WO2016120945A1 - 舶用排気タービン - Google Patents

舶用排気タービン Download PDF

Info

Publication number
WO2016120945A1
WO2016120945A1 PCT/JP2015/006478 JP2015006478W WO2016120945A1 WO 2016120945 A1 WO2016120945 A1 WO 2016120945A1 JP 2015006478 W JP2015006478 W JP 2015006478W WO 2016120945 A1 WO2016120945 A1 WO 2016120945A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
exhaust turbine
ring
turbine
link
Prior art date
Application number
PCT/JP2015/006478
Other languages
English (en)
French (fr)
Inventor
和樹 古賀
山口 正人
田中 一雄
西山 徹
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020197001076A priority Critical patent/KR102218632B1/ko
Priority to CN201580074514.4A priority patent/CN107208540B/zh
Priority to KR1020177020956A priority patent/KR20170102505A/ko
Publication of WO2016120945A1 publication Critical patent/WO2016120945A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a ship exhaust turbine mounted on a ship and driven by exhaust gas from an engine.
  • an exhaust turbine driven by exhaust gas from an engine is mounted on an automobile or a ship (for example, see Patent Documents 1 and 2).
  • Some exhaust turbines are equipped with a variable nozzle mechanism for changing the opening degree and direction of a nozzle that injects exhaust gas into a turbine impeller.
  • Patent Document 1 discloses a specific structure of a variable nozzle mechanism as shown in FIGS. 8 and 9 regarding a vehicle exhaust turbine mounted in an automobile.
  • the variable nozzle mechanism includes a unison ring 160 rotated by a lever (not shown), a plurality of nozzle members 130, and a plurality of arms 140 that connect the unison ring 160 and the nozzle member 130.
  • an introduction path 110 is formed around the turbine impeller 170.
  • Each nozzle member 130 has a nozzle vane 131 disposed in the introduction path 110 and a shaft portion 132 that passes through the plate 120 along the introduction path 110.
  • the unison ring 160 is provided with pins 150 at positions outside the nozzle members 130 in the radial direction centered on the axis 171 of the turbine impeller 170 (hereinafter simply referred to as “radial direction r”).
  • Each arm 140 extends outward in the radial direction r from the shaft portion 132 of the nozzle member 130, and an inner end portion of the arm 140 is non-rotatably connected to the shaft portion 132 of the nozzle member 130. The outer end of the shape is engaged with the pin 150.
  • each arm 140 swings around the shaft portion 132 of the nozzle member 130, and the angle of the nozzle vane 131 of the nozzle member 130 is changed. Thereby, the opening degree and direction of the nozzle formed between the adjacent nozzle vanes 131 are changed.
  • a marine exhaust turbine mounted on a marine vessel is required to have much higher durability than a vehicle exhaust turbine.
  • the arm 140 slides with the pin 150 provided on the unison ring 160. Therefore, when the variable nozzle mechanism having such a configuration is employed in a marine exhaust turbine, a problem of wear of the arm 140 and the pin 150 occurs. It should be noted that since the vehicle exhaust turbine does not require as high durability as the marine exhaust turbine, wear of the arm 140 and the pin 150 is not particularly problematic.
  • an object of the present invention is to provide a marine exhaust turbine having excellent durability.
  • a marine exhaust turbine is a marine exhaust turbine mounted on a marine vessel and driven by exhaust gas from an engine, and is a plate along an introduction path formed around a turbine impeller. And a plurality of nozzle members including a nozzle vane disposed in the introduction path and a shaft portion penetrating the plate, and extending laterally from the shaft portion respectively connected to the shaft portions of the plurality of nozzle members.
  • the roller that rotates is attached to the arm that is connected to the shaft portion of the nozzle member. Therefore, when the link ring is rotated, the roller rolls on the operation piece of the link ring while rotating the turbine impeller. It moves in the radial direction centered on the axis. When the roller moves in the radial direction, each arm swings around the shaft portion of the nozzle member, and the angle of the nozzle vane of the nozzle member is changed. Thereby, the opening degree and direction of the nozzle formed between adjacent nozzle vanes are changed. As described above, in the present invention, since the roller attached to the arm rolls on the operation piece of the link ring, wear of the arm and the link ring is suppressed, and high durability can be obtained.
  • Each of the plurality of rollers may be made of a super hard material. Since the nozzle member comes into contact with the high-temperature exhaust gas, the nozzle member itself and the arm connected to the nozzle member are thermally expanded at a high temperature. On the other hand, since the roller is made of super steel, thermal expansion of the roller to which heat is transmitted from the arm is suppressed. As a result, even if the gap between the operation piece of the link ring and the roller is set small, the movement of the roller in the radial direction is not hindered. Therefore, the gap between the operation piece of the link ring and the roller can be set small, and thereby the opening degree and direction of the nozzle can be controlled with high accuracy.
  • the marine exhaust turbine may further include a guide ring slidably fitted to the link ring, and the guide ring may be made of a carbon fiber reinforced carbon composite material. According to this configuration, since the carbon fiber reinforced carbon composite generally has a small coefficient of friction, the sliding resistance of the link ring can be extremely reduced.
  • the fibers in the carbon fiber reinforced carbon composite material may extend in a direction parallel to a plane perpendicular to the axis of the turbine impeller. According to this configuration, the thermal expansion of the guide ring in the radial direction can be kept small, and the link ring can be smoothly slid.
  • the above-described marine exhaust turbine rotatably supports a rotating shaft to which the turbine impeller is attached, and an annular link chamber in which the plurality of arms and the link ring are accommodated between the plates.
  • the guide ring may be disposed inside the link ring and fixed to the housing.
  • the marine exhaust turbine further includes a shroud having a flange portion facing the plate across the introduction path, and the flange portion of the shroud has a ring shape corresponding to a region where the plurality of nozzle members exist,
  • a protective plate made of a super hard material may be attached.
  • the thermally expanded nozzle vane is pressed against the protective plate.
