WO2016121735A1 - 信号発生回路、電圧変換装置及び信号発生方法 - Google Patents

信号発生回路、電圧変換装置及び信号発生方法 Download PDF

Info

Publication number
WO2016121735A1
WO2016121735A1 PCT/JP2016/052123 JP2016052123W WO2016121735A1 WO 2016121735 A1 WO2016121735 A1 WO 2016121735A1 JP 2016052123 W JP2016052123 W JP 2016052123W WO 2016121735 A1 WO2016121735 A1 WO 2016121735A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
signal
settable
values
pwm
Prior art date
Application number
PCT/JP2016/052123
Other languages
English (en)
French (fr)
Inventor
武徳 阿部
成治 高橋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2016121735A1 publication Critical patent/WO2016121735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a signal generation circuit, a voltage conversion device, and a signal including a generation unit that generates a PWM signal according to a set value and a control unit that sets a value that can be set in the generation unit according to a target value. It relates to the generation method.
  • the minimum increment that is, the minimum unit
  • a settable value a value that can be set in the PWM signal generation unit
  • the duty of the PWM signal is smoothed with respect to a change in the target value. Therefore, the output voltage changes stepwise.
  • the target value to be set in the PWM signal generation unit is calculated as the operation amount by the PWM control
  • the minimum increment of the settable value is larger than the minimum increment of the target value
  • the duty of the PWM signal cannot be smoothly changed with respect to the change of the target value and the load fluctuation, and an error occurs in the output voltage.
  • Patent Document 1 when calculating the on / off time of the PWM signal for each PWM control cycle, the on / off time is calculated by rounding down the remainder of the division with the voltage command value as the dividend. And a PWM inverter that outputs a PWM pulse based on the calculation result is disclosed.
  • the remainder generated by the above calculation corresponds to a voltage command value that is truncated without being reflected in the on / off time.
  • the remainder that is not reflected in the on / off time in the previous computation is newly added to the next computation by adding the rounded down remainder to the voltage command value in the computation after the next cycle. / It is reflected in the off time, and it is repeated that the remainder at that time is further reflected in the next calculation. For this reason, the average value of the on / off time set for the PWM signal generation unit can be brought close to the target on / off time to be originally set. That is, the minimum increment of the value set in the generation unit can be made smaller than the actual increment on average.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to compare a minimum increment of a value set in a generation unit that periodically generates a PWM signal according to a set value. It is an object of the present invention to provide a signal generation circuit, a voltage converter, and a signal generation method that can be made substantially smaller than an actual increment with a small processing load.
  • a signal generation circuit includes a generation unit that periodically generates a PWM signal according to a set value, and the generation unit for each period of the signal according to a target value.
  • a control unit that sets a settable value that can be set in the generation unit, the generation unit generates a PWM signal to an external voltage conversion circuit, and converts the voltage by PWM control of the voltage conversion circuit
  • the control unit specifies a settable value closest to the target value and a settable value closest to the second value for every N periods (N is a natural number of 2 or more) of the signal; Based on the two settable values specified by the means and the target value, N settable values obtained by combining the two settable values are determined to be set in the generation unit. And determining means To.
  • the determining unit may determine the N settable values as M average values of M settable values (M is a natural number satisfying 2 ⁇ M ⁇ N). It is characterized in that it is determined so as to be closest to the target value.
  • the determining unit determines the N settable values such that an average value of each settable value is closest to the target value. It is characterized by that.
  • a signal generation circuit includes a storage unit that stores a correspondence relationship between a target value and N settable values, and the storage unit stores N settable values for each settable value. Are determined in advance so as to be closest to the corresponding target value, and the determining means stores N settable values corresponding to the target value in the storage unit. It is determined from the stored information.
  • control unit sequentially reads out N settable values determined by the determination unit from the storage unit for each period of the signal and sets the settable values in the generation unit. It is characterized by that.
  • a voltage conversion device includes the above-described signal generation circuit, a voltage conversion circuit that converts voltage by switching according to the duty of a signal generated by the signal generation circuit, and the voltage conversion circuit
  • a voltage conversion device including a detection unit for detecting a voltage, wherein the control unit included in the signal generation circuit includes means for calculating the target value by PWM control based on the voltage detected by the detection unit. It is characterized by.
  • a signal generation method includes: a generation unit that periodically generates a PWM signal according to a set value; and the generation unit for each period of the signal according to a target value.
  • a control unit that sets a settable value that can be set in the generation unit, the generation unit generates a PWM signal to an external voltage conversion circuit, and converts the voltage by PWM control of the voltage conversion circuit
  • the settable value closest to the target value and the settable value closest to the second target value are specified every N cycles (N is a natural number of 2 or more) of the signal.
  • the N settable values obtained by combining the two settable values are determined to be set in the generation unit based on the two specified settable values and the magnitudes of the target values.
  • control unit determines and sets a settable value that can be set in the generation unit according to the target value. Specifically, the control unit identifies the settable value closest to the target value and the second settable value for each N cycles of the signal generated by the generation unit, and sets the two specified settable values. Based on the result of comparison between the magnitude and the target value, N settable values are determined by combining the two specified settable values, and are set in the generation unit one by one for each period of the signal. . Accordingly, the ratio of the settable value closest to the target value and the settable value closest to the second value is appropriately determined for the N settable values determined by the control unit, and thus the average of the N settable values is determined. Value is finer-tuned than the smallest increment of the settable value.
  • the settable value closest to the target value is determined as the first settable value, and the first to Mth (2 The determination of the Mth settable value is repeated N ⁇ 1 times so that the average value of the settable values up to ⁇ M ⁇ N) is closest to the target value.
  • the average value of the settable values set in the generation unit from the first period to the period becomes closest to the target value.
  • N settable values are determined such that the average value of all N settable values is closest to the target value. .
  • the average value of the N settable values set in the generation unit is closest to the target value for the entire N period of the signal.
  • the control unit determines N settable values to be set in the generation unit corresponding to the target value from the storage information in the storage unit. Thereby, N settable values to be determined according to the target value are easily determined when the control unit executes the control.
  • control unit sequentially reads N settable values from the storage unit and sets them in the generation unit. Thereby, the storage information of the storage unit is sequentially set in the generation unit.
  • the voltage conversion circuit converts the voltage by switching according to the duty of the signal generated by the signal generation circuit, and the control unit of the signal generation circuit generates by PWM control based on the converted voltage.
  • the target value to be set for the part is calculated.
  • the ratio of the settable value closest to the target value and the second closest settable value is appropriately determined.
  • the average value is adjusted more finely than the smallest settable value increment. Therefore, the minimum increment of the value set in the generator that periodically generates the PWM signal corresponding to the set value can be made substantially smaller than the actual increment with a relatively small processing load. .
  • FIG. 3 is a timing diagram for explaining the operation of the signal generation circuit according to the first embodiment of the present invention. It is a timing diagram for explaining the operation in which the average duty of the PWM signal is determined by N set values. It is explanatory drawing for demonstrating the method of determining N setting values in the signal generation circuit which concerns on Embodiment 1 of this invention. It is a flowchart which shows the process sequence of CPU which performs a PWM interruption process in the signal generation circuit which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a block diagram illustrating a configuration example of a voltage conversion apparatus including a signal generation circuit according to Embodiment 1 of the present invention.
  • reference numeral 1a denotes a signal generation circuit.
  • the signal generation circuit 1a generates a PWM signal whose duty changes and supplies the PWM signal to the voltage conversion circuit 2.
  • the voltage conversion circuit 2 converts the voltage of the external battery 3 and supplies it to the external load 4. Although the voltage conversion circuit 2 steps down the voltage of the battery 3 here, the voltage conversion circuit 2 may step up or step up or step down the voltage of the battery 3.
  • the signal generation circuit 1 a is a microcomputer having a CPU 11.
  • the CPU 11 includes a ROM 12a for storing information such as a program, a RAM 13a for storing temporarily generated information, an A / D converter 14 for converting an analog voltage into a digital value, and a PWM circuit for generating a PWM signal (in the generation unit). 15) and an interrupt controller 16 for processing a plurality of interrupt requests.
  • the control unit 10a is obtained by removing the PWM circuit 15.
  • the PWM circuit 15 may be included in the control unit 10a.
  • the RAM 13a includes a duty data table 131 in which a plurality of data to be set for the register buffer 151 included in the PWM circuit 15 is stored. Data stored in the duty data table 131 is sequentially set in the register buffer 151 in an interrupt process described later that is performed by the interrupt controller 16.
  • the PWM circuit 15 includes a duty register 152 in which the contents of the register buffer 151 are periodically loaded, and a PWM signal generation unit 153 that generates a PWM signal with a duty corresponding to the contents of the duty register 152.
  • the PWM signal generation unit 153 gives a load signal for loading the contents of the register buffer 151 to the duty register 152.
  • the PWM signal generation unit 153 generates a PWM signal having an on time that is an integral multiple of the cycle of the internal clock, based on an internal clock (not shown) and the contents of the duty register 152.
  • the PWM signal generated by the PWM signal generation unit 153 is supplied to the voltage conversion circuit 2 and also to the interrupt controller 16 as one of interrupt requests.
  • the interrupt controller 16 is configured to accept a plurality of interrupt requests. When any interrupt request is accepted, the interrupt controller 16 gives a signal (so-called INT signal) for requesting an interrupt to the CPU 11. When an acknowledge signal (so-called INTA signal) is given, an interrupt vector corresponding to each interrupt request is sent to the bus. When the interrupt vector sent to the bus is read by the CPU 11, the CPU 11 executes an interrupt process corresponding to each interrupt request.
  • the drain and source are connected to an N-channel MOSFET (hereinafter simply referred to as FET) 21 whose drain is connected to the positive terminal of the battery 3, and the source of the FET 21 and the negative terminal of the battery 3, respectively.
  • FET N-channel MOSFET
  • the synchronous rectification FET 22, and a drive circuit 26 that supplies a drive signal to the gates of the FET 21 and the FET 22 based on the PWM signal supplied from the PWM signal generation unit 153 of the PWM circuit 15.
  • a load 4 is connected between the drain and source of the FET 22 via a series circuit of an inductor 23 and a resistor 24.
  • a capacitor 25 is connected to the load 4 in parallel. The voltage at the connection point between the resistor 24 and the capacitor 25 is supplied to the A / D converter 14.
