-counterfeiting ink for offset printing.
  • the higher the concentration of hexaboride fine particles the lower the fluidity of the hexaboride fine particle dispersion.
  • the flowability should be such that the produced hexaboride fine particle dispersion can be recovered. That's fine.
  • the preferred concentration of hexaboride fine particles is 25% by mass or more and 75% by mass or less, more preferably 25% by mass or more and 50% by mass or less, and further preferably 30%. It is 45 mass% or less.
  • the dispersed particle size of the hexaboride fine particles can be arbitrarily controlled by the treatment time by the wet medium mill described above. That is, by increasing the treatment time, the dispersed particle size can be reduced.
  • the lower limit of the viscosity of the near-infrared absorbing fine particle dispersion according to the present invention depends on the viscosity of the vegetable oil or the vegetable oil-derived compound used.
  • the viscosity of sunflower oil (24 ° C.) is 50 mPa / S
  • the viscosity of linseed oil (24 ° C.) is 40 mPa / S
  • the viscosity of tung oil (24 ° C.) is 210 mPa / S.
  • a binder may be further added to the near-infrared absorbing fine particle dispersion according to the present invention.
  • the binder is not particularly limited, and examples thereof include synthetic resins such as rosin-modified phenol resin, rosin-modified alkyd resin, and petroleum resin-modified phenol resin. Therefore, it is possible to select a suitable one for the application.
  • Anti-counterfeit ink composition for offset printing The near-infrared absorbing fine particle dispersion according to the present invention, a resin varnish component, a vegetable oil component, a petroleum solvent component, and an additive are mixed to produce an anti-counterfeit ink composition for offset printing. Can be obtained.
  • the resin varnish component phenol resin, petroleum resin, rosin modified phenol resin, petroleum resin modified rosin modified phenol resin, vegetable oil modified rosin modified phenol resin, modified alkyd resin, rosin modified maleic acid resin, polyester resin, acrylic resin, Arbitrary resin systems such as urethane resin and epoxy resin are used.
  • resin varnish using rosin-modified phenol resin and petroleum resin is preferably used.
  • the addition amount of the resin varnish in the lithographic offset printing ink composition is 15 to 70% by mass, preferably 40 to 60% by mass.
  • the vegetable oil component and the petroleum solvent component may be any as long as they are generally used for lithographic offset inks.
  • the additive examples include a plasticizer, an antioxidant, a thickener, and a wax.
  • the anti-counterfeit ink composition for offset printing according to the present invention can be added with a pigment used in general lithographic offset ink to form a colored pattern in the visible light region. By forming the colored pattern, the design effect can be enhanced, or the forgery prevention effect can be enhanced.
  • any pigment may be used as long as it does not impair printability.
  • various organic pigments such as carbon black, azo lake pigments, insoluble azo pigments, condensed azo pigments, phthalocyanine pigments, and condensed polycyclic pigments can be used.
  • white pigments such as titanium oxide and lead white
  • extender pigments such as calcium carbonate
  • red pigments such as red pepper
  • yellow pigments such as yellow lead
  • green pigments such as chromium oxide
  • blue pigments such as ultramarine blue
  • Various inorganic pigments such as purple pigments such as manganese violet, fluorescent pigments, temperature pigments, pearl pigments, or metal powder pigments can be used. It is also preferable to use carbon black alone.
  • near-infrared absorbing fine particles and a pigment used in general lithographic offset ink can be used at the same time.
  • the kneading of the near-infrared absorbing fine particle dispersion, the resin varnish component, the petroleum solvent component, the additive, and / or the pigment according to the present invention can be performed using a kneader such as a three-roll mill.
  • a wet varnish such as an alkyd resin, which is excellent in the wettability of the infrared absorber, or other additives may be used in order to increase the kneading degree or work efficiency.
  • a conventionally known planographic offset printing method is used. Examples include offset sheet-fed printing, offset rotary printing, waterless offset printing, and dry offset printing.
  • a base material used for the printed matter according to the present invention for example, a white paper, a white film printed on a plastic film, and the like can be given.
  • the plastic film in this case include polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and synthetic paper.
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • synthetic paper synthetic paper
  • a conventionally known lithographic offset printing ink is used as the anti-counterfeit ink set for offset printing according to the present invention.
  • an oxidation polymerization type ink, a heat set type ink, a permeation dry type ink and the like can be mentioned.
  • a conventionally known plate making technique is also used for the plate used for printing. Examples thereof include a plate formed by an amplitude modulation screening (AM screening) method, a plate formed by a frequency modulation screening (FM screening) method, and the like.
  • AM screening amplitude modulation screening
  • FM screening frequency modulation screening
  • the printed matter according to the present invention is irradiated with near-infrared rays having a wavelength of 800 nm to 1300 nm, and the near-infrared rays having the above-mentioned wavelength diffusely reflected from the printed matter are measured.
  • the printed matter according to the present invention has less diffuse reflection of near-infrared light having a wavelength of 800 nm to 1300 nm as compared with a blank printed matter not containing near-infrared absorbing fine particles.
  • the near infrared diffuse reflectance of 800 nm to 1300 nm of the printed matter containing the near infrared absorbing fine particles and the near infrared diffuse reflectance of the blank printed matter of 800 nm to 1300 nm. Can be determined. For example, by dividing the diffuse reflectance value at a wavelength of 800 nm to 1300 nm of the printed matter according to the present invention by the diffuse reflectance value at a wavelength of 800 nm to 1300 nm of the blank printed matter, The net diffuse reflectance of near-infrared absorbing fine particles excluding factors can be evaluated. The smaller this divided value is, the easier it is to determine authenticity, preferably 0.84 or less, and more preferably 0.77 or less.
  • the content of the near infrared absorbing fine particles may be increased, and the near infrared rays in the ink may be increased.
  • the absorption fine particle concentration may be increased, there is a limit from the viewpoint of ink stability and cost.
  • the amount of the near infrared absorbing fine particles contained in the printed material is small, and the near infrared absorbing fine particles according to the present invention are used.
  • the amount of near-infrared absorbing fine particles contained in the printed material is preferably 0.8 g / cm 2 or less.
  • the diffuse reflectance according to the present invention is adjusted using a spectrophotometer with the diffuse reflectance of a white plate obtained by solidifying a fine powder of barium sulfate as 100%, and the diffuse reflectance in the wavelength range of 800 nm to 1300 nm. Is measured as a relative value.
  • the measuring method of the acid value of the near-infrared absorption fine particle dispersing agent which concerns on a present Example is based on JISK0070, and is based on a potentiometric titration method.
  • the measuring method of the viscosity of the near-infrared absorption fine particle dispersion liquid which concerns on an Example was measured using vibration type viscosity meter VM100A-L (CBC Materials Co., Ltd. product).
  • the diffuse reflectance is adjusted using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.), with the diffuse reflectance of the white plate on which the fine powder of barium sulfate is solidified being set to 100%, and the wavelength range of 800 nm to 1300 nm.
  • the diffuse reflectance at every 5 nm was measured as a relative value, and the average value of the obtained values was used.
  • Example 1 20.0% by mass of lanthanum hexaboride fine particles (average particle size of 1 to 2 ⁇ m) as near-infrared absorbing fine particles, a fatty acid in the structure as a dispersant, an amino group, and an acid value of 20.3 mgKOH / g
  • a dispersant having a hydroxystearic acid chain and having a nonvolatile content of 100% (hereinafter abbreviated as “dispersant a”) 10.0% by mass, and methyl isobutyl ketone (hereinafter abbreviated as “MIBK”) as a solvent. 70.0% by mass was weighed.
  • hexaboride fine particles, dispersant, and solvent were loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads, pulverized and dispersed for 30 hours, and the hexaboride fine particle dispersion according to Example 1 (hereinafter, dispersed) (Abbreviated as liquid A). Further, 36.6 parts by weight of paulownia oil was mixed and added to 100 parts by weight of the liquid A, and then a pressure reduction operation ( ⁇ gauge pressure) was performed using a stirring type vacuum dryer (Ishikawa factory's Ishikawa type vacuum reiki machine). And -0.08 MPa) was added at 80 ° C.
  • Dispersion B a hexaboride fine particle dispersion
  • concentration of the lanthanum hexaboride fine particles in the dispersion B was 29.6% by mass.
  • the amount of residual MIBK in the dispersion B was measured with a dry moisture meter (manufactured by Shimadzu Corporation: MOC-120H) and found to be 1.5% by mass.
  • the dispersed particle size of the hexaboride fine particles in Dispersion B was measured with an Otsuka Electronics particle size distribution analyzer and found to be 84.6 nm.
  • the lattice constant was 0.41560 nm.
  • Table 1 hereinafter, Examples 2, 3, 4 and Comparative Example 1 are also shown).
  • a transparent PET film having a thickness of 50 ⁇ m was prepared as a substrate to be printed, and the dispersion B was formed on the surface thereof with a thickness of 8 ⁇ m using a bar coater. This membrane was heated at 70 ° C. for 3 hours to dry dispersion B.
  • the visible light transmittance of the dried film of the obtained dispersion B was 69.6%. Further, the transmittance at a wavelength of 550 nm in the visible light region is 71.5%, the transmittance at a wavelength of 800 nm in the near infrared region is 30.6%, the transmittance at a wavelength of 900 nm is 22.3%, and the transmittance at a wavelength of 1000 nm. Was 20.2%, and the transmittance at a wavelength of 1500 nm was 71.0%.
  • the permeation profile of the dry membrane of this dispersion B is shown in FIG. 1, and the measurement results are shown in Table 1 (hereinafter, Examples 2, 3, and 4 are also shown).
  • Example 2 A hexaboride fine particle dispersion (hereinafter referred to simply as Dispersion C) according to Example 2 was obtained in the same manner as in Example 1 except that 10.0 parts by weight of Tung oil was added to 100 parts by weight of Liquid A. .
  • the concentration of the lanthanum hexaboride fine particles in the dispersion C was 29.2% by mass.
  • the amount of residual MIBK in dispersion C was measured with a dry moisture meter and found to be 2.6% by mass. It was 84.3 nm when the dispersed particle diameter of the hexaboride fine particles in the dispersion C was measured by a particle size distribution meter manufactured by Otsuka Electronics. The lattice constant was 0.41560 nm.
  • a dry film according to Example 2 was obtained in the same manner as in Example 1, and the optical characteristics were measured.
  • the visible light transmittance of the obtained dry film was 68.8%. Further, the transmittance at a wavelength of 550 nm in the visible light region is 70.8%, the transmittance at a wavelength of 800 nm in the near infrared region is 29.5%, the transmittance at a wavelength of 900 nm is 21.4%, and the transmittance at a wavelength of 1000 nm. Was 19.3%, and the transmittance at a wavelength of 1500 nm was 69.8%.
  • the permeation profile of this dispersion C through the dry membrane is shown in FIG.
  • Example 3 Except that 36.6 parts by weight of linseed oil was mixed and added to 100 parts by weight of Liquid A, a hexaboride fine particle dispersion (hereinafter referred to simply as Dispersion D) according to Example 3 was obtained in the same manner as in Example 1. It was. The concentration of the lanthanum hexaboride fine particles in the dispersion D was 29.6% by mass. It was 1.5 mass% when the amount of residual MIBK of the dispersion D was measured with the dry-type moisture meter. The dispersed particle size of the hexaboride fine particles in Dispersion D was measured with an Otsuka Electronics particle size distribution analyzer and found to be 84.5 nm. The lattice constant was 0.41560 nm. Next, the dried film according to Example 3 was obtained in the same manner as in Example 1, and the optical characteristics were measured.
  • Dispersion D a hexaboride fine particle dispersion
  • the visible light transmittance of the obtained dry film was 68.4%. Further, the transmittance at a wavelength of 550 nm in the visible light region is 70.5%, the transmittance at a wavelength of 800 nm in the near infrared region is 28.1%, the transmittance at a wavelength of 900 nm is 20.1%, and the transmittance at a wavelength of 1000 nm. Was 18.2%, and the transmittance at a wavelength of 1500 nm was 69.4%.
  • the permeation profile of this dispersion D through the dry membrane is shown in FIG.
  • Example 4 20% by mass of lanthanum hexaboride fine particles (average particle size of 1 to 2 ⁇ m) as near infrared absorbing fine particles, 10% by mass of dispersant a as a dispersant, and propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGM-Ac) as a solvent. .)
  • a hexaboride fine particle dispersion (hereinafter abbreviated as Dispersion E) according to Example 4 was obtained in the same manner as in Example 1 except that 70.0% by mass was weighed.
  • Dispersion F a hexaboride fine particle dispersion (hereinafter referred to simply as Dispersion F) according to Example 4 was obtained in the same manner as Example 1 except that Dispersion E was used.
  • the concentration of the lanthanum hexaboride fine particles in the dispersion F was 29.3 mass%.
  • the amount of residual PGM-Ac in dispersion F was measured with a dry moisture meter and found to be 2.3% by mass.
  • the dispersed particle size of the hexaboride fine particles in Dispersion F was measured with an Otsuka Electronics particle size distribution analyzer and found to be 84.7 nm.
  • the lattice constant was 0.41560 nm.
  • a dry film was obtained in the same manner as in Example 1, and the optical characteristics were measured.
  • the visible light transmittance of the obtained dried film was 68.5%. Further, the transmittance at a wavelength of 550 nm in the visible light region is 70.6%, the transmittance at a wavelength of 800 nm in the near infrared region is 29.3%, the transmittance at a wavelength of 900 nm is 21.2%, and the transmittance at a wavelength of 1000 nm. Was 19.2%, and the transmittance at a wavelength of 1500 nm was 70.8%.
  • the permeation profile of this dispersion F through the dry membrane is shown in FIG.
  • lanthanum hexaboride fine particles As near-infrared absorbing fine particles, lanthanum hexaboride fine particles (average particle diameter of 1 to 2 ⁇ m) are 20% by mass, dispersant a is 10% by mass, solvent is ethylene glycol having a boiling point of 197 ° C. (hereinafter referred to as EG). (Abbreviated) 70% by mass was weighed.
  • Dispersion H A hexaboride fine particle dispersion (hereinafter, abbreviated as Dispersion H) according to Comparative Example 1 was obtained in the same manner as in Example 1, except that Liquid G) was obtained.
  • the concentration of the lanthanum hexaboride fine particles in the dispersion H was 19.0% by mass. Residue of dispersion H G. When the amount was measured with a dry moisture meter, it was 36.7% by mass.
  • Example 1 the content of the first solvent in the dispersion 2 in which fine hexaboride particles were dispersed in vegetable oil was less than 5% by mass. Further, the dry films according to Examples 1 to 4 show high transmittance in the visible light region, and the transmittance is remarkably low in the near infrared region. As a result, it was confirmed that the printed pattern produced using the near-infrared absorbing fine particle dispersion according to the present invention can be discriminated with a near-infrared detector.
  • Example 5 A preparation example of an anti-counterfeit ink B for offset printing (hereinafter abbreviated as ink B) using the dispersion liquid B prepared in Example 1 and a printing example using the ink B will be described.
  • ink B an anti-counterfeit ink B for offset printing
  • the scope of the present invention is not limited to these described examples.
  • a four-necked flask equipped with a stirrer, a condenser with a water separator, and a thermometer was charged with 1000 parts by weight of gum rosin and dissolved at 200 ° C. while blowing nitrogen gas. To this, 1800 parts by weight of the resol solution obtained above was added and reacted at 230 ° C. for 4 hours while removing toluene. After the reaction, 110 parts by weight of glycerin was added and reacted at 250 ° C.
  • Dispersion B varnish, petroleum solvent (manufactured by Shin Nippon Oil Co., Ltd .: AF-6 solvent), soybean oil, tung oil, and compound (manufactured by Godo Ink Co., Ltd.) prepared in Example 1 with the formulation shown in Table 2. : UG compound), a metal dryer (manufactured by DIC Graphics, Inc .: 937 dryer), and a drying inhibitor (manufactured by Tokyo Ink Co., Ltd .: Inkeeper) were mixed to obtain ink B.
  • ink B the concentration of lanthanum hexaboride was 0.38% by mass.
  • the obtained anti-counterfeit ink for offset printing was stable without causing aggregation or the like.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed material B according to Example 5 at the wavelength of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank printed material described in Comparative Example 2 described later in the wavelength range of 800 nm to 1300 nm is 0. .77.
  • Example 6 Similar to Example 5 except that the dispersion B, varnish, petroleum solvent, soybean oil, tung oil, compound, metal dryer, and drying inhibitor prepared in Example 1 were mixed in the formulation shown in Table 2.
  • forgery prevention ink C for offset printing (hereinafter referred to as ink C) for offset printing was obtained.
  • ink C the concentration of lanthanum hexaboride was 0.73% by mass.
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using ink C to obtain a printed matter C.
  • the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the obtained printed matter C was 46.3%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed product C at a wavelength of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank printed material described in Comparative Example 2 at a wavelength of 800 nm to 1300 nm was 0.60.
  • Example 7 Similar to Example 5 except that the dispersion B, varnish, petroleum solvent, soybean oil, tung oil, compound, metal dryer, and drying inhibitor prepared in Example 1 were mixed in the formulation shown in Table 2.
  • a forgery prevention ink D for offset printing (hereinafter abbreviated as “ink D”) was obtained.
  • ink D the concentration of lanthanum hexaboride was 1.86% by mass.
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using the ink D to obtain a printed matter D.
  • the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the obtained printed matter D was 21.6%.
  • the value obtained by dividing the average value of the diffuse reflectance of the printed matter D at wavelengths of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank printed matter described in Comparative Example 2 at a wavelength of 800 nm to 1300 nm was 0.28.
  • Example 2 Forgery prevention ink E for offset printing (hereinafter referred to as Example 5) except that varnish, petroleum solvent, soybean oil, tung oil, compound, metal dryer, and drying inhibitor were mixed in the formulation shown in Table 2. And abbreviated as ink E).
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using ink E to obtain a printed material E that was a blank printed material.
  • Example 3 A near-infrared absorbing fine particle dispersion liquid (hereinafter referred to as a dispersion liquid) according to Comparative Example 3 was used in the same manner as in Example 1 except that antimony-added tin oxide (ATO) fine particles (average particle diameter of 1 to 10 ⁇ m) were used as the near-infrared absorbing fine particles Abbreviated as I).
  • ATO antimony-added tin oxide
  • Dispersion J an antimony-added tin oxide fine particle dispersion according to Comparative Example 3 was obtained in the same manner as Example 1 except that Dispersion I was used.
  • the concentration of antimony-added tin oxide fine particles in dispersion J was 29.3 mass%.
  • the residual MIBK amount of the dispersion J was measured with a dry moisture meter, it was 2.3 mass%.
  • the dispersion particle size of the antimony-added tin oxide fine particle dispersion in Dispersion J was measured to be 75.6 nm.
  • Ink F hereinafter abbreviated as Ink F
  • White fine paper was prepared as a substrate to be printed, and offset printing was performed using the ink F to obtain a printed matter F.
  • the average value of the diffuse reflectance at a wavelength of 800 nm to 1300 nm of the obtained printed matter F was 70.3%. Therefore, the value obtained by dividing the average value of the diffuse reflectance of the printed matter F at a wavelength of 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank described in Comparative Example 2 at a wavelength of 800 nm to 1300 nm was 0.90.
  • the printed matter E containing hexaboride particles in the printed pattern according to Comparative Example 2 and the printed matter F containing antimony-added tin oxide particles in the printed pattern according to Comparative Example 3 have high diffuse reflectance at wavelengths of 800 nm to 1300 nm. Show. A value obtained by dividing the average value of the diffuse reflectance of these wavelengths from 800 nm to 1300 nm by the average value of the diffuse reflectance of the blank wavelength from 800 nm to 1300 nm is as large as 0.90 to 1.00, and the reflection from the wavelength of 800 nm to 1300 nm. It is considered difficult to determine authenticity at a rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 近赤外線領域の吸収能力を有し、コントラストが明確であり、オフセット印刷への適用可能な近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物及び、近赤外線吸収微粒子を用いた偽造防止印刷物を提供することである。植物油または植物油由来の化合物から選択される1種類以上の溶剤と、一般式がXBで表記される六ホウ化物微粒子から選択される1種以上の近赤外線吸収微粒子と、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤と、を含み、前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤の含有量が5質量%以下であることを特徴とする近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散液を含む偽造防止インク組成物を提供する。近赤外線吸収微粒子を含む印刷物によって、偽造防止効果に優れた偽造防止印刷物を提供する。

