WO2016119721A1 - 一种高纯钒电池电解液的制备系统及方法 - Google Patents

一种高纯钒电池电解液的制备系统及方法 Download PDF

Info

Publication number
WO2016119721A1
WO2016119721A1 PCT/CN2016/072523 CN2016072523W WO2016119721A1 WO 2016119721 A1 WO2016119721 A1 WO 2016119721A1 CN 2016072523 W CN2016072523 W CN 2016072523W WO 2016119721 A1 WO2016119721 A1 WO 2016119721A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
oxychloride
gas
vanadium oxychloride
purity
Prior art date
Application number
PCT/CN2016/072523
Other languages
English (en)
French (fr)
Inventor
范川林
朱庆山
杨海涛
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2016119721A1 publication Critical patent/WO2016119721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of chemical industry and material, and particularly relates to a preparation system and method for a high purity vanadium battery electrolyte.
  • VRB all-vanadium flow battery
  • the energy density of VRB depends to a large extent on the concentration of vanadium ions in the electrolyte, but as the concentration of vanadium ions increases, the electrolyte tends to precipitate and decrease in stability.
  • the concentration of vanadium ions in the sulfuric acid system is generally not more than 1.7 mol / L, and the corresponding energy density is ⁇ 25 Wh / L.
  • the vanadium ion concentration can be maintained above 2.5 mol/L, the corresponding energy density can reach above 40 Wh/L, and the stable operating temperature range of the battery can be extended from 10 to 40 ° C to -5 to 50. °C (Advanced Energy Materials, 2011, 1:394–400). It can be seen that the vanadium battery electrolyte of the hydrochloric acid-sulfuric acid mixed acid system has more excellent electrochemical energy storage performance.
  • VRB operation shows that impurities in the electrolyte, especially alkaline earth metals and silicon, can damage or age the diaphragm-proton exchange membrane of the positive/negative compartment, thereby reducing the energy efficiency and service life of the battery; Ions also tend to cause precipitation of the electrolyte, reducing its stability and affecting battery performance. Therefore, the purity of the vanadium battery electrolyte is one of the important factors determining its performance.
  • a high-purity vanadium pentoxide raw material is usually dissolved in a sulfuric acid solution, and subjected to electrochemical treatment or reduction gas reduction to obtain a positive electrode and a negative electrode electrolyte, such as Chinese patent applications CN102011135A, CN102354762A, CN103066312A, and CN103346343A.
  • high-purity vanadium pentoxide with a purity of 99.95% or more as a raw material
  • high-purity vanadium pentoxide needs to be a common vanadium raw material, such as ammonium polyvanadate, ammonium metavanadate, industrial grade five.
  • Vanadium oxide is used as a raw material and can be prepared by a long and complicated process such as dissolution-de-ionization-precipitation-calcination (eg CN103515642A, CN102730757A and CN102730757A, etc.). This makes the preparation cost of high-purity vanadium battery electrolyte too high, which seriously restricts the large-scale popularization and application of VRB, which also seriously hinders the good development of the new energy industry.
  • the present invention provides a high purity vanadium battery electrolyte preparation system and method, using industrial grade vanadium oxychloride as raw material, refined by distillation, chlorine content regulation and sulfuric acid preparation to obtain a high purity vanadium battery
  • the electrolyte improves the adaptability of raw materials, simplifies the preparation process, and reduces production energy consumption and operating costs.
  • the present invention adopts the following technical solutions:
  • the preparation system of the high-purity vanadium battery electrolyte of the invention comprises the industrial grade vanadium oxychloride vanadium storage tank 1, the rectification purification device 2, the intermediate product distiller 3, the water dechlorination chlorine reaction reactor 4, and the addition of sulfuric acid Reaction kettle 5, exhaust gas leaching absorber 6 and exhaust fan 7;
  • the rectification and purification device 2 includes a distillation still 2-1, a rectification column 2-2, a distillate condenser 2-3, a reflux liquid collection tank 2-4, a silicon-containing vanadium oxychloride vanadium storage tank 2-5, Acid sealed tank 2-6, high purity vanadium oxychloride vanadium 2-7 and high purity vanadium oxychloride vanadium storage tank 2-8;
  • the intermediate product distiller 3 comprises an intermediate product still 3-1, a chemical grade vanadium oxychloride condenser 3-2 and a chemical grade vanadium oxychloride vanadium storage tank 3-3;
  • the discharge port of the industrial grade vanadium oxychloride vanadium tank 1 is connected to the feed port of the rectification column 2-2 through a pipe; the vapor outlet of the distillation pot 2-1 passes through the pipe and the rectification The vapor inlet of the column 2-2 is connected; the reflux port of the distillation pot 2-1 is connected to the liquid reflux outlet at the bottom of the rectification column 2-2 through a pipe; the gas at the top of the rectification column 2-2 The outlet is connected to the gas inlet of the distillate condenser 2-3 via a conduit; the liquid outlet of the distillate condenser 2-3 is connected to the liquid inlet of the reflux collection tank 2-4 via a conduit The reflux liquid outlet of the reflux liquid collection tank 2-4 is connected to the reflux liquid inlet at the top of the rectification column 2-2 through a pipe; the discharge port of the reflux liquid collection tank 2-4 and the inclusion
  • the inlets of the silicon vanadium oxychloride vanadium storage tanks 2-5 are connected by pipes; the exhaust gas outlets of
  • the bottom outlet of the bottom of the distillation pot 2-1 and the liquid outlet at the bottom of the silicon-containing vanadium oxychloride vanadium storage tank 2-5 are connected to the feed port of the intermediate product still 3-1 through a pipe; a waste discharge port is disposed at a bottom of the product still 3-1; a vapor outlet of the intermediate product still 3-1 is connected to a gas inlet of the chemical grade vanadium oxychloride condenser 3-2 through a pipe;
  • the liquid outlet of the chemical grade vanadium oxychloride condenser 3-2 is connected to the feed port of the chemical grade vanadium oxychloride vanadium 3-3 through a pipeline;
  • the discharge port of the high-purity vanadium oxychloride vanadium storage tank 2-8 is connected to the vanadium oxychloride inlet of the water demodulation chlorine reactor 4 through a pipeline; the water demodulation chlorine reactor 4