  • a current detector 27 is connected to both ends of the resistor 24, and a detection voltage of the current detector 27 is applied to the A / D converter 14.
  • the CPU 11 of the signal generation circuit 1a controls the voltage supplied to the load 4 by, for example, a current mode control system that executes voltage loop control and current loop control in parallel.
  • the CPU 11 performs the target current in the subsequent current loop control based on the deviation obtained by subtracting the digital value obtained by converting the output voltage supplied to the load 4 by the A / D converter 14 from the target voltage value. Calculate the operation amount to be a value.
  • the voltage output from the voltage conversion circuit 2 is the control amount.
  • the CPU 11 is based on the deviation obtained by subtracting the digital value obtained by converting the detection voltage of the current detector 27 by the A / D converter 14 from the target current value from the previous voltage loop control.
  • the operation amount for is calculated.
  • the CPU 11 further determines a settable value (hereinafter simply referred to as a set value) that can be set in the PWM circuit 15 in accordance with the calculated operation amount (hereinafter referred to as a target value).
  • the PWM circuit 15 generates a PWM signal having a duty corresponding to the set value when the determined set value is set.
  • the current output from the voltage conversion circuit 2 is the control amount.
  • N is a natural number of 2 or more. It can be said that it is sufficient to go with a period of.
  • N set values for the PWM circuit 15 are determined and stored in the duty data table 131 for every N cycles of the PWM cycle, and the interrupt processing generated in the PWM cycle is performed.
  • FIG. 2 is a timing diagram for explaining the operation of the signal generation circuit 1a according to the first embodiment of the present invention.
  • the five timing charts shown in FIG. 2 all have the same time axis as the horizontal axis, and the vertical axis indicates the interrupt signal level and the interrupt processing executed at the PWM cycle from the top of the figure.
  • the contents of the register buffer 151, the on / off state of the load signal for loading the contents of the register buffer 151 into the duty register 152, and the contents of the duty register 152 are shown.
  • the on-time when the level is H (high) is times T21, T22, and T23, respectively. From time t13 to t21 is the third period in the previous N period, and the on-time is time T13.
  • the fall when the signal level in each cycle of the PWM signal changes from H to L is accepted as an interrupt request to the interrupt controller 16 and the interrupt process is executed once.
  • the interrupt process is executed only once when the times T13, T21, T22, and T23 have elapsed from the times t13, t21, t22, and t23, respectively.
  • the interrupt process in the third period is longer in execution time than the interrupt process in the first period and the second period by the time for collectively determining the set values for the next N period.
  • the determined setting values are stored in the continuous storage area from the first address to the third address in the duty data table 131 as the first setting value, the second setting value, and the third setting value, respectively.
  • the first set value, the second set value, and the third set value stored in the duty data table 131 are the interrupt process in the third period when each set value is stored, and the first set value in the next N period.
  • Data are sequentially read out by interrupt processing in each of the period and the second period, and set in the register buffer 151. Thereby, in the interrupt processing in each of the first period, the second period, and the third period, the contents of the register buffer 151 are changed to the second set value, the third set value, and the first set value for the next N period. Rewritten.
  • the contents of the register buffer 151 are transferred from the PWM signal generation unit 153 to the duty register 152.
  • a load signal for loading is provided.
  • the contents of the duty register 152 are held at the first set value, the second set value, and the third set value during the first period, the second period, and the third period, respectively.
  • the content determines the on-time of the PWM signal in each of the first period, the second period, and the third period, and determines the duty.
  • the duty data table 131 may be a double buffer so that writing and reading to the duty data table 131 do not compete. Specifically, three setting values are determined and written to one buffer during the third period, the first period, and the second period, and the subsequent third period, the first period, and the second period In the meantime, the next three set values are determined and written to the other buffer, and the previously determined three set values are sequentially read from one buffer in the interrupt processing in each cycle.
  • FIG. 3 is a timing chart for explaining an operation in which the average duty of the PWM signal is determined by N set values.
  • the horizontal axis represents time
  • the vertical axis represents the signal level of the PWM signal.
  • the PWM signal in each PWM cycle is on in the first half and off in the second half.
  • the period of the PWM signal generated by the PWM circuit 15 is 10 ⁇ s
  • the minimum increment of the value that can be set in the PWM circuit 15 is 1, and 1 of this increment is the duty of the PWM signal.
  • the duty of the PWM signal generated by the PWM circuit 15 can be set in units of 3%.
  • the minimum increment of the result calculated by the CPU 11 as the target value to be set in the PWM circuit 15 is 0.1 or less.
  • This calculation is, for example, a PID calculation, and examples of the timing at which the calculation is performed and the timing at which the set value is set in the PWM circuit 15 are as shown in FIG.
  • the target duty is calculated by PID calculation
  • the minimum increment of the calculated duty% value is set to 0.3%, and the value obtained by multiplying the calculated duty by 100/3 is set as the target value. Then, the same result as above can be obtained.
  • the first set value, the second set value, and the third set value are determined as 19 (57%), 20 (60%), and 19 (57%), respectively. Since the increment 1 of the set value corresponds to 3% of the duty and 1% of the duty corresponds to 0.1 ⁇ s, the ON time of each PWM signal generated in the next N cycles by each set value is 5. 7 ⁇ s, 6.0 ⁇ s, and 5.7 ⁇ s, and the average on-time is 5.8 ⁇ s. This indicates that the average duty is 58%.
  • each of the first set value, the second set value, and the third set value is 19 (57 %), 20 (60%) and 20 (60%).
  • the ON time of each PWM signal generated in the next N period depending on each set value is 5.7 ⁇ s, 6.0 ⁇ s, and 6.0 ⁇ s, respectively, and the average on time is 5.9 ⁇ s. This indicates that the average duty is 59%.
  • the average duty of the PWM signal in N cycles can be set in increments of 1%.
  • FIG. 4 is an explanatory diagram for explaining a method of determining N set values in the signal generation circuit 1a according to the first embodiment of the present invention.
  • represents an average value of M (2 ⁇ M ⁇ N) set values. Since the average value has no meaning for the first set value, the number of “ ⁇ ” is one less than the number of “ ⁇ ”.
  • the first closest setting value Y and the second closest setting value Z are specified for the target value X.
  • Y that is larger than X and not larger than 1 ⁇ 2 or more than X is first identified, and Z is identified as Y ⁇ 1.
  • Z is identified as Y + 1.
  • the M-th set value is sequentially determined so that the average value from the first set value to the M-th (2 ⁇ M ⁇ N) set value becomes a value closest to the target value X. Since the first set value is determined before the second set value in anticipation of the average value of the first and second set values being closest to the target value X, the first set value is always Y is determined.
  • the candidate value for the second setting value is Y or Z.
  • the second set value it is determined which one of the two candidate values of the second set value and the average value of the first set value is closer to X.
  • Y is the average value of Y and Y
  • the value Y ⁇ 1 / 2 is compared to determine which is closer to X.
  • the second set value is determined to be Z.
  • the third set value it is determined which of the two candidate values of the third set value, the average value of the second set value and the first set value, is closer to X.
  • the second set value is Z
  • the first set value is Y, Y and Y ⁇ 1
  • Y-1 / 3 which is an average value of Y
  • Y-2 / 3 which is an average value of Y-1, Y-1, and Y
  • the third setting value is determined to be Y.
  • FIG. 5 is a flowchart showing a processing procedure of the CPU 11 that executes the PWM interrupt processing in the signal generation circuit 1a according to the first embodiment of the present invention
  • FIG. 6 shows the setting value determination in the first embodiment of the present invention. It is a flowchart which shows the process sequence of CPU11 which concerns on this subroutine.
  • the initial value of the loop counter J is N.
  • the first, second, and third set values determined in the process of FIG. 6 are sequentially stored at consecutive addresses in the duty data table 131.
  • the CPU 11 determines whether or not the loop counter J is N (here, 3) (S10). In the case (S10: YES), J is set to 1 (S11). Thereafter, the CPU 11 captures an output voltage value obtained by converting the output voltage supplied to the load 4 by an A / D converter (corresponding to a detection unit) 14 (S12), and performs voltage loop control based on the captured output voltage value. This calculation is executed (S13), and a target current value is calculated as an operation amount.
  • the CPU 11 captures an output current value obtained by converting the detection voltage of the current detector 27 by the A / D converter 14 (S14), and executes a calculation related to current loop control based on the captured output current value (S15). ), A target value X to be set in the PWM circuit 15 as an operation amount is calculated and stored in the RAM 13a. In order to omit the current loop control, steps S14 and S15 may not be executed. Next, the CPU 11 calls and executes a subroutine relating to setting value determination (S16).
  • the CPU 11 When returning from the subroutine related to setting value determination, the CPU 11 reads the J-th setting value among the N setting values from the duty data table 131 (S17), and sets the read J-th setting value in the register buffer 151. (S18), the process returns to the interrupted routine. On the other hand, if J is not N in step S10 (S10: NO), the CPU 11 increments J by 1 (S19), and then moves the process to step S17 to set the Jth set value in the register buffer 151. .
  • the CPU 11 specifies the setting value Y closest to the target value X stored in the RAM 13a (S21: specifying means). And the second closest set value Z is identified (S22: corresponding to specifying means), and the first set value is determined to be Y (S23: corresponding to determining means). At this point, Z is specified as either Y + 1 or Y-1.
  • the CPU 11 sets the loop counter M to 1 (S24), and sets the total value S of the M set values to Y (S25).
  • the CPU 11 determines whether or not M is N (S26). If N is N (S26: YES), the CPU 11 returns to the called routine. When M is not N (S26: NO), the CPU 11 increments M by 1 (S27), and then calculates (S + Y) / M value Ay (S28) and (S + Z) / M value Az. Is calculated (S29). Ay and Az calculated here are two candidate values that can be an average value of M set values.
  • the CPU 11 determines whether or not
  • is equal to or smaller than
  • the CPU 11 determines the Mth set value as Y (S31: equivalent to a determination unit), and the total value of the M set values After replacing S with S + Y (S32), the process proceeds to step S26.
  • (S30: NO) the CPU 11 determines the Mth set value as Z (S33: equivalent to a determination unit), and sums the M set values. After the value S is replaced with S + Z (S34), the process proceeds to step S26.
  • the setting value Z closest to the target value X and the setting value Z closest to the second are specified first, and the value of Z (Y + 1 or Y-1) is stored in the RAM 13a. It is not limited. For example, when determining the Mth set value, an average value from the first set value to the M ⁇ 1th set value is calculated, and the magnitude relationship between this average value and the target value X is determined. Alternatively, the set value Y closest to the target value X may be specified each time, and it may be specified each time whether the second closest set value Z is Y + 1 or Y-1.
  • FIG. 7 is a chart showing a list of N set values determined according to the target value in the signal generation circuit 1a according to the first embodiment of the present invention.
  • the target value is represented by a numerical value with two decimal places.
  • N set values will be listed and described with respect to typical target value ranges. For example, when the target value is in the range of 0.00 to 0.17, the first, second, and third set values are determined as 0, 0, and 0, respectively.
  • the average value of the N set values is 0.00
  • the average value of the duty of the PWM signal thereby becomes 0%
  • the ON time is 0.0 ⁇ s.
