WO2016121606A1 - 列車位置検知装置 - Google Patents

列車位置検知装置 Download PDF

Info

Publication number
WO2016121606A1
WO2016121606A1 PCT/JP2016/051634 JP2016051634W WO2016121606A1 WO 2016121606 A1 WO2016121606 A1 WO 2016121606A1 JP 2016051634 W JP2016051634 W JP 2016051634W WO 2016121606 A1 WO2016121606 A1 WO 2016121606A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
guarantee range
rear end
range
relative
Prior art date
Application number
PCT/JP2016/051634
Other languages
English (en)
French (fr)
Inventor
孝哉 葛城
剛生 吉本
亘 辻田
知明 武輪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/524,308 priority Critical patent/US10023211B2/en
Priority to DE112016000508.3T priority patent/DE112016000508T5/de
Priority to JP2016571976A priority patent/JP6239160B2/ja
Publication of WO2016121606A1 publication Critical patent/WO2016121606A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • This invention relates to a train position detection device that detects a train position on a track by using both an absolute position positioning method and a relative position positioning method.
  • the current method for detecting the position of a train in the railroad field is to start from the absolute distance received from a position correction ground element installed on the ground, and use the speed generator mounted on the vehicle to correct the position from the number of wheel rotations.
  • the main method is to measure the relative distance from the ground.
  • the position of the train is unclear due to wheel diameter error due to communication failure with the ground unit, wheel wear and the like, and idling of the wheel.
  • Patent Document 1 considers reliability of position accuracy based on GPS satellites. And the method of determining a train position and performing train control is disclosed.
  • an object of the present invention is to provide a train position detection device capable of setting a distance between trains to be short.
  • the train position detection device calculates an absolute position guarantee range that is an estimated range of the position of the end of the train in consideration of measurement errors based on the measurement result of the train position by the absolute distance measurement sensor.
  • Relative position guarantee range which is the estimated range of the train end position considering the measurement error, based on the measurement result of the train position by the range calculation unit and the relative distance measurement sensor that measures the relative distance from the previous measurement.
  • the absolute rear end position guarantee range includes the relative rear end position guarantee range, which is an estimated range of the rear end position of the train, and the position determination unit includes the absolute rear end position guarantee range train.
  • the position of the end on the positive side in the train traveling direction is determined as the position of the rear end of the train, and the relative position guarantee range
  • the calculation unit adds a new measurement value of the relative distance measurement sensor and a measurement error thereof to the initial value of the relative rear end position guarantee range which is the relative rear end position guarantee range calculated based on the measurement result of the previous relative distance measurement sensor.
  • the end of the train rearward direction of the initial value of the relative rear end position guarantee range is more negative in the train traveling direction than the position of the rear end of the train previously determined by the position determination unit. If the train is Calculating the relative rear position assurance range position parts relative rear position assurance range initial value.
  • the position of the end portion on the positive side in the second direction among the end portion in the first direction of the absolute position guarantee range and the end portion in the first direction of the relative position guarantee range is determined as the position of the end of the first direction of the train, so the margin distance can be made shorter than when the position of the end of the train is estimated based only on the absolute position guarantee range or the relative position guarantee range only. . Therefore, the inter-knitting distance can be set short.
  • the rear end position of the deemed train does not retreat to the negative side in the train traveling direction, and the positioning error at the rear end position of the train is shortened.
  • FIG. 6 is a flowchart showing the operation of the train position detection apparatus according to the second embodiment. It is a figure explaining the train position detection by the train position detection apparatus by Embodiment 2.
  • FIG. It is a figure explaining the train position detection by the train position detection apparatus by Embodiment 2.
  • FIG. It is a block diagram which shows the structure of the train position detection apparatus by Embodiment 3.
  • FIG. 10 is a flowchart showing the operation of the train position detection device according to the third embodiment. It is a block diagram which shows the structure of the train position detection apparatus by Embodiment 4. It is a figure which shows transition of the deemed train rear end position by the train position detection apparatus by Embodiment 4.
  • FIG. 10 is a flowchart showing the operation of the train position detection device according to the fourth embodiment. It is a block diagram which shows the structure of the train position detection apparatus by Embodiment 5. It is a figure explaining a position guarantee range.
  • FIG. 10 is a flowchart showing the operation of the train position detection apparatus according to the fifth embodiment. It is a block diagram which shows the structure of the train position detection apparatus by Embodiment 6.
  • FIG. 10 is a flowchart showing the operation of the train position detection apparatus according to the sixth embodiment. It is a figure explaining a division
  • Embodiment 1 In the first embodiment of the present invention, a process for reducing the margin distance with respect to the rear end position of the own train will be described. This makes it possible for the subsequent trains that continue to the own train to appropriately close the train interval.
  • FIG. 1 is a configuration diagram of a train position detection apparatus 100A according to the first embodiment.
  • the same or corresponding components are denoted by the same reference numerals, and this is common throughout the entire specification.
  • the form of the component shown by this specification is an illustration to the last, and is not limited to these description.
  • a train position detection device 100A includes a GPS antenna 1, a GPS position guarantee range calculation unit 2, a speed generator 3, a quick start position guarantee range calculation unit 4, a track information storage unit 5, a guarantee range comparison unit 6, and a position.
  • a determination unit 7 is provided.
  • the speed generator may be referred to as “fast start”.
  • the GPS antenna 1 receives a GPS signal 101 for determining the position of the GPS antenna 1 from a GPS satellite.
  • the GPS position guarantee range calculation unit 2 acquires the GPS signal 101 from the GPS antenna 1 and the line information 102 from the line information storage unit 5, and calculates the GPS position guarantee range 103 based on these.
  • the GPS position guarantee range 103 is a position range in which the train is inferred based on the GPS signal 101, and more specifically is a position range of the GPS antenna 1 mounted on the train.
  • the position “range” is used in consideration of measurement error.
  • the speed generator 3 is attached to the train axle and measures the number of rotations of the wheels.
  • the quick start position guarantee range calculation unit 4 calculates a speed generator position guarantee range (fast start position guarantee range) 105 based on the wheel rotational speed signal 104 measured by the speed generator 3.
  • the quick start position guarantee range 105 is a position range in which the train is inferred based on the wheel speed signal 104, and more specifically, a position range of the axle of the train to which the speed generator 3 is attached. .
  • the position “range” is used in consideration of measurement error.
  • the track information storage unit 5 stores track information 102.
  • the track information 102 is information used for the calculation of the GPS position guarantee range 103 and the quick start position guarantee range 105. For example, the relationship between the latitude and longitude or the travel distance and the route kilometer, the branch information, the number information, the gradient information, and the like. Including.
  • the guaranteed range comparing unit 6 acquires the GPS position guaranteed range 103 from the GPS position guaranteed range calculating unit 2 and the quick start position guaranteed range 105 from the quick start position guaranteed range calculating unit 4 and compares them. This comparison process will be described later.
  • the position determination unit 7 acquires the comparison result 106 from the guaranteed range comparison unit 6 and estimates the position of the train based on this. Specifically, the rear end position of the train is estimated.
  • the rear end position of the train estimated here is referred to as “deemed train rear end position”.
  • FIG. 2 is a flowchart showing the operation of the train position detection apparatus 100A.
  • operation movement of 100 A of train position detection apparatuses is demonstrated using FIG.1 and FIG.2.
  • the GPS position guarantee range calculation unit 2 is an example of an absolute position guarantee range calculation unit that calculates an absolute position guarantee range based on the measurement result of the absolute distance measurement sensor. That is, the GPS position guarantee range calculation unit 2 acquires the GPS signal 101 from the GPS antenna 1 and calculates a kilometer representing the specific position on the train line based on the GPS signal 101 with the track information 102 as a constraint. Further, the GPS position guarantee range calculation unit 2 calculates a maximum error of about kilometer calculated as described above by using, for example, an SBAS (Satellite Augmentation System) receiver described in JP2010-234799A, A GPS position guarantee range 103 is calculated in consideration of the maximum error.
  • SBAS Shortlite Augmentation System
  • the GPS position guarantee range calculation unit 2 holds an offset distance from the installation position of the GPS antenna 1 to the rear end of the train, and by adding the offset distance to the GPS position guarantee range 103, A position guarantee range (referred to as “GPS rear end position guarantee range”) is calculated (step S101).
  • the quick start position guarantee range calculation unit 4 acquires the wheel rotation speed signal 104 from the speed generator 3, and calculates the travel distance by adding the wheel circumference of the train to the wheel rotation speed.
  • the wheel circumferential length is held by, for example, the quick start position guarantee range calculation unit 4.
  • a kilometer is calculated based on a travel distance from a specific starting point such as a travel start position.
  • the quick start position guarantee range calculation part 4 is the JSME lecture paper collection No.
  • the maximum error of about kilometer based on the measurement of the speed generator 3 is calculated by the method shown in 144-1 (page 2-12), and the quick start position guarantee range 105 considering the maximum error is calculated.
  • the quick start position guarantee range calculation unit 4 holds an offset distance from the measurement axle to which the speed generator 3 is attached to the rear end of the train, and adds the offset distance to the quick start position guarantee range 105.
  • a position guarantee range at the rear end of the train (this is referred to as a “rapid rear end position guarantee range”) is calculated (step S102).
  • the guaranteed range comparison unit 6 performs a comparison process between the GPS position guaranteed range 103 and the quick start position guaranteed range 105. Specifically, first, it is determined whether or not the GPS rear end position guarantee range overlaps with the rapid departure rear end position guarantee range (step S103).
  • the guaranteed range comparison unit 6 determines that the rear end value in the train traveling direction of the GPS rear end position guaranteed range (hereinafter referred to as “GPS rear end position guaranteed range-”) It is determined whether or not the vehicle travel direction rear end value (hereinafter referred to as “rapid departure rear end position guarantee range-”) is behind the train travel direction (step S104).
  • FIG. 3 shows a case where the GPS rear end position guarantee range- is behind the rapid departure rear end position guarantee range- in the train traveling direction. In this case, the rapid rear end position guarantee range- is regarded as the rear end of the train.
  • Position step S105 in FIG. 2.
  • FIG. 4 shows a case where the GPS rear end position guarantee range- is ahead of the rapid departure rear end position guarantee range- in the train traveling direction. In this case, the GPS rear end position guarantee range- The end position is set (step S106 in FIG. 2). Further, when the GPS rear end position guarantee range- and the quick start rear end position guarantee range- are the same position, the GPS rear end position guarantee range- is regarded as the train rear end position (step S106 in FIG. 2).
  • the deemed train rear end position is the end position of the range where the GPS rear end position guarantee range and the rapid departure rear end position guarantee range overlap.
  • the end of the GPS rear end position guarantee range in the train reverse direction (GPS rear end position guarantee range-) and the end of the rapid start rear end position guarantee range in the train reverse direction (fast start rear end position guarantee range-) the position of the end portion on the positive side in the train traveling direction is regarded as the train rear end position.
  • the GPS rear end position guarantee range does not overlap with the quick start rear end position guarantee range (step S103 in FIG. 2: NO)
  • the train position measured by the speed generator 3 and the true train position are It is considered that there is a large gap between the two. Therefore, the GPS rear end position guarantee range-is regarded as the train rear end position (step S106 in FIG. 2).
  • the GPS position guarantee range cannot be calculated in a region such as a tunnel where signals from GPS satellites cannot be received (hereinafter referred to as “out-of-GPS region”). Therefore, the guaranteed range comparison unit 6 holds the position information of the GPS out-of-range area, and as long as the rear end position of the deemed train is located in the out-of-GPS area, it is assumed that the guaranteed rear end position guaranteed range- It is good also as an end position.
  • positioning using a GPS signal is performed as an absolute positioning method
  • positioning using a speed generator is performed as a relative positioning method
  • another satellite positioning method may be used as the absolute position positioning method
  • another integrated odometer such as an encoder may be used as the relative position positioning method.
  • the train position is handled as a kilometer on the route, but it may be handled in latitude and longitude.