  • the protection plate is comprised with the cemented carbide material, even if a nozzle vane is pressed, it will hardly be damaged. Therefore, malfunction of the nozzle vane can be prevented. And since the whole shroud is not comprised with a cemented carbide material, said effect can be acquired at low cost.
  • a marine exhaust turbine excellent in durability can be provided.
  • FIG. 1 is a schematic configuration diagram around an engine of a ship on which a marine exhaust turbine according to a first embodiment of the present invention is mounted. It is sectional drawing of the marine exhaust turbine shown in FIG. It is a front view of a part of a variable nozzle mechanism, and shows a state where an input lever is at a reference position. It is a partial front view of the variable nozzle mechanism, and shows a state where the input lever is tilted from the reference position in the direction of increasing the opening of the nozzle.
  • FIG. 5 is a sectional view taken along line VV in FIG. 3.
  • FIG. 4 is a sectional view taken along line VI-VI in FIG. 3.
  • FIG. 9 is a rear view of the variable nozzle mechanism of the vehicle exhaust turbine shown in FIG. 8.
  • FIG. 1 shows a ship 10 on which a marine exhaust turbine 1A according to a first embodiment of the present invention is mounted.
  • the exhaust turbine 1 ⁇ / b> A plays a role of improving the fuel consumption of the propulsion engine 2 mounted on the ship 10.
  • the marine vessel 10 is also equipped with a supercharger 11.
  • the supercharger 11 includes a compressor 12 that supplies compressed air to the engine 2 and a turbine 13 that is driven by the exhaust gas from the engine 2 to rotate the compressor 12.
  • Engine 2 is, for example, a two-stroke diesel engine and includes a crankshaft 21.
  • the crankshaft 21 is connected to a propeller shaft 14 having a propeller 15 attached to the tip.
  • the engine 2 includes a plurality of cylinders 22 (only two are shown in FIG. 1 for simplification of the drawing) that burns a mixture of air and fuel (fuel oil and / or fuel gas) inside.
  • An air supply manifold 23 that distributes compressed air to the cylinders 22 and an exhaust manifold 24 that collects exhaust gas discharged from the cylinders 22 are included.
  • the compressor 12 of the supercharger 11 is connected to an air supply manifold 23, and the turbine 13 of the supercharger 11 is connected to an exhaust manifold 24.
  • the exhaust turbine 1 ⁇ / b> A is connected to the crankshaft 21 via the speed reducer 16. A part of the exhaust gas discharged from the exhaust manifold 24 is guided to the exhaust turbine 1A, and the exhaust turbine 1A is driven by the exhaust gas from the engine 2. That is, the exhaust turbine 1A collects energy from the exhaust gas, and assists the rotation of the crankshaft 21 with the collected energy.
  • the marine exhaust turbine of the present invention is not limited to the application for assisting the rotation of the crankshaft 21, but can be used for various applications.
  • the exhaust turbine 1A may be used for a purpose of rotating a generator.
  • the variable nozzle mechanism mentioned later in 1 A of exhaust turbines is equipped in the turbine 13 of the supercharger 11, and the turbine 13 of the supercharger 11 may be a ship exhaust turbine of this invention.
  • the exhaust turbine 1A is equipped with a variable nozzle mechanism for changing the opening degree and direction of the nozzle that injects the exhaust gas to the turbine impeller.
  • a variable nozzle mechanism for changing the opening degree and direction of the nozzle that injects the exhaust gas to the turbine impeller.
  • the exhaust turbine 1 ⁇ / b> A includes a turbine impeller 32, a rotating shaft 31 to which the turbine impeller 32 is attached, and a first housing 34 that rotatably supports the rotating shaft 31 via a bush 39.
  • the exhaust turbine 1 ⁇ / b> A includes a plate 35 and a shroud 41 that form an introduction path 44 around the turbine impeller 32, and a second housing 46 that forms a spiral chamber 45 that communicates with the introduction path 44.
  • radial direction around the axis 33 of the turbine impeller 32 is simply referred to as “radial direction R”, and the direction in which the axial center 33 extends is simply referred to as “axial direction X”.
  • the introduction path 44 is an annular flow path parallel to the radial direction R.
  • the swirl chamber 45 is supplied with exhaust gas from the engine 2. The exhaust gas supplied to the spiral chamber 45 is blown to the turbine impeller 32 through the introduction path 44.
  • the plate 35 extends along the introduction path 44 and extends to the back side of the turbine impeller 32.
  • the plate 35 may be a single plate or may be divided into a plurality of plates.
  • the plate 35 is fixed to the first housing 34.
  • the shroud 41 has a flange portion 43 that faces the plate 35 across the introduction path 44, and a tubular portion 42 that extends from the inner end of the flange portion 43 to the opposite side of the plate 35. That is, the tubular portion 42 constitutes an exhaust port for exhaust gas in the exhaust turbine 1A.
  • variable nozzle mechanism includes a plurality of nozzle members 5, a plurality of arms 6, a link ring 8, an input link 91 and an input lever 93.
  • the nozzle members 5 are arranged at equiangular intervals around the turbine impeller 32.
  • the number of arms is the same as the number of nozzle members 5.
  • the first housing 34 described above forms an annular link chamber 36 with the plate 35.
  • the link chamber 36 accommodates the arm 6 and the link ring 8.
  • Each nozzle member 5 includes a nozzle vane 51 disposed in the introduction path 44 and a shaft portion 52 extending in the axial direction X from the nozzle vane 51 through the plate 35 and into the link chamber 36.
  • the shaft portion 52 is rotatably supported by the plate 35 via the bush 53.
  • the bush 53 can be omitted.
  • FIG. 3 shows a state where the above-described input lever 93 is at the reference position
  • FIG. 4 shows a state where the input lever 93 is tilted from the reference position in the direction of increasing the opening degree of the nozzle 50 (of course, the input lever 93 93 may be tilted from the reference position in a direction to reduce the opening of the nozzle 50).
  • the opening degree and direction of the nozzle 50 are changed.
  • each arm 6 extends laterally from the shaft portion 52 of the nozzle member 5 (in this embodiment, inward in the radial direction R).
  • the outer end of each arm 6 is non-rotatably connected to the shaft 52 of the nozzle member 5.
  • a roller 7 is attached to the inner end of each arm 6 (that is, the end opposite to the nozzle member 5).
  • each roller 7 has a disk-shaped wheel portion 71 and a shaft portion 72 extending in the axial direction X from the center of the wheel portion 71.
  • the shaft portion 72 is rotatably supported on the inner end portion of the arm 6.