Description

近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物
 本発明は、近赤外線領域に吸収能力を有し、オフセット印刷へ適用可能な、近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物及び、近赤外線吸収微粒子を用いた偽造防止印刷物に関するものである。尚、本発明における「近赤外線吸収微粒子」と、優先権の基礎とされた先の出願における「近赤外線吸収材料微粒子」とは同じ微粒子である。
 印刷技術には、用途等に応じて様々なものが存在する。その中でオフセット印刷は高精細な印刷が可能で、大量印刷に向いているという特徴を有している。当該オフセット印刷においては、その印刷原理から用いられる顔料の分散液は親油性で、且つ当該オフセット印刷の際に当該分散液が転写されるゴム製のブランケットを溶解しない、という特性を求められる。
 一方近年では、例えば偽造防止等を目的として、各種チケットや証書等へ赤外線吸収材料を用いた顔料を用いてデータを印刷しておき、当該データを赤外線判定器等で読み取ることで各種情報管理を行うことが検討されている。
 このような用途においては、大量の紙媒体へ多くのデータが印刷される為、印刷方法としてはオフセット印刷を用いることが検討されている。
 また赤外線吸収材料が可視光領域において透明であると、当該赤外線吸収材料が顔料として印刷されていることを外見上は判別できない。この為、偽造防止等の観点から好ましいとともに、本来の印刷表示を視覚的に妨害しないので、視認性や美観の観点からも好ましい。
 前記赤外線吸収材料を用いたものとして、例えば、特許文献1にはフタロシアニン化合物を用いたものが提案されている。
 また、特許文献2では、錫ドープ酸化インジウムを用いたものが提案されている。
 一方、本発明者らは、高い可視光透過性と近赤外線吸収機能を有する材料として一般式XB(ただし、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrまたはCaから選択される少なくとも1種以上の元素である。)で表される六ホウ化物微粒子を用い、当該六ホウ化物微粒子を有機溶媒中に分散した選択透過膜用塗布液を、特許文献3および特許文献4として開示している。また本発明者らは、近赤外線吸収材料として前記六ホウ化物微粒子を含む偽造防止インク組成物を溶媒中に分散させた偽造防止インクを、特許文献5として開示してもいる。
特開平04-320466号公報 特開2000-309736号公報 特開平11-181336号公報 特開2000-96034号公報 特開2004-168842号公報
 本発明者らの検討によれば、特許文献1に用いられているフタロシアニン化合物のような有機顔料は、温度や紫外線等の影響によってその赤外線吸収特性が変化してしまい、耐久性に劣るという問題を有している。
 また、特許文献2に用いられている錫ドープ酸化インジウムを用いた赤外線吸収材料は、可視光として透過または反射する波長領域と、赤外光として吸収する波長領域とにおけるコントラストが不十分である。この為、当該錫ドープ酸化インジウムを用いた近赤外線吸収微粒子分散液をオフセット印刷へ適用した場合、印刷部の読み取り精度などが低下する問題があった。
 一方、特許文献3から5に記載された選択透過膜用塗布液や偽造防止インクでは、近赤外線吸収微粒子がエタノールやトルエン等の有機溶剤中に分散されている。この為、これらの塗布液やインクは、当該有機溶剤がゴム製のブランケットを溶解する可能性が有り、オフセット印刷用のインクとして用いることは出来なかった。
 そこで、本発明者らは、オフセット印刷用の溶媒として用いられる植物油や植物油由来の化合物を溶剤とし、当該溶剤へ一般式XB(ただし、元素X は、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrまたはCaから選択される少なくとも1種以上の元素、4.0≦a≦6.2)で表される六ホウ化物微粒子を添加し、分散液とすることを試行した。しかしながら、得られた分散液の粘性が上昇してしまい、六ホウ化物微粒子を、粉砕したり溶剤中へ分散させることが困難であるという課題があることを知見した。
 本発明は、このような状況の下になされたものであり、その解決しようとする課題は、近赤外線領域の吸収能力を有し、コントラストが明確であり、オフセット印刷への適用可能な近赤外線吸収微粒子分散液と、その製造方法を提供することである。
 また、本発明は、この近赤外線吸収微粒子分散液を含む偽造防止インク組成物を用いることよって、オフセット印刷可能で、コピー等では複製が不可能であり、目視判定によらず機械的に確実に真贋の判定ができ、デザイン上の制約が少なく、偽造防止効果に優れた偽造防止印刷物を提供することを目的とする。
課題を解決する手段
 上記課題を解決するため、本発明者らが鋭意研究を行った結果、植物油または植物油由来の化合物から選択される1種類以上の溶剤へ近赤外線吸収微粒子を添加して、粉砕し分散させるのではなく、まず、当該近赤外線吸収微粒子を、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤(以下、本発明において「第1の溶剤」と記載する場合がある。)に添加して粉砕し分散させ、さらに、第1の溶剤を、植物油または植物油由来の化合物から選択される1種類以上の溶剤(以下、本発明において「第2の溶剤」と記載する場合がある。)へと溶剤置換し、近赤外線吸収微粒子分散液を得るという構成に想到した。
 そして、当該近赤外線吸収微粒子分散液を含有する、または、当該近赤外線吸収微粒子分散液と共に一般のオフセット印刷用インクに通常用いられる顔料を含有するオフセット印刷用の偽造防止インク組成物、当該オフセット印刷用の偽造防止インク組成物を用いて印刷された偽造防止印刷物にも想到し、本発明を完成した。
 即ち、上述の課題を解決する第1の発明は、
 植物油または植物油由来の化合物から選択される1種類以上の溶剤と、
 一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子と、
 アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤と、を含み、
 前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤の含有量が5質量%以下であることを特徴とする近赤外線吸収微粒子分散液である。
 第2の発明は、
 前記近赤外線吸収微粒子分散液が、さらに、前記植物油または植物油由来の化合物から選択される1種類以上の溶剤に可溶で、脂肪酸を構造中に有する分散剤を含み、
 前記近赤外線吸収微粒子分散液中の六ホウ化物の濃度が25質量%以上75質量%以下であることを特徴とする第1の発明に記載の近赤外線吸収微粒子分散液である。
 第3の発明は、
 前記分散剤のアンカー部が、2級アミノ基、3級アミノ基、および、4級アンモニウム基から選択される1種類以上を有することを特徴とする第2の発明に記載の近赤外線吸収微粒子分散液である。
 第4の発明は、
 前記分散剤の酸価が1mgKOH/g以上の分散剤であることを特徴とする第2または第3の発明に記載の近赤外線吸収微粒子分散液である。
 第5の発明は、
 前記近赤外線吸収微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする第1から第4の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第6の発明は、
 前記近赤外線吸収微粒子の格子定数が0.4100nm以上0.4160nm以下であることを特徴とする第1から第5の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第7の発明は、
 前記近赤外線吸収微粒子の表面が、Si、Ti、Al、Zrから選択される1種以上の化合物で被覆されていることを特徴とする第1から第6の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第8の発明は、
 前記植物油が、乾性油、半乾性油から選択される1種類以上の植物油であることを特徴とする第1から第7の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第9の発明は、
 前記近赤外線吸収微粒子分散液が、さらにバインダーを含むことを特徴とする第1から第8の発明のいずれかに記載の近赤外線吸収微粒子分散液である。
 第10の発明は、
 一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤へ混合し分散処理して、第1の分散液を得る工程と、
 前記第1の分散液へ、植物油または植物油由来の化合物から選択される1種類以上の溶剤を添加、混合して、第2の分散液を得る工程と、
 前記第2の分散液から、前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤の含有量が、5質量%以下となるまで除去する工程とを、有することを特徴とする近赤外線吸収微粒子分散液の製造方法である。
 第11の発明は、
 前記第1の分散液における近赤外線吸収微粒子濃度が5質量%以上50質量%以下であることを特徴とする第10の発明に記載の近赤外線吸収微粒子分散液の製造方法である。
 第12の発明は、
 アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤と、植物油または植物油由来の化合物から選択される1種類以上の溶剤を混合して、混合溶剤を得る工程と、
 一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を、前記混合溶剤へ混合し分散処理して、第3の分散液を得る工程と、
 前記第3の分散液から、前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤を、含有量が5質量%以下となるまで除去する工程とを、有することを特徴とする近赤外線吸収微粒子分散液の製造方法である。
 第13の発明は、
 前記第3の分散液における近赤外線吸収微粒子濃度が5質量%以上50質量%以下であることを特徴とする第12の発明に記載の近赤外線吸収微粒子分散液の製造方法である。
 第14の発明は、
 前記植物油または植物油由来の化合物から選択される1種類以上の溶剤の少なくとも1種以上へ、当該溶剤に可溶で、脂肪酸を構造中に有する分散剤を加えることを特徴とする第10から第13の発明のいずれかに記載の近赤外線吸収微粒子分散液の製造方法である。
 第15の発明は、
 第1から第9の発明のいずれかに記載の近赤外線吸収微粒子分散液を含むことを特徴とする偽造防止インク組成物である。
 第16の発明は、
 さらに、顔料を含むことを特徴とする第15の発明に記載の偽造防止インク組成物である。
 第17の発明は、
 第16の発明に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物である。
 第18の発明は、
 第16の発明に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物である。
 第19の発明は、
 可塑剤、酸化防止剤、増粘剤、ワックスから選択される1種類以上を含むことを特徴とする第15から第18の発明のいずれかに記載の偽造防止インク組成物である。
 第20の発明は、
 基材の一方もしくは両面に、印刷パターンを有する印刷物であって、前記印刷パターンに一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を含有していることを特徴とする偽造防止印刷物である。
 第21の発明は、
 印刷パターンがさらに顔料を含むことを特徴とする、第20の発明に記載の偽造防止印刷物である。
 第22の発明は、
 顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする、第21の発明に記載の偽造防止印刷物である。
 第23の発明は、
 顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする、第21の発明に記載の偽造防止印刷物である。
 第24の発明は、
 偽造防止印刷物の波長800nm~1300nmの拡散反射率の平均値を、近赤外線吸収微粒子を含まないブランクの波長800nm~1300nmの拡散反射率の平均値で除した値が0.84以下であることを特徴とする、第20から第23の発明のいずれかに記載の偽造防止印刷物である。
 本発明に係る近赤外線吸収微粒子分散液を用いることで、近赤外線領域の吸収能力を有しコントラストが明確なオフセット印刷を容易に行うことが出来る。また、本発明に係る近赤外線吸収微粒子分散液を用いることでオフセット印刷が可能な偽造防止インク組成物、及び、コピー等では複製が不可能であり、目視判定によらず機械的に確実に真贋の判定ができ、デザイン上の制約が少なく、偽造防止効果に優れた偽造防止印刷物を提供することができる。
本発明に係る分散液Bの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Cの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Dの乾燥膜における光の透過プロファイルである。 本発明に係る分散液Fの乾燥膜における光の透過プロファイルである。 本発明に用いる高分子分散剤の態様の模式図である。 本発明に用いる異なる高分子分散剤の態様の模式図である。 本発明に用いるさらに異なる高分子分散剤の態様の模式図である。
 本発明を実施するための形態について、近赤外線吸収微粒子、溶剤、分散剤、近赤外線吸収微粒子の溶剤への分散方法、近赤外線吸収微粒子分散液、オフセット印刷用の偽造防止インク組成物、印刷方法、真贋判定方法の順で詳細に説明する。
1.近赤外線吸収微粒子
 本発明に用いられる近赤外線吸収微粒子は、一般式がXB(4.0≦a≦6.2)で表記される六ホウ化物微粒子である。ここで、元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上である。
 具体的には、六ホウ化ランタンLaB 、六ホウ化セリウムCeB、六ホウ化プラセオジムPrB、六ホウ化ネオジムNdB 、六ホウ化ガドリニウムGdB 、六ホウ化テルビウムTbB、六ホウ化ディスプロシウムDyB、六ホウ化ホルミウムHoB、六ホウ化イットリウムYB、六ホウ化サマリウムSmB、六ホウ化ユーロピウムEuB、六ホウ化エルビウムErB、六ホウ化ツリウムTmB、六ホウ化イッテルビウムYbB、六ホウ化ルテチウムLuB、六ホウ化ランタンセリウム(La,Ce)B、六ホウ化ストロンチウムSrB、六ホウ化カルシウムCaBから選択される1種以上であることが好ましい。
 上記六ホウ化物微粒子は、その表面が酸化していないことが好ましい。しかし通常、その表面は僅かに酸化していることが多く、また、微粒子の分散工程で表面の酸化が起こることはある程度避けられない。尤も、その場合でも熱線遮蔽効果を発現する有効性に変わりはなく、従って、表面が酸化された六ホウ化物微粒子でも使用することが可能である。
 また、上記六ホウ化物微粒子は、結晶性が高いほど大きい熱線遮蔽効果が得られる。尤も、当該六ホウ化物微粒子において、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が各金属とホウ素の結合から成り立っており、格子定数が0.4100nm~0.4160nmであるならば所望の熱線遮蔽効果を発現するため、本発明において好ましく適用することが可能である。格子定数は、例えばXRDパターンのデータを基にリートベルト解析を行うことで求めることができる。
 また、当該六ホウ化物微粒子の表面が、シランカップリング剤で被覆処理されていることも好ましい。六ホウ化物微粒子の表面が、シランカップリング剤で被覆処理されていることにより、六ホウ化物微粒子の優れた分散性が得られる。この結果、本発明に係る近赤外線吸収微粒子分散液において、優れた近赤外線吸収機能、可視光領域における透明性が得られるからである。
 本発明に係る六ホウ化物微粒子を十分細かくかつ均一に分散させた膜では、光の透過率が波長400nm~700nmの間に極大値を持ち、且つ、波長700nm~1800nmの間に極小値を持ち、さらに、当該光の透過率における極大値と極小値との差が、15ポイント以上であることが観察されている。
 ここで、可視光の波長が380nm~780nmであり、人間の視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、このような熱線遮蔽透明樹脂成形体は、可視光を有効に透過し、それ以外の熱線を有効に反射・吸収する特性を有していることが解る。
 本発明に係る六ホウ化物微粒子は、波長350~400nm付近の近紫外領域、及び波長650nm~1300nm付近の近赤外領域、特に波長1000nm付近の光を大きく吸収する。その為、その透過色調は無色から緑色系となる物が多い。
 また、本発明に係る六ホウ化物微粒子の分散粒子径は、その使用目的によって各々選定することができる。例えば、六ホウ化物微粒子において、近赤外領域の吸収を発揮するためには、分散粒子径を十分に小さくする。これは六ホウ化物の持つ光の吸収特性が、ナノ粒子特有の現象である局在表面プラズモン共鳴に起因するためである。ここで、分散粒子径とは、溶媒中におけるホウ化物微粒子の凝集粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、ホウ化物微粒子の凝集体も存在する状態で、ホウ化物微粒子が溶媒中に分散された分散液からサンプリングを行い、動的光散乱法を原理とした大塚電子(株)社製ELS-800を用いて測定することができる。例えば分散粒子径が1500nm以下であれば、六ホウ化物微粒子は近赤外領域に吸収を有する。そして、分散粒子径がおおよそ800nm以下のとき近赤外領域の吸収は強くなり、200nm以下であればさらに強い吸収が発揮され、100nm以下であればなお強い吸収が発揮される。
 一方、本発明に係る六ホウ化物微粒子において、可視光領域での透明性・非散乱性は当該微粒子に起因する光散乱を抑制することで得られる。光散乱としては、光の波長に対する粒子径の比によって幾何光学散乱、ミー散乱、レイリー散乱がある。
 可視光の場合、当該六ホウ化物微粒子の分散粒子径が1000nm以下であれば幾何光学散乱はほとんど無視できる。そして、分散粒子径が200nm以下であれば、ミー散乱は弱化され、100nm以下であればさらに弱化される。当該微粒子の分散粒子径が、さらに小さい分散粒子径の領域ではレイリー散乱が主な散乱因子となる。そして、レイリー散乱強度は、分散粒子径の6乗に反比例して低減するため、当該微粒子の分散粒子径をさらに減少させることで散乱光を低減させることができ、好ましい。
 以上を鑑み、さらに、本発明に係る六ホウ化物微粒子分散液がオフセット印刷用の偽造防止インクの原料として用いられることを考慮すると、本発明に係る六ホウ化物微粒子の分散粒子径は200nm以下であることが好ましい。これは分散粒子径が200nm以下であれば、局在表面プラズモン共鳴による六ホウ化物の近赤外吸収が十分に発揮され、かつ可視光の光散乱が十分に減少するために、印刷物の表面反射光あるいは透過光における[反射/吸収]、あるいは[透過/吸収]のコントラストが向上するためである。
一方、分散粒子径が1nm以上であれば、工業的な製造は容易である。
 また、本発明に係る六ホウ化物微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、当該六ホウ化物微粒子の耐候性向上の観点から好ましい。
2.溶剤
〈第1の溶剤〉
 本発明に用いられる第1の溶剤は、本発明に係る六ホウ化物を微粒子に粉砕し、溶剤中に分散させる工程に適した溶剤である。
 具体的には、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル,エチルエーテル,プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、エチルイソブチルケトン、メチルイソブチルケトンなどのケトン類、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルなどのグリコールエーテル類といった各種の溶媒であって、後述する第2の溶剤と相溶するものが好ましい。
 当該観点に加え、アルコール類、グリコールエーテル類のような溶剤は、人体への健康有害性が低く、工程での安全性や操作性の観点から好ましい溶剤である。また、メチルイソブチルケトンやトルエンは作業性に優れ、生産性向上の観点から好ましい溶剤である。
 オフセット印刷は水と油が反発する性質を利用した印刷方式で、版は印刷インクをつける親油層と水を付けてインクをつけない新水層から成り立っている。そのため、オフセット印刷インクと水は難溶であることが要求される。第1の溶剤のうち、アルコール類、グリコールエーテル類は極性が高く水に易溶であるためオフセット印刷用インク中においては所定量以下の含有量であることが求められる。具体的には1.0質量%以下の含有量であることが好ましい。
 また、アルコール類、グリコールエーテル類以外の溶剤は、極性が低く水に難溶であるが、オフセット印刷の際に微粒子の分散液が転写されるゴム製のブランケットを溶解する可能性があるので、オフセット印刷用インク中においては所定量以下の含有量であることが求められる。具体的には1.0質量%以下の含有量であることが好ましい。
 従って、本発明に係る六ホウ化物を微粒子に粉砕し、溶剤中に分散させる工程が終了した後は、当該第1の溶剤の含有量が十分に削減されることが好ましい。
 具体的には、当該第1の溶剤として低沸点の溶剤を用い、後述する第2の溶剤との間に沸点の差を設け、加熱蒸留によって当該第1の溶剤の含有量を削減することが考えられる。 
 当該加熱蒸留による溶媒置換を行うのであれば、当該第1の溶剤として沸点は180℃以下のものを用いることが好ましいと考えられる。
〈第2の溶剤〉
 本発明に用いられる第2の溶剤は、非水溶性であり、かつ、オフセット印刷において用いられるゴム製のブランケットを溶解しないことが求められる。具体的には、植物油、植物油由来の化合物から選択される1種類以上の溶剤を用いることが出来る。
 植物油としては、アマニ油、ヒマワリ油、桐油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などを用いることが出来る。
 上述した植物油や植物油由来の化合物は、含有する油脂の構成成分である脂肪酸中に二重結合を有している。この二重結合は空気中の酸素と反応することで、油脂の分子同士や、顔料成分等の二重結合との重合反応が進行する。当該油脂の分子同士の重合や、油脂とオフセット印刷用の顔料成分等との重合によって、重合反応が進行することで、オフセット印刷後の塗膜が固化することとなる。
 当該オフセット印刷後の塗膜の固化は、植物油、植物油由来の化合物の構成成分である脂肪酸中の二重結合が多い程速くなるが、当該脂肪酸中の二重結合の数はヨウ素価により評価される。即ち、当該塗膜の固化は、植物油、植物油由来の化合物のヨウ素価が高い程早くなる。ここで、乾性油ではヨウ素価が130以上、半乾性油では130~100、不乾性油では100以下である。そして、オフセット印刷に用いる植物油、植物油由来の化合物としては、半乾性油、ヨウ素価が130以上であるアマニ油、ヒマワリ油、桐油等の乾性油から選択される1種以上が好ましい。
3.分散剤
 作業性・操作性を向上させる観点から、本発明に係る六ホウ化物微粒子が分散した前記第1の溶剤、前記第2の溶剤、または、前記第1および第2の混合溶剤へ分散剤を添加することで、その粘度を低下させることも好ましい構成である。尚、当該溶剤の粘性を低下させる観点から、添加する本発明に係る分散剤は構造中に脂肪酸を有するものであることが好ましい。
 具体的には、本発明に係る分散剤は、上述した本発明に係る第1、第2の溶剤に可溶であるものであることが求められる。