  • the track information storage unit 5 may hold the offset distance.
  • the track information storage part 5 may hold
  • the speed generator 3 and the GPS antenna 1 are configured as the train position detection device 100A, but these are outside the train position detection device 100A, and the train position detection device 100A acquires signals from them. Also good.
  • step S102 the calculation of the rapid rear end position guarantee range (step S102) is performed after the calculation of the GPS rear end position guarantee range (step S101), but steps S101 and S102 are in no particular order.
  • the GPS position guarantee range is a GPS rear end position guarantee range (absolute rear end position guarantee range) that is an estimated range of the position of the rear end of the train.
  • the quick start position guarantee range includes the quick start rear end position guarantee range (relative rear end position guarantee range), which is an estimated range of the rear end position of the train
  • the position determination unit 7 shows the position of the end of the GPS rear end position guarantee range on the positive side in the train traveling direction between the end of the train rearward direction of the train and the end of the rapid rear end position guarantee range on the train reverse direction. Determine the position of the edge. Therefore, the margin distance with respect to the following train can be made shorter than estimating the position of the rear end portion of the train based only on the GPS position guarantee range or only the quick start position guarantee range. Therefore, the inter-knitting distance can be set short.
  • the position determination unit 7 includes a GPS rear end position guarantee range (absolute rear end position guarantee range) and a quick start rear end position guarantee range (relative rear end position guarantee range). If there is no overlap, the position of the GPS rear end position guarantee range— (the end of the absolute rear end position guarantee range in the train reverse direction) is determined as the position of the rear end of the train. Thereby, even when a big shift occurs between the train position measured by the speed generator 3 and the true train position due to idling or the like, the position of the rear end of the train can be appropriately determined.
  • Second Embodiment> In the second embodiment of the present invention, a process for shortening the margin distance with respect to the train front end position is shown. As a result, it is possible to appropriately close the train interval with respect to the preceding train, or to enter the forward speed limit section at an appropriate speed.
  • FIG. 5 is a flowchart showing the operation of the train position detection apparatus according to the second embodiment.
  • the operation of the train position detection apparatus according to the second embodiment will be described with reference to FIGS. 1 and 5.
  • the GPS position guarantee range calculation unit 2 calculates the GPS position guarantee range 103 as in the first embodiment.
  • the GPS position guarantee range calculation unit 2 holds an offset distance from the installation position of the GPS antenna 1 to the train tip, and adds the offset distance to the GPS position guarantee range 103 to guarantee the position of the train tip.
  • a range (referred to as “GPS tip position guarantee range”) is calculated (step S201).
  • the quick start position guarantee range calculation unit 4 calculates the quick start position guarantee range 105 as in the first embodiment.
  • the quick start position guarantee range calculation unit 4 holds an offset distance from the measurement axle to which the speed generator 3 is attached to the train tip, and adds the offset distance to the quick start position guarantee range 105.
  • the position guarantee range of the train tip (this is referred to as “rapid tip position guarantee range”) is calculated (step S202).
  • the guaranteed range comparison unit 6 performs a comparison process between the GPS position guaranteed range 103 and the quick start position guaranteed range 105. Specifically, first, it is determined whether or not the GPS tip position guarantee range and the quick start tip position guarantee range overlap (step S203).
  • the guaranteed range comparison unit 6 determines that the tip value in the train traveling direction of the GPS tip position guaranteed range (hereinafter referred to as “GPS tip position guaranteed range +”) is the tip in the train traveling direction of the rapid tip position guaranteed range. It is determined from the value (hereinafter referred to as “rapid tip position guarantee range +”) whether or not the vehicle is behind in the train traveling direction (step S204).
  • FIG. 6 shows a case where the GPS tip position guarantee range + is ahead of the rapid departure tip position guarantee range + in the train traveling direction.
  • the rapid tip position guarantee range + is regarded as the train tip position ( Step S205 in FIG. 5).
  • FIG. 7 shows a case where the GPS tip position guarantee range + is behind the rapid tip position guarantee range + in the train traveling direction.
  • the GPS tip position guarantee range + is regarded as the train tip position. (Step S206 in FIG. 5).
  • the GPS tip position guarantee range + is regarded as the train tip position (step S206 in FIG. 5).
  • the deemed train tip position is the most advanced position in the range where the GPS tip position guarantee range and the speed generator tip position guarantee range overlap.
  • step S203 in FIG. 5: NO the train position measured by the speed generator 3 and the true train position are not detected because of idling. It is considered that there is a large gap between the two. Therefore, the GPS tip position guarantee range + is regarded as the train tip position (step S206 in FIG. 5).
  • the guaranteed range comparison unit 6 holds position information of the out-of-GPS area, and while the assumed train tip position is located in the out-of-GPS area, it can be regarded as the train tip position exclusively for the fast tip position guarantee range +. .
  • the track information storage unit 5 may hold the offset distance.
  • the quick start position guarantee range calculation unit 4 holds the offset distance from the measurement axle to which the speed generator is attached to the train tip
  • the track information storage unit 5 may hold the offset distance
  • step S202 the calculation of the quick tip position guarantee range is performed after the calculation of the GPS tip position guarantee range (step S201), but steps S201 and 202 are in no particular order.
  • the GPS position guarantee range includes a GPS tip position guarantee range (absolute tip position guarantee range) that is an estimated range of the position of the train tip.
  • the quick start position guarantee range includes a quick start position guarantee range (relative tip position guarantee range) that is an estimated range of the position of the train tip, and the position determination unit 7 is the absolute tip position.
  • the position of the end on the positive side in the train reverse direction is determined as the position of the front end of the train. Therefore, the margin distance with respect to the preceding train can be made shorter than estimating the position of the front end of the train based only on the GPS position guarantee range or only the quick start position guarantee range. Therefore, the inter-knitting distance can be set short.
  • the position determination unit determines that the GPS tip position guarantee range + (absolute tip position guarantee range)
  • the position of the end in the traveling direction of the train) is determined as the position of the front end of the train.
  • Embodiment 3 In the third embodiment of the present invention, in addition to the processing of the first embodiment, a past positioning result is further referred to and processing for further reducing the margin distance is performed.
  • FIG. 8 is a configuration diagram of a train position detection apparatus 100B according to the third embodiment.
  • the configuration of the train position detection device 100B is the same as that of the train position detection device 100A according to the first embodiment except that the train rear end position 107 is output from the position determination unit 7 to the guarantee range comparison unit 6.
  • the rapid start rear end position guarantee range + is a front end value in the train traveling direction of the quick start rear end position guarantee range, and the train rear end position at the start of traveling is set as an initial value.
  • the GPS rear end position guarantee range is synonymous with the first embodiment, and represents the GPS position guarantee range at the rear end position of the own train.
  • the GPS rear end position guarantee range + represents the front end value in the train traveling direction of the GPS rear end position guarantee range.
  • the GPS rear end position guarantee range is synonymous with the first embodiment and represents the rear end value of the GPS rear end position guarantee range in the train traveling direction.
  • FIG. 10 shows the transition of the deemed train rear end position determined by the position determination unit 7 of the train position detection device 100B.
  • the horizontal axis indicates the true train position, and the vertical axis indicates the positioning train position. Further, it is assumed that the train position detection cycle by the GPS signal 101 is longer than the train position detection cycle by the speed generator 3.
  • FIG. 11 is a flowchart showing the operation of the train position detection apparatus 100B.
  • operation movement of the train position detection apparatus 100B is demonstrated using FIG.
  • the GPS position guarantee range calculation unit 2 calculates the GPS rear end position guarantee range (step S301), and the quick start position guarantee range calculation unit 4 calculates the quick start rear end position guarantee range (step S302).
  • the guaranteed range comparison unit 6 performs a comparison process between the GPS rear end position guaranteed range and the quick start rear end position guaranteed range. Specifically, first, it is determined whether or not the GPS rear end position guarantee range and the rapid departure rear end position guarantee range overlap (step S303). Steps S301 to S303 are the same as steps S1 to S3 of FIG. 2 described in the first embodiment.
  • step S304 the GPS rear end position guarantee range-, the quick start rear end position guarantee range- Compare. Note that the guaranteed range comparison unit 6 acquires the train rear end position only when the front train position is detected from the position determination unit 7.
  • the train that is at the forefront in the train traveling direction is regarded as the train rear end position.
  • the GPS rear end position guarantee range-is in the foremost position the GPS rear end position guarantee range-is regarded as the train rear end position (step S305), and the quick start rear end position guarantee range-is in the forefront.
  • the train rear end position is at the forefront, the train rear end position is regarded as the front train position.
  • the rear end position of the deemed train is set (step S307).
  • the position determination unit 7 determines whether or not the train position is confirmed (step S308). For example, it can be determined that the train position is fixed when the train passes through the position correction ground element. If the train position is not confirmed, the process returns to step S301 again, and the determination of the rear end position of the deemed train is repeated.
  • the deemed train rear end position does not move backward in the train traveling direction negative side, so that the positioning error at the train rear end position is shorter than in the first embodiment. Therefore, it is possible to operate with a shorter interval between the own train and the following train. That is, high-density operation can be realized.
  • the GPS rear end position guarantee range does not overlap with the quick start rear end position guarantee range (step S103 in FIG. 2: NO)
  • the train position measured by the speed generator 3 and the true train position are It is considered that there is a large gap between the two. Therefore, the GPS rear end position guarantee range- is regarded as the train rear end position (step S305 in FIG. 11).
  • the position determination unit 7 includes the end of the GPS rear end position guarantee range (absolute rear end position guarantee range) in the train reverse direction and the rapid start rear end position guarantee range (relative If the position of the rear end of the previously determined train is on the positive side in the train traveling direction from the end on the positive side in the train traveling direction of the end of the rear end position guarantee range)
  • the determined position of the rear end of the train is determined as the rear end position of the current train. Therefore, since the deemed train rear end position does not move backward in the train traveling direction negative side, the margin distance at the train rear end position is shorter than that in the first embodiment. Therefore, the margin distance with respect to the following train can be shortened. Therefore, the inter-knitting distance can be set short.
  • Embodiment 4 In the third embodiment, the margin distance is shortened by referring to the past positioning result. However, in the fourth embodiment, the margin distance for the subsequent train is obtained by using the assumed rear end position of the train as an initial value for relative distance measurement. Further shortening.
  • FIG. 12 is a configuration diagram of a train position detection device 100C according to the fourth embodiment.
  • the configuration of the train position detection device 100C is the same as that of the train position detection device 100A according to the first embodiment except that the train rear end position 108 is output from the position determination unit 7 to the quick start position guarantee range calculation unit 4. is there.
  • FIG. 13 shows the transition of the deemed train rear end position determined by the position determination unit 7 of the train position detection device 100C.
  • the horizontal axis indicates the true train position, and the vertical axis indicates the positioning train position. Further, it is assumed that the train position detection cycle by the GPS signal 101 is longer than the train position detection cycle by the speed generator 3.
  • FIG. 14 is a flowchart showing the operation of the train position detection apparatus 100C.
  • operation movement of the train position detection apparatus 100B is demonstrated using FIG.
  • the GPS position guarantee range calculation unit 2 calculates a GPS rear end position guarantee range (step S401). This step is the same as step S101 of FIG. 2 described in the first embodiment.
  • the quick start position guarantee range calculation unit 4 sets the assumed train rear end position 108 acquired from the position determination unit 7 as an initial value of the quick start position rear end position guarantee range ⁇ (hereinafter, this processing in the present embodiment). Is referred to as “initialization of quick start positioning”), and a quick start rear end position guarantee range is calculated (step S402). Specifically, the travel distance measured by the speed generator 3 and its positioning error are added to the initial value of the quick start position rear end position guarantee range ⁇ . This integrated value is shown as “updated rapid rear end position guarantee range-” in FIG. That is, in the fourth embodiment, the rapid start rear end position guarantee range is updated on the assumption that the train does not move backward.