  • the first, second and third set values are determined as 0, 1 and 0, respectively, and the average value of the N set values is rounded off. Therefore, the average value of the duty of the PWM signal is 1%, and the ON time is 0.1 ⁇ s.
  • the first, second, and third set values are determined as 0, 1, and 1, respectively, and the average value of the N set values is 0.
  • the average value of the duty of the PWM signal is 2%, and the ON time is 0.2 ⁇ s.
  • the first, second, and third set values are determined as 1, 1, and 1, respectively, and the average value of the N set values is 1
  • the average value of the duty of the PWM signal is 3%, and the ON time is 0.3 ⁇ s.
  • the first, second, and third set values are determined as 19, 20, and 19, respectively.
  • the average value of the N set values is 19.33, the average value of the duty of the PWM signal is 58%, and the ON time is 5.8 ⁇ s.
  • the first, second, and third set values are determined as 19, 20, and 20, respectively, and an average value of N set values Is 19.66, the average value of the duty of the PWM signal is 59%, and the ON time is 5.9 ⁇ s.
  • the ratio of the setting value Y closest to the target value X and the setting value Z closest to the second among the N setting values determined by the CPU 11 is appropriately determined, and thus the average value of the N setting values Is adjusted more finely than the smallest increment of values that can be set in the PWM circuit 15. Accordingly, the minimum increment of the value set in the PWM circuit (generator) 15 that periodically generates the PWM signal corresponding to the set value is made substantially smaller than the actual increment with a relatively small processing load. It becomes possible.
  • the set value Y closest to the target value X is determined as the first set value, and the first set value to the Mth set value ( The determination of the Mth set value is repeated N ⁇ 1 times so that the average value up to 2 ⁇ M ⁇ N) is closest to the target value X. Therefore, the average value of the set values set in the PWM circuit 15 from the first cycle to the cycle is set to the value closest to the target value X in any cycle of the N cycles of the PWM signal. Is possible.
  • the first embodiment is a mode in which the first set value and the Mth set value (2 ⁇ M ⁇ N) are sequentially determined, whereas the second embodiment has a target value among the M set values.
  • N setting values are determined collectively by calculating the number of setting values closest to the second. Since the configuration of the voltage conversion device in the second embodiment is the same as that shown in FIG. 1 in the first embodiment, portions corresponding to those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. .
  • FIG. 8 is an explanatory diagram for explaining a method of determining N set values in the signal generation circuit 1a according to the second embodiment of the present invention.
  • the closest setting value Y and the second closest setting value Z are specified.
  • Y that is smaller than X and not smaller than 1 ⁇ 2 or less than X is first identified, and Z is identified as Y + 1.
  • the average value of all the set values is Y.
  • the average value of all the setting values is 1 / N with respect to Y. (Or increase in the case of FIG. 8).
  • the setting value determined as Z increases by 1, the average value of all the setting values increases (or decreases) by 1 / N (in the case of FIG. 8, it increases).
  • the number of set values determined as Z is determined from Y to Z.
  • the magnitude relationship between X and the value obtained by adding (or subtracting) by 1 / N in each direction may be determined each time. More specifically, when the magnitude relation between X and 1 / N added (or subtracted) K times and X is reversed, the value ya added (or subtracted) K times and K ⁇ 1 times It is possible to determine which is closer to X from the added (or subtracted) value yb, and the closer number of times (K or K ⁇ 1) may be the number of set values determined as Z.
  • the number of setting values determined to be Z may be determined depending on whether or not a value xc obtained by further subtracting 1 / 2N from a value xb obtained by subtracting 1 / N K-1 times from x becomes negative. .
  • the number of Z is determined to be 1. If xc is positive, the number of Z is determined to be 2.
  • 1 / 2N is first subtracted from the difference x between X and Y, and Z is determined depending on how many times 1 / N is subtracted from the subtraction result, and the subtraction result becomes negative. The number of values may be determined. If the subtraction result when 1 / 2N is subtracted is negative, the number of Z is determined as 0. If the subtraction result when 1 / N is subtracted K times is negative, the number of Z is determined as K. The This algorithm will be described in the flowchart described later. In the example of FIG. 8, since the subtraction result becomes negative when 1 / N is subtracted once from the result of subtracting 1 / 2N from x, the number of Z is determined to be 1.
  • FIG. 9 is a flowchart showing the processing procedure of the CPU 11 according to the set value determination subroutine in the second embodiment of the present invention.
  • the number K of set values in FIG. 9 and the difference x between X and Y are stored in the RAM 13a. Since the processing procedure of the CPU 11 related to the PWM interrupt processing is the same as that shown in FIG. 5 in the first embodiment, illustration and description thereof are omitted.
  • the CPU 11 specifies the setting value Y closest to the target value X stored in the RAM 13a (S40: corresponding to specifying means) and 2 The set value Z closest to the second is specified (S41: corresponding to the specifying means), and the number K of set values determined as Z is set to 0 (S42). Thereafter, the CPU 11 calculates a difference x between X and Y (S43), and newly sets a value obtained by subtracting 1 / 2N from the calculated x (S44).
  • the CPU 11 determines whether or not x is negative (S45), and if negative (S45: YES), moves the process to step S49 described later.
  • x is not negative (S45: NO)
  • the CPU 11 increments the value of K by 1 (S46), and newly sets a value obtained by subtracting 1 / N from x (S47).
  • the CPU 11 determines whether or not x is negative (S48). If not negative (S48: NO), the process proceeds to step S46.
  • the CPU 11 determines NK setting values (corresponding to the determination means) determined to be Y (value) and Z (value is) Z at this time.
  • the K set values are stored in the duty data table 131 (S49), and the process returns to the called routine.
  • steps S45 and S48 it is determined whether or not x is negative. However, an equal sign may be included in the determination to determine whether x is 0 or less.
  • FIG. 10 is a chart showing a list of N set values determined according to the target value in the signal generation circuit 1a according to the second embodiment of the present invention.
  • the first setting value, the second setting value, and the third setting value included in the N setting values are arranged in ascending order of numerical values.
  • the present invention is not limited to this, and may be arranged in descending order. , They may be arranged in any order.
  • the target value and the N set values shown in FIG. 10 are partly in the order of arrangement of the first set value, the second set value, and the third set value, compared to those shown in FIG. They are only different, and there is no difference in the numbers themselves in the chart.
  • the average value of the N set values is exactly the same as the value shown in FIG.
  • the first, second, and third set values are determined as 0, 0, and 1, respectively. Is within the range of 1.17 to 0.50, the first, second, and third set values are determined as 1, 1, and 2, respectively. When the target value is within the range of 19.17 to 19.50, the first, second, and third set values are determined to be 19, 19, and 20, respectively.
  • the N set values are set so that the average value of all the N set values is closest to the target value. Determine the setting value. Accordingly, the average value of the N set values set in the PWM circuit 15 can be set to a value closest to the target value for the entire N period of the signal.
  • the first embodiment is a mode in which N setting values sequentially determined every N cycles are once written in the duty data table 131 included in the RAM 13a and then sequentially read out in the PWM cycle.
  • N set values are selected from the contents stored in advance in the duty data table included in the ROM, so that they are determined in batches every N cycles and sequentially read out in the PWM cycle. It is.
  • FIG. 11 is a block diagram illustrating a configuration example of a voltage conversion apparatus including the signal generation circuit 1b according to Embodiment 3 of the present invention.
  • the signal generation circuit 1b is a microcomputer having a CPU 11.
  • the CPU 11 is bus-connected to a ROM 12b that stores information such as programs, a RAM 13b that stores temporarily generated information, an A / D converter 14, a PWM circuit 15, and an interrupt controller 16.
  • the control unit 10b is the one excluding the PWM circuit 15, but the PWM circuit 15 may be included in the control unit 10b.
  • the ROM 12b includes a duty data table (corresponding to a storage unit) 121.
  • the duty data table 121 includes N set values respectively associated with each range of target values shown in FIG. 10 in the second embodiment. Are stored in advance.
  • the duty data table 121 may be included in another memory outside the control unit 10b. From a plurality of sets of N set values stored in the duty data table 121, one set of the first set value, the second set value, and the third set value is determined by an interrupt process every N cycles. .
  • the RAM 13b does not include the duty data table 131.
  • the timing chart for explaining the operation of the signal generation circuit 1b is the same as that shown in FIG. 2 of the first embodiment.
  • symbol is attached
  • the first setting value, the second setting value, and the third setting value determined from the contents stored in the duty data table 121 are the interrupt processing in the third period when each setting value is determined, and The data are sequentially read out by the interrupt process in each of the first period and the second period in the N period and set in the register buffer 151.
  • FIG. 12 is a flowchart showing a processing procedure of the CPU 11 that executes the PWM interrupt processing in the signal generation circuit 1b according to the third embodiment of the present invention.
  • the loop counter J and the target value X in FIG. 12 are stored in the RAM 13b.
  • the initial value of the loop counter J is N.
  • step S50 to S58 the processing other than step S56 is the same as the processing from step S10 to S18 shown in FIG.
  • the CPU 11 determines whether or not the loop counter J is N (here, 3) (S50). In the case (S50: YES), J is set to 1 (S51). Thereafter, the CPU 11 performs a calculation related to the voltage loop control based on the output voltage and the current loop control based on the output current (S52 to S55).
  • the CPU 11 collates the content of the duty data table 121, that is, each range of the target value stored in the table with the target value X calculated by the above-described calculation (S56).
  • the N set values stored in the duty data table 121 corresponding to the range including the target value X are determined set values (corresponding to a determination unit).
  • the CPU 11 reads the Jth set value from the duty data table 121 (S57), sets the read Jth set value in the register buffer 151 (S58), and returns to the interrupted routine.
  • the correspondence relationship between the N set values determined in advance so that the average value is closest to the target value X and the range of the target value is as follows. It is stored in the duty data table 121 of the ROM 12b. The CPU 11 sequentially reads and determines N setting values to be set in the PWM circuit 15 corresponding to the target value X from the duty data table 121 by interrupt processing. Therefore, N setting values to be determined according to the target value X can be easily determined when the CPU 11 executes the control.
  • the CPU 11 included in the control unit 10b sequentially reads N set values from the duty data table 121 and sets them in the PWM circuit 15 by interrupt processing. Therefore, the contents of the duty data table 121 can be sequentially set in the PWM circuit 15.
  • the voltage conversion circuit 2 converts the voltage by switching according to the duty of the PWM signal generated by the signal generation circuit 1a or 1b, and is based on the converted voltage.
  • the CPU 11 of the signal generation circuit 1a or 1b calculates a target value to be set in the PWM circuit 15. Therefore, the signal generation circuit 1a or 1b that can make the minimum increment of the value set in the PWM circuit 15 that periodically generates the PWM signal substantially smaller than the actual increment with a relatively small processing load.
  • the accuracy of the output voltage can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 設定された値に応じたPWM信号を周期的に発生する発生部に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能な信号発生回路、電圧変換装置及び信号発生方法を提供する。CPU11は、PWM回路15が有するPWM信号生成部153が生成するPWM信号のN(=3)周期毎に、PWM回路15に設定すべき目標の値Xに最も近い設定値Y及び2番目に近い設定値Zを特定し、特定したY及びZの大きさとXの大きさとを比較した結果により、Y及びZを組み合わせることによりN個の設定値を決定して、上記PWM信号の周期毎に1つずつPWM回路15に設定する。