 さらに、本発明に係る分散剤の酸価が1mgKOH/g以上であると、上述した近赤外線吸収微粒子を、本発明に係る溶剤に分散させる能力が高く好ましい。当該観点からは、本発明に係る分散剤の構造は、特に限定されるものではないが、塩基性のアンカー部を有する高分子の分散剤を用いることが好ましい。アンカー部とは、当該高分子分散剤における分子中の部位(基)であって、前記近赤外線吸収微粒子表面に吸着する部位(基)である。
 本発明においては、特に塩基性のアンカー部を有する高分子分散剤を用いると、オフセット印刷用の偽造防止インクの保存安定性が改良されるため、好ましい。当該アンカー部となる塩基性の部位(基)としては、(2級アミノ基、3級アミノ基、および、4級アンモニウム基、等の部位(基)が挙げられる。
 本発明に用いる高分子分散剤の一態様を図5に示す。一般式[X-A1-Y-A2-Z]において、A1、A2は固体微粒子に吸着する部分(アンカー部)である。そして当該アンカー部において、固体微粒子に吸着する点(吸着点)を少なくとも1つ有していれば、その構造は特に制限はなく、例えば、鎖状、環状、縮合多環状、あるいはそれらの組み合わせで構成される。また、A1、A2は同一でも異なっていても良い。一方、X、Y、Zは、溶媒和して固体微粒子表面から液体中に溶け拡がる高分子鎖部分であり、以下、X及びZをテール部、Yをループ部と称する。テール部、ループ部には、単一のモノマーからなるホモポリマー、複数のモノマーからなるコポリマーが用いられる。
 また、本発明に用いる高分子分散剤は、一般式[X-A1-Y-A2-Z] において、ループ部(Y)が存在しない物を用いることができ、この場合、一般式[X-A1-A2-Z]と同義となる。
 さらにまた、本発明に用いる高分子分散剤の一態様として、図6に示すYが存在せず、一つのアンカー部に2つのテール部が結合した構造も取り得る。この場合、一般式[X-A3-Z]となる。
 さらに加えて、本発明に用いる高分子分散剤の一態様として、図7に示すZが存在せず、一つのアンカー部に一つのテール部が結合した構造も取り得る。この場合、一般式[X-A4]となる。
 本発明に用いる高分子分散剤を構成するA(本発明において、A1、A2および上述のA3、A4を総称して「A」と記載する場合がある。)には、例えば水素結合や酸・塩基相互作用などによって固体粒子表面と吸着相互作用を有する官能基(吸着点)を少なくとも1つ有している。また、A1、A2は同一であっても異なっていても良いが、固体微粒子への吸着性を考慮すると、吸着相互作用を有する官能基(吸着点)として、同じ官能基を有するものが好ましい。また、高分子分散剤の製造の観点からも、A1とA2とが同一であるものが好ましい。
 次に、本発明に用いる高分子分散剤を構成するX、Y、Zは、各々異なった化学種で構成されていてもよく、また、少なくとも2つが同じ化学種で構成されていてもよい。係るるテール部およびループ部は、溶媒和して固体微粒子表面から液体中に溶け拡がる部分であるため、固体微粒子を分散させる溶媒に親和性を有する高分子鎖が用いられる。
 本発明に係る分散剤は、当該分散剤が植物油または植物油由来の化合物から選択される1種類以上の溶剤へ添加されることで、本発明に係る六ホウ化物微粒子が25質量%以上75質量%以下で分散している分散液の流動性が、担保されることを可能にする分散能力を発揮するものである。
 本発明に係る分散剤の好ましい具体例として、市販の分散剤であれば、ディスパービック(DISPERBYK)142;ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(以上、ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(以上、BASF社製);ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース33000、ソルスパース39000、ソルスパース56000、ソルスパース71000(以上、日本ルーブリゾール(株)製);ソルプラス(SOLPLUS)ソルプラスD530、ソルプラスDP320、ソルプラスL300、ソルプラスK500、ソルプラスR700(以上、日本ルーブリゾール(株)製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(以上、味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(以上、共栄社化学工業(株)製)等を挙げることができる。
 本発明に係る分散剤の添加量は、六ホウ化物微粒子100重量部に対して、30重量部以上200重量部以下であることが好ましい。
 また、本発明に係る分散剤として市販の分散剤を用いる場合は、当該分散剤がオフセット印刷用のゴム製のブランケットを溶解する可能性のある溶剤を含有していないことが好ましい。従って、当該分散剤の不揮発分(180℃、20分間加熱後)は高いことが好ましく、例えば95%以上であることが好ましい。
4.近赤外線吸収微粒子の溶剤への分散方法
 上述したように第2の溶剤は粘度が高いため、当該第2の溶剤中で六ホウ化物微粒子を分散処理することは難しい。特に、粘度(24℃)が180mPa/S以上あるような、桐油のような溶剤においては困難である。
 そこで、近赤外線吸収微粒子の溶剤への分散方法として、第1、第2の近赤外線吸収微粒子分散液の製造方法が考えられる。以下、当該第1、第2の近赤外線吸収微粒子分散液の製造方法について説明する。
(1)第1の近赤外線吸収微粒子分散液の製造方法
 前記六ホウ化物微粒子を前記第1の溶剤へ混合し、湿式媒体ミル等を用いて分散処理し、第1の分散液を得る工程と、前記第1の分散液へ、植物油または植物油由来の化合物から選択される1種類以上の溶剤を添加、混合して、第2の分散液を得る工程と、前記第2の分散液から、前記第1の溶剤の含有量が5質量%以下となるまで、前期第1の溶剤を除去する工程とを有する近赤外線吸収微粒子分散液の製造方法である。
 以下、詳細に説明する。
 本発明に係る六ホウ化物微粒子を前記第1の溶剤の1種以上へ分散させて、第1の分散液を得る為の分散方法は、当該微粒子が均一に溶剤に分散する方法であれば任意に選択できる。具体的には、ビーズミル、ボールミル等の湿式媒体ミルを用いることが好ましい。尚、前記第1の溶剤は沸点180℃以下、好ましくは沸点150℃以下の溶剤である。
 前記第1の分散液中における六ホウ化物微粒子の濃度が5質量%以上あれば、オフセット印刷用の偽造防止インク組成物製造の際の生産性に優れる。一方、六ホウ化物微粒子の濃度が50質量%以下であれば第1の分散液の粘度が高くなり過ぎず、六ホウ化物微粒子の粉砕、分散操作が容易である。
 当該観点から、第1の分散液における六ホウ化物微粒子の濃度は5~50質量%が好ましく、より好ましくは10~40質量%、さらに好ましくは20~30質量%である。
 六ホウ化物微粒子を分散させた前記第1の分散液へ、植物油または植物油由来の化合物から選択される第2の溶剤の1種類以上を添加、混合して第2の分散液を得る。このとき、第1の溶媒と第2の溶媒として、互いに相溶するものを選択しておくことが好ましい。
 第1の分散液と第2の溶剤の混合は、第1の分散液に含有される六ホウ化物微粒子100重量部に対して、第2の溶剤が2.5重量部以上であれば、最終的に得られる本発明に係る近赤外線吸収微粒子分散液の流動性が保たれ、回収が容易となり生産性が保たれる。
 一方、第1の分散液に含有される六ホウ化物微粒子100重量部に対して、第2の溶剤が270重量部以下であれば、最終的に得られる本発明に係る近赤外線吸収微粒子分散液中の六ホウ化物微粒子の濃度が担保される。そのため、本発明に係る近赤外線吸収微粒子分散液を多く添加する事態を回避出来、インクの粘度を担保出来る。この結果、粘度調整が不要となり、工程が単純化し製造コストの増加を回避出来るので好ましい。
 以上の観点から、第1の分散液と第2の溶剤の混合は、第1の分散液に含有される六ホウ化物微粒子100重量部に対して、第2の溶剤が2.5~270重量部であることが好ましく、より好ましくは70~270重量部、さらに好ましくは92~204重量部である。
 上述した、六ホウ化物微粒子を第1の溶剤の1種以上へ分散させて、第1の六ホウ化物微粒子分散液を得、そこへ、第2の溶剤の1種類以上を添加、混合して、第2の分散液を得る工程において、当該第1、第2の分散液の粘度の上昇をさらに抑制したいと考える場合は、上述した分散剤を添加することも好ましい構成である。分散剤を添加する方法としては、(i)第1の溶剤に分散剤を添加する、(ii)予め第2の溶剤に分散剤を添加して分散剤溶液としておき、その分散剤溶液を第1の分散液に添加する、(iii)第1の分散液へ,第2の溶剤添加と並行して分散剤を添加する等、の方法を採ることが出来る。尚、前記(i)第1の溶剤に分散剤を添加する方法を用いる場合は、当該第1の溶剤に可溶な分散剤を選択する。
 次に、前記第2の分散液から前記第1の溶剤を除去し、第2の分散液中における第1の溶剤含有量を5質量%以下として、本発明に係る近赤外線吸収微粒子分散液を得る。
 当該第2の分散液からの前記第1の溶剤除去には、当該第1第2の両溶剤における沸点の差を用いた加熱蒸留法を用いることが出来る。さらに、当該加熱蒸留法へ減圧操作も加えた減圧加熱蒸留法によれば、安全性、エネルギーコスト、品質の安定化の観点からも好ましい構成である。
(2)第2の近赤外線吸収微粒子分散液の製造方法
 前記第1の溶剤と第2の溶剤とを混合して、混合溶剤を得る工程と、六ホウ化物微粒子を、前記混合溶剤へ混合し湿式媒体ミルで分散処理して、第3の分散液を得る工程と、前記第3の分散液から、前記第1の溶剤の含有量が5質量%以下となるまで、前期第1の溶剤を除去する工程とを有する近赤外線吸収微粒子分散液の製造方法である。
 以下、詳細に説明する。
 上述した、第1の溶剤の1種以上と第2の溶剤の1種以上とを、予め混合し混合溶剤を得る。このとき、第1の溶剤と第2の溶剤として、互いに相溶するものを選択しておくことが好ましい。
 本発明に係る六ホウ化物微粒子を、当該混合溶剤へ分散させて、第3の分散液を得る為の分散方法は、当該微粒子が均一に溶剤に分散する方法であれば任意に選択できる。具体的には、ビーズミル、ボールミル等の湿式媒体ミルを用いることが好ましい。
 前記第3の分散液中における六ホウ化物微粒子の濃度が5質量%以上あれば、オフセット印刷用の偽造防止インク組成物製造の際の生産性に優れる。一方、六ホウ化物微粒子の濃度が50質量%以下であれば第3の分散液の粘度が高くなり過ぎず、六ホウ化物微粒子の粉砕、分散操作が容易である。
 当該観点から、第3の分散液における六ホウ化物微粒子の濃度は5~50質量%が好ましく、より好ましくは10~40質量%、さらに好ましくは20~30質量%である。
 上述した、六ホウ化物微粒子を加えた前記混合溶剤の粘度の上昇をさらに抑制したいと考える場合は、上述した分散剤を添加することも好ましい構成である。分散剤を添加する方法としては、前記六ホウ化物微粒子の分散操作の前に、前記混合溶剤へ加えておけばよい。
 次に、前記六ホウ化物微粒子を分散させた混合溶剤から前記第1の溶剤を除去し、六ホウ化物微粒子を分散させた混合溶剤中における第1の溶剤含有量を5質量%以下とし、本発明に係る近赤外線吸収微粒子分散液を得る。
 当該六ホウ化物微粒子を分散させた混合溶剤からの前記第1の溶剤除去には、第1と第2の溶剤との沸点の差を用いた、減圧操作も加えた加熱蒸留法を用いることが出来る。
 具体的には、減圧操作も加えた加熱蒸留法では前記第2の分散液を撹拌しながら減圧して蒸留し、当該第2の分散液から前記第1の溶剤を分離する。減圧操作も加えた加熱蒸留に用いる装置としては、真空撹拌型の乾燥機が挙げられるが、上記機能を有する装置であればよく、特に限定されない。加熱蒸留の際の温度は35~200℃が好ましい。より好ましくは40~150℃、特に好ましくは60℃~120℃である。加熱蒸留の際の温度が35℃以上あれば、溶剤の除去速度を担保出来る。一方、加熱蒸留の際の温度が200℃以下であれば、分散剤が変質する事態を回避出来る。
 上述した加熱蒸留へ減圧操作を併用する場合の真空度は、ゲージ圧で-0.05MPa以下、より好ましくは-0.06MPa以下である。ゲージ圧が-0.05MPa以下であると、前記第1の溶剤の除去速度が速くなり、生産性が良い。