  • the guaranteed range comparison unit 6 performs a comparison process between the GPS rear end position guaranteed range ⁇ and the quick start rear end position guaranteed range ⁇ . Specifically, first, it is determined whether or not the GPS rear end position guarantee range and the rapid departure rear end position guarantee range overlap (step S403). This step is the same as step S3 of FIG. 2 described in the first embodiment.
  • the guarantee range comparison unit 6 compares the GPS rear end position guarantee range- and the quick start rear end position guarantee range- (step S404). ) Based on the comparison result, the position determination unit 7 determines the rear end position of the train (steps S405 and 406). Steps S404 to S406 are the same as steps S104 to S106 in FIG. 2 described in the first embodiment, and thus detailed description thereof is omitted here.
  • the position determination unit 7 determines whether or not the train position has been determined (step S407). For example, it can be determined that the train position is fixed when the train passes through the position correction ground element. If the train position is not confirmed, the process returns to step S401 again, and the determination of the rear end position of the deemed train is repeated.
  • the quick start positioning is initialized by setting the rear end position of the train at the start of running as the initial value of the quick start end position guarantee range-.
  • the deemed train rear end position does not move backward in the train traveling direction negative side, and the positioning error at the train rear end position becomes shorter than that in the third embodiment. Therefore, it is possible to realize a high-density operation in which the interval between the own train and the following train is shorter than that in the third embodiment.
  • the quick start position guarantee range calculation unit 4 calculates the speed calculated based on the previous measurement result of the speed generator 3 (relative distance measurement sensor). A new measured value of the speed generator 3 and its measurement error are added to the initial value of the quick start end position guarantee range (relative rear end position guarantee range initial value) which is the start end position guarantee range (relative rear end position guarantee range). By calculating the relative rear end position guarantee range, the end of the train rearward direction of the initial value of the relative rear end position guarantee range is greater than the position of the rear end of the train previously determined by the position determination unit 7.
  • the relative rear end position guarantee range is calculated with the position of the rear end of the train previously determined by the position determination unit as the relative rear end position guarantee range initial value. Therefore, the deemed rear end position of the train does not retreat to the negative side in the train traveling direction, and the positioning error at the rear end position of the train is shorter than that in the third embodiment. Therefore, it is possible to realize high-density operation in which the interval between the own train and the following train is shorter than that in the third embodiment.
  • Embodiment 5 In the fifth embodiment, the marginal distance with respect to the preceding train is shortened by using the assumed train tip position as the initial value of the relative distance measurement.
  • FIG. 15 is a configuration diagram of a train position detection device 100D according to the fifth embodiment.
  • the configuration of the train position detection device 100D is the same as that of the train position detection device according to the second embodiment, except that the train determination position 7 is output from the position determination unit 7 to the quick start position guarantee range calculation unit 4.
  • the fast-starting tip position guarantee range + is synonymous with the second embodiment, and represents the tip value in the traveling direction of the fast-starting tip position guarantee range, and the train tip position at the start of traveling is the initial value.
  • the GPS tip position guarantee range is synonymous with the second embodiment, and represents the GPS position guarantee range at the tip position of the own train.
  • the GPS tip position guarantee range + is synonymous with the second embodiment, and represents the tip value in the train traveling direction of the GPS tip position guarantee range.
  • the GPS tip position guarantee range- represents the rear end value of the GPS tip position guarantee range in the train traveling direction.
  • FIG. 17 shows the transition of the assumed train tip position determined by the position determination unit 7 of the train position detection device 100D.
  • the horizontal axis indicates the true train position, and the vertical axis indicates the positioning train position. Further, it is assumed that the train position detection cycle by the GPS signal 101 is longer than the train position detection cycle by the speed generator 3.
  • FIG. 18 is a flowchart showing the operation of the train position detection device 100D. Hereinafter, operation
  • the GPS position guarantee range calculation unit 2 calculates the GPS tip position guarantee range (step S501). This step is the same as step S201 of FIG. 5 described in the second embodiment.
  • the quick start position guarantee range calculation unit 4 sets the assumed train tip position 109 acquired from the position determination unit 7 as an initial value of the quick start position tip position guarantee range + (hereinafter, this processing is referred to as “ This is referred to as “initialization of quick start positioning”), and a quick start tip position guarantee range is calculated (step S502). Specifically, the travel distance measured by the speed generator 3 and its positioning error are added to the initial value of the quick start position tip position guarantee range +. This integrated value is shown in FIG. 17 as “updated quick start position guarantee range +”. By updating the quick start position guarantee range + in this way, the quick start position guarantee range + does not become larger than necessary.
  • the guaranteed range comparison unit 6 performs a comparison process between the GPS rear end position guaranteed range + and the quick start rear end position guaranteed range +. Specifically, first, it is determined whether or not the GPS tip position guarantee range and the rapid tip position guarantee range overlap (step S503). This step is the same as step S203 of FIG. 5 described in the second embodiment.
  • the guarantee range comparison unit 6 compares the GPS tip position guarantee range + and the quick tip position guarantee range + (step S504) and compares them. Based on the result, the position determination unit 7 determines the deemed train tip position (steps S505 and S506). Steps S504 to S506 are the same as steps S204 to S206 in FIG. 5 described in the second embodiment, and thus detailed description thereof is omitted here.
  • the position determination unit 7 determines whether or not the train position has been determined (step S507). For example, it can be determined that the train position is fixed when the train passes through the position correction ground element. If the train position is not confirmed, the process returns to step S501 again, and the determination of the deemed train tip position is repeated.
  • the rapid positioning is initialized by setting the train tip position at the start of traveling to the initial value of the rapid tip position guarantee range +.
  • the quick start position guarantee range calculation unit 4 (relative position guarantee range calculation unit) is calculated based on the previous measurement result of the speed generator 3 (relative distance measurement sensor). New measured value of the speed generator 3 (relative distance measurement sensor) and the initial value of the rapid tip position guarantee range (relative tip position guarantee range initial value) which is the prompt tip position guarantee range (relative tip position guarantee range)
  • the quick start position guarantee range (relative tip position guarantee range) is calculated, and the end of the rapid start position guarantee range initial value (relative tip position guarantee range initial value) in the train traveling direction is
  • the position determination unit 7 is located on the positive side in the train traveling direction with respect to the position of the front end of the train determined last time, the position of the front end of the train previously determined by the position determination unit 7 is set to the relative tip position guarantee range initial value.
  • Embodiment 6 by using an acceleration sensor in addition to the processing of the first embodiment, it is possible to improve the estimation accuracy of the train position and appropriately close the train interval with the following train.
  • FIG. 19 is a configuration diagram of a train position detection device 100E according to the sixth embodiment.
  • the train position detection device 100E includes an acceleration sensor 8 and an acceleration sensor position guarantee range calculation unit 9 in addition to the configuration of the train position detection device 100A according to the first embodiment.
  • the acceleration sensor 8 measures the train acceleration 110 and outputs the train acceleration 110 to the acceleration sensor position guarantee range calculation unit 9.
  • the acceleration sensor position guarantee range calculation unit 9 calculates an acceleration sensor position guarantee range 111 based on the train acceleration 110 measured by the acceleration sensor 8.
  • the acceleration sensor position guarantee range 111 is a position range in which the train is inferred based on the train acceleration 110, and the position “range” here is for taking measurement error into consideration.
  • FIG. 20 is a flowchart showing the operation of the train position detection device 100E.
  • operation movement of the train position detection apparatus 100E is demonstrated using FIG.19 and FIG.20.
  • the GPS position guarantee range calculation unit 2 calculates the GPS position guarantee range 103 as in the first embodiment.
  • the GPS position guarantee range calculation unit 2 holds an offset distance from the installation position of the GPS antenna 1 to the rear end of the train, and adds the offset distance to the GPS position guarantee range 103 to obtain the GPS rear end position.
  • a guarantee range is calculated (step S601).
  • the quick start position guarantee range calculation unit 4 calculates the quick start position guarantee range 105 as in the first embodiment. Further, the quick start position guarantee range calculation unit 4 holds an offset distance from the measurement axle to which the speed generator 3 is attached to the rear end of the train, and adds the offset distance to the quick start position guarantee range 105. Thus, the quick start rear end position guarantee range is calculated (step S602).
  • the acceleration sensor position guarantee range calculation unit 9 calculates the acceleration sensor position guarantee range 111 by integrating the train acceleration 110 twice in time. Specifically, integration is performed based on the concept of the piecewise quadrature method shown in FIG.
  • the hatched portion indicates the quadrature value or true value
  • FIG. 21 (a) is the leftmost type of the piecewise quadrature method
  • FIG. 21 (b) is the true value
  • FIG. 21 (c) is the piecewise quadrature method.
  • the rightmost type of is shown. The minimum value is obtained by the left end mold, and the maximum value is obtained by the right end mold.
  • the true value is in the range from the minimum value to the maximum value, and has a calculation error.
  • the acceleration sensor position guarantee range calculation unit 9 holds an offset distance from the installation position of the acceleration sensor 8 to the rear end of the train, and adds the offset distance to the acceleration sensor position guarantee range 111, thereby An end position guarantee range (referred to as “acceleration sensor rear end position guarantee range”) is calculated (step S603).
  • the guaranteed range comparison unit 6 determines whether or not the position of the train is out of the GPS range. Specifically, for example, the determination is made based on the function of determining signal reception mounted on the GPS (step S604).
  • the guaranteed range comparison unit 6 determines whether or not the quick start rear end position guaranteed range and the acceleration sensor rear end position guaranteed range overlap (step S605).
  • the guaranteed range comparison unit 6 determines whether or not the quick start rear end position guaranteed range-is behind the acceleration sensor rear end position guaranteed range- (step S606).
  • step S607 If it is determined that the vehicle is behind, the acceleration sensor rear end position guarantee range-is regarded as the rear end position of the train (step S607). If it is determined that the vehicle is not behind, the rapid rear end position guarantee range-is regarded as the train rear end position (step S608).
  • the acceleration sensor rear end position guarantee range- is regarded as the train rear end position (step S607).
  • Step S609 when the train is traveling in the GPS area, the acceleration sensor position guarantee range 111 is not used, and it is determined whether the GPS rear end position guarantee range and the quick start position rear end guarantee range overlap.
  • the guaranteed range comparison unit 6 determines whether or not the GPS rear end position guaranteed range-is behind the rapid departure rear end position guaranteed range-in the train traveling direction (step S610).
  • the rapid rear end position guarantee range is regarded as the train rear end position (step S608). If it is determined that the vehicle is not behind, the GPS rear end position guarantee range-is regarded as the train rear end position (step S611).
  • the GPS rear end position guarantee range- is regarded as the train rear end position (step S611).
  • the track information storage unit 5 may hold the offset distance.
  • the track information storage part 5 may hold
  • the acceleration sensor position guarantee range calculation unit 9 holds the offset distance from the position where the acceleration sensor is attached to the rear end of the train
  • the track information storage unit 5 may hold the offset distance
  • step S601 after calculating the GPS rear end position guarantee range (step S601), the quick start position guarantee range is calculated (step S602), and then the acceleration sensor rear end position guarantee range is calculated (step S603).
  • steps S601, 602, and 603 are out of order.
  • position detection apparatus 100E according to Embodiment 6 uses a position guarantee range by an acceleration sensor for train position detection apparatus 100A according to Embodiment 1. This makes it possible to estimate the train position with high accuracy even when the measurement result of the speed generator greatly deviates from the true train position due to idling in a non-GPS area such as a tunnel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