  • the roller 7 may have a ring shape having a through hole at the center, and the roller 7 may be attached to the arm 6 via a shaft member (not shown) that rotatably supports the roller 7.
  • each roller 7 is made of a super hard material.
  • the composition of the cemented carbide suitable for the roller 7 is, for example, expressed in mass percent, WC (tungsten carbide): 72 to 75%, Co (cobalt) + Ni (nickel): 24 to 26%, and other components: 0-2%.
  • the link ring 8 has a main body part 81 continuous in the circumferential direction and a plurality of operation pieces 82 protruding from the main body part 81.
  • the main body 81 has a thin plate shape in the axial direction X, and the operation piece 82 projects from the main surface of the main body 81 on the plate 35 side in the axial direction X.
  • the link ring 8 may be configured such that the operation piece 82 projects outward from the main body 81 in the radial direction R.
  • the operation piece 82 is interposed between the plurality of rollers 7 and is configured to guide the movement of the roller 7 in the radial direction R.
  • each operation piece 82 has a trapezoidal shape that tapers inward in the radial direction R, and the side surfaces of the adjacent operation pieces 82 facing each other are parallel to each other.
  • a guide ring 37 that is slidably fitted to the link ring 8 is disposed inside the link ring 8.
  • the guide ring 37 is fixed to the first housing 34.
  • the guide ring 37 is formed with a recess 37 a that engages with the inner end of the main body 81 of the link ring 8.
  • the guide ring 37 is provided with a presser ring 38 for holding the inner end of the main body 81 of the link ring 8 in the recess 37a.
  • the guide ring 37 is made of a carbon fiber reinforced carbon composite (so-called C / C composite).
  • the fibers in the carbon fiber reinforced carbon composite material desirably extend in a direction parallel to a plane perpendicular to the axis 33 of the turbine impeller 32. This is because the thermal expansion of the guide ring 37 in the radial direction can be kept small, and the link ring 8 can be slid smoothly.
  • the thermal expansion coefficient of the guide ring 37 in the radial direction R is 0.5 ⁇ 10 ⁇ 6 [1 / ° C.] or less.
  • the input link 91 described above is arranged on the opposite side of the plate 35 with respect to the link ring 8.
  • the input link 91 is non-rotatably connected to the input lever 93 via a shaft member 92 extending in the axial direction X.
  • the input lever 93 is for rotating the link ring 8.
  • the shaft member 92 is rotatably supported by a bearing member 94 attached to the first housing 34.
  • the input link 91 extends from the shaft member 92 to a position overlapping the link ring 8 in the radial direction R, and an opening 95 opening inward in the radial direction R is formed at the inner end of the input link 91. .
  • the input link 91 has a pair of engagement pieces 96 that define the opening 95.
  • an input roller 84 that engages with the opening 95 of the input link 91 is attached to the link ring 8 via a shaft member 83.
  • a screw hole is formed in a thick portion where one operation piece 82 in the link ring 8 is provided, and a screw thread formed at one end of the shaft member 83 is screwed into this screw hole.
  • the input roller 84 is rotatably supported by the shaft member 83.
  • a pin that engages with the opening 95 of the input link 91 may be attached to the link ring 8.
  • the roller 7 attached to the arm 6 rolls on the operation piece 82 of the link ring 8, so that wear of the arm 6 and the link ring 8 is suppressed and high durability is achieved. Can be obtained.
  • the nozzle member 5 comes into contact with the high-temperature exhaust gas, the nozzle member 5 itself and the arm 6 connected to the nozzle member 5 become hot and thermally expand.
  • the roller 7 is made of super steel material, thermal expansion of the roller 7 to which heat is transmitted from the arm 6 is suppressed.
  • the gap between the operation piece 82 of the link ring 8 and the roller 7 is set small, the movement of the roller 7 in the radial direction R is not hindered. Therefore, the gap between the operation piece 82 of the link ring 8 and the roller 7 can be set small, and thereby the opening degree and direction of the nozzle 50 can be controlled with high accuracy.
  • roller 7 does not have to be made of a super steel material.
  • the marine exhaust turbine 1B of this embodiment is different from the marine exhaust turbine 1A of the first embodiment only in that a protective plate 47 is attached to the flange portion 43 of the shroud 41.
  • the protection plate 47 has a ring shape corresponding to a region where the nozzle member 5 exists.
  • the protective plate 47 is made of a super hard material.
  • the composition of the cemented carbide suitable for the protective plate 47 is, for example, expressed in mass percent, WC: 89 to 92%, Co + Ni: 8 to 10%, and other components: 0 to 1%.
  • the thermally expanded nozzle vane 51 may be pressed against the flange portion 43 of the shroud 41, and the flange portion 43 may be damaged. In this case, the nozzle vane 51 may be caught by the scratch, and the nozzle vane 51 may malfunction.
  • the protective plate 47 is attached to the flange portion 43 of the shroud 41, the thermally expanded nozzle vane 51 is pressed against the protective plate 47.
  • the protection plate 47 is comprised with the super hard material, even if the nozzle vane 51 is pressed, it will hardly be damaged. Therefore, malfunction of the nozzle vane 51 can be prevented. And since the shroud 41 whole is not comprised with a cemented carbide material, said effect can be acquired at low cost.
  • the arm 6 does not necessarily have to extend inward in the radial direction R from the shaft portion 52 of the nozzle member 5, and has a diameter from the shaft portion 52 of the nozzle member 5 as shown in FIGS. 8 and 9. It may extend outward in the direction R. Alternatively, the arm 6 may extend from the shaft portion 52 obliquely inward or obliquely outward with respect to the radial direction R.
  • the guide ring 37 is not necessarily arranged inside the link ring 8, and may be arranged outside the link ring 8.
  • the link ring 8 may be configured such that the operation piece 82 protrudes inward in the radial direction R from the main body portion 81.
  • the guide ring 37 made of a carbon fiber reinforced carbon composite material is not necessarily provided. However, if the guide ring 37 made of the carbon fiber reinforced carbon composite material is provided, the carbon fiber reinforced carbon composite material generally has a small coefficient of friction, so that the sliding resistance of the link ring 8 can be made extremely small. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