 当該減圧蒸留法を適用することで、溶剤の除去効率が向上すると共に、本発明に係る近赤外線吸収微粒子分散液が長時間高温に曝されなくなり、分散している六ホウ化物微粒子の凝集や、第2の溶剤の劣化が起こらず好ましい。さらに生産性も上がり、蒸発した有機溶剤を回収することも容易で、環境的配慮からも好ましい。
5.近赤外線吸収微粒子分散液
 以上説明した製造方法により、本発明に係る近赤外線吸収微粒子分散液が得られる。
 本発明に係る近赤外線吸収微粒子分散液中における六ホウ化物微粒子の濃度は、高い方がオフセット印刷用の偽造防止インク調製が容易であり好ましい。一方、六ホウ化物微粒子の濃度が高くなるほど、六ホウ化物微粒子分散液の流動性が低下するが、上述した製造方法において、製造された六ホウ化物微粒子分散液が回収出来る程度の流動性があればよい。
 当該観点から、本発明に係る近赤外線吸収微粒子分散液において、六ホウ化物微粒子の好ましい濃度は25質量%以上75質量%以下、より好ましくは25質量%以上50質量%以下、さらに好ましくは30%以上45質量%以下である。
 一方、六ホウ化物微粒子の分散粒子径は、上述した湿式媒体ミルによる処理時間により、任意に制御出来る。即ち、処理時間を長くする事により、分散粒子径を小さくすることができる。
 尚、本発明に係る近赤外線吸収微粒子分散液の粘度の下限値は、用いられる植物油または植物油由来の化合物の粘度に依存する。例えば、ヒマワリ油の粘度(24℃)は50mPa/Sであり、アマニ油の粘度(24℃)は40mPa/S、桐油の粘度(24℃)は210mPa/Sである。
 本発明に係る近赤外線吸収微粒子分散液に、さらにバインダーを添加してもよい。バインダーとしては、特に限定されず、例えば、ロジン変性フェノール樹脂、ロジン変性アルキッド樹脂、石油樹脂変性フェノール樹脂などの合成樹脂等が挙げられる。そこで、用途に適したものを選択することが可能である。
6.オフセット印刷用の偽造防止インク組成物
 本発明に係る近赤外線吸収微粒子分散液、樹脂ワニス成分、植物油成分、石油系溶剤成分、および添加剤を混合して、オフセット印刷用の偽造防止インク組成物を得ることが出来る。
 樹脂ワニス成分としては、フェノール樹脂、石油樹脂、ロジン変性フェノール樹脂、石油樹脂変性ロジン変性フェノール樹脂、植物油変性ロジン変性フェノール樹脂、変性アルキッド樹脂、ロジン変性マレイン酸樹脂、ポリエステル系樹脂、アクリル系樹脂、ウレタン樹脂、エポキシ樹脂等任意の樹脂系が用いられるが、例えばロジン変性フェノール樹脂、石油樹脂を用いた樹脂ワニスが好ましく用いられる。平版オフセット印刷用インク組成物中の樹脂ワニスの添加量は、15~70質量%で好ましくは40~60質量%である。
 植物油成分と石油系溶剤成分としては、一般的に平版オフセットインクに用いられるものであればいずれのものでも良い。
 添加剤としては、可塑剤、酸化剤防止剤、増粘剤、ワックス等が挙げられる。
 さらに、本発明に係るオフセット印刷用の偽造防止インク組成物には、一般の平版オフセットインクに用いられる顔料を添加して、可視光領域で着色したパターンを形成することができる。着色パターンの形成により、デザイン上の効果を高めたり、あるいは偽造防止効果を高めることができる。
 前記の顔料として、印刷適性を損なわないものであれば何でも用いても良い。具体的には、カーボンブラックや、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料等の種々の有機顔料を用いることができる。当該有機顔料以外にも、酸化チタンや鉛白などの白色顔料、炭酸カルシウムなどの体質顔料、べんがらなどの赤色顔料、黄鉛などの黄色顔料、酸化クロムなどの緑色顔料、群青などの青色顔料、マンガンバイオレットなどの紫色顔料、蛍光顔料、示温顔料、パール顔料、あるいは金属粉顔料等の種々の無機顔料を用いることができる。
 また、カーボンブラック単体で用いることも好ましい。
 本発明に係るオフセット印刷の偽造防止インク組成物においては、上述のように近赤外線吸収微粒子と一般の平版オフセットインクに用いられる顔料とを同時に用いることができる。当該構成を採ることで、近赤外線吸収微粒子を含有しない一般のオフセットインクとの色の違いを、目視によって判別できないくらいに小さくすることもできる。
 本発明に係る近赤外線吸収微粒子分散液、樹脂ワニス成分、石油系溶剤成分、添加剤、および/または、顔料の混練は、三本ロールミル等の練肉機を用いて行うことができる。その際、練和度を高めるためや作業効率を高めるために赤外線吸収剤のウェッティング性に優れるアルキッド樹脂等のウェッティングワニスやその他の添加剤を用いてもよい。
7. 印刷方法
 本発明に係る印刷物を提供するための印刷方法としては、従来公知の平版オフセット印刷方法が用いられる。例えば、オフセット枚葉印刷、オフセット輪転印刷、水無しオフセット印刷、ドライオフセット印刷などが挙げられる。
 本発明に係る印刷物に用いられる基材としては、例えば白紙、プラスチックフィルムに白色印刷したもの等を挙げることができる。この場合のプラスチックフィルムとしては、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、合成紙などが挙げられる。完成品の用途によりそれぞれ紙・フィルムの優位性があると考えられ一概にはどれが良いとは言えないが、後述する本発明実施例では安価な点や扱いやすさなどから白色上質紙を選択した。
 本発明に係るオフセット印刷用の偽造防止インクセットとしては、従来公知の平版オフセット印刷用インクが用いられる。例えば、酸化重合型インク、ヒートセット型インク、浸透乾燥型インクなどが挙げられる。
 また、印刷に使用する版についても、従来公知の製版技術が用いられる。例えば、振幅変調スクリーニング(AMスクリーニング)法により形成した版、周波数変調スクリーニング(FMスクリーニング)法により形成した版などが挙げられる。
 本発明に係るオフセット印刷の偽造防止インク組成物を用いて印刷することにより、デザイン上の制約が少なく、偽造防止効果にも優れた印刷物を提供することができる。
8.真贋判定方法
 本発明に係る印刷物に波長800nm~1300nmの近赤外線を照射し、当該印刷物から拡散反射してくる上記波長の近赤外線を測定する。本発明に係る印刷物は、近赤外線吸収微粒子を含有していないブランク印刷物に比べて、波長800nm~1300nmの近赤外線の拡散反射が少ない。そのため、近赤外線吸収微粒子を含有する印刷物の波長800nm~1300nmの近赤外線の拡散反射率と、ブランク印刷物の波長800nm~1300nmの近赤外線の拡散反射率との差に拠って、印刷物の真贋を容易に判定することができる。例えば、本発明に係る印刷物の波長800nm~1300nmの拡散反射率の値を、ブランク印刷物の波長800nm~1300nmの拡散反射率の値で除することで、バインダー等の他の成分や基材などの要因を除いた近赤外線吸収微粒子の正味の拡散反射率を評価できる。この除した値が小さい程、真贋の判定は容易であり、0.84以下であることが好ましく、0.77以下であることがより好ましい。
 上述した近赤外線吸収微粒子を含む印刷物の拡散反射率を、ブランク印刷物の拡散反射率の値で除した値を小さくするには、近赤外線吸収微粒子の含有量を増やせば良く、インク中の近赤外線吸収微粒子濃度を高くすれば良いとも考えられるが、インクの安定性やコストの観点から限界がある。他にも、インクを重ね塗りして膜厚を厚くすることも考えられる。しかし、工数が増えたり、膜厚が厚くなることで印刷面に凹凸が発生する、等の影響が懸念される。
 従って、印刷物中に含まれる近赤外線吸収微粒子の量は少ないほうが好ましく、本発明に係る近赤外線吸収微粒子を用いることとなる。具体的には、印刷物中に含まれる近赤外線吸収微粒子の量が0.8g/cm以下であることが好ましい。
 尚、本発明に係る拡散反射率は、分光光度計を用いて、硫酸バリウムの微粉末を固めた白板の拡散反射率を100%として調整の上、波長800nm~1300nmの波長領域における拡散反射率を相対値で測定したものである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。
 尚、本実施例に係る近赤外線吸収微粒子分散剤の酸価の測定方法は、JIS K 0070に準拠し、電位差滴定法による。また、実施例に係る近赤外線吸収微粒子分散液の粘度の測定方法は、振動式粘度計VM100A-L(CBCマテリアルズ(株)製)を用いて測定した。さらに、X線回折装置(ブルカー・エイエックスエス(株)製、D2 PHASER)を用い、CuKα線使用の条件下で測定を行い、2θ=10°~100°のXRDパターンを得て、XRDパターンに基づいてリートベルト解析を行い、実施例に係る近赤外線吸収微粒子の格子定数を求めた。
 そして、本実施例に係る印刷物の光学特性は、分光光度計U-4100(日立製作所(株)製)を用いて測定した。拡散反射率は、分光光度計U-4100(日立製作所(株)製)を用いて、硫酸バリウムの微粉末を固めた白板の拡散反射率を100%として調整の上、波長800nm~1300nm波長領域において5nm毎の拡散反射率を相対値で測定し、得られた値の平均値を用いた。
(実施例1)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を20.0質量%、分散剤として脂肪酸を構造中に有し、アミノ基を有し、酸価が20.3mgKOH/gであり、ヒドロキシステアリン酸鎖を有し、不揮発分100%である分散剤(以下、分散剤aと略称する。)10.0質量%、溶剤としてメチルイソブチルケトン(以下、MIBKと略称する。)70.0質量%を秤量した。
 これらの六ホウ化物微粒子、分散剤、溶剤を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、30時間粉砕・分散処理し、実施例1に係る六ホウ化物微粒子分散液(以下、分散液Aと略称する)を得た。
 さらに、A液100重量部へ桐油36.6重量部を混合添加し、次に、撹拌型真空乾燥機(株式会社石川工場製石川式真空ライカイ機)を使用して、減圧操作(-ゲージ圧で-0.08MPa)も加えた加熱蒸留を80℃で1時間行い、MIBKを除去して六ホウ化物微粒子分散液(以下、分散液Bと略称する)を得た。分散液B中の六ホウ化ランタン微粒子濃度は29.6質量%であった。
 ここで、分散液Bの残留MIBK量を乾式水分計(島津製作所製:MOC-120H)で測定したところ、1.5質量%であった。分散液B中の六ホウ化物微粒子の分散粒子径を、大塚電子製粒度分布計で測定したところ84.6nmであった。また、格子定数は0.41560nmであった。
 結果を表1に示す(以下、実施例2、3、4、比較例1も同様に示す。)。
 被印刷基材として厚さ50μmの透明PETフィルムを準備し、その表面に分散液Bをバーコーターにより厚さ8μmで成膜した。この膜を70℃で3時間加熱して分散液Bを乾燥させた。
 得られた分散液Bの乾燥膜の可視光透過率は69.6%であった。また、可視光領域の波長550nmの透過率は71.5%であり、近赤外線領域の波長800nmの透過率は30.6%、波長900nmの透過率は22.3%、波長1000nmの透過率は20.2%、波長1500nmの透過率は71.0%であった。この分散液Bの乾燥膜の透過プロファイルを図1に、測定結果を表1に示す(以下、実施例2、3、4も同様に示す。)。
(実施例2)
 A液100重量部へ桐油10.0重量部を混合添加した以外は、実施例1と同様にして実施例2に係る六ホウ化物微粒子分散液(以下、分散液Cと略称する)を得た。分散液C中の六ホウ化ランタン微粒子濃度は29.2質量%であった。
 分散液Cの残留MIBK量を乾式水分計で測定したところ、2.6質量%であった。分散液C中の六ホウ化物微粒子の分散粒子径を、大塚電子製粒度分布計で測定したところ84.3nmであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして実施例2に係る乾燥膜を得、光学特性を測定した。