 本発明に係る列車位置検知装置100Aは、GPS信号101による列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲であるGPS位置保証範囲を算出するGPS位置保証範囲算出部2と、前回測定時からの相対距離を測定する速度発電機3による列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲である速発位置保証範囲を算出する速発位置保証範囲算出部4と、列車進行方向及び列車後退方向のうち、一方を第1方向、他方を第2方向とし、GPS位置保証範囲の第1方向の端部と速発位置保証範囲の第1方向の端部とのうち、第2方向正側にある端部の位置を列車の第1方向の端部の位置と決定する位置決定部7と、を備える。

Description

列車位置検知装置
 この発明は、絶対位置測位方式と相対位置測位方式を併用して線路上の列車位置を検知する列車位置検知装置に関する。
 現在の鉄道分野における列車の位置を検知する方法は、地上に設置した位置補正用地上子から受信する絶対距離を起点とし、車上に搭載される速度発電機で車輪の回転数から位置補正用の地上子との相対距離を計測する方法が主流である。しかし、地上子との通信不全、車輪の摩耗等による車輪径誤差及び車輪の空転滑走のために列車の位置が不明確になるという問題があった。
 そこで、GPS衛星により常時列車の絶対位置を測定する方法が考案されている。GPS(Global Positioning System)衛星による測位には信号受信感度の低下やマルチパス等のために測位誤差が存在するため、これに対して特許文献1は、GPS衛星に基づく位置精度の信頼性を考慮して列車位置を決定し、列車制御を行う方法を開示している。
特許第4786001号公報
 しかし、保安上必要とされる必要最小限の編成間距離を保持しながら出来る限り編成間を接近させる移動閉塞方式にGPSを活用する場合、特許文献1のようにGPS衛星の信頼性により列車位置を評価するだけでは、列車位置測位の誤差を考慮出来ない。そのため、列車の先端及び後端に過大な余裕距離を取らざるを得ず、編成間距離を十分に短くした列車制御を行えないという問題があった。
 本発明は上述の問題に鑑み、編成間距離を短く設定することが可能な列車位置検知装置の提供を目的とする。
 本発明に係る列車位置検知装置は、絶対距離計測センサによる列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲である絶対位置保証範囲を算出する絶対位置保証範囲算出部と、前回測定時からの相対距離を測定する相対距離計測センサによる列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲である相対位置保証範囲を算出する相対位置保証範囲算出部と、列車進行方向及び列車後退方向のうち、一方を第1方向、他方を第2方向とし、絶対位置保証範囲の第1方向の端部と相対位置保証範囲の第1方向の端部とのうち、第2方向正側にある端部の位置を列車の第1方向の端部の位置と決定する位置決定部と、を備え、絶対位置保証範囲は、列車の後端部の位置の推定範囲である絶対後端位置保証範囲を含み、相対位置保証範囲は、列車の後端部の位置の推定範囲である相対後端位置保証範囲を含み、位置決定部は、絶対後端位置保証範囲の列車後退方向の端部と相対後端位置保証範囲の列車後退方向の端部とのうち、列車進行方向正側にある端部の位置を列車の後端部の位置と決定し、相対位置保証範囲算出部は、前回の相対距離計測センサの測定結果に基づき算出した相対後端位置保証範囲である相対後端位置保証範囲初期値に相対距離計測センサの新たな測定値及びその測定誤差を積算することで相対後端位置保証範囲を算出し、相対後端位置保証範囲初期値の列車後退方向の端部が、位置決定部が前回決定した列車の後端部の位置よりも列車進行方向負側にある場合は、位置決定部が前回決定した列車の後端部の位置を相対後端位置保証範囲初期値として相対後端位置保証範囲を算出する。
 本発明に係る列車位置検知装置によれば、絶対位置保証範囲の第1方向の端部と相対位置保証範囲の第1方向の端部とのうち、第2方向正側にある端部の位置を列車の第1方向の端部の位置と決定するので、絶対位置保証範囲のみ、あるいは相対位置保証範囲のみに基づき列車の端部の位置を推定する場合よりも余裕距離を短くすることができる。そのため、編成間距離を短く設定することができる。また、みなし列車後端位置が列車進行方向負側に後退しない上、列車後端位置における測位誤差が短くなる。
実施の形態1による列車位置検知装置の構成を示すブロック図である。 実施の形態1による列車位置検知装置の動作を示すフローチャートである。 実施の形態1による列車位置検知装置による列車位置検知を説明する図である。 実施の形態1による列車位置検知装置による列車位置検知を説明する図である。 実施の形態2による列車位置検知装置の動作を示すフローチャートである。 実施の形態2による列車位置検知装置による列車位置検知を説明する図である。 実施の形態2による列車位置検知装置による列車位置検知を説明する図である。 実施の形態3による列車位置検知装置の構成を示すブロック図である。 位置保証範囲を説明する図である。 実施の形態3による列車位置検知装置によるみなし列車後端位置の推移を示す図である。 実施の形態3による列車位置検知装置の動作を示すフローチャートである。 実施の形態4による列車位置検知装置の構成を示すブロック図である。 実施の形態4による列車位置検知装置によるみなし列車後端位置の推移を示す図である。 実施の形態4による列車位置検知装置の動作を示すフローチャートである。 実施の形態5による列車位置検知装置の構成を示すブロック図である。 位置保証範囲を説明する図である。 実施の形態5による列車位置検知装置によるみなし列車先端位置の推移を示す図である。 実施の形態5による列車位置検知装置の動作を示すフローチャートである。 実施の形態6による列車位置検知装置の構成を示すブロック図である。 実施の形態6による列車位置検知装置の動作を示すフローチャートである。 区分求積法を説明する図である。
 <A.実施の形態1>
 本発明の実施の形態1では、自列車後端位置に対する余裕距離を短縮するための処理を示す。これにより、自列車に続行する後続列車は列車間隔を適切に詰めることが可能になる。
 <A-1.構成>
 図1は実施の形態1による列車位置検知装置100Aの構成図である。図において、同一又は対応する構成要素には同一の符号を付しており、このことは明細書の全文において共通する。また、明細書で示す構成要素の形態はあくまで例示であり、これらの記載に限定されるものではない。
 図1において、列車位置検知装置100Aは、GPSアンテナ1、GPS位置保証範囲算出部2、速度発電機3、速発位置保証範囲算出部4、線路情報記憶部5、保証範囲比較部6及び位置決定部7を備えている。なお、本明細書及び図面では、速度発電機のことを「速発」と称することがある。
 GPSアンテナ1は、GPSアンテナ1の位置を決定するためのGPS信号101をGPS衛星から受信する。
 GPS位置保証範囲算出部2は、GPSアンテナ1からGPS信号101を、線路情報記憶部5から線路情報102をそれぞれ取得し、これらに基づきGPS位置保証範囲103を算出する。GPS位置保証範囲103とは、GPS信号101に基づき推定される列車の在線する位置範囲であり、より具体的には、列車に搭載されたGPSアンテナ1の位置範囲である。ここで位置「範囲」となるのは測定誤差を考慮するためである。
 速度発電機3は列車の車軸に取りつけられ、車輪の回転数を計測する。
 速発位置保証範囲算出部4は、速度発電機3が計測した車輪回転数信号104に基づき速度発電機位置保証範囲(速発位置保証範囲)105を算出する。速発位置保証範囲105とは、車輪回転数信号104に基づき推定される列車の在線する位置範囲であり、より具体的には、速度発電機3が取り付けられた列車の車軸の位置範囲である。ここで位置「範囲」となるのは測定誤差を考慮するためである。
 線路情報記憶部5は線路情報102を記憶する。線路情報102は、GPS位置保証範囲103及び速発位置保証範囲105の算出に用いられる情報であり、例えば緯度経度若しくは走行距離と路線キロ程との関係、分岐情報、番線情報又は勾配情報などを含む。
 保証範囲比較部6は、GPS位置保証範囲算出部2からGPS位置保証範囲103を、速発位置保証範囲算出部4から速発位置保証範囲105をそれぞれ取得し、これらを比較する。この比較処理は後述する。
 位置決定部7は、保証範囲比較部6から比較結果106を取得し、これに基づき列車の位置を推定する。具体的には、列車の後端位置を推定する。なお、ここで推定する列車の後端位置を「みなし列車後端位置」と呼ぶ。
 <A-2.動作>
 図2は、列車位置検知装置100Aの動作を示すフローチャートである。以下、図1及び図2を用いて列車位置検知装置100Aの動作を説明する。
 GPS位置保証範囲算出部2は、絶対距離計測センサの測定結果に基づき絶対位置保証範囲を算出する絶対位置保証範囲算出部の一例である。すなわち、GPS位置保証範囲算出部2は、GPSアンテナ1からGPS信号101を取得し、線路情報102を制約条件としてGPS信号101に基づき、列車の路線上の固有位置を表すキロ程を算出する。さらに、GPS位置保証範囲算出部2は、例えば特開2010-234979号に記載のSBAS(Satellite Based Augmentation System)受信機を利用することで、上記のとおり算出したキロ程の最大誤差を算出し、最大誤差を考慮したGPS位置保証範囲103を算出する。
 また、GPS位置保証範囲算出部2は、GPSアンテナ1の設置位置から列車後端までのオフセット距離を保持しており、当該オフセット距離をGPS位置保証範囲103に加算することにより、列車後端の位置保証範囲(これを「GPS後端位置保証範囲」と称する)を算出する(ステップS101)。
 次に、速発位置保証範囲算出部4は、速度発電機3から車輪回転数信号104を取得し、車輪回転数に列車の車輪円周長を積算して走行距離を算出する。車輪円周長は、例えば速発位置保証範囲算出部4が保持している。そして、線路情報102を制約条件とし、走行開始位置等の特定の起点からの走行距離を基にキロ程を算出する。そして、速発位置保証範囲算出部4は、日本機械学会講演論文集No.144-1(2-12頁)に示された方法で、速度発電機3の測定に基づくキロ程の最大誤差を算出し、最大誤差を考慮した速発位置保証範囲105を算出する。