  • the ultrapure water inlet is connected to the ultrapure water header through a pipeline;
  • the gas outlet of the water demodulation chlorine reactor 4 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipeline;
  • the discharge port of the water demodulation chlorine reactor 4 is connected to the feed port of the sulfuric acid addition reactor 5 through a pipeline; the sulfuric acid inlet of the sulfuric acid addition reactor 5 is connected to the pure sulfuric acid main pipe through a pipeline.
  • the gas outlet of the sulfuric acid addition reactor 5 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipe;
  • the gas outlet of the exhaust gas eluting absorber 6 is connected to the gas inlet of the exhaust fan 7 through a pipe.
  • the preparation method of the high-purity vanadium battery electrolyte based on the above system of the invention comprises the following steps:
  • Industrial grade vanadium oxychloride is subjected to a rectification operation from the industrial grade vanadium oxychloride vanadium 1 into the rectification column 2-2 and the distillation still 2-1 to obtain an underflow rich in high boiling impurities, a silicon-containing vanadium oxychloride vapor rich in low-boiling impurities and a high-purity vanadium oxychloride vapor; the high-purity vanadium oxychloride vapor is condensed into the liquid through the high-purity vanadium oxychloride condenser 3-7 and then sent to the liquid.
  • the silicon-containing vanadium oxychloride vanadium vapor is condensed to the liquid through the distillate condenser 2-3, and then partially returned to the rectification through the reflux liquid collection tank 2-4.
  • Tower 2-2 the remainder is sent to the silicon-containing vanadium oxychloride vanadium storage tank 2-5; the spent gas generated in the silicon-containing vanadium oxychloride vanadium storage tank 2-5 is sealed by the acid sealing tank 2-6 And sent to the exhaust gas leaching absorber 6 for absorption treatment;
  • the vanadium-rich waste containing impurities is used for subsequent recovery of vanadium, and the vanadium oxychloride vapor is condensed into the liquid by the chemical grade vanadium oxychloride condenser 3-2 and sent to the chemical grade vanadium oxychloride vanadium storage tank 3-3. in;
  • the high-purity vanadium oxychloride in the high-purity vanadium oxychloride vanadium storage tank 2-8 enters the water demodulation chlorine reactor 4, and undergoes hydrolysis reaction with ultrapure water from the ultrapure water main pipe to produce hydrogen chloride-containing gas.
  • the water demodulation chlorine tail gas is sent to the exhaust gas elution absorber 6 for absorption treatment; water demodulation chlorine generation After the slurry enters the sulfuric acid addition reactor 5, pure sulfuric acid is added to obtain a high-purity vanadium battery electrolyte of the mixed acid system, and an acid mist gas is sent to the exhaust gas eluting absorber 6 for absorption treatment; The gas discharged after the lye absorption treatment of the rinsing absorber 6 is evacuated by the exhaust fan 7.
  • the number of trays in the rectification operation rectification section is 5 to 10, and the number of trays in the stripping section is 10 to 20;
  • the reflux ratio ie, the ratio of the reflux flow at the top of the column to the discharge amount
  • the second feature of the present invention is that in the water demodulation chlorine reactor 4, the reaction temperature of the water demodulation chlorine process is 40 to 80 ° C, and the reaction time is 30 to 120 min.
  • the third feature of the present invention is that in the sulfuric acid addition reactor 5, the operation temperature of the sulfuric acid is 60 to 90 ° C, and the reaction time is 30 to 120 minutes.
  • the purity of the high purity vanadium oxychloride prepared by the invention is above 4N.
  • the industrial vanadium oxychloride vanadium according to the invention has a purity of 93 to 96%, and the chemical grade vanadium oxychloride vanadium has a purity of 98.0 to 99.5%.
  • the high purity vanadium battery electrolyte prepared by the invention has a chloride ion concentration of 3-8 mol/L or more, a vanadium ion concentration of 2 mol/L or more, and an energy density of more than 35 Wh/L.
  • the present invention has the following outstanding advantages:
  • the invention has the advantages of strong raw material adaptability, simple process, clean and pollution-free, low production energy consumption and low operating cost, controllable electrolyte quality, etc., and is suitable for large-scale continuous production of high-purity vanadium battery electrolyte, and has good economic efficiency. And social benefits.
  • FIG. 1 is a schematic view showing the configuration of a high purity vanadium battery electrolyte preparation system of the present invention.
  • FIG. 1 is a schematic view showing a preparation system of a high purity vanadium battery electrolyte according to the present invention.
  • the preparation system of the high-purity vanadium battery electrolyte used in the embodiment includes an industrial grade vanadium oxychloride vanadium tank 1, a rectification purification device 2, an intermediate product distiller 3, and a water denitrification chlorine reactor 4. , with sulfuric acid reactor 5, exhaust gas leaching absorber 6 and exhaust fan 7;
  • the rectification and purification device 2 includes a distillation still 2-1, a rectification column 2-2, a distillate condenser 2-3, a reflux liquid collection tank 2-4, a silicon-containing vanadium oxychloride vanadium storage tank 2-5, and an acid seal.
  • the intermediate product distiller 3 comprises an intermediate product still 3-1, a chemical grade vanadium oxychloride condenser 3-2 and a chemical grade vanadium oxychloride vanadium storage tank 3-3;
  • the discharge port of the industrial grade vanadium oxychloride vanadium 1 is connected to the feed port of the rectification column 2-2 through a pipe; the vapor outlet of the distillation pot 2-1 is passed through the pipe and the vapor inlet of the rectification column 2-2.
  • the reflux port of the distillation pot 2-1 is connected to the liquid reflux outlet at the bottom of the rectification column 2-2 through a pipe; the gas outlet at the top of the rectification column 2-2 passes through the gas of the pipe and the distillate condenser 2-3.
  • the inlet is connected; the liquid outlet of the distillate condenser 2-3 is connected to the liquid inlet of the reflux collection tank 2-4 through a conduit; the reflux liquid outlet of the reflux collection tank 2-4 is passed through the conduit and the distillation column 2 2
  • the reflux liquid inlet at the top is connected; the reflux liquid collection tank 2-4