 舶用排気タービンは、船舶に搭載されて、エンジンからの排ガスで駆動される舶用排気タービンであって、タービンインペラの周囲に形成された導入路に沿うプレートと、導入路に配置されたノズルベーン、およびプレートを貫通する軸部、を含む複数のノズル部材と、複数のノズル部材の軸部にそれぞれ連結された、軸部から側方に延びる複数のアームと、複数のアームにおけるノズル部材と反対側の端部にそれぞれ取り付けられた複数のローラと、複数のローラの間に介在し、かつ、タービンインペラの軸心を中心とする径方向におけるローラの移動をガイドする複数の操作片を有するリンクリングと、リンクリングを回転させるためのインプットレバーと、を備える。

Description

舶用排気タービン
 本発明は、船舶に搭載されて、エンジンからの排ガスで駆動される舶用排気タービンに関する。
 従来から、自動車や船舶には、エンジンからの排ガスで駆動される排気タービンが搭載されている(例えば、特許文献1,2参照)。排気タービンとしては、タービンインペラへ排ガスを噴射するノズルの開度および向きを変更するための可変ノズル機構が装備されたものがある。
 例えば、特許文献1には、自動車に搭載される車用排気タービンに関し、図8および図9に示すように、可変ノズル機構の具体的な構造が開示されている。この可変ノズル機構は、図略のレバーによって回転されるユニゾンリング160と、複数のノズル部材130と、ユニゾンリング160とノズル部材130とを接続する複数のアーム140を含む。
 より詳しくは、タービンインペラ170の周囲には導入路110が形成されている。各ノズル部材130は、導入路110に配置されたノズルベーン131と、導入路110に沿うプレート120を貫通する軸部132を有する。一方、ユニゾンリング160には、タービンインペラ170の軸心171を中心とする径方向(以下、単に「径方向r」という。)において各ノズル部材130の外側の位置にピン150が設けられている。各アーム140は、ノズル部材130の軸部132から径方向rにおいて外向きに延びており、アーム140の内側端部はノズル部材130の軸部132に回転不能に連結され、アーム140の二又状の外側端部はピン150と係合している。
 このような構成のために、ユニゾンリング160が回転すると、各アーム140がノズル部材130の軸部132回りに揺動し、ノズル部材130のノズルベーン131の角度が変更される。これにより、隣り合うノズルベーン131の間に形成されたノズルの開度および向きが変更される。
特開2002-38967号公報 特開2014-163355号公報
 ところで、船舶では、航海中は基本的にエンジンを停止することがないため、エンジンの稼働時間が自動車に比べて遥かに長い。従って、船舶に搭載される舶用排気タービンには、車用排気タービンよりも格段に高い耐久性が要求される。例えば、図8および図9に示すような可変ノズル機構では、アーム140がユニゾンリング160に設けられたピン150と摺動する。そのため、そのような構成の可変ノズル機構を舶用排気タービンで採用すると、アーム140およびピン150の摩耗という問題が生じる。なお、車用排気タービンでは、舶用排気タービンほど高い耐久性が求められないため、アーム140およびピン150の摩耗は特に問題とならない。
 そこで、本発明は、耐久性に優れた舶用排気タービンを提供することを目的とする。
 前記課題を解決するために、本発明の舶用排気タービンは、船舶に搭載されて、エンジンからの排ガスで駆動される舶用排気タービンであって、タービンインペラの周囲に形成された導入路に沿うプレートと、前記導入路に配置されたノズルベーン、および前記プレートを貫通する軸部、を含む複数のノズル部材と、前記複数のノズル部材の軸部にそれぞれ連結された、前記軸部から側方に延びる複数のアームと、前記複数のアームにおける前記ノズル部材と反対側の端部にそれぞれ取り付けられた複数のローラと、前記複数のローラの間に介在し、かつ、前記タービンインペラの軸心を中心とする径方向における前記ローラの移動をガイドする複数の操作片を有するリンクリングと、前記リンクリングを回転させるためのインプットレバーと、を備える、ことを特徴とする。
 上記の構成によれば、ノズル部材の軸部に連結されたアームに自転するローラが取り付けられているので、リンクリングが回転されたときには、ローラがリンクリングの操作片上を転動しながらタービンインペラの軸心を中心とする径方向に移動する。ローラが径方向に移動すると、各アームがノズル部材の軸部回りに揺動し、ノズル部材のノズルベーンの角度が変更される。これにより、隣り合うノズルベーンの間に形成されたノズルの開度および向きが変更される。このように、本発明ではアームに取り付けられたローラがリンクリングの操作片上を転動するので、アームおよびリンクリングの摩耗が抑制され、高い耐久性を得ることができる。
 前記複数のローラのそれぞれは、超硬材からなってもよい。ノズル部材は、高温の排ガスと接触するために、ノズル部材自体およびノズル部材に連結されたアームが高温となって熱膨張する。一方、ローラは超鋼材で構成されているので、アームから熱が伝達されるローラの熱膨張が抑制される。その結果、リンクリングの操作片とローラとの間の隙間を小さく設定しても、径方向におけるローラの移動が阻害されることがない。それ故に、リンクリングの操作片とローラとの間の隙間を小さく設定することができ、これによりノズルの開度および向きを高精度に制御することができる。
 上記の舶用排気タービンは、前記リンクリングと摺動可能に嵌合するガイドリングをさらに備え、前記ガイドリングは、炭素繊維強化炭素複合材からなってもよい。この構成によれば、炭素繊維強化炭素複合材は一般的に摩擦係数が小さいため、リンクリングの摺動抵抗を極めて小さくすることができる。
 前記炭素繊維強化炭素複合材中の繊維は、前記タービンインペラの軸心と直交する平面と平行な方向に延びていてもよい。この構成によれば、径方向におけるガイドリングの熱膨張を小さく抑えることができ、リンクリングをスムーズに摺動させることができる。
 例えば、上記の舶用排気タービンは、前記タービンインペラが取り付けられた回転軸を回転自在に支持し、かつ、前記プレートとの間に、前記複数のアームおよび前記リンクリングが収容される環状のリンク室を形成するハウジングをさらに備え、前記ガイドリングは、前記リンクリングの内側に配置され、前記ハウジングに固定されていてもよい。
 上記の舶用排気タービンは、前記導入路を挟んで前記プレートと対向するフランジ部を有するシュラウドをさらに備え、前記シュラウドのフランジ部には、前記複数のノズル部材が存する領域と対応するリング状の、超硬材からなる保護プレートが取り付けられていてもよい。シュラウドに保護プレートが取り付けられていない場合は、ノズルベーンが熱膨張すると、熱膨張したノズルベーンがシュラウドのフランジ部に押し付けられて、フランジ部に傷が付くことがある。この場合、ノズルベーンがその傷に引っかかり、ノズルベーンの作動不良が生じるおそれがある。これに対し、シュラウドのフランジ部に保護プレートが取り付けられていれば、熱膨張したノズルベーンはその保護プレートに押し付けられる。そして、保護プレートは超硬材で構成されているので、ノズルベーンが押し付けられてもほとんど傷が付かない。そのため、ノズルベーンの作動不良を防止することができる。しかも、シュラウド全体を超硬材で構成しないので、低コストで上記の効果を得ることができる。
