WO2016119247A1 - 超声成像方法和系统 - Google Patents

超声成像方法和系统 Download PDF

Info

Publication number
WO2016119247A1
WO2016119247A1 PCT/CN2015/072022 CN2015072022W WO2016119247A1 WO 2016119247 A1 WO2016119247 A1 WO 2016119247A1 CN 2015072022 W CN2015072022 W CN 2015072022W WO 2016119247 A1 WO2016119247 A1 WO 2016119247A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
scanning
target
transmitting
ultrasonic propagation
Prior art date
Application number
PCT/CN2015/072022
Other languages
English (en)
French (fr)
Inventor
杜宜纲
樊睿
李勇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2015/072022 priority Critical patent/WO2016119247A1/zh
Priority to CN201580009361.5A priority patent/CN106061398B/zh
Publication of WO2016119247A1 publication Critical patent/WO2016119247A1/zh
Priority to US15/632,176 priority patent/US10976422B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8922Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being concentric or annular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8984Measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Definitions

  • the present invention relates to the field of medical ultrasound imaging, and more particularly to an ultrasound imaging method and system capable of obtaining a target point velocity vector.
  • a velocity vector of a moving target eg, moving tissue, blood or other fluid, etc.
  • the invention provides an ultrasound imaging method, which comprises:
  • Receiving an echo of the ultrasonic beam obtaining at least three sets of beam echo signals, each set of beam echo signals originating from an ultrasonic beam emitted in an ultrasonic propagation direction;
  • the ultrasound image and the velocity vector are displayed.
  • An ultrasound imaging method comprising:
  • each set of planar beam echo signals originating from a planar ultrasonic beam emitted in an ultrasonic propagation direction;
  • the ultrasound image and the velocity vector are displayed.
  • An ultrasound imaging system comprising:
  • a transmitting circuit for exciting the probe to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions
  • a receiving circuit and a beam combining module configured to receive an echo of the ultrasonic beam, to obtain at least three Group beam echo signals, each set of beam echo signals originating from an ultrasonic beam emitted along an ultrasonic propagation direction;
  • a data processing module configured to calculate, according to a set of beam echo signals of the at least three sets of beam echo signals, a velocity component of the target point in the scan target, and obtain at least the at least three sets of beam echo signals And obtaining, by the three velocity components, a velocity vector of the target point according to at least three velocity components, wherein at least three ultrasound propagations corresponding to at least three sets of beam echo signals for calculating the at least three velocity components are calculated
  • the direction is not in the same plane; the data processing module is further configured to acquire an ultrasound image of at least a portion of the scan target;
  • a display for displaying the ultrasound image and the velocity vector.
  • the target point can be approximated to the real velocity vector in the real three-dimensional space, and the velocity vector can be closer to the true flow velocity direction of the fluid in the three-dimensional space, and further, the velocity vector can be improved. Accuracy and real-time.
  • a planar ultrasonic beam or a focused ultrasonic beam can be used for imaging during imaging.
  • a planar ultrasonic beam is used to obtain a velocity vector, thereby taking advantage of the high frame rate of planar ultrasound beam imaging to meet the requirement of high frame rate when measuring fluid velocity with ultrasound imaging; a focused ultrasound beam can be used to obtain an ultrasound image of a scanned target, Therefore, the advantages of high-energy image quality of the echo image of the focused ultrasound beam imaging, good quality of the obtained ultrasound image, and high lateral resolution are utilized, so that a good image can be obtained for the user to observe.
  • FIG. 1 is a block diagram showing an ultrasonic imaging system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vertically emitted planar ultrasonic beam according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a deflected-emitting planar ultrasonic beam according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a focused ultrasonic beam according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing a diverging ultrasonic beam in an embodiment of the present invention.
  • FIG. 6(a) is a schematic diagram of a two-dimensional array probe element
  • FIG. 6(b) is a schematic diagram of a three-dimensional image scanning using a two-dimensional array probe along a certain ultrasonic propagation direction according to the present invention
  • FIG. 6(c) is a diagram. 6(b) sweep Schematic diagram of the measurement of the relative offset of the body;
  • FIG. 7 is a schematic flow chart of an embodiment of a method according to the present invention.