  • the discharge opening is connected to the inlet of the silicon-containing vanadium oxychloride vanadium storage tank 2-5 through a pipeline; the exhaust gas outlet of the silicon-containing vanadium oxychloride vanadium storage tank 2-5 passes through the pipeline and the gas inlet of the acid sealed tank 2-6 Connected; the gas outlet of the acid sealed tank 2-6 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipeline; the distillation outlet of the rectifying tower 2-2 is passed through a pipeline and a high purity vanadium oxychloride condenser 2
  • the gas inlets of -7 are connected; the liquid outlet of the high purity vanadium oxychlor
  • the bottom outlet of the bottom of the distillation still 2-1 and the liquid outlet at the bottom of the silicon-containing vanadium oxychloride vanadium storage tank 2-5 are connected to the feed port of the intermediate product still 3-1 through a pipe; the intermediate product distillation 3-1 The waste outlet is provided at the bottom; the vapor outlet of the intermediate product still 3-1 is connected to the gas inlet of the chemical grade vanadium oxychloride condenser 3-2 through a pipeline; the chemical grade vanadium oxychloride condenser 3-2 The liquid outlet is connected to the feed port of the chemical grade vanadium oxychloride vanadium 3-3 through a pipe;
  • the outlet of the high-purity vanadium oxychloride vanadium storage tank 2-8 is connected to the vanadium oxychloride inlet of the water dechlorination reactor 4 through a pipeline; the ultrapure water inlet of the water demodulation chlorine reactor 4 passes through the pipeline Connected to the ultrapure water main pipe; the gas outlet of the water dechlorination chlorine reactor 4 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipe;
  • the discharge port of the water demodulation chlorine reactor 4 is connected to the feed port of the sulfuric acid reaction reactor 5 through a pipeline;
  • the sulfuric acid inlet of the sulfuric acid reaction reactor 5 is connected to the pure sulfuric acid main pipe through a pipeline;
  • the gas outlet of 5 is connected to the gas inlet of the exhaust gas eluting absorber 6 through a pipe;
  • the gas outlet of the exhaust gas rinsing absorber 6 is connected to the gas inlet of the exhaust fan 7 through a pipe.
  • the high-purity vanadium battery electrolyte is prepared by the above system, and the specific method includes: industrial grade vanadium oxychloride is refined from the industrial grade vanadium oxychloride vanadium storage tank 1 into the distillation column 2-2 and the distillation still 2-1.
  • Distillation operation obtaining an underflow rich in high-boiling impurities, a silicon-containing vanadium oxychloride vapor rich in low-boiling impurities, and a high-purity vanadium oxychloride vapor; a high-purity vanadium oxychloride vapor through a high-purity vanadium oxychloride vanadium condenser 3-7 is condensed into the liquid and sent to the high-purity vanadium oxychloride vanadium storage tank 2-8; the silicon-containing vanadium oxychloride vanadium vapor is condensed to the liquid through the distillate condenser 2-3, and partially passed through the reflux liquid collection tank 2 -4 is refluxed to the rectification column 2-2, and the remainder is sent to the silicon-containing vanadium oxychloride vanadium storage tank 2-5; the spent gas generated in the silicon-containing vanadium oxychloride vanadium storage tank 2-5 is sealed by the acid sealing tank 2
  • the silicon-containing vanadium oxychloride vanadium in the silicon-containing vanadium oxychloride vanadium storage tank 2-5 and the bottom stream discharged from the distillation still 2-1 are introduced into the intermediate product distillation still 3-1 to carry out a distillation operation to obtain a vanadium-rich waste rich in impurities.
  • the produced vanadium oxychloride vapor is condensed into the liquid by the chemical grade vanadium oxychloride condenser 3-2 and sent to the chemical grade vanadium oxychloride vanadium storage tank 3-3;
  • the high-purity vanadium oxychloride vanadium in the high-purity vanadium oxychloride vanadium storage tank 2-8 enters the water demodulation chlorine reactor 4, and hydrolyzes with ultrapure water from the ultrapure water main pipe to produce water containing hydrogen chloride and chlorine gas.
  • the water demodulation chlorine tail gas is sent to the exhaust gas leaching absorber 6 for absorption treatment; the water-decomposed chlorine-derived slurry enters the sulfuric acid reaction reactor 5, and is added with pure sulfuric acid to obtain a high-purity vanadium battery electrolyte of the mixed acid system, resulting in The acid mist gas is sent to the exhaust gas leaching absorber 6 for absorption treatment; the gas discharged from the exhaust gas leaching absorber 6 after the lye absorption treatment is evacuated by the exhaust fan 7.
  • the raw materials used in this example were industrial grade vanadium oxychloride with a purity of 95%, electronic grade ultrapure water and superior grade pure sulfuric acid.
  • the number of trays in the rectification section of the rectification section is 5, the number of trays in the stripping section is 10, and the reflux ratio of the rectification operation is 15; in the water dechlorination reactor 4,
  • the reaction temperature of the water demodulation chlorine process is 40 ° C, the reaction time is 120 min; in the sulfuric acid addition reactor 5, the operation temperature of adding sulfuric acid is 90 ° C, and the reaction time is 30 min, the high purity vanadium oxychloride The purity is 99.993% (4N3); the electrolyte chloride ion concentration is 6.0mol/L, the vanadium ion concentration is 2.5mol/L, and the energy density is 41Wh/L after testing.
  • the number of trays in the rectification section of the rectification section is 10, the number of trays in the stripping section is 20, and the reflux ratio of the rectification operation is 15; in the water dechlorination reactor 4,
  • the reaction temperature of the water demodulation chlorine process is 80 ° C, the reaction time is 30 min; in the sulfuric acid addition reactor 5, the operation temperature of adding sulfuric acid is 60 ° C, and the reaction time is 120 min, the high purity vanadium oxychloride
  • the purity is 99.999% (5N);
  • the electrolyte has a chloride ion concentration of 5.8 mol/L and a vanadium ion concentration of 2.4 mol/L.
  • the energy density of the electrolyte is 40 Wh/L.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于化工、材料领域。具体地,本发明公开了一种高纯钒电池电解液的制备系统及方法,以工业级三氯氧钒为原料,经精馏提纯得到4N以上纯度的高纯三氯氧钒后,进行水解及氯含量调控,并进一步配加硫酸制备得到高纯钒电池硫酸-盐酸混酸解电液。本发明具有原料适应性强、流程简单、清洁无污染、生产能耗和操作成本低、电解液质量可控等优点,适用于高纯钒电池电解液的大规模连续化生产,具有良好的经济效益和社会效益。