Description

信号発生回路、電圧変換装置及び信号発生方法
 本発明は、設定された値に応じたPWM信号を発生する発生部と、目標の値に応じて発生部に設定可能な値を設定する制御部とを備える信号発生回路、電圧変換装置及び信号発生方法に関する。
 従来、スイッチング素子をPWM信号で駆動することによって電圧を変換する電圧変換装置が広く利用されている。このPWM制御方式の電圧変換装置では、例えば電圧の目標値に基づいて電圧指令値を算出し、算出した電圧指令値に応じた値をPWM信号の発生部に設定することによって、設定された値に応じたデューティのPWM信号を発生する。このように、スイッチング素子を駆動するPWM信号のデューティを電圧の目標値に応じて変化させることにより、電圧の目標値に応じた出力電圧が得られる。
 ここで、PWM信号の発生部に設定可能な値(以下、設定可能値という)の最小の増分(即ち最小単位)が比較的大きい場合は、目標値の変化に対してPWM信号のデューティを滑らかに変化させることができなくなり、出力電圧が階段状に変化することとなる。また例えば、PWM制御による操作量としてPWM信号の発生部に設定すべき目標の値が算出される場合、目標の値の最小の増分よりも設定可能値の最小の増分の方が大きいときは、目標値の変化及び負荷変動に対してPWM信号のデューティを滑らかに変化させることができなくなり、出力電圧に誤差が生じる。
 これに対し、特許文献1には、PWM信号のオン/オフ時間をPWM制御の周期毎に演算する際に、電圧指令値を被除数とする除算の剰余を切り捨てて演算することによってオン/オフ時間を算出し、算出結果に基づいてPWMパルスを出力するPWMインバータが開示されている。上記の演算で生じた剰余は、オン/オフ時間に反映されずに切り捨てられた電圧指令値に相当する。
 このPWMインバータでは、切り捨てた剰余を次の周期以降の演算における電圧指令値に順次加算することにより、前回の演算でオン/オフ時間に反映されなかった剰余が次回の演算の際に新たなオン/オフ時間に反映され、その際の剰余が更に次の演算に反映されることが繰り返される。このため、PWM信号の発生部に対して設定されるオン/オフ時間の平均値を、本来設定されるべき目標のオン/オフ時間に近づけることができる。つまり、発生部に設定される値の最小の増分を、平均的には実際の増分よりも小さくすることができる。
特開平3-98470号公報
 しかしながら、特許文献1に開示された技術では、PWM制御の周期毎に除算を含む演算を実行してPWM信号のオン/オフ時間を決定するため、周期毎に多大な処理負荷が発生する。このため、処理能力が低い安価なマイクロコンピュータでは、目標値の変化が比較的少ない場合であっても、上記の演算処理と通信等の他の処理とを並列的に、且つ安定的に実行することができない虞があった。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、設定された値に応じたPWM信号を周期的に発生する発生部に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能な信号発生回路、電圧変換装置及び信号発生方法を提供することにある。
 本発明の一態様に係る信号発生回路は、設定された値に応じたPWM信号を周期的に発生する発生部と、目標の値に応じて、前記発生部に前記信号の周期毎に、前記発生部に設定可能な設定可能値を設定する制御部とを備え、前記発生部は、外部の電圧変換回路に対してPWM信号を発生させ、前記電圧変換回路をPWM制御することにより電圧を変換させる信号発生回路において、前記制御部は、前記信号のN周期(Nは2以上の自然数)毎に、前記目標の値に最も近い設定可能値及び2番目に近い設定可能値を特定する手段と、該手段が特定した2つの設定可能値及び前記目標の値夫々の大きさに基づいて、前記2つの設定可能値を組み合わせてなるN個の設定可能値を前記発生部に設定すべく決定する決定手段とを有することを特徴とする。
 本発明の一態様に係る信号発生回路は、前記決定手段は、前記N個の設定可能値を、M個(Mは2≦M≦Nを満たす自然数)の設定可能値の平均的な値が前記目標の値に最も近くなるように決定するようにしてあることを特徴とする。
 本発明の一態様に係る信号発生回路は、前記決定手段は、前記N個の設定可能値を、各設定可能値の平均的な値が、前記目標の値に最も近くなるように決定するようにしてあることを特徴とする。
 本発明の一態様に係る信号発生回路は、目標の値及びN個の設定可能値の対応関係を記憶する記憶部を備え、該記憶部は、N個の設定可能値を、各設定可能値の平均的な値が、対応する目標の値に最も近くなるように予め決定して記憶してあり、前記決定手段は、前記目標の値に対応するN個の設定可能値を前記記憶部の記憶情報から決定するようにしてあることを特徴とする。
 本発明の一態様に係る信号発生回路は、前記制御部は、前記決定手段が決定したN個の設定可能値を前記信号の周期毎に前記記憶部から順次読み出して前記発生部に設定するようにしてあることを特徴とする。
 本発明の一態様に係る電圧変換装置は、上述の信号発生回路と、該信号発生回路が発生した信号のデューティに応じたスイッチングによって電圧を変換する電圧変換回路と、該電圧変換回路が変換した電圧を検出する検出部とを備える電圧変換装置であって、前記信号発生回路が備える制御部は、前記検出部が検出した電圧に基づくPWM制御により、前記目標の値を算出する手段を有することを特徴とする。
 本発明の一態様に係る信号発生方法は、設定された値に応じたPWM信号を周期的に発生する発生部と、目標の値に応じて、前記発生部に前記信号の周期毎に、前記発生部に設定可能な設定可能値を設定する制御部とを備え、前記発生部は、外部の電圧変換回路に対してPWM信号を発生させ、前記電圧変換回路をPWM制御することにより電圧を変換させる信号発生回路で前記信号を発生させる方法において、前記信号のN周期(Nは2以上の自然数)毎に、前記目標の値に最も近い設定可能値及び2番目に近い設定可能値を特定し、特定した2つの設定可能値及び前記目標の値夫々の大きさに基づいて、前記2つの設定可能値を組み合わせてなるN個の設定可能値を前記発生部に設定すべく決定することを特徴とする。
 本態様にあっては、制御部は、目標の値に応じて発生部に設定可能な設定可能値を決定して設定する。具体的には、制御部は、発生部が発生する信号のN周期毎に、目標の値に最も近い設定可能値及び2番目に近い設定可能値を特定し、特定した2つの設定可能値の大きさと目標の値の大きさとを比較した結果により、特定した2つの設定可能値を組み合わせることによりN個の設定可能値を決定して、上記信号の周期毎に1つずつ発生部に設定する。
 これにより、制御部が決定するN個の設定可能値について目標の値に最も近い設定可能値及び2番目に近い設定可能値の割合が適宜決定されるため、N個の設定可能値の平均的な値が、設定可能値の最小の増分よりもきめ細かく調整される。
 本態様にあっては、制御部が決定するN個の設定可能値について、目標の値に最も近い設定可能値を1個目の設定可能値と決定し、1個目からM個目(2≦M≦N)までの設定可能値の平均的な値が目標の値に最も近くなるように、M個目の設定可能値を決定することをN-1回だけ繰り返す。
 これにより、信号のN周期中のどの周期にあっても、第1周期からその周期までに発生部に設定された設定可能値の平均的な値が目標の値に最も近くなる。
 本態様にあっては、制御部が決定するN個の設定可能値について、N個全ての設定可能値の平均的な値が目標の値に最も近くなるようにN個の設定可能を決定する。
 これにより、信号のN周期全体について、発生部に設定されたN個の設定可能値の平均的な値が目標の値に最も近くなる。
 本態様にあっては、その平均的な値が目標の値に最も近くなるように予め決定されたN個の設定可能値と、目標の値との対応関係が記憶部に記憶されている。制御部は、目標の値に対応して発生部に設定すべきN個の設定可能値を記憶部の記憶情報から決定する。
 これにより、目標の値に応じて決定すべきN個の設定可能値が、制御部による制御の実行時に容易に決定される。
 本態様にあっては、制御部は、記憶部からN個の設定可能値を順次読み出して発生部に設定する。
 これにより、記憶部の記憶情報が、順次発生部に設定される。
 本態様にあっては、上述の信号発生回路が発生した信号のデューティに応じたスイッチングによって電圧変換回路が電圧を変換し、変換された電圧に基づくPWM制御により、信号発生回路の制御部が発生部に設定すべき目標の値を算出する。
 これにより、信号を周期的に発生する発生部に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能な信号発生回路が電圧変換装置に適用されて、出力電圧の精度が向上する。
 上記によれば、制御部が決定するN個の設定可能値について目標の値に最も近い設定可能値及び2番目に近い設定可能値の割合が適宜決定されるため、N個の設定可能値の平均的な値が、設定可能値の最小の増分よりもきめ細かく調整される。
 従って、設定された値に応じたPWM信号を周期的に発生する発生部に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能となる。
本発明の実施の形態1に係る信号発生回路を備える電圧変換装置の構成例を示すブロック図である。 本発明の実施の形態1に係る信号発生回路の動作を説明するためのタイミング図である。 N個の設定値によってPWM信号の平均的なデューティが定まる動作を説明するためのタイミング図である。 本発明の実施の形態1に係る信号発生回路でN個の設定値を決定する方法を説明するための説明図である。 本発明の実施の形態1に係る信号発生回路でPWM割込処理を実行するCPUの処理手順を示すフローチャートである。 本発明の実施の形態1における設定値決定のサブルーチンに係るCPUの処理手順を示すフローチャートである。 本発明の実施の形態1に係る信号発生回路で目標の値に応じて決定されたN個の設定値の一覧を示す図表である。 本発明の実施の形態2に係る信号発生回路でN個の設定値を決定する方法を説明するための説明図である。 本発明の実施の形態2における設定値決定のサブルーチンに係るCPUの処理手順を示すフローチャートである。 本発明の実施の形態2に係る信号発生回路で目標の値に応じて決定されたN個の設定値の一覧を示す図表である。 本発明の実施の形態3に係る信号発生回路を備える電圧変換装置の構成例を示すブロック図である。 本発明の実施の形態3に係る信号発生回路でPWM割込処理を実行するCPUの処理手順を示すフローチャートである。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る信号発生回路を備える電圧変換装置の構成例を示すブロック図である。図中1aは信号発生回路であり、信号発生回路1aは、デューティが変化するPWM信号を発生して電圧変換回路2に与える。電圧変換回路2は、外部のバッテリ3の電圧を変換して外部の負荷4に供給する。ここでは電圧変換回路2がバッテリ3の電圧を降圧するが、バッテリ3の電圧を昇圧又は昇降圧するものであってもよい。
 信号発生回路1aは、CPU11を有するマイクロコンピュータである。CPU11は、プログラム等の情報を記憶するROM12a、一時的に発生した情報を記憶するRAM13a、アナログの電圧をデジタル値に変換するA/D変換器14、PWM信号を発生するPWM回路(発生部に相当)15、及び複数の割込要求を処理する割込コントローラ16と互いにバス接続されている。信号発生回路1aのうち、PWM回路15を除いたものが制御部10aであるが、PWM回路15が制御部10aに含まれていてもよい。