 本発明によれば、耐久性に優れた舶用排気タービンを提供することができる。
本発明の第1実施形態に係る舶用排気タービンが搭載された船舶のエンジン回りの概略構成図である。 図1に示す舶用排気タービンの断面図である。 可変ノズル機構の一部の正面図であり、インプットレバーが基準位置にある状態を示す。 可変ノズル機構の一部の正面図であり、インプットレバーが基準位置からノズルの開度を大きくする方向に倒された状態を示す。 図3のV-V線に沿った断面図である。 図3のVI-VI線に沿った断面図である。 本発明の第2実施形態に係る舶用排気タービンの断面図である。 従来の車用排気タービンの一部の断面図である。 図8に示す車用排気タービンの可変ノズル機構の背面図である。
 (第1実施形態)
 図1に、本発明の第1実施形態に係る舶用排気タービン1Aが搭載された船舶10を示す。図1では、排気タービン1Aが、船舶10に搭載された推進用エンジン2の燃費を向上させる役割を果たす。
 船舶10には、舶用排気タービン1Aおよび推進用エンジン2に加えて、過給機11も搭載されている。過給機11は、エンジン2へ圧縮空気を供給する圧縮機12と、エンジン2からの排ガスで駆動されて圧縮機12を回転させるタービン13を含む。
 エンジン2は、例えば2ストロークディーゼルエンジンであり、クランク軸21を含む。クランク軸21は、先端にプロペラ15が取り付けられたプロペラ軸14と連結されている。また、エンジン2は、内部で空気と燃料(燃料油および/または燃料ガス)の混合気を燃焼させる複数のシリンダ22(図1では、図面の簡略化のために2つのみを図示)と、シリンダ22へ圧縮空気を分配する給気マニホールド23と、シリンダ22から排出される排ガスを集合させる排気マニホールド24を含む。過給機11の圧縮機12は給気マニホールド23と接続されており、過給機11のタービン13は排気マニホールド24と接続されている。
 排気タービン1Aは、減速機16を介してクランク軸21と連結されている。排気タービン1Aには、排気マニホールド24から排出される排ガスの一部が導かれ、排気タービン1Aは、エンジン2からの排ガスで駆動される。すなわち、排気タービン1Aは、排ガスからエネルギーを回収し、この回収したエネルギーでクランク軸21の回転をアシストする。
 ただし、本発明の舶用排気タービンは、クランク軸21の回転をアシストする用途に限らず、種々の用途に用いられ得る。例えば、排気タービン1Aは、発電機を回転させる用途に用いられてもよい。あるいは、排気タービン1Aにおける後述する可変ノズル機構が過給機11のタービン13に装備されていて、過給機11のタービン13が本発明の舶用排気タービンとなっていてもよい。
 排気タービン1Aには、タービンインペラへ排ガスを噴射するノズルの開度および向きを変更するための可変ノズル機構が装備されている。以下、図2~図6を参照して、排気タービン1Aの構成を詳細に説明する。
 <全体構成>
 図2に示すように、排気タービン1Aは、タービンインペラ32と、タービンインペラ32が取り付けられた回転軸31と、回転軸31をブッシュ39を介して回転自在に支持する第1ハウジング34を含む。また、排気タービン1Aは、タービンインペラ32の周囲に導入路44を形成するプレート35およびシュラウド41と、導入路44と連通する渦巻き室45を形成する第2ハウジング46を含む。以下、説明の便宜上、タービンインペラ32の軸心33を中心とする径方向を、単に「径方向R」といい、軸心33が延びる方向を、単に「軸方向X」という。
 導入路44は、径方向Rと平行な、環状の流路である。渦巻き室45には、エンジン2からの排ガスが供給される。渦巻き室45に供給された排ガスは、導入路44を通じてタービンインペラ32に吹き付けられる。
 プレート35は、導入路44に沿っており、タービンインペラ32の裏側にも広がっている。プレート35は、単一のプレートであってもよいし、複数のプレートに分割されていてもよい。プレート35は、第1ハウジング34に固定されている。
 シュラウド41は、導入路44を挟んでプレート35と対向するフランジ部43と、フランジ部43の内側端部からプレート35と反対側に延びる管状部42を有する。すなわち、管状部42は、排気タービン1Aにおける排ガスの排出口を構成する。
 <可変ノズル機構の構成>
 可変ノズル機構は、図3、図5および図6に示すように、複数のノズル部材5、複数のアーム6、リンクリング8、インプットリンク91およびインプットレバー93を含む。ノズル部材5は、タービンインペラ32の周囲に、等角度間隔で配置されている。アームの数は、ノズル部材5の数と同じである。
 上述した第1ハウジング34は、プレート35との間に環状のリンク室36を形成している。このリンク室36には、アーム6とリンクリング8が収容されている。
 各ノズル部材5は、導入路44に配置されたノズルベーン51と、ノズルベーン51からプレート35を貫通してリンク室36内まで軸方向Xに延びる軸部52を含む。軸部52は、ブッシュ53を介してプレート35に回転自在に支持されている。ただし、ブッシュ53は省略可能である。
 隣り合うノズルベーン51の間には、タービンインペラ32へ排ガスを噴射するノズル50が形成されている。図3は、上述したインプットレバー93が基準位置にある状態を示し、図4は、インプットレバー93が基準位置からノズル50の開度を大きくする方向に倒された状態を示す(当然、インプットレバー93が基準位置からノズル50の開度を小さくする方向に倒されることもある)。インプットレバー93を操作することによって、ノズル50の開度および向きが変更される。
 図3、図5および図6に戻って、各アーム6は、ノズル部材5の軸部52から側方に(本実施形態では、径方向Rにおいて内向きに)延びている。各アーム6の外側端部は、ノズル部材5の軸部52に回転不能に連結されている。各アーム6の内側端部(すなわち、ノズル部材5と反対側の端部)には、ローラ7が取り付けられている。
 本実施形態では、各ローラ7が、円盤状のホイール部71と、ホイール部71の中心から軸方向Xに延びる軸部72を有する。そして、軸部72が、アーム6の内側端部に回転自在に支持されている。ただし、ローラ7が中心に貫通穴を有するリング状であり、ローラ7が当該ローラ7を回転自在に支持する軸部材(図示せず)を介してアーム6に取り付けられていてもよい。
 また、本実施形態では、各ローラ7が超硬材からなる。ローラ7に適した超硬材の組成は、例えば、質量パーセントで表示して、WC(タングステンカーバイド):72~75%、Co(コバルト)+Ni(ニッケル):24~26%、その他の成分:0~2%である。
 リンクリング8は、周方向に連続する本体部81と、本体部81から突出する複数の操作片82を有する。本実施形態では、本体部81が軸方向Xに薄い板状をなしており、操作片82が、本体部81のプレート35側の主面から軸方向Xに突出している。ただし、リンクリング8は、操作片82が本体部81から径方向Rにおいて外向きに突出するように構成されていてもよい。