 得られた乾燥膜の可視光透過率は68.8%であった。また、可視光領域の波長550nmの透過率は70.8%であり、近赤外線領域の波長800nmの透過率は29.5%、波長900nmの透過率は21.4%、波長1000nmの透過率は19.3%、波長1500nmの透過率は69.8%であった。この分散液Cの乾燥膜の透過プロファイルを図2に示す。
(実施例3)
 A液100重量部へアマニ油36.6重量部を混合添加した以外は、実施例1と同様にして実施例3に係る六ホウ化物微粒子分散液(以下、分散液Dと略称する)を得た。分散液D中の六ホウ化ランタン微粒子濃度は29.6質量%であった。
 分散液Dの残留MIBK量を乾式水分計で測定したところ、1.5質量%であった。分散液D中の六ホウ化物微粒子の分散粒子径を大塚電子製粒度分布計で測定したところ84.5nmであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして実施例3に係る乾燥膜を得、光学特性を測定した。
 得られた乾燥膜の可視光透過率は68.4%であった。また、可視光領域の波長550nmの透過率は70.5%であり、近赤外線領域の波長800nmの透過率は28.1%、波長900nmの透過率は20.1%、波長1000nmの透過率は18.2%、波長1500nmの透過率は69.4%であった。この分散液Dの乾燥膜の透過プロファイルを図3に示す。
(実施例4)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を20質量%、分散剤として分散剤aを10質量%、溶剤としてプロピレングリコールモノメチルエーテルアセテート(以下、PGM-Acと略称する。)70.0質量%を秤量した以外は、実施例1と同様にして実施例4に係る六ホウ化物微粒子分散液(以下、分散液Eと略称する)を得た。
 次に、分散液Eを用いた以外は実施例1と同様にして、実施例4に係る六ホウ化物微粒子分散液(以下、分散液Fと略称する。)を得た。分散液F中の六ホウ化ランタン微粒子濃度は29.3質量%であった。
 分散液Fの残留PGM-Ac量を乾式水分計で測定したところ、2.3質量%であった。分散液F中の六ホウ化物微粒子の分散粒子径を、大塚電子製粒度分布計で測定したところ84.7nmであった。また、格子定数は0.41560nmであった。
 次に、実施例1と同様にして乾燥膜を得、光学特性を測定した。
 得られた乾燥膜の可視光透過率は68.5%であった。また、可視光領域の波長550nmの透過率は70.6%であり、近赤外線領域の波長800nmの透過率は29.3%、波長900nmの透過率は21.2%、波長1000nmの透過率は19.2%、波長1500nmの透過率は70.8%であった。この分散液Fの乾燥膜の透過プロファイルを図4に示す。
(比較例1)
 近赤外線吸収微粒子として六ホウ化ランタン微粒子(平均粒径1~2μm)を20質量%、分散剤として分散剤aを10質量%、溶剤として沸点197℃のエチレングリコール(以下、E.G.と略称する。)70質量%を秤量した。
 これらの六ホウ化物微粒子、分散剤、溶剤を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、30時間粉砕・分散処理し、比較例1に係る六ホウ化物微粒子分散液(以下、分散液Gと略称する)を得た以外は、実施例1と同様にして、比較例1に係る六ホウ化物微粒子分散液(以下、分散液Hと略称する)を得た。分散液H中の六ホウ化ランタン微粒子濃度は19.0質量%であった。
 分散液Hの残留E.G.量を乾式水分計で測定したところ、36.7質量%であった。分散液H中における六ホウ化物微粒子の分散粒子径を大塚電子製粒度分布計で測定したところ83.7nmであった。また、格子定数は0.41560nmであった。
 次に、分散液Hを用いた以外は実施例1と同様にして、比較例1に係る乾燥膜を作製したが、E.G.が多く含まれていた為、乾燥膜が得られず、光学特性を測定できなかった。
(実施例1~4の評価)
 実施例1~4において、植物油中に六ホウ化物の微粒子を分散させた2の分散液中における、第1の溶剤の含有量は、いずれも5質量%未満であった。
 また、実施例1~4に係る乾燥膜は、可視光領域では高い透過率を示し、近赤外線領域では透過率が顕著に低くなっている。
 この結果、本発明に係る近赤外線吸収微粒子分散液を用いて作製した印刷パターンは、近赤外線鑑定機で判別可能であることが確認された。
(実施例5)
 実施例1にて調製した分散液B液を用いたオフセット印刷用の偽造防止インクB(以下、インクBと略称する)の調製例、および、当該インクBを用いた印刷例について説明する。但し、本発明の範囲は、これら記載の実施例に限定されるものではない。
(ロジン変性フェノール樹脂の調製)
 撹拌機、冷却器、温度計をつけた4つ口フラスコに、P-オクチルフェノール1000重量部、35%ホルマリン850重量部、93%水酸化ナトリウム60重量部、トルエン1000部を装填して、90℃で6時間反応させた。その後、6N塩酸125重量部、水1000重量部の塩酸溶液を添加し、撹拌、静置した後、上層部を取り出した。そして、不揮発分49%のレゾールタイプフェノール樹脂のトルエン溶液2000重量部を得、これをレゾール液とした。
 撹拌機、水分分離器付き冷却器、温度計をつけた4つ口フラスコに、ガムロジン1000重量部を装填し、窒素ガスを吹き込みながら200℃で溶解した。ここへ、前記で得られたレゾール液1800重量部を添加し、トルエンを除去しながら230℃で4時間反応させた。当該反応後、グリセリン110重量部を添加し、250℃で10時間反応させて酸価を20mgKOH/g以下とし、重量平均分子量50000、新日本石油化学(株)AFソルベント6号での白濁温度88℃のロジン変性フェノール樹脂を得た。
(ワニスの調製)
 前記で得られたロジン変性フェノール樹脂40重量部、大豆油35重量部、AFソルベント6号(新日本石油化学(株)製溶剤)24重量部、ALCH(川研ファインケミカル(株)製ゲル化剤)1.0重量部を、190℃で1時間加熱撹拌してワニスを得た。
(オフセット印刷用の偽造防止インクの調製)
 表2に示す配合にて、実施例1にて調製した分散液B、ワニス、石油系溶剤(新日本石油株式会社製:AF-6ソルベント)、大豆油、桐油、コンパウンド(合同インキ株式会社製:UGコンパウンド)、金属ドライヤー(DICグラフィックス株式会社製:937ドライヤー)、乾燥抑制剤(東京インキ株式会社製:インキーパー)を混合しインクBを得た。
 インクBにおいて六ホウ化ランタン濃度は0.38質量%となった。得られたオフセット印刷用の偽造防止インクは凝集等を起こさず、安定であった。
(印刷物の調製)
 被印刷基材として白色上質紙を準備し、インクBを用いてオフセット印刷を行って印刷物Bを得た。得られた印刷物Bの波長800nm~1300nmにおける拡散反射率の平均値は60.0%であった。
 一方、後述する比較例2に係るブランク印刷物の波長800nm~1300nmにおける拡散反射率の平均値は77.7%であった。
 従って、実施例5に係る印刷物Bの波長800nm~1300nmの拡散反射率の平均値を、後述する比較例2記載するブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.77であった。
(実施例6)
 表2に示す配合にて、実施例1にて調製した調製した分散液B、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止の偽造防止インクC(以下、インクCと略称する)を得た。インクCにおいて六ホウ化ランタン濃度は0.73質量%となった。被印刷基材として白色上質紙を準備し、インクCを用いてオフセット印刷を行って印刷物Cを得た。得られた印刷物Cの波長800nm~1300nmにおける拡散反射率の平均値は46.3%であった。
 従って、印刷物Cの波長800nm~1300nmの拡散反射率の平均値を比較例2に記載のブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.60であった。
(実施例7)
 表2に示す配合にて、実施例1にて調製した調製した分散液B、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止の偽造防止インクD(以下、インクDと略称する)を得た。インクDにおいて六ホウ化ランタン濃度は1.86質量%となった。被印刷基材として白色上質紙を準備し、インクDを用いてオフセット印刷を行って印刷物Dを得た。得られた印刷物Dの波長800nm~1300nmにおける拡散反射率の平均値は21.6%であった。
 従って、印刷物Dの波長800nm~1300nmの拡散反射率の平均値を比較例2に記載のブランク印刷物の波長800nm~1300nmの拡散反射率の平均値で除した値は0.28であった
(比較例2)
 表2に示す配合にて、ワニスと、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は実施例5と同様にしてオフセット印刷用の偽造防止インクE(以下、インクEと略称する)を得た。被印刷基材として白色上質紙を準備し、インクEを用いてオフセット印刷を行ってブランク印刷物である印刷物Eを得た。得られたブランク印刷物である印刷物Eの波長800nm~1300nmにおける拡散反射率の平均値は77.7%であった。
(比較例3)
 近赤外線吸収微粒子としてアンチモン添加酸化錫(ATO)微粒子(平均粒径1~10μm)を用いた以外は、実施例1と同様にして比較例3に係る近赤外線吸収微粒子分散液(以下、分散液Iと略称する)を得た。
 次に、分散液Iを用いた以外は実施例1と同様にして、比較例3に係るアンチモン添加酸化錫微粒子分散液(以下、分散液Jと略称する。)を得た。分散液J中のアンチモン添加酸化錫微粒子濃度は29.3質量%であった。
 ここで、分散液Jの残留MIBK量を乾式水分計で測定したところ、2.3質量%であった。分散液J中のアンチモン添加酸化錫微粒子分散液の分散粒子径を測定したところ、75.6nmであった。
 表2に示す配合にて、分散液J、ワニス、石油系溶剤、大豆油、桐油、コンパウンド、金属ドライヤー、乾燥抑制剤を混合した以外は、実施例5と同様にしてオフセット印刷用の偽造防止インクF(以下、インクFと略称する)を得た。被印刷基材として白色上質紙を準備し、インクFを用いてオフセット印刷を行って印刷物Fを得た。得られた印刷物Fの波長800nm~1300nmにおける拡散反射率の平均値は70.3%であった。
 従って、印刷物Fの波長800nm~1300nmの拡散反射率の平均値を比較例2に記載のブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は0.90であった。
(実施例5~7および比較例2、3の評価)
 実施例5~7において、印刷パターンに六ホウ化物の粒子を含む印刷物B~Dは、波長800nm~1300nmで低い拡散反射率を示している。これらの波長800nm~1300nmの拡散反射率の平均値を、ブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は、0.28~0.77と小さい。この結果、六ホウ化物の粒子を含む印刷物は真贋判定が容易であることが確認された。
 一方、比較例2に係る印刷パターンに六ホウ化物の粒子を含む印刷物E、比較例3に係る印刷パターンにアンチモン添加酸化錫の粒子を含む印刷物Fは、波長800nm~1300nmで高い拡散反射率を示している。これらの波長800nm~1300nmの拡散反射率の平均値を、ブランクの波長800nm~1300nmの拡散反射率の平均値で除した値は、0.90~1.00と大きく、波長800nm~1300nmの反射率で真贋判定を行うことは困難であると考えられる。
 また、比較例3に係るアンチモン添加酸化錫の粒子を含む印刷インクで真贋判定が容易な印刷物を得ようとした場合、印刷物表面のインクの膜厚を、目視で認識できるほど厚くする必要があり、当該印刷物を偽造防止用途に用いることは、現実的でないと考えられた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 