 RAM13aは、PWM回路15が有するレジスタバッファ151に対して設定されるべき複数のデータが記憶されたデューティデータテーブル131を含んでいる。デューティデータテーブル131に記憶されたデータは、割込コントローラ16が調停する後述の割込処理にて、順次レジスタバッファ151に設定されるようになっている。
 PWM回路15は、レジスタバッファ151の内容が周期的にロードされるデューティレジスタ152と、デューティレジスタ152の内容に応じたデューティのPWM信号を生成するPWM信号生成部153とを有する。PWM信号生成部153は、デューティレジスタ152に対してレジスタバッファ151の内容をロードするためのロード信号を与える。
 PWM信号生成部153は、不図示の内部クロックと、デューティレジスタ152の内容とに基づいて、内部クロックの周期の整数倍のオン時間を有するPWM信号を生成する。PWM信号生成部153が生成したPWM信号は、電圧変換回路2に与えられると共に、割込要求の1つとして割込コントローラ16に与えられる。
 割込コントローラ16は、複数の割込要求を受け付け可能に構成されており、何れかの割込要求を受け付けた場合、CPU11に対してインタラプトを要求する信号(所謂INT信号)を与え、CPU11からアクノレッジ信号(所謂INTA信号)が与えられたときに、各割込要求に対応する割込ベクタをバスに送出する。バスに送出された割込ベクタがCPU11に読み込まれた場合、CPU11が各割込要求に対応する割込処理を実行するようになっている。
 電圧変換回路2は、ドレインがバッテリ3の正極端子に接続されたNチャネル型のMOSFET(以下、単にFETという)21と、該FET21のソース及びバッテリ3の負極端子夫々にドレイン及びソースが接続された同期整流用のFET22と、PWM回路15のPWM信号生成部153から与えられたPWM信号に基づいてFET21及びFET22夫々のゲートに駆動信号を与える駆動回路26とを備える。
 FET22のドレイン及びソース間には、インダクタ23及び抵抗器24の直列回路を介して負荷4が接続されている。負荷4には、コンデンサ25が並列に接続されている。抵抗器24及びコンデンサ25の接続点の電圧が、A/D変換器14に与えられる。抵抗器24の両端には電流検出器27が接続されており、電流検出器27の検出電圧がA/D変換器14に与えられる。
 上述の構成において、信号発生回路1aのCPU11は、例えば電圧ループ制御及び電流ループ制御を並列的に実行する電流モード制御方式によって負荷4に供給する電圧を制御する。電圧ループ制御では、CPU11は負荷4に供給された出力電圧をA/D変換器14で変換したデジタル値を、目標の電圧値から減算した偏差に基づいて、後段の電流ループ制御で目標の電流値となる操作量を演算する。この電圧ループ制御では、電圧変換回路2が出力する電圧が制御量である。
 電流ループ制御では、CPU11は電流検出器27の検出電圧をA/D変換器14で変換したデジタル値を、前段の電圧ループ制御からの目標の電流値から減算した偏差に基づいて、PWM回路15に対する操作量を演算する。CPU11は更に、演算した操作量(以下、目標の値という)に応じてPWM回路15に設定可能な設定可能値(以下、単に設定値という)を決定する。PWM回路15は、決定された設定値が設定されることにより、設定値に応じたデューティのPWM信号を発生する。この電流ループ制御では、電圧変換回路2が出力する電流が制御量である。
 ここで、電圧変換装置の出力電圧及び出力電流が時間的に比較的穏やかに変動する場合、上記の電圧ループ制御及び電流ループ制御の制御周期をPWM周期のN倍(Nは2以上の自然数)の周期で行っても十分であると言える。そこで本実施の形態1では、PWM周期のN周期毎にPWM回路15に対するN個の設定値をまとめて決定してデューティデータテーブル131に記憶しておき、PWM周期で発生する割込処理にて周期毎に1つの設定値をPWM回路15に設定する。以下では、簡単のためにN=3とする。
 次に、PWM信号生成部153がデューティレジスタ152の内容に応じたPWM信号を生成する仕組みについて説明する。
 図2は、本発明の実施の形態1に係る信号発生回路1aの動作を説明するためのタイミング図である。図2に示す5つのタイミング図は、何れも同一の時間軸を横軸としてあり、縦軸には、図の上から、生成されるPWM信号の信号レベル、PWM周期で実行される割込処理の実行状態、レジスタバッファ151の内容、レジスタバッファ151の内容をデューティレジスタ152にロードするためのロード信号のオン/オフ状態、及びデューティレジスタ152の内容を示してある。
 PWM信号は、時刻t21からt22まで、時刻t22からt23まで、及び時刻t23からt31までの夫々が、N周期(N=3)における第1周期、第2周期、及び第3周期であり、信号レベルがH(ハイ)であるオン時間が夫々時間T21、T22及びT23である。時刻t13からt21までは、1つ前のN周期における第3周期であり、オン時間は時間T13である。PWM信号の各周期における信号レベルがHからLに変化する時の立ち下がりが、割込コントローラ16に対する割込要求として受け付けられて割込処理が1回実行される。
 具体的には、時刻t13、t21、t22及びt23夫々から時間T13、T21、T22及びT23が経過した時に割込処理が1回だけ実行される。このうち、第3周期における割込処理は、第1周期及び第2周期における割込処理と比較して、次のN周期のための設定値をまとめて決定するための時間だけ実行時間が長くなる。決定された設定値は、デューティデータテーブル131における第1アドレスから第3アドレスまでの連続した記憶領域に、夫々第1設定値、第2設定値及び第3設定値として記憶される。
 デューティデータテーブル131に記憶された第1設定値、第2設定値及び第3設定値夫々は、各設定値が記憶されたときの第3周期における割込処理、並びに次のN周期における第1周期及び第2周期夫々における割込処理により順次読み出されて、レジスタバッファ151に設定される。これにより、第1周期、第2周期及び第3周期夫々における割込処理では、レジスタバッファ151の内容が、第2設定値、第3設定値及び次のN周期のための第1設定値に書き替えられる。
 一方、PWM信号の信号レベルがLからHに変化する時の立ち上がり、即ち時刻t13、t21、t22、t23、及びt31で、PWM信号生成部153からデューティレジスタ152に対してレジスタバッファ151の内容をロードするためのロード信号が与えられる。これにより、第1周期、第2周期及び第3周期夫々の間、デューティレジスタ152の内容は第1設定値、第2設定値及び第3設定値に保持される。この内容によって第1周期、第2周期及び第3周期夫々におけるPWM信号のオン時間が決定されてデューティが定まる。
 なお、図2に示す例では、1つ前のN周期における第3周期内に、次のN周期のための3つの設定値を決定したが、この決定が第3周期内に完了しない場合は、デューティデータテーブル131をダブルバッファとして、デューティデータテーブル131に対する書き込みと読み出しとが競合しないようにすればよい。具体的には、連続する第3周期、第1周期及び第2周期の間に3つの設定値を決定して一方のバッファに書き込み、これに続く第3周期、第1周期及び第2周期の間に次の3つの設定値を決定して他方のバッファに書き込むと共に、各周期における割込処理にて一方のバッファから先に決定した3つの設定値を順次読み出すようにすればよい。
 次に、目標の値に応じた設定値をPWM回路15に設定する具体例について説明する。
 図3は、N個の設定値によってPWM信号の平均的なデューティが定まる動作を説明するためのタイミング図である。図の横軸は時間を表し、縦軸はPWM信号の信号レベルを表す。図3では、3つの連続するN(=3)周期夫々について、PWM周期の第1周期、第2周期及び第3周期におけるPWM信号がオン/オフに変化する様子を示してある。各PWM周期におけるPWM信号は、前半がオンであり、後半がオフである。
 本実施の形態1では、PWM回路15が発生するPWM信号の周期が10μsであり、PWM回路15に設定可能な値の最小の増分が1であって、この増分の1がPWM信号のデューティの3%に対応する。換言すれば、PWM回路15が発生するPWM信号のデューティは、3%刻みで設定が可能である。その一方で、CPU11がPWM回路15に設定すべき目標の値として演算した結果の最小の増分は0.1又はそれ以下であるものとする。この演算は、例えばPID演算であり、演算が行われるタイミング及びPWM回路15に設定値が設定されるタイミングの例は、図2に示した通りである。
 PID演算によって目標のデューティが算出される場合は、算出されたデューティの%値の最小の増分を0.3%とし、算出されたデューティに100/3を乗じた値を上記の目標の値とすれば、上記の場合と同じ結果が得られる。
 図3に示すタイミングにおいて、最初のN周期におけるPID演算の結果が19.4(デューティで言えば19.4×3=58.2%に相当:以下、対応する%値のみを括弧書きで示す)である場合、前述した第1設定値、第2設定値及び第3設定値の夫々が、19(57%)、20(60%)及び19(57%)として決定される。設定値の増分の1がデューティの3%に対応し、デューティの1%が0.1μsに対応するから、各設定値によって次のN周期に発生する各PWM信号のオン時間は、夫々5.7μs、6.0μs及び5.7μsとなり、平均のオン時間が5.8μsとなる。これは即ち平均のデューティが58%になったことを示す。
 同様にして、2つ目のN周期におけるPID演算の結果が19.6(58.8%)である場合、第1設定値、第2設定値及び第3設定値の夫々が、19(57%)、20(60%)及び20(60%)として決定される。その結果、各設定値によって次のN周期に発生する各PWM信号のオン時間は、夫々5.7μs、6.0μs及び6.0μsとなり、平均のオン時間が5.9μsとなる。これは即ち平均のデューティが59%になったことを示す。このように、N周期におけるPWM信号の平均のデューティは、1%刻みで設定可能となる。
 次に、目標の値に対応する第1設定値、第2設定値及び第3設定値の決定方法について説明する。
 図4は、本発明の実施の形態1に係る信号発生回路1aでN個の設定値を決定する方法を説明するための説明図である。図中「○」はN個(N=3)の設定値を表し、「●」はM個(2≦M≦N)の設定値の平均値を表す。第1設定値については平均値が意味を持たないので、「●」の個数は「○」の個数よりも1つだけ少ない。
 目標の値Xに対して、先ず最も近い設定値Y及び2番目に近い設定値Zが特定される。図4の例では、Xより大きく、且つXより1/2以上大きくないYが最初に特定され、ZがY-1と特定される。図4に示す場合とは異なって、Xより小さく、且つXより1/2以上小さくないYが最初に特定される場合(図示を省略)、ZがY+1と特定される。