 操作片82は、複数のローラ7の間に介在し、かつ、径方向Rにおけるローラ7の移動をガイドするように構成されている。具体的には、各操作片82は、径方向Rにおいて内向きに先細りとなる台形状をなしており、隣り合う操作片82の互いに対向する側面同士が平行となっている。
 リンクリング8の内側には、リンクリング8と摺動可能に嵌合するガイドリング37が配置されている。ガイドリング37は、第1ハウジング34に固定されている。ガイドリング37には、リンクリング8の本体部81の内側端部と係合する窪み37aが形成されている。また、ガイドリング37には、リンクリング8の本体部81の内側端部を窪み37a内に保持するための押えリング38が取り付けられている。
 本実施形態では、ガイドリング37が、炭素繊維強化炭素複合材(Carbon Fiber Reinforced Carbon Composite、いわゆるC/Cコンポジット)からなる。炭素繊維強化炭素複合材中の繊維は、タービンインペラ32の軸心33と直交する平面と平行な方向に延びていることが望ましい。径方向におけるガイドリング37の熱膨張を小さく抑えることができ、リンクリング8をスムーズに摺動させることができるからである。例えば、径方向Rにおけるガイドリング37の熱膨張係数は、0.5×10-6[1/℃]以下である。
 上述したインプットリンク91は、リンクリング8に対してプレート35と反対側に配置されている。インプットリンク91は、軸方向Xに延びる軸部材92を介してインプットレバー93と回転不能に連結されている。インプットレバー93は、リンクリング8を回転させるためのものである。なお、軸部材92は、第1ハウジング34に取り付けられた軸受部材94によって回転自在に支持されている。
 インプットリンク91は、径方向Rにおいて軸部材92からリンクリング8と重なり合う位置まで延びており、インプットリンク91の内側端部には、径方向Rにおいて内向きに開口する開口95が形成されている。換言すれば、インプットリンク91は、開口95を規定する一対の係合片96を有する。
 一方、リンクリング8には、インプットリンク91の開口95と係合するインプットローラ84が軸部材83を介して取り付けられている。本実施形態では、リンクリング8における1つの操作片82がある肉厚部分にネジ穴が形成されており、このネジ穴に、軸部材83の一端部に形成されたネジ山が螺合している。インプットローラ84は、軸部材83に、回転自在に支持されている。ただし、インプットローラ84の代わりに、インプットリンク91の開口95と係合するピンがリンクリング8に取り付けられていてもよい。
 このような構成により、インプットレバー93を操作すれば、図4に示すように、インプットリンク91が揺動し、インプットローラ84が一方の係合片96上を転動しながらリンクリング8が回転する。これに伴い、各アーム6に取り付けられたローラ7がリンクリング8の操作片82の一方の側面上を転動しながら径方向Rに移動する。ローラ7が径方向に移動すると、各アーム6がノズル部材5の軸部52回りに揺動し、ノズル部材5のノズルベーン51の角度が変更される。これにより、ノズル50の開度および向きが変更される。
 このように、本実施形態の排気タービン1Aではアーム6に取り付けられたローラ7がリンクリング8の操作片82上を転動するので、アーム6およびリンクリング8の摩耗が抑制され、高い耐久性を得ることができる。
 ところで、ノズル部材5は、高温の排ガスと接触するために、ノズル部材5自体およびノズル部材5に連結されたアーム6が高温となって熱膨張する。一方、本実施形態では、ローラ7が超鋼材で構成されているので、アーム6から熱が伝達されるローラ7の熱膨張が抑制される。その結果、リンクリング8の操作片82とローラ7との間の隙間を小さく設定しても、径方向Rにおけるローラ7の移動が阻害されることがない。それ故に、リンクリング8の操作片82とローラ7との間の隙間を小さく設定することができ、これによりノズル50の開度および向きを高精度に制御することができる。
 なお、ノズル50の開度および向きを高精度に制御する必要がない場合には、ローラ7が超鋼材で構成されていなくてもよいことは言うまでもない。
 (第2実施形態)
 次に、図7を参照して、本発明の第2実施形態に係る舶用排気タービン1Bを説明する。なお、本実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
 本実施形態の舶用排気タービン1Bが第1実施形態の舶用排気タービン1Aと異なる点は、シュラウド41のフランジ部43に保護プレート47が取り付けられている点のみである。保護プレート47は、ノズル部材5が存する領域と対応するリング状である。また、保護プレート47は、超硬材からなる。保護プレート47に適した超硬材の組成は、例えば、質量パーセントで表示して、WC:89~92%、Co+Ni:8~10%、その他の成分:0~1%である。
 シュラウド41に保護プレート47が取り付けられていない場合は、ノズルベーン51が熱膨張すると、熱膨張したノズルベーン51がシュラウド41のフランジ部43に押し付けられて、フランジ部43に傷が付くことがある。この場合、ノズルベーン51がその傷に引っかかり、ノズルベーン51の作動不良が生じるおそれがある。これに対し、シュラウド41のフランジ部43に保護プレート47が取り付けられていれば、熱膨張したノズルベーン51はその保護プレート47に押し付けられる。そして、保護プレート47は超硬材で構成されているので、ノズルベーン51が押し付けられてもほとんど傷が付かない。そのため、ノズルベーン51の作動不良を防止することができる。しかも、シュラウド41全体を超硬材で構成しないので、低コストで上記の効果を得ることができる。
 (その他の実施形態)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
 例えば、アーム6は、必ずしもノズル部材5の軸部52から径方向Rにおいて内向きに延びている必要はなく、図8および図9に示す構成のように、ノズル部材5の軸部52から径方向Rにおいて外向きに延びていてもよい。あるいは、アーム6は、軸部52から、径方向Rに対して斜め内向きまたは斜め外向きに延びていてもよい。
 また、ガイドリング37は、必ずしもリンクリング8の内側に配置されている必要はなく、リンクリング8の外側に配置されていてもよい。この場合、リンクリング8は、操作片82が本体部81から径方向Rにおいて内向きに突出するように構成されていてもよい。
 また、炭素繊維強化炭素複合材からなるガイドリング37は、必ずしも設けられている必要はない。ただし、炭素繊維強化炭素複合材からなるガイドリング37が設けられていれば、炭素繊維強化炭素複合材は一般的に摩擦係数が小さいため、リンクリング8の摺動抵抗を極めて小さくすることができる。
 1  舶用排気タービン
 10 船舶
 2  エンジン
 31 回転軸
 32 タービンインペラ
 33 軸心
 34 第1ハウジング
 35 プレート
 36 リンク室
 37 ガイドリング
 41 シュラウド
 43 フランジ部
 44 導入路
 47 保護プレート
 5 ノズル部材
 51 ノズルベーン
 52 軸部
 6  アーム
 7  ローラ
 8  リンクリング
 82 操作片
 93 インプットレバー