Description

一种高纯钒电池电解液的制备系统及方法 技术领域
本发明属于化工、材料领域,特别涉及一种高纯钒电池电解液的制备系统及方法。
背景技术
随着能源技术的不断革新,现有的以化石燃料为主的能源结构,将逐步被太阳能、风能等新能源所更替,相应地适应新型能源结构的大规模储能技术将被广泛应用。全钒液流电池(VRB)以其设计灵活性大、易于模块组合、受设置场地限制小、蓄电规模易于调节等优点,在未来太阳能和风电发展中将具有巨大的需求空间。VRB的活性物质-含钒电解液(含钒离子的酸性水溶液)是其重要组成部分,如何低成本制备性能优异的电解液是VRB大规模推广应用的关键问题之一。
VRB的能量密度在较大程度上取决于电解液中的钒离子浓度,但是随着钒离子浓度的提高,电解液容易发生沉淀析出、稳定性降低。为了保证电池运行过程中电解液的稳定性,通常硫酸体系中的钒离子浓度不能大于1.7mol/L,对应的能量密度~25Wh/L。而在盐酸-硫酸混合酸体系中,钒离子浓度可维持在2.5mol/L以上,对应的能量密度可达40Wh/L以上,且电池稳定工作温度范围可由10~40℃扩展到-5~50℃(Advanced Energy Materials,2011,1:394–400)。可见,盐酸-硫酸混合酸体系的钒电池电解液具有更为优异的电化学储能性能。
同时,VRB运行实践表明电解液中存在的杂质,尤其是碱土金属和硅等,会使正/负极室的隔膜-质子交换膜发生损害或老化,从而降低电池的能量效率和使用寿命;且杂质离子还易引起电解液的沉淀,降低其稳定性从而影响电池性能。因此,钒电池电解液的纯度是决定其性能的重要因素之一。目前,通常以高纯五氧化二钒原料,将其溶于硫酸溶液后,经过电化学处理或还原性气体还原可得到正极和负极电解液,如中国专利申请CN102011135A、CN102354762A、CN103066312A和CN103346343A等。
为了保证电解液的纯度,须要使用纯度99.95%以上的高纯五氧化二钒作为原料,而高纯五氧化二钒需要以普通钒原料,如多钒酸铵、偏钒酸铵、工业级五氧化二钒为原料,采用溶解-除杂-沉淀-煅烧等冗长复杂的工艺才能制备得到(如 CN103515642A、CN102730757A和CN102730757A等)。这使得高纯钒电池电解液的制备成本过高,严重制约了VRB的大规模推广应用,这也严重阻碍了新能源产业的良好发展。
因此,如何选用廉价易得的钒原料,经过工艺技术创新,大幅度简化制备流程,以适用性能优异的高纯钒电池电解液的规模化生产,是促进VRB的推广应用的关键所在。
发明内容
针对上述问题,本发明提出了一种高纯钒电池电解液的制备系统及方法,以工业级三氯氧钒为原料,经精馏提纯、氯含量调控和配加硫酸制备得到高纯钒电池电解液,提高原料适应性、简化制备工艺、降低生产能耗和操作成本。为了达到这些目的,本发明采用了如下技术方案:
本发明的高纯钒电池电解液的制备系统,所述系统包括工业级三氯氧钒储罐1、精馏提纯装置2、中间产物蒸馏器3、水解调氯反应釜4、配加硫酸反应釜5、尾气淋洗吸收器6和排风机7;
所述精馏提纯装置2包括蒸馏釜2-1、精馏塔2-2、馏出物冷凝器2-3、回流液收集罐2-4、含硅三氯氧钒储罐2-5、酸封罐2-6、高纯三氯氧钒冷凝器2-7和高纯三氯氧钒储罐2-8;
所述中间产物蒸馏器3包括中间产物蒸馏釜3-1、化工级三氯氧钒冷凝器3-2和化工级三氯氧钒储罐3-3;
所述工业级三氯氧钒储罐1的出料口通过管道与所述精馏塔2-2的进料口相连接;所述蒸馏釜2-1的蒸气出口通过管道与所述精馏塔2-2的蒸气入口相连接;所述蒸馏釜2-1的回流口通过管道与所述精馏塔2-2底部的液体回流出口相连接;所述精馏塔2-2顶部的气体出口通过管道与所述馏出物冷凝器2-3的气体入口相连接;所述馏出物冷凝器2-3的液体出口通过管道与所述回流液收集罐2-4的液体入口相连接;所述回流液收集罐2-4的回流液体出口通过管道与所述精馏塔2-2顶部的回流液体入口相连接;所述回流液收集罐2-4的排料口与所述含硅三氯氧钒储罐2-5的入口通过管道相连接;所述含硅三氯氧钒储罐2-5的乏气出口通过管道与所述酸封罐2-6的气体入口相连接;所述酸封罐2-6的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;所述精馏塔2-2的精馏物出口通过管道与所述高纯三氯氧钒冷凝器2-7的气体入口相连接;所述高纯三氯氧 钒冷凝器2-7的液体出口与所述高纯三氯氧钒储罐2-8的入口通过管道相连接;
所述蒸馏釜2-1底部的底流出口、所述含硅三氯氧钒储罐2-5底部的液体出口均通过管道与中间产物蒸馏釜3-1的进料口相连接;所述中间产物蒸馏釜3-1的底部设置了废料排出口;所述中间产物蒸馏釜3-1的蒸气出口通过管道与所述化工级三氯氧钒冷凝器3-2的气体入口相连接;所述化工级三氯氧钒冷凝器3-2的液体出口通过管道与所述化工级三氯氧钒储罐3-3的进料口相连接;