 本実施の形態1では、Y及びZ(=Y-1)のうちからN個の設定値が順次決定される。その際に、第1設定値から第M(2≦M≦N)設定値までの平均値が目標の値Xに最も近い値となるように第M設定値が順次決定される。第1設定値については、第1及び第2設定値の平均値が目標の値Xに最も近くなることを見越して第2設定値よりも先に決定されるため、第1設定値は、常にYと決定される。図4の場合、第2設定値の候補値はY又はZである。
 第2設定値が決定される場合、第2設定値の2つの候補値夫々と第1設定値との平均値のうち、どちらがXに近いのかが判定される。この場合、2つの候補値はY又はZ(=Y-1)であり、第1設定値はYであるから、YとYとの平均値であるY、及びY-1とYとの平均値であるY-1/2を比較してどちらがXに近いのかが判定される。図4の場合は、YよりもY-1/2の方がXに近いため、第2設定値はZと決定される。
 第3設定値が決定される場合、第3設定値の2つの候補値夫々と第2設定値及び第1設定値との平均値のうち、どちらがXに近いのかが判定される。この場合、第3設定値の2つの候補値はY又はZ(=Y-1)であり、第2設定値はZであり、第1設定値はYであるから、YとY-1とYとの平均値であるY-1/3、及びY-1とY-1とYとの平均値であるY-2/3のうちのどちらがXに近いのかが判定される。図2の場合は、Y-2/3よりもY-1/3の方がXに近いため、第3設定値はYと決定される。
 以上の図2、3及び4では、Nが3の場合について説明したが、Nが2又は4以上の場合についても同様である。以下では、上述したN個の設定値を決定する信号発生回路1aの動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM12aに予め格納されている制御プログラムに従って、CPU11により実行される。
 図5は、本発明の実施の形態1に係る信号発生回路1aでPWM割込処理を実行するCPU11の処理手順を示すフローチャートであり、図6は、本発明の実施の形態1における設定値決定のサブルーチンに係るCPU11の処理手順を示すフローチャートである。
 図5におけるループカウンタJと、図6における目標の値X、目標の値Xに最も近い値Y、2番目に近い値Z、ループカウンタM、M個の設定値の合計値S、値Ay及び値Azは、RAM13aに記憶される。ループカウンタJの初期値はNである。図6の処理で決定された第1、第2及び第3設定値は、デューティデータテーブル131内の連続したアドレスに順次記憶される。
 PWM周期の割込が発生してCPU11の制御が図5の処理に移った場合、CPU11は、ループカウンタJがN(ここでは3)であるか否かを判定し(S10)、Nである場合(S10:YES)、Jを1とする(S11)。その後、CPU11は、負荷4に供給された出力電圧をA/D変換器(検出部に相当)14で変換した出力電圧値を取り込み(S12)、取り込んだ出力電圧値に基づいて電圧ループ制御に係る演算を実行し(S13)、操作量として目標の電流値を算出する。
 その後、CPU11は、電流検出器27の検出電圧をA/D変換器14で変換した出力電流値を取り込み(S14)、取り込んだ出力電流値に基づいて電流ループ制御に係る演算を実行し(S15)、操作量としてPWM回路15に設定すべき目標の値Xを算出してRAM13aに記憶する。電流ループ制御を省略するために、ステップS14及びS15を実行しないようにしてもよい。次いで、CPU11は、設定値決定に係るサブルーチンを呼び出して実行する(S16)。
 設定値決定に係るサブルーチンからリターンした場合、CPU11は、N個の設定値のうちの第J設定値をデューティデータテーブル131から読み出し(S17)、読み出した第J設定値をレジスタバッファ151に設定して(S18)、割り込まれたルーチンにリターンする。
 一方、ステップS10でJがNではない場合(S10:NO)、CPU11は、Jを1だけインクリメントした(S19)後、第J設定値をレジスタバッファ151に設定するためにステップS17に処理を移す。
 図6に移って、PWM割込処理から設定値決定に係るサブルーチンが呼び出された場合、CPU11は、RAM13aに記憶された目標の値Xに最も近い設定値Yを特定する(S21:特定する手段に相当)と共に、2番目に近い設定値Zを特定し(S22:特定する手段に相当)、更に第1設定値をYと決定する(S23:決定手段に相当)。この時点で、ZはY+1又はY-1の何れか一方に特定される。次いで、CPU11は、ループカウンタMを1とし(S24)、M個の設定値の合計値SをYとする(S25)。
 その後、CPU11は、MがNであるか否かを判定し(S26)、Nである場合(S26:YES)、呼び出されたルーチンにリターンする。MがNではない場合(S26:NO)、CPU11は、Mを1だけインクリメントした(S27)後、(S+Y)/Mの値Ayを算出する(S28)と共に、(S+Z)/Mの値Azを算出する(S29)。ここで算出したAy及びAzは、M個の設定値の平均値になり得る2つの候補値である。
 次いで、CPU11は、|Ay-X|が|Az-X|以下であるか否かを判定する(S30)。ここでの判定は、上記2つの候補値のうち、何れが目標の値Xに近いのかを判定するものである。|Ay-X|が|Az-X|以下である場合(S30:YES)、CPU11は、第M設定値をYと決定し(S31:決定手段に相当)、M個の設定値の合計値SをS+Yに置き換えた(S32)後、ステップS26に処理を移す。一方、|Ay-X|が|Az-X|より大きい場合(S30:NO)、CPU11は、第M設定値をZと決定し(S33:決定手段に相当)、M個の設定値の合計値SをS+Zに置き換えた(S34)後、ステップS26に処理を移す。
 上述のフローチャートでは、目標の値Xに最も近い設定値Yと共に2番目に近い設定値Zを先に特定して、Zの値(Y+1又はY-1)をRAM13aに記憶したが、この方法に限定されるものではない。例えば、第M設定値を決定する際に、第1設定値から第M-1設定値までの平均値を算出しておき、この平均値と目標の値Xとの大小関係を判定することによって、目標の値Xに最も近い設定値Yを都度特定し、更に2番目に近い設定値ZがY+1であるのか、又はY-1であるのかを都度特定するようにしてもよい。
 次に、上述のようにして決定されたN個の設定値の複数の例について説明する。
 図7は、本発明の実施の形態1に係る信号発生回路1aで目標の値に応じて決定されたN個の設定値の一覧を示す図表である。目標の値は、小数以下2桁の数値で表されるものとする。以下、代表的な目標の値の範囲について、N個の設定値を列挙して説明する。例えば目標の値が0.00から0.17の範囲内にある場合、第1、第2及び第3設定値は、夫々0、0及び0と決定される。この場合、N個の設定値の平均値は0.00であり、これによるPWM信号のデューティの平均値は0%となり、オン時間は0.0μsである。目標の値が0.17から0.50の範囲内にある場合、第1、第2及び第3設定値は、夫々0、1及び0と決定され、N個の設定値の平均値は四捨五入して0.33であり、これによるPWM信号のデューティの平均値は1%となり、オン時間は0.1μsである。
 目標の値が0.50から0.83の範囲内にある場合、第1、第2及び第3設定値は、夫々0、1及び1と決定され、N個の設定値の平均値は0.67であり、これによるPWM信号のデューティの平均値は2%となり、オン時間は0.2μsである。目標の値が0.83から1.17の範囲内にある場合、第1、第2及び第3設定値は、夫々1、1及び1と決定され、N個の設定値の平均値は1.00であり、これによるPWM信号のデューティの平均値は3%となり、オン時間は0.3μsである。以下同様に、目標の値の範囲が1.17から2.17までの間に含まれる3つの範囲の夫々について、目標の値の範囲の下限及び上限が1だけ大きくなる毎に、N個の設定値及びその平均値が1だけ大きくなるように決定され、デューティの平均値が3%だけ大きくなり、オン時間の平均値が0.3μsだけ長くなる。
 特に図3に対応する場合について言えば、目標の値が19.17から19.50の範囲内にある場合、第1、第2及び第3設定値は、夫々19、20及び19と決定され、N個の設定値の平均値は19.33であり、これによるPWM信号のデューティの平均値は58%となり、オン時間は5.8μsである。また、目標の値が19.50から19.83の範囲内にある場合、第1、第2及び第3設定値は、夫々19、20及び20と決定され、N個の設定値の平均値は19.66であり、これによるPWM信号のデューティの平均値は59%となり、オン時間は5.9μsである。
 以上のように本実施の形態1によれば、制御部10aの中枢として機能するCPU11は、PWM回路15に設定すべき目標の値Xに応じてPWM回路15に設定可能な設定値を決定して設定する。具体的には、CPU11は、PWM回路15が有するPWM信号生成部153が生成するPWM信号のN(=3)周期毎に、目標の値Xに最も近い設定値Y及び2番目に近い設定値Zを特定し、特定したY及びZの大きさとXの大きさとを比較した結果により、Y及びZを組み合わせることによりN個の設定値を決定して、上記PWM信号の周期毎に1つずつPWM回路15に設定する。
 これにより、CPU11が決定するN個の設定値について目標の値Xに最も近い設定値Y及び2番目に近い設定値Zの割合が適宜決定されるため、N個の設定値の平均的な値が、PWM回路15に設定可能な値の最小の増分よりもきめ細かく調整される。
 従って、設定された値に応じたPWM信号を周期的に発生するPWM回路(発生部)15に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能となる。
 また、実施の形態1によれば、CPU11が決定するN個の設定値について、目標の値Xに最も近い設定値Yを第1設定値と決定し、第1設定値から第M設定値(2≦M≦N)までの平均的な値が目標の値Xに最も近くなるように、第M設定値を決定することをN-1回だけ繰り返す。
 従って、PWM信号のN周期中のどの周期にあっても、第1周期からその周期までにPWM回路15に設定された設定値の平均的な値を目標の値Xに最も近い値にすることが可能となる。
(実施の形態2)
 実施の形態1が、第1設定値及び第M設定値(2≦M≦N)を順次決定する形態であるのに対し、実施の形態2は、M個の設定値のうち目標の値に2番目に近い設定値の個数を算出することにより、N個の設定値を一括して決定する形態である。
 実施の形態2における電圧変換装置の構成は、実施の形態1における図1に示すものと同様であるため、実施の形態1に対応する箇所には同一の符号を付してその説明を省略する。
 図8は、本発明の実施の形態2に係る信号発生回路1aでN個の設定値を決定する方法を説明するための説明図である。目標の値Xに対して、先ず最も近い設定値Y及び2番目に近い設定値Zが特定される。図8の例では、Xより小さく、且つXより1/2以上小さくないYが最初に特定され、ZがY+1と特定される。
 さて、第1設定値から第N設定値までが全てYと決定されたと仮定すると、全ての設定値の平均値はYとなる。次に、N個の設定値のうち1つだけ設定値がYではなくZ(図8の場合はY+1)と決定された場合、全ての設定値の平均値は、Yに対して1/Nだけ増加(又は減少)する(図8の場合は増加する)。同様に、Zと決定される設定値が1つ増加する毎に全ての設定値の平均値が1/Nだけ増加(又は減少)する(図8の場合は増加する)。