 また、速発位置保証範囲算出部4は、速度発電機3が取り付けられた計測車軸から列車後端までのオフセット距離を保持しており、当該オフセット距離を速発位置保証範囲105に加算することにより、列車後端の位置保証範囲(これを「速発後端位置保証範囲」と称する)を算出する(ステップS102)。
 次に、保証範囲比較部6は、GPS位置保証範囲103と速発位置保証範囲105との比較処理を行う。具体的には、まず、GPS後端位置保証範囲と速発後端位置保証範囲とが重複するか否かを判断する(ステップS103)。
 両者が重複する場合、保証範囲比較部6は、GPS後端位置保証範囲の列車進行方向後端値(以下「GPS後端位置保証範囲-」と称す)が、速発後端位置保証範囲の列車進行方向後端値(以下「速発後端位置保証範囲-」と称す)より列車進行方向の後方にあるか否かを判断する(ステップS104)。
 図3は、GPS後端位置保証範囲-が速発後端位置保証範囲-より列車進行方向の後方にある場合を示しており、この場合、速発後端位置保証範囲-をみなし列車後端位置とする(図2のステップS105)。一方、図4は、GPS後端位置保証範囲-が速発後端位置保証範囲-より列車進行方向の前方にある場合を示しており、この場合、GPS後端位置保証範囲-をみなし列車後端位置とする(図2のステップS106)。また、GPS後端位置保証範囲-と速発後端位置保証範囲-とが同位置である場合も、GPS後端位置保証範囲-をみなし列車後端位置とする(図2のステップS106)。
 つまり、みなし列車後端位置は、GPS後端位置保証範囲と速発後端位置保証範囲とが重複する範囲の最後端位置となる。言い換えれば、GPS後端位置保証範囲の列車後退方向の端部(GPS後端位置保証範囲-)と速発後端位置保証範囲の列車後退方向の端部(速発後端位置保証範囲-)とのうち、列車進行方向正側にある端部の位置をみなし列車後端位置としている。これにより、列車後端位置における測位誤差が短くなるため、自列車と後続列車との間隔を短くした高密度運転を実現できる。
 GPS後端位置保証範囲と速発後端位置保証範囲とが重複しない場合(図2のステップS103:NO)は、空転滑走のため、速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じていると考えられる。そこで、GPS後端位置保証範囲-をみなし列車後端位置とする(図2のステップS106)。
 <A-3.変形例>
 トンネル等、GPS衛星からの信号を受信できない領域(以下、「GPS圏外領域」と称する)では、GPS位置保証範囲を算出できない。そこで、保証範囲比較部6はGPS圏外領域の位置情報を保持しておき、みなし列車後端位置がGPS圏外領域に位置している間は、専ら速発後端位置保証範囲―をみなし列車後端位置としても良い。
 また、絶対位置測位方式としてGPS信号による測位、相対位置測位方式として速度発電機による測位を行ったが、これらは各測位方式の例示であって、他の測位方式を用いても良い。例えば、絶対位置測位方式として他の衛星測位方式を用いても良いし、相対位置測位方式としてエンコーダなど他の積算走行距離計を用いてもよい。
 また、GPS位置保証範囲算出部2及び速発位置保証範囲算出部4では、列車位置を路線上のキロ程として扱ったが、緯度経度で扱ってもよい。
 また、GPS位置保証範囲算出部2がGPSアンテナ1の設置位置から列車後端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持してもよい。
 また、速発位置保証範囲算出部4が、速度発電機が取り付けられた計測車軸から列車後端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持してもよい。
 また、速度発電機3及びGPSアンテナ1を列車位置検知装置100Aの構成としたが、これらは列車位置検知装置100Aの外部にあり、列車位置検知装置100Aがこれらから信号を取得する構成であっても良い。
 また、図2では、GPS後端位置保証範囲の算出(ステップS101)の後に速発後端位置保証範囲の算出(ステップS102)を行うこととしたが、ステップS101,102は順不同である。
 <A-4.効果>
 実施の形態1に係る列車位置検知装置100Aにおいて、GPS位置保証範囲(絶対位置保証範囲)は、列車の後端部の位置の推定範囲であるGPS後端位置保証範囲(絶対後端位置保証範囲)を含み、速発位置保証範囲(相対位置保証範囲)は、列車の後端部の位置の推定範囲である速発後端位置保証範囲(相対後端位置保証範囲)を含み、位置決定部7は、GPS後端位置保証範囲の列車後退方向の端部と速発後端位置保証範囲の列車後退方向の端部とのうち、列車進行方向正側にある端部の位置を列車の後端部の位置と決定する。従って、GPS位置保証範囲のみ、あるいは速発位置保証範囲のみに基づき列車の後端部の位置を推定するよりも、後続列車に対する余裕距離を短くすることができる。そのため、編成間距離を短く設定することができる。
 実施の形態1に係る列車位置検知装置100Aにおいて、位置決定部7は、GPS後端位置保証範囲(絶対後端位置保証範囲)と速発後端位置保証範囲(相対後端位置保証範囲)とが重複しない場合、GPS後端位置保証範囲-(絶対後端位置保証範囲の列車後退方向の端部)の位置を列車の後端部の位置と決定する。これにより、空転滑走等のため速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じた場合でも、適切に列車の後端部の位置を決定できる。
 <B.実施の形態2>
 本発明の実施の形態2では、自列車先端位置に対する余裕距離を短縮するための処理を示す。これにより、先行列車に対して列車間隔を適切に詰めたり、前方の制限速度区間に適切な速度で侵入したりすることが可能になる。
 <B-1.構成>
 実施の形態2による列車位置検知装置の構成は、図1に示した列車位置検知装置100Aと同様である。
 <B-2.動作>
 図5は、実施の形態2による列車位置検知装置の動作を示すフローチャートである。以下、図1及び図5を用いて実施の形態2による列車位置検知装置の動作を説明する。
 GPS位置保証範囲算出部2は、実施の形態1と同様にGPS位置保証範囲103を算出する。また、GPS位置保証範囲算出部2は、GPSアンテナ1の設置位置から列車先端までのオフセット距離を保持しており、当該オフセット距離をGPS位置保証範囲103に加算することにより、列車先端の位置保証範囲(これを「GPS先端位置保証範囲」と称する)を算出する(ステップS201)。
 次に、速発位置保証範囲算出部4は、実施の形態1と同様に速発位置保証範囲105を算出する。また、速発位置保証範囲算出部4は、速度発電機3が取り付けられた計測車軸から列車先端までのオフセット距離を保持しており、当該オフセット距離を速発位置保証範囲105に加算することにより、列車先端の位置保証範囲(これを「速発先端位置保証範囲」と称する)を算出する(ステップS202)。
 次に、保証範囲比較部6は、GPS位置保証範囲103と速発位置保証範囲105との比較処理を行う。具体的には、まず、GPS先端位置保証範囲と速発先端位置保証範囲とが重複するか否かを判断する(ステップS203)。
 両者が重複する場合、保証範囲比較部6は、GPS先端位置保証範囲の列車進行方向先端値(以下「GPS先端位置保証範囲+」と称す)が、速発先端位置保証範囲の列車進行方向先端値(以下「速発先端位置保証範囲+」と称す)より列車進行方向の後方にあるか否かを判断する(ステップS204)。
 図6は、GPS先端位置保証範囲+が速発先端位置保証範囲+より列車進行方向の前方にある場合を示しており、この場合、速発先端位置保証範囲+をみなし列車先端位置とする(図5のステップS205)。一方、図7は、GPS先端位置保証範囲+が速発先端位置保証範囲+より列車進行方向の後方にある場合を示しており、この場合、GPS先端位置保証範囲+をみなし列車先端位置とする(図5のステップS206)。また、GPS先端位置保証範囲+と速発先端位置保証範囲+とが同位置である場合も、GPS先端位置保証範囲+をみなし列車先端位置とする(図5のステップS206)。
 つまり、みなし列車先端位置は、GPS先端位置保証範囲と速度発電機先端位置保証範囲とが重複する範囲の最先端位置となる。これにより、列車先端位置における測位誤差が小さくなるため、自列車と先行列車との間隔を短くした高密度運転を実現できる。
 GPS先端位置保証範囲+と速発先端位置保証範囲+とが重複しない場合(図5のステップS203:NO)は、空転滑走のため、速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じていると考えられる。そこで、GPS先端位置保証範囲+をみなし列車先端位置とする(図5のステップS206)。
 <B-3.変形例>
 保証範囲比較部6はGPS圏外領域の位置情報を保持しておき、みなし列車先端位置がGPS圏外領域に位置している間は、専ら速発先端位置保証範囲+をみなし列車先端位置としても良い。
 また、GPS位置保証範囲算出部2がGPSアンテナ1の設置位置から列車先端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持してもよい。
 また、速発位置保証範囲算出部4が、速度発電機が取り付けられた計測車軸から列車先端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持してもよい。
 また、図5では、GPS先端位置保証範囲の算出(ステップS201)の後に速発先端位置保証範囲の算出(ステップS202)を行うこととしたが、ステップS201,202は順不同である。
 その他、実施の形態1と同様の変形例が実施の形態2にも適用される。
 <B-4.効果>
 実施の形態2による列車位置検知装置によれば、GPS位置保証範囲(絶対位置保証範囲)は、列車の先端部の位置の推定範囲であるGPS先端位置保証範囲(絶対先端位置保証範囲)を含み、速発位置保証範囲(相対位置保証範囲)は、列車の先端部の位置の推定範囲である速発先端位置保証範囲(相対先端位置保証範囲)を含み、位置決定部7は、絶対先端位置保証範囲の列車進行方向の端部と相対先端位置保証範囲の列車進行方向の端部とのうち、列車後退方向正側にある端部の位置を列車の先端部の位置と決定する。従って、GPS位置保証範囲のみ、あるいは速発位置保証範囲のみに基づき列車の先端部の位置を推定するよりも、先行列車に対する余裕距離を短くすることができる。そのため、編成間距離を短く設定することができる。
 位置決定部は、GPS先端位置保証範囲(絶対先端位置保証範囲)と速発先端位置保証範囲(相対先端位置保証範囲)とが重複しない場合、GPS先端位置保証範囲+(絶対先端位置保証範囲の列車進行方向の端部の位置)を列車の先端部の位置と決定する。これにより、空転滑走等のため速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じた場合でも、適切に列車の先端部の位置を決定できる。