所述高纯三氯氧钒储罐2-8的出料口通过管道与所述水解调氯反应釜4的三氯氧钒进料口相连接;所述水解调氯反应釜4的超纯水入口通过管道与超纯水总管相连接;所述水解调氯反应釜4的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;
所述水解调氯反应釜4的出料口通过管道与所述配加硫酸反应釜5的进料口相连接;所述配加硫酸反应釜5的硫酸入口通过管道与纯硫酸总管相连接;所述配加硫酸反应釜5的气体出口通过管道与所述尾气淋洗吸收器6的气体入口相连接;
所述尾气淋洗吸收器6的气体出口与所述排风机7的气体入口通过管道相连接。
本发明的基于上述系统的高纯钒电池电解液的制备方法,包括以下步骤:
工业级三氯氧钒由所述工业级三氯氧钒储罐1进入所述精馏塔2-2和所述蒸馏釜2-1后进行精馏操作,得到富含高沸点杂质的底流、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器3-7冷凝至液体后送入所述高纯三氯氧钒储罐2-8中;含硅三氯氧钒蒸气经所述馏出物冷凝器2-3冷凝至液体后,部分经回流液收集罐2-4回流至精馏塔2-2,其余部分送入所述含硅三氯氧钒储罐2-5中;含硅三氯氧钒储罐2-5中产生的乏气经所述酸封罐2-6后送入所述尾气淋洗吸收器6进行吸收处理;
所述含硅三氯氧钒储罐2-5中的含硅三氯氧钒液体和所述蒸馏釜2-1排出的底流进入所述中间产物蒸馏釜3-1中进行蒸馏操作,得到富含杂质的富钒废料用于后续回收钒,产生的三氯氧钒蒸气经化工级三氯氧钒冷凝器3-2冷凝至液体后送入所述化工级三氯氧钒储罐3-3中;
所述高纯三氯氧钒储罐2-8中的高纯三氯氧钒进入所述水解调氯反应釜4,与来自超纯水总管的超纯水进行水解反应,并产生含氯化氢和氯气的水解调氯尾气,所述水解调氯尾气送入所述尾气淋洗吸收器6进行吸收处理;水解调氯产生 的浆料进入所述配加硫酸反应釜5后,配加纯硫酸得到混酸体系的高纯钒电池电解液,产生酸雾气体送至所述尾气淋洗吸收器6进行吸收处理;所述尾气淋洗吸收器6碱液吸收处理后排出的气体经所述排风机7进行排空处理。
本发明的特征之一在于:在精馏塔2-2内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板数为10~20块;在精馏操作过程中,保持回流比(即塔顶回流量与排料量之比)为15~40。
本发明的特征之二在于:在水解调氯反应釜4内,所述水解调氯过程的反应温度为40~80℃,反应时间为30~120min。
本发明的特征之三在于:在配加硫酸反应釜5内,所述配加硫酸的操作温度为60~90℃,反应时间30~120min。
本发明制得的高纯三氯氧钒纯度均在4N以上。本发明所述的工业三氯氧钒纯度为93~96%,所述化工级三氯氧钒纯度为98.0~99.5%。
本发明制得的高纯钒电池电解液中,氯离子浓度为3~8mol/L以上,钒离子浓度可达2mol/L以上,其能量密度可达35Wh/L以上。
相对于现有技术,本发明具有如下突出的优点:
(1)以廉价易得的工业级三氯氧钒为原料,可充分利用其含有的氯作为盐酸-硫酸混合酸电解液的氯离子来源,避免了高纯五氧化二钒原料过高的生产能耗和成本;
(2)采用精馏提纯可得到纯度4N以上的高纯三氯氧钒,提高原料的适应性,并将分离低沸点和高沸点组分进行蒸馏除杂后得到化工催化剂用的三氯氧钒产品;
(3)将高纯三氯氧钒直接溶于水溶液中,并利用五价钒的氧化作用,将溶液中的氯离子氧化至氯气,达到调节氯离子浓度和将五价钒还原至四价钒的双重目的。
本发明具有原料适应性强、流程简单、清洁无污染、生产能耗和操作成本低、电解液质量可控等优点,适用于高纯钒电池电解液的大规模连续化生产,具有良好经济效率和社会效益。
附图说明
附图用来提供对本发明的进一步阐释,并且构成说明书的一部分,与本发明的实施列一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的高纯钒电池电解液制备系统的配置示意图。
附图标记
1 工业级三氯氧钒储罐
2 精馏提纯装置
2-1 蒸馏釜          2-2 精馏塔                2-3 馏出物冷凝器
2-4 回流液收集罐    2-5 含硅三氯氧钒储罐      2-6 酸封罐
2-7 高纯三氯氧钒冷凝器                       2-8 高纯三氯氧钒储罐
3 中间产物蒸馏器
3-1 中间产物蒸馏釜 3-2 化工级三氯氧钒冷凝器 3-3 化工级三氯氧钒储罐
4 水解调氯反应釜   5 配加硫酸反应釜   6 尾气淋洗吸收器 7 排风机
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。值得说明的是,实施例仅用以说明本发明的技术方案,而非对其限制。图1为本发明的一种高纯钒电池电解液的制备系统示意图。
结合图1,本实施例所使用的高纯钒电池电解液的制备系统,包括工业级三氯氧钒储罐1、精馏提纯装置2、中间产物蒸馏器3、水解调氯反应釜4、配加硫酸反应釜5、尾气淋洗吸收器6和排风机7;