 Zと決定される設定値の数と全ての設定値の平均値との関係が上述のとおりであることを考慮して、Zと決定される設定値の数を求めるには、YからZに向けて1/Nずつ加算(又は減算)した値とXとの大小関係を都度判定すればよい。より具体的には、Yに対して1/NをK回加算(又は減算)した値とXとの大小関係が逆転した場合、K回加算(又は減算)した値yaと、K-1回加算(又は減算)した値ybとで、どちらがXに近いかを判定し、近い方の回数(K又はK-1)をZと決定される設定値の数とすればよい。
 具体的に図8の場合は、Yに対して1/NをK-1回加算(又は減算)した値ybに更に1/2Nを加算(又は減算)した値ycとXとの大小関係を判定すればよい。図8の場合は(図8の左半分参照)、K=2であり、ycの方がXより大きいと判定されるため、K-1の値(=1)がZと判定される設定値の数となる。
 上述したアルゴリズムをXの側から見れば(図8の右半分参照)、XとYとの差分xから1/Nを減算することを繰り返し、K回減算したときに減算結果xaが負になった場合、xから1/NをK-1回減算した値xbから更に1/2Nを減算した値xcが負になるか否かによって、Zと決定される設定値の数を決定すればよい。図8の例ではK=2であり、xcが負になるから、Zの数が1と決定される。仮にxcが正であればZの数が2と決定される。
 なお、XとYとの差分xから先に1/2Nを減算しておき、この減算結果から1/Nを何回減算したときに減算結果が負になるかによって、Zと決定される設定値の数を決定してもよい。1/2Nを減算したときの減算結果が負であれば、Zの数が0と決定され、1/NをK回減算したときの減算結果が負であればZの数がKと決定される。後述するフローチャートでは、このアルゴリズムで説明する。図8の例では、xから1/2Nを減算した結果から1/Nを1回減算したときに減算結果が負になるから、Zの数が1と決定される。
 以下では、上述した信号発生回路1aの動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM12aに予め格納されている制御プログラムに従って、CPU11により実行される。
 図9は、本発明の実施の形態2における設定値決定のサブルーチンに係るCPU11の処理手順を示すフローチャートである。図9における設定値の数K、及びXとYの差分xは、RAM13aに記憶される。PWM割込処理に係るCPU11の処理手順は、実施の形態1における図5に示すものと同様であるため、図示及び説明を省略する。
 PWM割込処理から設定値決定に係るサブルーチンが呼び出された場合、CPU11は、RAM13aに記憶された目標の値Xに最も近い設定値Yを特定する(S40:特定する手段に相当)と共に、2番目に近い設定値Zを特定し(S41:特定する手段に相当)、更にZと決定される設定値の数Kを0とする(S42)。その後、CPU11は、XとYの差分xを算出し(S43)、算出したxから1/2Nを減算した値を新たにxとする(S44)。
 次いで、CPU11は、xが負であるか否かを判定し(S45)、負である場合(S45:YES)、後述するステップS49に処理を移す。xが負ではない場合(S45:NO)、CPU11は、Kの値を1だけインクリメントし(S46)、xから1/Nを減算した値を新たにxとする(S47)。
 次いで、CPU11は、xが負であるか否かを判定し(S48)、負ではない場合(S48:NO)、ステップS46に処理を移す。xが負である場合(S48:YES)、CPU11は、この時点で(値が)Yと決定された(決定手段に相当)N-K個の設定値と、(値が)Zと決定された(決定手段に相当)K個の設定値とをデューティデータテーブル131に記憶し(S49)、呼び出されたルーチンにリターンする。
 なお、ステップS45及びS48では、xが負であるか否かを判定したが、判定に等号を含めて、xが0以下で有るか否かを判定するようにしてもよい。
 次に、上述のようにして決定されたN個の設定値の複数の例について説明する。
 図10は、本発明の実施の形態2に係る信号発生回路1aで目標の値に応じて決定されたN個の設定値の一覧を示す図表である。図10では、N個の設定値に含まれる第1設定値、第2設定値及び第3設定値を数値の昇順に並べてあるが、これに限定されるものではなく、降順に並べてもよいし、順不同に並べてもよい。
 図10に示す目標の値及びN個の設定値は、実施の形態1における図7に示すものと比較して、第1設定値、第2設定値及び第3設定値の並び順が一部異なるだけであり、図表中の数値そのものに違いはない。N個の設定値の平均値は、図7に示す値と全く同一である。
 具体的に異なる点を挙げると、目標の値が0.17から0.50の範囲内にある場合、第1、第2及び第3設定値は、夫々0、0及び1と決定され、目標の値が1.17から0.50の範囲内にある場合、第1、第2及び第3設定値は、夫々1、1及び2と決定される。また、目標の値が19.17から19.50の範囲内にある場合、第1、第2及び第3設定値は、夫々19、19及び20と決定される。
 以上のように本実施の形態2によれば、制御部10aが決定するN個の設定値について、N個全ての設定値の平均的な値が目標の値に最も近くなるようにN個の設定値を決定する。
 従って、信号のN周期全体について、PWM回路15に設定されたN個の設定値の平均的な値を目標の値に最も近い値にすることが可能となる。
(実施の形態3)
 実施の形態1は、N周期毎に順次決定されたN個の設定値が、RAM13aに含まれるデューティデータテーブル131に一旦書き込まれた後、PWM周期で順次読み出される形態であるのに対し、実施の形態3は、N個の設定値が、ROMに含まれるデューティデータテーブルに予め記憶された内容から選択されることにより、N周期毎に一括して決定されて、PWM周期で順次読み出される形態である。
 図11は、本発明の実施の形態3に係る信号発生回路1bを備える電圧変換装置の構成例を示すブロック図である。
 信号発生回路1bは、CPU11を有するマイクロコンピュータである。CPU11は、プログラム等の情報を記憶するROM12b、一時的に発生した情報を記憶するRAM13b、A/D変換器14、PWM回路15、及び割込コントローラ16と互いにバス接続されている。信号発生回路1bのうち、PWM回路15を除いたものが制御部10bであるが、PWM回路15が制御部10bに含まれていてもよい。
 ROM12bは、デューティデータテーブル(記憶部に相当)121を含み、該デューティデータテーブル121には、実施の形態2における図10に示す目標の値の各範囲に夫々対応付けられたN個の設定値が予め複数組記憶されている。デューティデータテーブル121は、制御部10bの外部の他のメモリに含まれていてもよい。デューティデータテーブル121に記憶された複数組のN個の設定値の中から、N周期毎の割込処理にて1組の第1設定値、第2設定値及び第3設定値が決定される。
 RAM13bは、実施の形態1におけるRAM13aとは異なり、デューティデータテーブル131を含まない。信号発生回路1bの動作を説明するためのタイミング図については、実施の形態1の図2に示すものと同様である。
 その他、実施の形態1に対応する箇所には同様の符号を付して、その説明を省略する。
 N個の設定値は、例えばN周期(N=3)における第3周期で決定される。デューティデータテーブル121に記憶された内容から決定された第1設定値、第2設定値及び第3設定値夫々は、各設定値が決定されたときの第3周期における割込処理、並びに次のN周期における第1周期及び第2周期夫々における割込処理により順次読み出されて、レジスタバッファ151に設定される。
 以下では、上述したN個の設定値を決定する信号発生回路1bの動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、ROM12bに予め格納されている制御プログラムに従って、CPU11により実行される。
 図12は、本発明の実施の形態3に係る信号発生回路1bでPWM割込処理を実行するCPU11の処理手順を示すフローチャートである。図12におけるループカウンタJ及び目標の値Xは、RAM13bに記憶される。ループカウンタJの初期値はNである。
 なお、ステップS50からS58までの処理のうち、ステップS56以外の処理は、実施の形態1における図5に示すステップS10からS18までの処理と同様であるため、詳細な説明を省略する。
 PWM周期の割込が発生してCPU11の制御が図12の処理に移った場合、CPU11は、ループカウンタJがN(ここでは3)であるか否かを判定し(S50)、Nである場合(S50:YES)、Jを1とする(S51)。その後、CPU11は、出力電圧に基づく電圧ループ制御、及び出力電流に基づく電流ループ制御に係る演算を実行する(S52~S55)。
 次いで、CPU11は、デューティデータテーブル121の内容、即ちテーブルに記憶された目標の値の各範囲と、上述の演算によって算出した目標の値Xとを照合する(S56)。照合の結果、目標の値Xが含まれる範囲に対応してデューティデータテーブル121に記憶されているN個の設定値が、決定された設定値となる(決定手段に相当)。
 次いで、CPU11は、第J設定値をデューティデータテーブル121から読み出し(S57)、読み出した第J設定値をレジスタバッファ151に設定して(S58)、割り込まれたルーチンにリターンする。
 以上のように本実施の形態3によれば、その平均的な値が目標の値Xに最も近くなるように予め決定されたN個の設定値と、目標の値の範囲との対応関係がROM12bのデューティデータテーブル121に記憶されている。CPU11は、目標の値Xに対応してPWM回路15に設定すべきN個の設定値を、割込処理にてデューティデータテーブル121から順次読み出して決定する。
 従って、目標の値Xに応じて決定すべきN個の設定値を、CPU11による制御の実行時に容易に決定することが可能となる。
 また、実施の形態3によれば、制御部10bに含まれるCPU11が、割込処理にてデューティデータテーブル121からN個の設定値を順次読み出してPWM回路15に設定する。
 従って、デューティデータテーブル121の内容を順次PWM回路15に設定することが可能となる。
 更に、実施の形態1、2又は3によれば、上述の信号発生回路1a又は1bが発生したPWM信号のデューティに応じたスイッチングによって電圧変換回路2が電圧を変換し、変換された電圧に基づくPWM制御により、信号発生回路1a又は1bのCPU11がPWM回路15に設定すべき目標の値を算出する。
 従って、PWM信号を周期的に発生するPWM回路15に設定する値の最小の増分を、比較的小さい処理負荷で実際の増分よりも実質的に小さくすることが可能な信号発生回路1a又は1bを電圧変換装置に適用して、出力電圧の精度を向上させることが可能となる。
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。
 1a、1b 信号発生回路
 10a、10b 制御部
 11 CPU(特定する手段、決定手段)
 12a、12b ROM
 121 デューティデータテーブル(記憶部)
 13a、13b RAM
 131 デューティデータテーブル
 14 A/D変換器(検出部)
 15 PWM回路(発生部)
 151 レジスタバッファ
 152 デューティレジスタ
 153 PWM信号生成部
 16 割込コントローラ
 2 電圧変換回路
 26 駆動回路
 27 電流検出器
 3 バッテリ
 4 負荷