 <C.実施の形態3>
 本発明の実施の形態3では、実施の形態1の処理に加えてさらに過去の測位結果を参照し、さらに余裕距離を短縮するための処理を行う。
 <C-1.構成>
 図8は実施の形態3による列車位置検知装置100Bの構成図である。列車位置検知装置100Bの構成は、位置決定部7から保証範囲比較部6にみなし列車後端位置107が出力される点を除き、実施の形態1による列車位置検知装置100Aと同様である。
 <C-2.動作>
 図9を用いて後端位置保証範囲に関する用語の説明を行う。速発後端位置保証範囲+は、速発後端位置保証範囲の列車進行方向の先端値であり、走行開始時の列車後端位置を初期値とする。速発後端位置保証範囲―は、実施の形態1と同義で速発後端位置保証範囲の列車進行方向の後端値を表し、走行開始時の列車後端位置を初期値とする。
 GPS後端位置保証範囲は、実施の形態1と同義であり、自列車後端位置におけるGPS位置保証範囲を表す。GPS後端位置保証範囲+は、GPS後端位置保証範囲の列車進行方向の先端値を表す。GPS後端位置保証範囲―は、実施の形態1と同義であり、GPS後端位置保証範囲の列車進行方向の後端値を表す。
 図10は、列車位置検知装置100Bの位置決定部7が決定するみなし列車後端位置の推移を示している。横軸は真の列車位置を、縦軸は測位列車位置を示している。また、GPS信号101による列車位置の検知周期が速度発電機3による列車位置の検知周期よりも長いものと仮定している。
 図11は、列車位置検知装置100Bの動作を示すフローチャートである。以下、図10,11を用いて列車位置検知装置100Bの動作を説明する。
 まず、GPS位置保証範囲算出部2がGPS後端位置保証範囲を算出し(ステップS301)、速発位置保証範囲算出部4が速発後端位置保証範囲を算出する(ステップS302)。
 次に、保証範囲比較部6は、GPS後端位置保証範囲と速発後端位置保証範囲の比較処理を行う。具体的には、まず、GPS後端位置保証範囲と速発後端位置保証範囲とが重複するか否かを判断する(ステップS303)。ステップS301~S303は、実施の形態1で説明した図2のステップS1~S3と同様である。
 GPS後端位置保証範囲と速発後端位置保証範囲とが重複する場合、GPS後端位置保証範囲-、速発後端位置保証範囲-、及び前列車位置検知時のみなし列車後端位置を比較する(ステップS304)。なお、前列車位置検知時のみなし列車後端位置は、保証範囲比較部6が位置決定部7から取得している。
 比較の結果、列車進行方向の最も前方にあるものをみなし列車後端位置とする。具体的には、GPS後端位置保証範囲-が最も前方にあればGPS後端位置保証範囲-をみなし列車後端位置とし(ステップS305)、速発後端位置保証範囲-が最も前方にあれば速発後端位置保証範囲-をみなし列車後端位置とし(ステップS306)、前列車位置検知時のみなし列車後端位置が最も前方にあれば前列車位置検知時のみなし列車後端位置をみなし列車後端位置とする(ステップS307)。
 すなわち、実施の形態3では列車が後退しないという前提の下、GPS後端位置保証範囲-や速発後端位置保証範囲-が前回のみなし列車後端位置よりも列車進行方向の後方になったとしても、前回のみなし列車後端位置を今回のみなし列車後端位置とし、みなし列車後端位置が後退しないようにラッチ処理を行っている。
 次に、位置決定部7は列車位置が確定したか否かを判断する(ステップS308)。例えば、位置補正用地上子を列車が通過したときに列車位置が確定したと判断できる。列車位置が確定していなければ再びステップS301に戻り、みなし列車後端位置の決定を繰り返す。
 なお、「前列車位置検知時のみなし列車後端位置」は、処理開始時においては走行開始時の列車後端位置とする。
 以上の動作により、みなし列車後端位置が列車進行方向負側に後退することがないため、列車後端位置における測位誤差が実施の形態1よりも短くなる。従って、自列車と後続列車との間隔を短くして運転することが出来る。つまり、高密度運転を実現できる。
 GPS後端位置保証範囲と速発後端位置保証範囲とが重複しない場合(図2のステップS103:NO)は、空転滑走のため、速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じていると考えられる。そこで、GPS後端位置保証範囲―をみなし列車後端位置とする(図11のステップS305)。
 <C-3.効果>
 実施の形態3に係る列車位置検知装置100Bにおいて、位置決定部7は、GPS後端位置保証範囲(絶対後端位置保証範囲)の列車後退方向の端部と速発後端位置保証範囲(相対後端位置保証範囲)の列車後退方向の端部とのうち列車進行方向正側にある端部より、前回決定した列車の後端部の位置が列車進行方向正側にある場合には、前回決定した列車の後端部の位置を今回の列車の後端位置として決定する。従って、みなし列車後端位置が列車進行方向負側に後退することがないため、列車後端位置における余裕距離が実施の形態1よりも短くなる。従って、後続列車に対する余裕距離を短くすることができる。そのため、編成間距離を短く設定することができる。
 <D.実施の形態4>
 実施の形態3では過去の測位結果を参照することで余裕距離を短縮したが、実施の形態4ではみなし列車後端位置を相対距離計測の初期値に利用することで、後続列車に対する余裕距離をさらに短縮する。
 <D-1.構成>
 図12は、実施の形態4による列車位置検知装置100Cの構成図である。列車位置検知装置100Cの構成は、位置決定部7から速発位置保証範囲算出部4にみなし列車後端位置108が出力される点を除き、実施の形態1による列車位置検知装置100Aと同様である。
 <D-2.動作>
 図13は、列車位置検知装置100Cの位置決定部7で決定するみなし列車後端位置の推移を示している。横軸は真の列車位置を、縦軸は測位列車位置を示している。また、GPS信号101による列車位置の検知周期が速度発電機3による列車位置の検知周期よりも長いものと仮定している。
 図14は、列車位置検知装置100Cの動作を示すフローチャートである。以下、図13,14を用いて列車位置検知装置100Bの動作を説明する。
 まず、GPS位置保証範囲算出部2がGPS後端位置保証範囲を算出する(ステップS401)。このステップは、実施の形態1で説明した図2のステップS101と同様である。
 次に、速発位置保証範囲算出部4は、位置決定部7から取得したみなし列車後端位置108を速発位置後端位置保証範囲-の初期値とし(以下、本実施の形態においてこの処理を「速発測位の初期化」と称する)、速発後端位置保証範囲を算出する(ステップS402)。具体的には、速発位置後端位置保証範囲-の初期値に、速度発電機3が測定した走行距離及びその測位誤差を積算する。この積算値を、図13では「更新した速発後端位置保証範囲-」として示している。すなわち、実施の形態4では列車が後退しないという前提の下で速発後端位置保証範囲-を更新している。
 次に、保証範囲比較部6は、GPS後端位置保証範囲-と速発後端位置保証範囲-とを比較処理を行う。具体的には、まず、GPS後端位置保証範囲と速発後端位置保証範囲とが重複するか否かを判断する(ステップS403)。このステップは実施の形態1で説明した図2のステップS3と同様である。
 GPS後端位置保証範囲と速発後端位置保証範囲とが重複する場合、保証範囲比較部6は、GPS後端位置保証範囲-と速発後端位置保証範囲-とを比較し(ステップS404)、その比較結果に基づき位置決定部7がみなし列車後端位置を決定する(ステップS405,406)。ステップS404~406は実施の形態1で説明した図2のステップS104~106と同様であるため、ここでは詳細な説明を省略する。
 次に、位置決定部7は列車位置が確定したか否かを判断する(ステップS407)。例えば、位置補正用地上子を列車が通過したときに列車位置が確定したと判断できる。列車位置が確定していなければ再びステップS401に戻り、みなし列車後端位置の決定を繰り返す。
 なお、処理開始時においては、走行開始時の列車後端位置を速発後端位置保証範囲-の初期値とすることにより、速発測位の初期化を行う。
 以上の動作により、みなし列車後端位置が列車進行方向負側に後退しない上、列車後端位置における測位誤差が実施の形態3よりも短くなる。従って、自列車と後続列車との間隔を実施の形態3よりも短くした高密度運転を実現できる。
 <D-3.効果>
 実施の形態4による列車位置検知装置100Cにおいて、速発位置保証範囲算出部4(相対位置保証範囲算出部)は、前回の速度発電機3(相対距離計測センサ)の測定結果に基づき算出した速発後端位置保証範囲(相対後端位置保証範囲)である速発後端位置保証範囲初期値(相対後端位置保証範囲初期値)に速度発電機3の新たな測定値及びその測定誤差を積算することで相対後端位置保証範囲を算出し、相対後端位置保証範囲初期値の列車後退方向の端部が、位置決定部7が前回決定した列車の後端部の位置よりも列車進行方向負側にある場合は、位置決定部が前回決定した列車の後端部の位置を相対後端位置保証範囲初期値として相対後端位置保証範囲を算出する。従って、みなし列車後端位置が列車進行方向負側に後退しない上、列車後端位置における測位誤差が実施の形態3よりも短くなる。よって、自列車と後続列車との間隔を実施の形態3よりも短くした高密度運転を実現できる。
 <E.実施の形態5>
 実施の形態5では、みなし列車先端位置を相対距離計測の初期値に利用することで、先行列車に対する余裕距離を短縮する。
 <E-1.構成>
 図15は、実施の形態5による列車位置検知装置100Dの構成図である。列車位置検知装置100Dの構成は、位置決定部7から速発位置保証範囲算出部4にみなし列車先端位置109が出力される点を除き、実施の形態2による列車位置検知装置と同様である。
 <E-2.動作>
 図16を用いて先端位置保証範囲に関する用語の説明を行う。速発先端位置保証範囲+は、実施の形態2と同義であり、速発先端位置保証範囲の列車進行方向先端値を表し、走行開始時の列車先端位置を初期値とする。速度発電機先端位置保証範囲-は、速発先端位置保証範囲の列車進行方向後端値を表し、走行開始時の列車先端位置を初期値とする。
 GPS先端位置保証範囲は、実施の形態2と同義であり、自列車先端位置におけるGPS位置保証範囲を表す。GPS先端位置保証範囲+は、実施の形態2と同義であり、GPS先端位置保証範囲の列車進行方向の先端値を表す。GPS先端位置保証範囲―は、GPS先端位置保証範囲の列車進行方向の後端値を表す。