精馏提纯装置2包括蒸馏釜2-1、精馏塔2-2、馏出物冷凝器2-3、回流液收集罐2-4、含硅三氯氧钒储罐2-5、酸封罐2-6、高纯三氯氧钒冷凝器2-7和高纯三氯氧钒储罐2-8;
中间产物蒸馏器3包括中间产物蒸馏釜3-1、化工级三氯氧钒冷凝器3-2和化工级三氯氧钒储罐3-3;
工业级三氯氧钒储罐1的出料口通过管道与精馏塔2-2的进料口相连接;蒸馏釜2-1的蒸气出口通过管道与精馏塔2-2的蒸气入口相连接;蒸馏釜2-1的回流口通过管道与精馏塔2-2底部的液体回流出口相连接;精馏塔2-2顶部的气体出口通过管道与馏出物冷凝器2-3的气体入口相连接;馏出物冷凝器2-3的液体出口通过管道与回流液收集罐2-4的液体入口相连接;回流液收集罐2-4的回流液体出口通过管道与精馏塔2-2顶部的回流液体入口相连接;回流液收集罐2-4 的排料口与含硅三氯氧钒储罐2-5的入口通过管道相连接;含硅三氯氧钒储罐2-5的乏气出口通过管道与酸封罐2-6的气体入口相连接;酸封罐2-6的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;精馏塔2-2的精馏物出口通过管道与高纯三氯氧钒冷凝器2-7的气体入口相连接;高纯三氯氧钒冷凝器2-7的液体出口与高纯三氯氧钒储罐2-8的入口通过管道相连接;
蒸馏釜2-1底部的底流出口、含硅三氯氧钒储罐2-5底部的液体出口均通过管道与中间产物蒸馏釜3-1的进料口相连接;中间产物蒸馏釜3-1的底部设置了废料排出口;中间产物蒸馏釜3-1的蒸气出口通过管道与化工级三氯氧钒冷凝器3-2的气体入口相连接;化工级三氯氧钒冷凝器3-2的液体出口通过管道与化工级三氯氧钒储罐3-3的进料口相连接;
高纯三氯氧钒储罐2-8的出料口通过管道与水解调氯反应釜4的三氯氧钒进料口相连接;水解调氯反应釜4的超纯水入口通过管道与超纯水总管相连接;水解调氯反应釜4的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;
水解调氯反应釜4的出料口通过管道与配加硫酸反应釜5的进料口相连接;配加硫酸反应釜5的硫酸入口通过管道与纯硫酸总管相连接;配加硫酸反应釜5的气体出口通过管道与尾气淋洗吸收器6的气体入口相连接;
尾气淋洗吸收器6的气体出口与排风机7的气体入口通过管道相连接。
本实施例利用上述系统制备高纯钒电池电解液,具体方法包括:工业级三氯氧钒由工业级三氯氧钒储罐1进入精馏塔2-2和蒸馏釜2-1后进行精馏操作,得到富含高沸点杂质的底流、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;高纯三氯氧钒蒸气经高纯三氯氧钒冷凝器3-7冷凝至液体后送入高纯三氯氧钒储罐2-8中;含硅三氯氧钒蒸气经馏出物冷凝器2-3冷凝至液体后,部分经回流液收集罐2-4回流至精馏塔2-2,其余部分送入含硅三氯氧钒储罐2-5中;含硅三氯氧钒储罐2-5中产生的乏气经酸封罐2-6后送入尾气淋洗吸收器6进行吸收处理;
含硅三氯氧钒储罐2-5中的含硅三氯氧钒液体和蒸馏釜2-1排出的底流进入中间产物蒸馏釜3-1中进行蒸馏操作,得到富含杂质的富钒废料用于后续回收钒,产生的三氯氧钒蒸气经化工级三氯氧钒冷凝器3-2冷凝至液体后送入化工级三氯氧钒储罐3-3中;
高纯三氯氧钒储罐2-8中的高纯三氯氧钒进入水解调氯反应釜4,与来自超纯水总管的超纯水进行水解反应,并产生含氯化氢和氯气的水解调氯尾气,所述 水解调氯尾气送入尾气淋洗吸收器6进行吸收处理;水解调氯产生的浆料进入配加硫酸反应釜5后,配加纯硫酸得到混酸体系的高纯钒电池电解液,产生酸雾气体送至尾气淋洗吸收器6进行吸收处理;尾气淋洗吸收器6碱液吸收处理后排出的气体经排风机7进行排空处理。
本实例使用的原料是纯度为95%的工业级三氯氧钒,电子级超纯水以及优级纯硫酸。
在精馏塔2-2内,精馏操作精馏段的塔板数5块,提馏段的塔板数10块,精馏操作的回流比15;在水解调氯反应釜4内,水解调氯过程的反应温度为40℃,反应时间为120min;在配加硫酸反应釜5内,配加硫酸的操作温度为90℃,反应时间30min的条件下,高纯三氯氧钒的纯度达99.993%(4N3);电解液氯离子浓度为6.0mol/L,钒离子浓度为2.5mol/L,经测试其能量密度为41Wh/L。
在精馏塔2-2内,精馏操作精馏段的塔板数10块,提馏段的塔板数20块,精馏操作的回流比15;在水解调氯反应釜4内,水解调氯过程的反应温度为80℃,反应时间为30min;在配加硫酸反应釜5内,配加硫酸的操作温度为60℃,反应时间120min的条件下,高纯三氯氧钒的纯度达99.999%(5N);电解液的氯离子浓度为5.8mol/L,钒离子浓度为2.4mol/L,经测试其能量密度为40Wh/L。
本发明未详细阐述部分属于本领域公知技术。
当然,本发明还可以有多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明的公开做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明的权利要求的保护范围。