Claims (6)

  1.  船舶に搭載されて、エンジンからの排ガスで駆動される舶用排気タービンであって、
     タービンインペラの周囲に形成された導入路に沿うプレートと、
     前記導入路に配置されたノズルベーン、および前記プレートを貫通する軸部、を含む複数のノズル部材と、
     前記複数のノズル部材の軸部にそれぞれ連結された、前記軸部から側方に延びる複数のアームと、
     前記複数のアームにおける前記ノズル部材と反対側の端部にそれぞれ取り付けられた複数のローラと、
     前記複数のローラの間に介在し、かつ、前記タービンインペラの軸心を中心とする径方向における前記ローラの移動をガイドする複数の操作片を有するリンクリングと、
     前記リンクリングを回転させるためのインプットレバーと、
    を備える、舶用排気タービン。
  2.  前記複数のローラのそれぞれは、超硬材からなる、請求項1に記載の舶用排気タービン。
  3.  前記リンクリングと摺動可能に嵌合するガイドリングをさらに備え、
     前記ガイドリングは、炭素繊維強化炭素複合材からなる、請求項1または2に記載の舶用排気タービン。
  4.  前記炭素繊維強化炭素複合材中の繊維は、前記タービンインペラの軸心と直交する平面と平行な方向に延びている、請求項3に記載の舶用排気タービン。
  5.  前記タービンインペラが取り付けられた回転軸を回転自在に支持し、かつ、前記プレートとの間に、前記複数のアームおよび前記リンクリングが収容される環状のリンク室を形成するハウジングをさらに備え、
     前記ガイドリングは、前記リンクリングの内側に配置され、前記ハウジングに固定されている、請求項3または4に記載の舶用排気タービン。
  6.  前記導入路を挟んで前記プレートと対向するフランジ部を有するシュラウドをさらに備え、
     前記シュラウドのフランジ部には、前記複数のノズル部材が存する領域と対応するリング状の、超硬材からなる保護プレートが取り付けられている、請求項1~5のいずれか一項に記載の舶用排気タービン。
PCT/JP2015/006478 2015-01-27 2015-12-25 舶用排気タービン WO2016120945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197001076A KR102218632B1 (ko) 2015-01-27 2015-12-25 선박용 배기터빈
CN201580074514.4A CN107208540B (zh) 2015-01-27 2015-12-25 船舶用排气涡轮机
KR1020177020956A KR20170102505A (ko) 2015-01-27 2015-12-25 선박용 배기터빈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-013389 2015-01-27
JP2015013389A JP6463640B2 (ja) 2015-01-27 2015-01-27 舶用排気タービン