 図17は、列車位置検知装置100Dの位置決定部7が決定するみなし列車先端位置の推移を示している。横軸は真の列車位置を、縦軸は測位列車位置を示している。また、GPS信号101による列車位置の検知周期が速度発電機3による列車位置の検知周期よりも長いものと仮定している。
 図18は、列車位置検知装置100Dの動作を示すフローチャートである。以下、図17,18を用いて列車位置検知装置100Dの動作を説明する。
 まず、GPS位置保証範囲算出部2がGPS先端位置保証範囲を算出する(ステップS501)。このステップは、実施の形態2で説明した図5のステップS201と同様である。
 次に、速発位置保証範囲算出部4は、位置決定部7から取得したみなし列車先端位置109を速発位置先端位置保証範囲+の初期値とし(以下、本実施の形態においてこの処理を「速発測位の初期化」と称する)、速発先端位置保証範囲を算出する(ステップS502)。具体的には、速発位置先端位置保証範囲+の初期値に、速度発電機3が測定した走行距離及びその測位誤差を積算する。この積算値を、図17では「更新した速発先端位置保証範囲+」として示している。このように速発先端位置保証範囲+を更新することにより、速発先端位置保証範囲+が必要以上に大きくならない。
 次に、保証範囲比較部6は、GPS後端位置保証範囲+と速発後端位置保証範囲+とを比較処理を行う。具体的には、まず、GPS先端位置保証範囲と速発先端位置保証範囲とが重複するか否かを判断する(ステップS503)。このステップは実施の形態2で説明した図5のステップS203と同様である。
 GPS先端位置保証範囲と速発先端位置保証範囲とが重複する場合、保証範囲比較部6は、GPS先端位置保証範囲+と速発先端位置保証範囲+とを比較し(ステップS504)、その比較結果に基づき位置決定部7がみなし列車先端位置を決定する(ステップS505,506)。ステップS504~506は実施の形態2で説明した図5のステップS204~206と同様であるため、ここでは詳細な説明を省略する。
 次に、位置決定部7は列車位置が確定したか否かを判断する(ステップS507)。例えば、位置補正用地上子を列車が通過したときに列車位置が確定したと判断できる。列車位置が確定していなければ再びステップS501に戻り、みなし列車先端位置の決定を繰り返す。
 なお、処理開始時においては、走行開始時の列車先端位置を速発先端位置保証範囲+の初期値とすることにより、速発測位の初期化を行う。
 以上の動作により、みなし列車先端位置が速度発電機先端位置保証範囲+以上に列車進行方向前方へ前進しないため、先行列車と自列車との間隔を実施の形態2よりも短くした高密度運転を実現できる。
 <E-3.効果>
 実施の形態5による列車位置検知装置100Dによれば、速発位置保証範囲算出部4(相対位置保証範囲算出部)は、前回の速度発電機3(相対距離計測センサ)の測定結果に基づき算出した速発先端位置保証範囲(相対先端位置保証範囲)である速発先端位置保証範囲初期値(相対先端位置保証範囲初期値)に速度発電機3(相対距離計測センサ)の新たな測定値及びその測定誤差を積算することで速発先端位置保証範囲(相対先端位置保証範囲)を算出し、速発先端位置保証範囲初期値(相対先端位置保証範囲初期値)の列車進行方向の端部が、位置決定部7が前回決定した列車の先端部の位置よりも列車進行方向正側にある場合は、位置決定部7が前回決定した列車の先端部の位置を、相対先端位置保証範囲初期値として相対先端位置保証範囲を算出する。従って、みなし列車先端位置が速度発電機先端位置保証範囲+以上に列車進行方向前方へ前進しないため、先行列車と自列車との間隔を実施の形態2よりも短くした高密度運転を実現できる。
 <F.実施の形態6>
 実施の形態6では、実施の形態1の処理に加えて加速度センサを用いることにより、列車位置の推定精度を高め、後続列車との列車間隔を適切に詰めることが可能となる。
 <F-1.構成>
 図19は、実施の形態6による列車位置検知装置100Eの構成図である。列車位置検知装置100Eは、実施の形態1による列車位置検知装置100Aの構成に加えて、加速度センサ8及び加速度センサ位置保証範囲算出部9を備えている。
 加速度センサ8は、列車加速度110を計測し、列車加速度110を加速度センサ位置保証範囲算出部9へ出力する。
 加速度センサ位置保証範囲算出部9は、加速度センサ8が計測した列車加速度110に基づき、加速度センサ位置保証範囲111を算出する。加速度センサ位置保証範囲111とは、列車加速度110に基づき推定される列車の在線する位置範囲であり、ここで位置「範囲」となるのは測定誤差を考慮するためである。
 <F-2.動作>
 図20は、列車位置検知装置100Eの動作を示すフローチャートである。以下、図19及び図20を用いて列車位置検知装置100Eの動作を説明する。
 GPS位置保証範囲算出部2は、実施の形態1と同様にGPS位置保証範囲103を算出する。また、GPS位置保証範囲算出部2は、GPSアンテナ1の設置位置から列車後端までのオフセット距離を保持しており、当該オフセット距離をGPS位置保証範囲103に加算することにより、GPS後端位置保証範囲を算出する(ステップS601)。
 次に、速発位置保証範囲算出部4は、実施の形態1と同様に速発位置保証範囲105を算出する。また、速発位置保証範囲算出部4は、速度発電機3が取り付けられた計測車軸から列車後端までのオフセット距離を保持しており、当該オフセット距離を速発位置保証範囲105に加算することにより、速発後端位置保証範囲を算出する(ステップS602)。
 次に、加速度センサ位置保証範囲算出部9は、列車加速度110を時間で2回積分することで加速度センサ位置保証範囲111を算出する。具体的には、図21に示す区分求積法の考え方により積分を行う。図21において斜線部が求積値又は真値を示しており、図21(a)は区分求積法の左端型、図21(b)は真値、図21(c)は区分求積法の右端型を示している。左端型により最小値が得られ、右端型により最大値が得られる。真値は、この最小値から最大値の範囲にあり算出誤差をもつ。また、加速度センサ位置保証範囲算出部9は、加速度センサ8の設置位置から列車後端までのオフセット距離を保持しており、当該オフセット距離を加速度センサ位置保証範囲111に加算することにより、列車後端の位置保証範囲(これを「加速度センサ後端位置保証範囲」と称する)を算出する(ステップS603)。
 次に、保証範囲比較部6は、列車の位置がGPS圏外か否かを判断する。具体的には、例えばGPSに搭載された信号受信を判定する機能をもとに判断する(ステップS604)。
 GPS圏外領域を走行している場合、保証範囲比較部6は速発後端位置保証範囲と加速度センサ後端位置保証範囲が重複しているか否かを判断する(ステップS605)。
 両者が重複する場合、保証範囲比較部6は、速発後端位置保証範囲-が加速度センサ後端位置保証範囲-より列車進行方向の後方にあるか否かを判断する(ステップS606)。
 後方にあると判断した場合、加速度センサ後端位置保証範囲-をみなし列車後端位置とする(ステップS607)。後方にないと判断した場合、速発後端位置保証範囲-をみなし列車後端位置とする(ステップS608)。
 速発後端位置保証範囲と加速度センサ後端位置保証範囲とが重複しない場合は、GPS圏外領域である上、空転滑走のため、速度発電機3により測定した列車位置と真の列車位置との間で大きなずれが生じていると考えられる。そこで、加速度センサ後端位置保証範囲-をみなし列車後端位置とする(ステップS607)。
 一方、列車がGPS圏内領域を走行している場合、加速度センサ位置保証範囲111は使用せずに、GPS後端位置保証範囲と速発位置後端保証範囲が重複しているか否かを判断する(ステップS609)。
 両者が重複する場合、保証範囲比較部6は、GPS後端位置保証範囲-が速発後端位置保証範囲-より列車進行方向の後方にあるか否かを判断する(ステップS610)。
 後方にあると判断した場合、速発後端位置保証範囲-をみなし列車後端位置とする(ステップS608)。後方にないと判断した場合、GPS後端位置保証範囲-をみなし列車後端位置とする(ステップS611)。
 GPS後端位置保証範囲と速発後端位置保証範囲とが重複しない場合は、GPS後端位置保証範囲-をみなし列車後端位置とする(ステップS611)。
 <F-3.変形例>
 上記では、実施の形態1の処理に加えて加速度センサを用い、列車後端位置を推定する方法について説明したが、同様に実施の形態2の処理に加えて加速度センサを用い、列車先端位置を推定することも可能である。
 また、GPS位置保証範囲算出部2がGPSアンテナの設置位置から列車後端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持しても良い。
 また、速発位置保証範囲算出部4が、速度発電機が取り付けられた計測車軸から列車後端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持しても良い。
 また、加速度センサ位置保証範囲算出部9が、加速度センサが取り付けられた位置から列車後端までのオフセット距離を保持するとしたが、当該オフセット距離は線路情報記憶部5が保持しても良い。
 また、図20では、GPS後端位置保証範囲の算出(ステップS601)の後に速発位置保証範囲の算出(ステップS602)、その後に加速度センサ後端位置保証範囲の算出(ステップS603)を行うこととしたが、ステップS601,602,603は順不同である。
 その他、実施の形態1と同様の変形例が実施の形態6にも適用される。
 <F-4.効果>
 実施の形態6に係る列車位置検知装置100Eは、実施の形態1に係る列車位置検知装置100Aに加速度センサによる位置保証範囲を利用した。これにより、トンネルなどのGPS圏外領域において、空転滑走のために速度発電機の計測結果が真の列車位置と大きくずれる場合でも、高精度に列車位置を推定することが可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1 GPSアンテナ、2 GPS位置保証範囲算出部、3 速度発電機、4 速発位置保証範囲算出部、5 線路情報記憶部、6 保証範囲比較部、7 位置決定部、8 加速度センサ、9 加速度センサ位置保証範囲算出部、100A,100B,100C,100D,100E 列車位置検知装置、101 GPS信号、102 線路情報、103 GPS位置保証範囲、104 車輪回転数信号、105 速発位置保証範囲、106 比較結果、107,108 みなし列車後端位置、109 みなし列車先端位置、110 列車加速度、111 加速度センサ位置保証範囲。