Claims (6)

  1. 一种高纯钒电池电解液的制备系统,其特征在于,所述系统包括工业级三氯氧钒储罐(1)、精馏提纯装置(2)、中间产物蒸馏器(3)、水解调氯反应釜(4)、配加硫酸反应釜(5)、尾气淋洗吸收器(6)和排风机(7);
    所述精馏提纯装置(2)包括蒸馏釜(2-1)、精馏塔(2-2)、馏出物冷凝器(2-3)、回流液收集罐(2-4)、含硅三氯氧钒储罐(2-5)、酸封罐(2-6)、高纯三氯氧钒冷凝器(2-7)和高纯三氯氧钒储罐(2-8);
    所述中间产物蒸馏器(3)包括中间产物蒸馏釜(3-1)、化工级三氯氧钒冷凝器(3-2)和化工级三氯氧钒储罐(3-3);
    所述工业级三氯氧钒储罐(1)的出料口通过管道与所述精馏塔(2-2)的进料口相连接;所述蒸馏釜(2-1)的蒸气出口通过管道与所述精馏塔(2-2)的蒸气入口相连接;所述蒸馏釜(2-1)的回流口通过管道与所述精馏塔(2-2)底部的液体回流出口相连接;所述精馏塔(2-2)顶部的气体出口通过管道与所述馏出物冷凝器(2-3)的气体入口相连接;所述馏出物冷凝器(2-3)的液体出口通过管道与所述回流液收集罐(2-4)的液体入口相连接;所述回流液收集罐(2-4)的回流液体出口通过管道与所述精馏塔(2-2)顶部的回流液体入口相连接;所述回流液收集罐(2-4)的排料口与所述含硅三氯氧钒储罐(2-5)的入口通过管道相连接;所述含硅三氯氧钒储罐(2-5)的乏气出口通过管道与所述酸封罐(2-6)的气体入口相连接;所述酸封罐(2-6)的气体出口通过管道与所述尾气淋洗吸收器(6)的气体入口相连接;所述精馏塔(2-2)的精馏物出口通过管道与所述高纯三氯氧钒冷凝器(2-7)的气体入口相连接;所述高纯三氯氧钒冷凝器(2-7)的液体出口与所述高纯三氯氧钒储罐(2-8)的入口通过管道相连接;
    所述蒸馏釜(2-1)底部的底流出口和所述含硅三氯氧钒储罐(2-5)底部的液体出口均通过管道与中间产物蒸馏釜(3-1)的进料口相连接;所述中间产物蒸馏釜(3-1)的底部设置了废料排出口;所述中间产物蒸馏釜(3-1)的蒸气出口通过管道与所述化工级三氯氧钒冷凝器(3-2)的气体入口相连接;所述化工级三氯氧钒冷凝器(3-2)的液体出口通过管道与所述化工级三氯氧钒储罐(3-3)的进料口相连接;
    所述高纯三氯氧钒储罐(2-8)的出料口通过管道与所述水解调氯反应釜(4)的三氯氧钒进料口相连接;所述水解调氯反应釜(4)的超纯水入口通过管道与超纯水总管相连接;所述水解调氯反应釜(4)的气体出口通过管道与所述尾气 淋洗吸收器(6)的气体入口相连接;
    所述水解调氯反应釜(4)的出料口通过管道与所述配加硫酸反应釜(5)的进料口相连接;所述配加硫酸反应釜(5)的硫酸入口通过管道与纯硫酸总管相连接;所述配加硫酸反应釜(5)的气体出口通过管道与所述尾气淋洗吸收器(6)的气体入口相连接;
    所述尾气淋洗吸收器(6)的气体出口与所述排风机(7)的气体入口通过管道相连接。
  2. 一种基于权利要求1所述系统的高纯钒电池电解液的制备方法,包括以下步骤:
    工业级三氯氧钒由所述工业级三氯氧钒储罐(1)进入所述精馏塔(2-2)和所述蒸馏釜(2-1)后进行精馏操作,得到富含高沸点杂质的底流、富含低沸点杂质的含硅三氯氧钒蒸气和高纯三氯氧钒蒸气;高纯三氯氧钒蒸气经所述高纯三氯氧钒冷凝器(3-7)冷凝至液体后送入所述高纯三氯氧钒储罐(2-8)中;含硅三氯氧钒蒸气经所述馏出物冷凝器(2-3)冷凝至液体后,部分经回流液收集罐(2-4)回流至所述精馏塔(2-2),其余部分送入所述含硅三氯氧钒储罐(2-5)中;含硅三氯氧钒储罐(2-5)中产生的乏气经所述酸封罐(2-6)后送入所述尾气淋洗吸收器(6)进行吸收处理;
    所述含硅三氯氧钒储罐(2-5)中的含硅三氯氧钒液体和所述蒸馏釜(2-1)排出的底流进入所述中间产物蒸馏釜(3-1)中进行蒸馏操作,产生的三氯氧钒蒸气经化工级三氯氧钒冷凝器(3-2)冷凝至液体后送入所述化工级三氯氧钒储罐(3-3)中;
    所述高纯三氯氧钒储罐(2-8)中的高纯三氯氧钒进入所述水解调氯反应釜(4),与来自超纯水总管的超纯水进行水解反应,并产生含氯化氢和氯气的水解调氯尾气,所述水解调氯尾气送入所述尾气淋洗吸收器(6)进行吸收处理;水解调氯产生的浆料进入所述配加硫酸反应釜(5)后,配加纯硫酸得到混酸体系的高纯钒电池电解液,产生酸雾气体送至所述尾气淋洗吸收器(6)进行吸收处理;
    所述尾气淋洗吸收器(6)碱液吸收处理后排出的气体经所述排风机(7)进行排空处理。
  3. 根据权利要求2所述的高纯钒电池电解液制备方法,其特征在于,在所述精馏塔(2-2)内,所述精馏操作精馏段的塔板数为5~10块,提馏段的塔板 数为10~20块。
  4. 根据权利要求2所述的高纯钒电池电解液制备方法,其特征在于,所述精馏操作的回流比为15~40。
  5. 根据权利要求2所述的高纯钒电池电解液制备方法,其特征在于,在所述水解调氯反应釜(4)内,所述水解调氯过程的反应温度为40~80℃,反应时间为30~120min。
  6. 根据权利要求2所述的高纯钒电池电解液制备方法,其特征在于,所述配加硫酸的操作温度为60~90℃,反应时间30~120min。
PCT/CN2016/072523 2015-01-30 2016-01-28 一种高纯钒电池电解液的制备系统及方法 WO2016119721A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510052225.6A CN105990593B (zh) 2015-01-30 2015-01-30 一种高纯钒电池电解液的制备系统及方法
CN201510052225.6 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119721A1 true WO2016119721A1 (zh) 2016-08-04