  • FIG. 8 is a schematic diagram showing spatial positions of respective scanning planes in a scanning space of an ultrasonic imaging method according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the space of a scanning body formed in a direction of ultrasonic propagation in Figure 8;
  • FIG. 10 is a schematic diagram showing a spatial superposition effect of forming three scanning bodies along three ultrasonic propagation directions according to an embodiment of the present invention
  • FIG. 11(a) is a schematic diagram showing the relationship between the array element distribution of the area array probe and the position of the array element in an embodiment of the present invention
  • FIG. 11(b) is a block diagram of the array element in the area array probe according to an embodiment of the present invention.
  • FIG. 11(c) is a schematic diagram of an array element block in a ring array probe according to an embodiment of the present invention
  • FIG. 11(d) is a schematic structural view of a probe in which an array element is anisotropically arranged according to an embodiment of the present invention;
  • FIG. 12 is a schematic diagram showing the spatial position of a scanning body obtained by using an array element block in one embodiment of the present invention.
  • Figure 13 is a schematic view showing the position of realizing three ultrasonic propagation direction scans in one embodiment of the present invention.
  • Figure 14 is a schematic view showing the position of realizing three ultrasonic propagation direction scans in one embodiment of the present invention.
  • Figure 15 is a schematic view showing the position of realizing three ultrasonic propagation direction scans in one embodiment of the present invention.
  • Figure 16 is a schematic view showing the position of realizing three ultrasonic propagation direction scans in one embodiment of the present invention.
  • Figure 17 is a schematic view showing the position of an embodiment for realizing four ultrasonic propagation direction scanning in one embodiment of the present invention.
  • Figure 18 is a schematic view showing the position of an embodiment of the present invention for realizing four ultrasonic propagation direction scanning
  • 19(a) and 19(b) are schematic diagrams showing a manner of transmitting a plurality of ultrasonic beams according to some embodiments of the present invention.
  • 20 is a schematic diagram of a transmission mode of implementing an ultrasonic beam emitted by four ultrasonic propagation directions according to the present invention
  • 21 is a schematic flow chart of an ultrasonic imaging method according to an embodiment of the present invention.
  • 22(a) to 22(e) are schematic diagrams showing a transmission mode of inserting a focused ultrasonic beam emission in a plurality of planar ultrasonic beams in some embodiments of the present invention
  • 23(a) and 23(b) are schematic diagrams showing a transmission mode of an alternately inserted focused ultrasonic beam emission in a plurality of planar ultrasonic beams in some embodiments of the present invention
  • Figure 24 is a schematic diagram showing the transmission mode of the inserted focused ultrasonic beam emitting process in an embodiment of the present invention for realizing four ultrasonic propagation directions to emit a planar ultrasonic beam;
  • 25(a) to 25(d) are schematic diagrams showing the transmission mode of inserting a focused ultrasonic beam emission based on the embodiment shown in Figs. 19(a) and 19(b).
  • the ultrasonic imaging system generally includes a probe 1, a transmitting circuit 2, a transmitting/receiving selection switch 3, a receiving circuit 4, a beam combining module 5, a signal processing module 6, an image processing module 7, and a display 8.
  • the transmitting circuit 2 transmits a delayed-focused transmission pulse having a certain amplitude and polarity to the probe 1 through the transmission/reception selection switch 3.
  • the probe 1 is excited by a transmitting pulse to emit ultrasonic waves to a scanning target (for example, a blood vessel existing in an organ, a tissue, or the like in a human body or an animal body, or other blood vessels in the living body, which are not shown in the drawing).
  • a scanning target for example, a blood vessel existing in an organ, a tissue, or the like in a human body or an animal body, or other blood vessels in the living body, which are not shown in the drawing.
  • the receiving circuit receives the electrical signals generated by the conversion of the probe 1 to obtain ultrasonic echo signals, and sends the ultrasonic echo signals to the beam combining module 5.
  • the beamforming module 5 performs processing such as focus delay, weighting, and channel summation on the ultrasonic echo signals, and then sends the ultrasonic echo signals to the signal processing module 6 for related signal processing.