Claims (5)

  1.  絶対距離計測センサ(1)による列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲である絶対位置保証範囲を算出する絶対位置保証範囲算出部(2)と、
     前回測定時からの相対距離を測定する相対距離計測センサ(3)による列車の位置の測定結果に基づき、測定誤差を考慮した前記列車の端部の位置の推定範囲である相対位置保証範囲を算出する相対位置保証範囲算出部(4)と、
     列車進行方向及び列車後退方向のうち、一方を第1方向、他方を第2方向とし、前記絶対位置保証範囲の第1方向の端部と前記相対位置保証範囲の第1方向の端部とのうち、第2方向正側にある端部の位置を列車の第1方向の端部の位置と決定する位置決定部(7)と、
    を備え、
     前記絶対位置保証範囲は、列車の後端部の位置の推定範囲である絶対後端位置保証範囲を含み、
     前記相対位置保証範囲は、列車の後端部の位置の推定範囲である相対後端位置保証範囲を含み、
     前記位置決定部(7)は、前記絶対後端位置保証範囲の列車後退方向の端部と前記相対後端位置保証範囲の列車後退方向の端部とのうち、列車進行方向正側にある端部の位置を列車の後端部の位置と決定し、
     前記相対位置保証範囲算出部(4)は、前回の前記相対距離計測センサの測定結果に基づき算出した前記相対後端位置保証範囲である相対後端位置保証範囲初期値に前記相対距離計測センサの新たな測定値及びその測定誤差を積算することで前記相対後端位置保証範囲を算出し、前記相対後端位置保証範囲初期値の列車後退方向の端部が、前記位置決定部(7)が前回決定した列車の後端部の位置よりも列車進行方向負側にある場合は、前記位置決定部(7)が前回決定した列車の後端部の位置を前記相対後端位置保証範囲初期値として前記相対後端位置保証範囲を算出する、
    列車位置検知装置。
  2.  前記位置決定部(7)は、前記絶対後端位置保証範囲と前記相対後端位置保証範囲とが重複しない場合、前記絶対後端位置保証範囲の列車後退方向の端部の位置を列車の後端部の位置と決定する、
    請求項1に記載の列車位置検知装置。
  3.  前記位置決定部(7)は、前記絶対後端位置保証範囲の前記列車後退方向の端部と前記相対後端位置保証範囲の前記列車後退方向の端部とのうち列車進行方向正側にある端部より、前回決定した列車の後端部の位置が列車進行方向正側にある場合には、前回決定した列車の後端部の位置を今回の列車の後端位置として決定する、
    請求項1又は2に記載の列車位置検知装置。
  4.  絶対距離計測センサ(1)による列車の位置の測定結果に基づき、測定誤差を考慮した列車の端部の位置の推定範囲である絶対位置保証範囲を算出する絶対位置保証範囲算出部(2)と、
     前回測定時からの相対距離を測定する相対距離計測センサ(3)による列車の位置の測定結果に基づき、測定誤差を考慮した前記列車の端部の位置の推定範囲である相対位置保証範囲を算出する相対位置保証範囲算出部(4)と、
     列車進行方向及び列車後退方向のうち、一方を第1方向、他方を第2方向とし、前記絶対位置保証範囲の第1方向の端部と前記相対位置保証範囲の第1方向の端部とのうち、第2方向正側にある端部の位置を列車の第1方向の端部の位置と決定する位置決定部(7)と、
    を備え、
     前記絶対位置保証範囲は、列車の先端部の位置の推定範囲である絶対先端位置保証範囲を含み、
     前記相対位置保証範囲は、列車の先端部の位置の推定範囲である相対先端位置保証範囲を含み、
     前記位置決定部(7)は、前記絶対先端位置保証範囲の列車進行方向の端部と前記相対先端位置保証範囲の列車進行方向の端部とのうち、列車後退方向正側にある端部の位置を列車の先端部の位置と決定し、
     前記相対位置保証範囲算出部(4)は、前回の前記相対距離計測センサの測定結果に基づき算出した前記相対先端位置保証範囲である相対先端位置保証範囲初期値に前記相対距離計測センサの新たな測定値及びその測定誤差を積算することで前記相対先端位置保証範囲を算出し、前記相対先端位置保証範囲初期値の列車進行方向の端部が、前記位置決定部(7)が前回決定した列車の先端部の位置よりも列車進行方向正側にある場合は、前記位置決定部(7)が前回決定した列車の先端部の位置を、前記相対先端位置保証範囲初期値として前記相対先端位置保証範囲を算出する、
    列車位置検知装置。
  5.  前記位置決定部(7)は、前記絶対先端位置保証範囲と前記相対先端位置保証範囲とが重複しない場合、前記絶対先端位置保証範囲の列車進行方向の端部の位置を列車の先端部の位置と決定する、
    請求項4に記載の列車位置検知装置。
PCT/JP2016/051634 2015-01-28 2016-01-21 列車位置検知装置 WO2016121606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/524,308 US10023211B2 (en) 2015-01-28 2016-01-21 Train position detecting device
DE112016000508.3T DE112016000508T5 (de) 2015-01-28 2016-01-21 Schienenfahrzeugposition-detektiereinrichtung
JP2016571976A JP6239160B2 (ja) 2015-01-28 2016-01-21 列車位置検知装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-013972 2015-01-28
JP2015013972 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121606A1 true WO2016121606A1 (ja) 2016-08-04

Family

ID=56543221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051634 WO2016121606A1 (ja) 2015-01-28 2016-01-21 列車位置検知装置

Country Status (4)

Country Link
US (1) US10023211B2 (ja)
JP (1) JP6239160B2 (ja)
DE (1) DE112016000508T5 (ja)
WO (1) WO2016121606A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145575A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 衛星測位装置及び列車制御システム
JP2018028516A (ja) * 2016-08-19 2018-02-22 株式会社東芝 列車位置検出装置及び方法
WO2019135310A1 (ja) * 2018-01-04 2019-07-11 株式会社日立製作所 運転支援システム
GB2568401B (en) * 2016-09-07 2022-06-22 Mitsubishi Heavy Ind Mach Systems Ltd Travel distance calculation device, charging system, travel distance calculation method, program, and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173164A (ja) * 2016-03-24 2017-09-28 カシオ計算機株式会社 受信制御装置、受信制御方法及びプログラム
FR3075145B1 (fr) * 2017-12-20 2021-05-21 Alstom Transp Tech Procede de localisation d'au moins un vehicule ferroviaire dans un reseau ferroviaire
CN111114592B (zh) * 2020-01-15 2024-03-29 卡斯柯信号有限公司 基于列车自主定位的移动闭塞列车运行控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294622A (ja) * 1994-04-21 1995-11-10 Japan Radio Co Ltd 列車位置測定方法
JP2003294825A (ja) * 2002-03-28 2003-10-15 Railway Technical Res Inst 列車自車位置検出方法、及び列車自車位置検出システム
JP2009042179A (ja) * 2007-08-10 2009-02-26 Kawasaki Heavy Ind Ltd 列車の自車位置検出装置、車体傾斜制御システム、操舵システム、アクティブ制振システム及びセミアクティブ制振システム
JP2011225188A (ja) * 2010-04-23 2011-11-10 Kyosan Electric Mfg Co Ltd 列車位置検出装置
WO2012077184A1 (ja) * 2010-12-07 2012-06-14 三菱電機株式会社 列車保安装置および列車位置決定方法
JP2012144068A (ja) * 2011-01-07 2012-08-02 Hitachi Ltd 移動体制御システム
JP2013099234A (ja) * 2011-11-07 2013-05-20 Mitsubishi Electric Corp 車上装置および列車位置計算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5373861B2 (ja) 2011-07-20 2013-12-18 株式会社日立製作所 列車制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294622A (ja) * 1994-04-21 1995-11-10 Japan Radio Co Ltd 列車位置測定方法
JP2003294825A (ja) * 2002-03-28 2003-10-15 Railway Technical Res Inst 列車自車位置検出方法、及び列車自車位置検出システム
JP2009042179A (ja) * 2007-08-10 2009-02-26 Kawasaki Heavy Ind Ltd 列車の自車位置検出装置、車体傾斜制御システム、操舵システム、アクティブ制振システム及びセミアクティブ制振システム
JP2011225188A (ja) * 2010-04-23 2011-11-10 Kyosan Electric Mfg Co Ltd 列車位置検出装置
WO2012077184A1 (ja) * 2010-12-07 2012-06-14 三菱電機株式会社 列車保安装置および列車位置決定方法
JP2012144068A (ja) * 2011-01-07 2012-08-02 Hitachi Ltd 移動体制御システム
JP2013099234A (ja) * 2011-11-07 2013-05-20 Mitsubishi Electric Corp 車上装置および列車位置計算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145575A1 (ja) * 2016-02-24 2017-08-31 三菱電機株式会社 衛星測位装置及び列車制御システム
JPWO2017145575A1 (ja) * 2016-02-24 2018-10-04 三菱電機株式会社 衛星測位装置及び列車制御システム
JP2018028516A (ja) * 2016-08-19 2018-02-22 株式会社東芝 列車位置検出装置及び方法
GB2568401B (en) * 2016-09-07 2022-06-22 Mitsubishi Heavy Ind Mach Systems Ltd Travel distance calculation device, charging system, travel distance calculation method, program, and storage medium
WO2019135310A1 (ja) * 2018-01-04 2019-07-11 株式会社日立製作所 運転支援システム
JP2019122131A (ja) * 2018-01-04 2019-07-22 株式会社日立製作所 運転支援システム

Also Published As

Publication number Publication date
US20180009454A1 (en) 2018-01-11
DE112016000508T5 (de) 2017-11-23
JP6239160B2 (ja) 2017-11-29
US10023211B2 (en) 2018-07-17
JPWO2016121606A1 (ja) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6239160B2 (ja) 列車位置検知装置
US9405016B2 (en) System and method for complex navigation using dead reckoning and GPS
JP5295016B2 (ja) 全地球測位システム及び推測航法(gps&dr)一体型ナビゲーションシステム、及び、移動体のナビゲーション情報を提供するための方法
US8195357B2 (en) In-vehicle sensor-based calibration algorithm for yaw rate sensor calibration
CN103026176B (zh) 用于校准车辆导航系统的动态参数的装置及方法
US8793090B2 (en) Track information generating device, track information generating method, and computer-readable storage medium
US20120221244A1 (en) Method and apparatus for improved navigation of a moving platform
JP4780168B2 (ja) 角速度センサ補正装置および角速度センサ補正方法
CN109955872B (zh) 一种用于高速铁路列车的实时定位方法及装置
JP2007139601A (ja) 移動体用位置推定装置
JP2013088208A (ja) 密結合gpsおよび推測航法車両航法用のロードマップ・フィードバック・サーバ
CN104280029A (zh) 确定交通工具本身位置的至少一个状态参量的方法和设备
JP5273127B2 (ja) 角速度センサ補正装置および角速度センサ補正方法
FR3068478A1 (fr) Procede de determination de la position d'un vehicule ferroviaire dans un reseau ferroviaire
US20210173092A1 (en) Error Correction for GPS-based Mileage Tracking
EP2574880A2 (en) A method, apparatus and system with error correction for an inertial navigation system
JP2016014582A (ja) 自立航法による測位方法および自立航法による測位システム
JP5365606B2 (ja) 角速度センサ補正装置および角速度センサ補正方法
US10359446B2 (en) Angular speed sensor correction device and angular speed sensor correction method for correcting outputs from angular speed sensor
JP2023138717A (ja) 走行軌跡取得方法
US20200300636A1 (en) Method For Determining Correction Values, Method For Determining A Position Of A Motor Vehicle
JP4126233B2 (ja) 軌道走行車両の位置検知システム
JP2019158704A (ja) 走行軌跡取得方法
KR101135880B1 (ko) Gps 및 imu를 이용한 철도차량용 위치검측시스템 및 그 방법
JP2017036952A (ja) 補正方法およびそれを利用した補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571976

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000508

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743210

Country of ref document: EP

Kind code of ref document: A1