Claims (7)

  1.  設定された値に応じたPWM信号を周期的に発生する発生部と、目標の値に応じて、前記発生部に前記信号の周期毎に、前記発生部に設定可能な設定可能値を設定する制御部とを備え、前記発生部は、外部の電圧変換回路に対してPWM信号を発生させ、前記電圧変換回路をPWM制御することにより電圧を変換させる信号発生回路において、
     前記制御部は、
     前記信号のN周期(Nは2以上の自然数)毎に、前記目標の値に最も近い設定可能値及び2番目に近い設定可能値を特定する手段と、
     該手段が特定した2つの設定可能値及び前記目標の値夫々の大きさに基づいて、前記2つの設定可能値を組み合わせてなるN個の設定可能値を前記発生部に設定すべく決定する決定手段と
     を有する
     ことを特徴とする信号発生回路。
  2.  前記決定手段は、前記N個の設定可能値を、M個(Mは2≦M≦Nを満たす自然数)の設定可能値の平均的な値が前記目標の値に最も近くなるように決定するようにしてあることを特徴とする請求項1に記載の信号発生回路。
  3.  前記決定手段は、前記N個の設定可能値を、各設定可能値の平均的な値が、前記目標の値に最も近くなるように決定するようにしてあることを特徴とする請求項1に記載の信号発生回路。
  4.  目標の値及びN個の設定可能値の対応関係を記憶する記憶部を備え、
     該記憶部は、N個の設定可能値を、各設定可能値の平均的な値が、対応する目標の値に最も近くなるように予め決定して記憶してあり、
     前記決定手段は、前記目標の値に対応するN個の設定可能値を前記記憶部の記憶情報から決定するようにしてある
     ことを特徴とする請求項1に記載の信号発生回路。
  5.  前記制御部は、前記決定手段が決定したN個の設定可能値を前記信号の周期毎に前記記憶部から順次読み出して前記発生部に設定するようにしてあることを特徴とする請求項4に記載の信号発生回路。
  6.  請求項1から5の何れか1項に記載の信号発生回路と、該信号発生回路が発生した信号のデューティに応じたスイッチングによって電圧を変換する電圧変換回路と、該電圧変換回路が変換した電圧を検出する検出部とを備える電圧変換装置であって、
     前記信号発生回路が備える制御部は、前記検出部が検出した電圧に基づくPWM制御により、前記目標の値を算出する手段を有することを特徴とする電圧変換装置。
  7.  設定された値に応じたPWM信号を周期的に発生する発生部と、目標の値に応じて、前記発生部に前記信号の周期毎に、前記発生部に設定可能な設定可能値を設定する制御部とを備え、前記発生部は、外部の電圧変換回路に対してPWM信号を発生させ、前記電圧変換回路をPWM制御することにより電圧を変換させる信号発生回路で前記信号を発生させる方法において、
     前記信号のN周期(Nは2以上の自然数)毎に、前記目標の値に最も近い設定可能値及び2番目に近い設定可能値を特定し、
     特定した2つの設定可能値及び前記目標の値夫々の大きさに基づいて、前記2つの設定可能値を組み合わせてなるN個の設定可能値を前記発生部に設定すべく決定する
     ことを特徴とする信号発生方法。
PCT/JP2016/052123 2015-01-29 2016-01-26 信号発生回路、電圧変換装置及び信号発生方法 WO2016121735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016095A JP2016144233A (ja) 2015-01-29 2015-01-29 信号発生回路、電圧変換装置及び信号発生方法
JP2015-016095 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121735A1 true WO2016121735A1 (ja) 2016-08-04

Family

ID=56543346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052123 WO2016121735A1 (ja) 2015-01-29 2016-01-26 信号発生回路、電圧変換装置及び信号発生方法

Country Status (2)

Country Link
JP (1) JP2016144233A (ja)
WO (1) WO2016121735A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597544B2 (ja) * 2016-09-30 2019-10-30 株式会社オートネットワーク技術研究所 信号発生回路及び電源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171007A (ja) * 1987-12-26 1989-07-06 Nippon Denso Co Ltd 酸素濃度センサの温度制御装置
JP2000511758A (ja) * 1997-03-27 2000-09-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ デジタル制御切換モード電圧変換器
JP2011234519A (ja) * 2010-04-28 2011-11-17 Renesas Electronics Corp 電源制御装置、電源装置及び電源制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171007A (ja) * 1987-12-26 1989-07-06 Nippon Denso Co Ltd 酸素濃度センサの温度制御装置
JP2000511758A (ja) * 1997-03-27 2000-09-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ デジタル制御切換モード電圧変換器
JP2011234519A (ja) * 2010-04-28 2011-11-17 Renesas Electronics Corp 電源制御装置、電源装置及び電源制御方法

Also Published As

Publication number Publication date
JP2016144233A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6332080B2 (ja) 信号発生回路、電圧変換装置及び信号発生方法
WO2016137005A1 (ja) 信号発生回路、電圧変換装置及び信号発生方法
WO2017073497A1 (ja) 信号発生回路、電圧変換装置及びコンピュータプログラム
JP2015089289A (ja) 電源装置及び電源装置の異常判定方法
JP6597544B2 (ja) 信号発生回路及び電源装置
Sawma et al. Cascaded dual-model-predictive control of an active front-end rectifier
WO2016121735A1 (ja) 信号発生回路、電圧変換装置及び信号発生方法
EP2908424A1 (en) Control of an electrical modular multilevel converter with different sample rates
US8762614B2 (en) Analog-to-digital converter with early interrupt capability
KR101138390B1 (ko) A/d변환장치
WO2020217879A1 (ja) 電力変換装置、機械学習器、および学習済みモデルの生成方法
JP2018042082A (ja) 半導体装置及びad変換装置
WO2017126493A1 (ja) 信号発生回路及び電圧変換装置
JP2894175B2 (ja) 帰還制御装置
JP5548383B2 (ja) コンバータの制御装置
JP2017085839A (ja) 電力変換装置および電力変換装置の制御方法
JP6468046B2 (ja) Pwm電力変換器の並列運転方法および並列運転装置
WO2016143465A1 (ja) 電流検出回路及びソレノイド駆動装置
JP2018182882A (ja) 電力変換回路の制御装置、電力変換装置
JP2011244604A (ja) 電源装置
JP6993925B2 (ja) 電力変換装置の制御装置
JP2010161862A (ja) デジタル制御方式のスイッチング電源装置及び当該スイッチング電源装置としてコンピュータを機能させるためのプログラム
CN107066064A (zh) 电源装置、用于电源装置的电源控制方法以及记录介质
JP2010130852A (ja) 電動機制御装置と予測制御方法
JP2016018274A (ja) 制御装置の操作量の演算方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743338

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743338

Country of ref document: EP

Kind code of ref document: A1