Family

ID=56542448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072523 WO2016119721A1 (zh) 2015-01-30 2016-01-28 一种高纯钒电池电解液的制备系统及方法

Country Status (2)

Country Link
CN (1) CN105990593B (zh)
WO (1) WO2016119721A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858659A (zh) * 2018-08-24 2020-03-03 江苏泛宇能源有限公司 用于液流电池废气处理的方法以及液流电池系统
CN111854218A (zh) * 2020-08-18 2020-10-30 江苏江平新环境科技有限公司 船用氨水吸收式冷冻系统
CN112791687A (zh) * 2021-01-29 2021-05-14 中国科学技术大学 一种用于烯醇硅醚制备、分离和提纯的一体化装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108283915B (zh) * 2018-02-07 2020-09-29 四川星明能源环保科技有限公司 一种钒电解液反应装置及钒电解液生产系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110837A (zh) * 2011-01-30 2011-06-29 国网电力科学研究院武汉南瑞有限责任公司 一种全钒液流电池用电解液的制备方法
CN102354762A (zh) * 2011-09-30 2012-02-15 承德万利通实业集团有限公司 一种高纯度钒电池电解液的制备方法
CN103975463A (zh) * 2011-10-14 2014-08-06 迪亚能源公司 钒液流电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619465B (zh) * 2008-07-02 2010-12-22 中国科学院大连化学物理研究所 一种钒电池溶液的制备或容量调节的方法及其专用装置
US8852777B2 (en) * 2008-12-05 2014-10-07 Deeya Energy, Inc. Methods for the preparation and purification of electrolytes for redox flow batteries
CN202996970U (zh) * 2012-12-06 2013-06-12 中国科学院金属研究所 一种实用简便的钒电解液制备装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110837A (zh) * 2011-01-30 2011-06-29 国网电力科学研究院武汉南瑞有限责任公司 一种全钒液流电池用电解液的制备方法
CN102354762A (zh) * 2011-09-30 2012-02-15 承德万利通实业集团有限公司 一种高纯度钒电池电解液的制备方法
CN103975463A (zh) * 2011-10-14 2014-08-06 迪亚能源公司 钒液流电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858659A (zh) * 2018-08-24 2020-03-03 江苏泛宇能源有限公司 用于液流电池废气处理的方法以及液流电池系统
CN110858659B (zh) * 2018-08-24 2021-08-10 江苏泛宇能源有限公司 用于液流电池废气处理的方法以及液流电池系统
CN111854218A (zh) * 2020-08-18 2020-10-30 江苏江平新环境科技有限公司 船用氨水吸收式冷冻系统
CN112791687A (zh) * 2021-01-29 2021-05-14 中国科学技术大学 一种用于烯醇硅醚制备、分离和提纯的一体化装置

Also Published As

Publication number Publication date
CN105990593A (zh) 2016-10-05
CN105990593B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
CN103991847B (zh) 电子级氢氟酸制备方法
WO2016119721A1 (zh) 一种高纯钒电池电解液的制备系统及方法
WO2017128969A1 (zh) 一种生产3.5价高纯钒电解液的系统及方法
WO2021129404A1 (zh) 一种用于多晶硅制绒废酸液回收利用装置和方法
WO2017128965A1 (zh) 一种制备高活性全钒液流电池特定价态电解液的系统及方法
WO2017128966A9 (zh) 一种制备高纯钒电解液的系统及方法
CN103539132B (zh) 从钾长石气相吸收液中回收氟化铵的方法
CN108313983A (zh) 用于高纯氟化锂制备的氢氟酸纯化及配制方法
CN204588694U (zh) 一种电子工业用氢氟酸的生产系统
AU2017211613B2 (en) System and method for preparing vanadium battery high-purity electrolyte
WO2017128967A1 (zh) 一种生产高纯度高活性钒电解液的系统及方法
CN103466549B (zh) 一种高纯氯气精馏工艺及其设备
CN205953515U (zh) 一种乙炔清净废酸的再生系统
CN204412040U (zh) 一种组合式天然气净化厂低浓度酸气处理装置
CN216997672U (zh) 一种电子级氢氟酸制备过程中杂质砷的去除装置
CN111994881A (zh) 一种硫酸回收方法及系统
CN104291281B (zh) 一种制备超净高纯硝酸的方法
CN212356542U (zh) 一种nmst副产硫酸提浓设备
CN104310476B (zh) 一种制造硫酸氧钒的方法
CN216978731U (zh) 一种实用蒸馏水精准测量粒径装置
CN212655471U (zh) 一种硫酸回收系统
CN207877294U (zh) 一种制备邻甲苯胺产生废水的回收再利用系统
CN104528735B (zh) 一种提纯塔产出物的吸附提纯装置
CN105060249A (zh) 一种利用生产氯乙酸产生的尾气氯化氢制备精制盐酸的方法
CN109110762A (zh) Co的制备装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742783

Country of ref document: EP

Kind code of ref document: A1