Publications (1)

Publication Number Publication Date
WO2016120945A1 true WO2016120945A1 (ja) 2016-08-04

Family

ID=56542608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006478 WO2016120945A1 (ja) 2015-01-27 2015-12-25 舶用排気タービン

Country Status (4)

Country Link
JP (1) JP6463640B2 (ja)
KR (2) KR102218632B1 (ja)
CN (1) CN107208540B (ja)
WO (1) WO2016120945A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155199U (ja) * 1984-09-18 1986-04-14
JPH01158525U (ja) * 1988-04-15 1989-11-01
JP2001173450A (ja) * 1999-12-20 2001-06-26 Mitsubishi Heavy Ind Ltd 可変ターボチャージャ
JP2004138006A (ja) * 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd 可変容量型過給機の表面処理構造及び表面処理方法
JP2013537957A (ja) * 2010-09-23 2013-10-07 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャのvtgカートリッジ
JP2014224498A (ja) * 2013-05-16 2014-12-04 株式会社豊田自動織機 可変ノズルターボチャージャ
JP2014238083A (ja) * 2013-06-10 2014-12-18 三菱重工業株式会社 複合材製の羽根車

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589072A1 (de) * 1992-09-21 1994-03-30 Asea Brown Boveri Ag Turbolader für Schwerölbetrieb
KR100378118B1 (ko) 2000-10-10 2003-03-29 삼성전자주식회사 가상 경로에 기반한 이동 단말기의 위치 등록 방법 및 장치
JP4197286B2 (ja) * 2003-09-16 2008-12-17 愛三工業株式会社 回転体の回転軸及びその製造方法
JP5050788B2 (ja) * 2007-11-07 2012-10-17 株式会社Ihi 過給機
JP5397144B2 (ja) * 2009-10-14 2014-01-22 株式会社Ihi 可変ノズルユニットの組立方法
JP5796302B2 (ja) * 2011-02-09 2015-10-21 株式会社Ihi 可変ノズルユニット及び可変容量型過給機
US10408228B2 (en) * 2012-02-02 2019-09-10 Borgwarner Inc. Mixed-flow turbocharger with variable turbine geometry
DE102013002605A1 (de) * 2013-02-15 2014-08-21 Man Diesel & Turbo Se Turbolader und Axiallagerscheibe für einen Turbolader
JP6101111B2 (ja) 2013-02-27 2017-03-22 川崎重工業株式会社 エンジンシステム及び船舶

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155199U (ja) * 1984-09-18 1986-04-14
JPH01158525U (ja) * 1988-04-15 1989-11-01
JP2001173450A (ja) * 1999-12-20 2001-06-26 Mitsubishi Heavy Ind Ltd 可変ターボチャージャ
JP2004138006A (ja) * 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd 可変容量型過給機の表面処理構造及び表面処理方法
JP2013537957A (ja) * 2010-09-23 2013-10-07 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャのvtgカートリッジ
JP2014224498A (ja) * 2013-05-16 2014-12-04 株式会社豊田自動織機 可変ノズルターボチャージャ
JP2014238083A (ja) * 2013-06-10 2014-12-18 三菱重工業株式会社 複合材製の羽根車

Also Published As

Publication number Publication date
JP2016138492A (ja) 2016-08-04
KR20190007526A (ko) 2019-01-22
CN107208540B (zh) 2019-11-29
KR102218632B1 (ko) 2021-02-22
CN107208540A (zh) 2017-09-26
JP6463640B2 (ja) 2019-02-06
KR20170102505A (ko) 2017-09-11

Similar Documents

Publication Publication Date Title
US10801729B2 (en) Thermally coupled CMC combustor liner
US10180073B2 (en) Mounting apparatus for low-ductility turbine nozzle
EP2565424B1 (en) Torque frame and asymmetric journal bearing for fan drive gear system
US11421627B2 (en) Aircraft and direct drive engine under wing installation
US6887035B2 (en) Tribologically improved design for variable stator vanes
US11092022B2 (en) Vane with chevron face
US7533533B2 (en) Jet engine with a variable section nozzle of which at least one flap pivots about a pin, pins for flaps
JP6463640B2 (ja) 舶用排気タービン
WO2016120947A1 (ja) 排気タービンおよび船舶
CN111094722A (zh) 具有位于排气壳体中的低压轴推力轴承的双转体涡轮喷气发动机
JP6122346B2 (ja) タービンエンジン圧縮機の温度を制御する方法およびタービンエンジンの圧縮機
CN110520609B (zh) 彩虹流动路径低压涡轮转子组件
US20180237120A1 (en) Aircraft with Under Wing Direct Drive Low Pressure Turbine
JP6368253B2 (ja) 可変ノズルタービン
CN214330769U (zh) 一种无涡轮燃气轮机
WO2014104101A1 (ja) ターボチャージャの軸受構造及びそれを具備するターボチャージャ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177020956

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879844

Country of ref document: EP

Kind code of ref document: A1