Claims (24)

  1.  植物油または植物油由来の化合物から選択される1種類以上の溶剤と、
     一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子と、
     アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤と、を含み、
     前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤の含有量が5質量%以下であることを特徴とする近赤外線吸収微粒子分散液。
  2.  前記近赤外線吸収微粒子分散液が、さらに、前記植物油または植物油由来の化合物から選択される1種類以上の溶剤に可溶で、脂肪酸を構造中に有する分散剤を含み、
     前記近赤外線吸収微粒子分散液中の六ホウ化物の濃度が25質量%以上75質量%以下であることを特徴とする請求項1に記載の近赤外線吸収微粒子分散液。
  3.  前記分散剤のアンカー部が、2級アミノ基、3級アミノ基、および、4級アンモニウム基から選択される1種類以上を有することを特徴とする請求項1または2に記載の近赤外線吸収微粒子分散液。
  4.  前記分散剤の酸価が1mgKOH/g以上の分散剤であることを特徴とする請求項2または3に記載の近赤外線吸収微粒子分散液。
  5.  前記近赤外線吸収微粒子の分散粒子径が1nm以上200nm以下であることを特徴とする請求項1から4のいずれかに記載の近赤外線吸収微粒子分散液。
  6.  前記近赤外線吸収微粒子の格子定数が0.4100nm以上0.4160nm以下であることを特徴とする請求項1から5のいずれかに記載の近赤外線吸収微粒子分散液。
  7.  前記近赤外線吸収微粒子の表面が、Si、Ti、Al、Zrから選択される1種以上の化合物で被覆されていることを特徴とする請求項1から6のいずれかに記載の近赤外線吸収微粒子分散液。
  8.  前記植物油が、乾性油、半乾性油から選択される1種類以上の植物油であることを特徴とする請求項1から7のいずれかに記載の近赤外線吸収微粒子分散液。
  9.  前記近赤外線吸収微粒子分散液が、さらにバインダーを含むことを特徴とする請求項1から8のいずれかに記載の近赤外線吸収微粒子分散液。
  10.  一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤へ混合し分散処理して、第1の分散液を得る工程と、
     前記第1の分散液へ、植物油または植物油由来の化合物から選択される1種類以上の溶剤を添加、混合して、第2の分散液を得る工程と、
     前記第2の分散液から、前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤の含有量が、5質量%以下となるまで除去する工程とを、有することを特徴とする近赤外線吸収微粒子分散液の製造方法。
  11.  前記第1の分散液における近赤外線吸収微粒子濃度が5質量%以上50質量%以下であることを特徴とする請求項10に記載の近赤外線吸収微粒子分散液の製造方法。
  12.  アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤と、植物油または植物油由来の化合物から選択される1種類以上の溶剤を混合して、混合溶剤を得る工程と、
     一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を、前記混合溶剤へ混合し分散処理して、第3の分散液を得る工程と、
     前記第3の分散液から、前記アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、グリコールエーテル類とから選択される1種以上の溶剤であって沸点180℃以下の溶剤を、含有量が5質量%以下となるまで除去する工程とを、有することを特徴とする近赤外線吸収微粒子分散液の製造方法。
  13.  前記第3の分散液における近赤外線吸収微粒子濃度が5質量%以上50質量%以下であることを特徴とする請求項12に記載の近赤外線吸収微粒子分散液の製造方法。
  14.  前記植物油または植物油由来の化合物から選択される1種類以上の溶剤の少なくとも1種以上へ、当該溶剤に可溶で、脂肪酸を構造中に有する分散剤を加えることを特徴とする請求項10から13のいずれかに記載の近赤外線吸収微粒子分散液の製造方法。
  15.  請求項1から9のいずれかに記載の近赤外線吸収微粒子分散液を含むことを特徴とする偽造防止インク組成物。
  16.  さらに、顔料を含むことを特徴とする請求項15に記載の偽造防止インク組成物。
  17.  請求項16に記載の顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物。
  18.  請求項16に記載の顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする偽造防止インク組成物。
  19.  可塑剤、酸化防止剤、増粘剤、ワックスから選択される1種類以上を含むことを特徴とする請求項15から18のいずれかに記載の偽造防止インク組成物。
  20.  基材の一方もしくは両面に、印刷パターンを有する印刷物であって、前記印刷パターンに一般式がXBで表記される六ホウ化物微粒子(元素Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上、4.0≦a≦6.2)から選択される1種以上の近赤外線吸収微粒子を含有していることを特徴とする偽造防止印刷物。
  21.  印刷パターンがさらに顔料を含むことを特徴とする、請求項20に記載の偽造防止印刷物。
  22.  顔料が無機顔料であり、カーボンブラック、白色顔料、体質顔料、赤色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料、蛍光顔料、示温顔料、パール顔料、金属粉顔料から選択される1種類以上であることを特徴とする、請求項21に記載の偽造防止印刷物。
  23.  顔料が有機顔料であり、アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、フタロシアニン顔料、縮合多環系顔料から選択される1種類以上であることを特徴とする、請求項21に記載の偽造防止印刷物。
  24.  偽造防止印刷物の波長800nm~1300nmの拡散反射率の平均値を、近赤外線吸収微粒子を含まないブランクの波長800nm~1300nmの拡散反射率の平均値で除した値が0.84以下であることを特徴とする、請求項20から23のいずれかに記載の偽造防止印刷物。
PCT/JP2016/052399 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物 WO2016121841A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016572121A JP6519596B2 (ja) 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法
US15/546,923 US10604665B2 (en) 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
AU2016213101A AU2016213101B2 (en) 2015-01-27 2016-01-27 Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
CN201680007427.1A CN107429098B (zh) 2015-01-27 2016-01-27 近红外线吸收微粒分散液及其制造方法、防伪油墨组合物及防伪印刷物
EP16743444.8A EP3252113B1 (en) 2015-01-27 2016-01-27 Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
US16/708,600 US11084949B2 (en) 2015-01-27 2019-12-10 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-012896 2015-01-27
JP2015012896 2015-01-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/546,923 A-371-Of-International US10604665B2 (en) 2015-01-27 2016-01-27 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US16/708,600 Continuation US11084949B2 (en) 2015-01-27 2019-12-10 Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles

Publications (1)

Publication Number Publication Date
WO2016121841A1 true WO2016121841A1 (ja) 2016-08-04

Family

ID=56543449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052399 WO2016121841A1 (ja) 2015-01-27 2016-01-27 近赤外線吸収微粒子分散液とその製造方法、近赤外線吸収微粒子分散液を用いた偽造防止インク組成物、および近赤外線吸収微粒子を用いた偽造防止印刷物

Country Status (7)

Country Link
US (2) US10604665B2 (ja)
EP (1) EP3252113B1 (ja)
JP (1) JP6519596B2 (ja)
CN (1) CN107429098B (ja)
AU (1) AU2016213101B2 (ja)
TW (1) TWI686354B (ja)
WO (1) WO2016121841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083052A (zh) * 2017-05-17 2017-08-22 昕亮科技(深圳)有限公司 用于焊接部件的聚酰胺材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358785B2 (ja) * 2019-06-05 2023-10-11 住友金属鉱山株式会社 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
CN115803400B (zh) * 2020-07-15 2023-10-20 富士胶片株式会社 防伪图像记录用油墨组、防伪图像记录方法及防伪图像记录物
CN112408409B (zh) * 2020-10-29 2022-07-05 航天材料及工艺研究所 一种耐高温高熵吸波陶瓷及其制备方法和应用
CN116635490A (zh) * 2020-12-21 2023-08-22 爱克发-格法特公司 Nir吸收喷墨油墨、记录的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
JP2006143778A (ja) * 2004-11-16 2006-06-08 Sun Bijutsu Insatsu Kk 情報担持シート及びそのための印刷インキ
JP2008509271A (ja) * 2004-08-13 2008-03-27 ヘ−ウク・イ 機能性コーティング組成物、これを用いた機能性被膜及びそれらの製造方法
JP2008169294A (ja) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320466A (ja) 1991-04-19 1992-11-11 Mitsui Toatsu Chem Inc セキュリティインキ
JP4058822B2 (ja) 1997-09-30 2008-03-12 住友金属鉱山株式会社 選択透過膜用塗布液、選択透過膜および選択透過多層膜
JP4096277B2 (ja) * 1998-09-22 2008-06-04 住友金属鉱山株式会社 日射遮蔽材料、日射遮蔽膜用塗布液、及び、日射遮蔽膜
JP2000309736A (ja) 1999-04-26 2000-11-07 Toppan Printing Co Ltd 赤外線吸収インキ組成物およびそれを用いた印刷物
JP2002194291A (ja) * 2000-12-22 2002-07-10 Sumitomo Metal Mining Co Ltd 日射遮蔽膜形成用塗布液の製造方法
WO2003057785A2 (en) * 2002-01-11 2003-07-17 Nyin Kong Yap Security ink
JP4349779B2 (ja) * 2002-07-31 2009-10-21 住友金属鉱山株式会社 熱線遮蔽透明樹脂成形体と熱線遮蔽透明積層体
JP3982466B2 (ja) * 2002-09-25 2007-09-26 住友金属鉱山株式会社 熱線遮蔽成分分散体とその製造方法およびこの分散体を用いて得られる熱線遮蔽膜形成用塗布液と熱線遮蔽膜並びに熱線遮蔽樹脂成形体
US7207485B2 (en) * 2003-04-07 2007-04-24 Silverbrook Research Pty Ltd Automatic packaging system
CN101405146A (zh) * 2006-03-20 2009-04-08 巴斯夫欧洲公司 纳米颗粒状金属硼化物组合物以及其用于识别标记塑料部件的用途
EP1999185B1 (en) * 2006-03-29 2012-02-29 Basf Se Polyethylene imine based pigment dispersants
GB2438196B (en) * 2006-05-13 2008-05-28 Inovink Ltd Improvements in or relating to printing
BRPI0918771B1 (pt) * 2008-09-05 2019-03-26 Toyo Ink Mfg Co., Ltd Composição de tinta
JP2009108324A (ja) * 2008-12-12 2009-05-21 Sumitomo Metal Mining Co Ltd 偽造防止用インク及び偽造防止印刷物
US7780774B2 (en) * 2009-01-27 2010-08-24 Xerox Corporation Method of making a pigmented phase change ink with dispersant and synergist
CN102079895A (zh) * 2009-11-26 2011-06-01 姚瑞刚 智能语音识别器专用防伪油墨
CN101962481B (zh) * 2010-10-19 2012-09-05 中山大桥化工集团有限公司 一种适用于用作溶剂型颜料分散剂的高分子化合物
AU2012212388B2 (en) * 2011-02-01 2014-09-04 Reserve Bank Of Australia Transparent infrared absorbing materials
FR2981359B1 (fr) * 2011-10-14 2013-11-08 Sojasun Technologies Encre biodegradable pour impression et/ou ecriture infalsifiable.
CN103897441B (zh) * 2012-12-28 2015-08-19 南通市晗泰化工有限公司 一种溶剂型嵌段高分子分散剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168842A (ja) * 2002-11-19 2004-06-17 Sumitomo Metal Mining Co Ltd 偽造防止インク用組成物、偽造防止インク及び偽造防止印刷物
JP2008509271A (ja) * 2004-08-13 2008-03-27 ヘ−ウク・イ 機能性コーティング組成物、これを用いた機能性被膜及びそれらの製造方法
JP2006143778A (ja) * 2004-11-16 2006-06-08 Sun Bijutsu Insatsu Kk 情報担持シート及びそのための印刷インキ
JP2008169294A (ja) * 2007-01-11 2008-07-24 Sumitomo Metal Mining Co Ltd レーザー溶着用光吸収樹脂組成物及び光吸収樹脂成形体、並びに光吸収樹脂成形体の製造方法
JP2008291167A (ja) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd 平版インキ組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252113A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083052A (zh) * 2017-05-17 2017-08-22 昕亮科技(深圳)有限公司 用于焊接部件的聚酰胺材料及其制备方法
CN107083052B (zh) * 2017-05-17 2019-05-03 深圳市前海宇昕科技有限公司 用于焊接部件的聚酰胺材料及其制备方法

Also Published As

Publication number Publication date
JP6519596B2 (ja) 2019-05-29
EP3252113B1 (en) 2020-11-25
AU2016213101A1 (en) 2017-08-31
US11084949B2 (en) 2021-08-10
US10604665B2 (en) 2020-03-31
US20200115570A1 (en) 2020-04-16
TWI686354B (zh) 2020-03-01
EP3252113A4 (en) 2018-07-25
CN107429098B (zh) 2021-03-09
US20180016450A1 (en) 2018-01-18
AU2016213101B2 (en) 2020-04-02
JPWO2016121841A1 (ja) 2017-11-02
TW201632462A (zh) 2016-09-16
EP3252113A1 (en) 2017-12-06
CN107429098A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US11021002B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11084949B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
US11248133B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
AU2016213105B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
AU2016213104B2 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
JP6541400B2 (ja) 偽造防止用インキ及びその印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572121

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546923

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016213101

Country of ref document: AU

Date of ref document: 20160127

Kind code of ref document: A