  • the ultrasonic echo signals processed by the signal processing module 6 are sent to the image processing module 7.
  • the image processing module 7 performs different processing on the signals according to the different imaging modes required by the user, obtains image data of different modes, and then processes the waveforms by logarithmic compression, dynamic range adjustment, digital scanning transformation, and the like.
  • Ultrasound images into different modes such as B images, C images, D images, and so on.
  • the ultrasonic image generated by the image processing module 7 is sent to the display 8 for display.
  • Probe 1 typically includes an array of multiple array elements. Each time the ultrasound is transmitted, all of the array elements of the probe 1 or a portion of all of the array elements participate in the transmission of the ultrasonic waves. At this time, each of the array elements or each of the array elements participating in the ultrasonic transmission are respectively excited by the transmitting pulse and respectively emit ultrasonic waves, and the ultrasonic waves respectively emitted by the array elements are superimposed during the propagation, and the formation is transmitted to A synthetic ultrasonic beam of the scanning target, the direction of which is the ultrasonic propagation direction mentioned herein.
  • the array elements participating in the ultrasonic transmission may be excited by the transmitting pulse at the same time; or, there may be a certain delay between the time when the array elements participating in the ultrasonic transmission are excited by the transmitting pulse.
  • the propagation direction of the above-described synthetic ultrasonic beam can be changed by controlling the delay between the time at which the element participating in the transmission of the ultrasonic wave is excited by the emission pulse, which will be specifically described below.
  • the ultrasonic beams emitted by the respective array elements can be superimposed at predetermined positions, so that the intensity of the ultrasonic waves is maximum at the predetermined position, that is,
  • the ultrasonic waves emitted by the respective array elements are "focused" to the predetermined position, the predetermined position of the focus being referred to as the "focus", such that the resulting synthesized ultrasonic beam is a beam focused at the focus, referred to herein as " Focus on the ultrasound beam.”
  • Figure 4 is a schematic diagram of a focused focused ultrasound beam.
  • the array elements participating in the transmission of the ultrasonic waves in FIG.
  • the ultrasonic waves emitted by each element are focused at the focus to form a focused ultrasound beam.
  • the ultrasonic wave emitted by each element of the array element participating in the transmission of the ultrasonic wave is generated during the propagation process. Disperse, forming a generally divergent wave as a whole.
  • the ultrasonic wave of this divergent form is referred to as a "divergent ultrasonic beam.”
  • a plurality of array elements arranged linearly are simultaneously excited by an electric pulse signal, and each array element simultaneously emits ultrasonic waves, and the propagation direction of the synthesized ultrasonic beam is consistent with the normal direction of the array plane of the array elements.
  • the plane wave of the vertical emission at this time, there is no time delay between the respective array elements participating in the transmission of the ultrasonic wave (that is, there is no delay between the time when each array element is excited by the emission pulse), and each array element is The firing pulse is simultaneously excited.
  • the generated ultrasonic beam is a plane wave, that is, a plane ultrasonic beam, and the propagation direction of the plane ultrasonic beam is substantially perpendicular to the surface of the probe 1 from which the ultrasonic wave is emitted, that is, the propagation direction of the synthesized ultrasonic beam and the normal direction of the arrangement plane of the array element The angle between them is zero degrees.
  • the excitation pulse applied to each array element has a time delay, and each array element sequentially emits an ultrasonic beam according to the time delay, the propagation direction of the synthesized ultrasonic beam and the normal direction of the array element arrangement plane are With a certain angle, that is, the deflection angle of the combined beam, changing the above time delay, the magnitude of the deflection angle of the combined beam and the deflection in the normal direction of the array plane of the array element can be adjusted.
  • FIG. 3 shows a plane wave that is deflected and emitted.
  • the respective array elements participating in the transmission of the ultrasonic wave that is, there is a predetermined time delay between the time when each array element is excited by the transmitting pulse
  • the array elements are excited by the transmitted pulses in a predetermined order.
  • the generated ultrasonic beam is a plane wave, that is, a plane ultrasonic beam, and the propagation direction of the plane ultrasonic beam is at an angle to the normal direction of the array arrangement plane of the probe 1 (for example, the angle a in FIG. 3), and the angle is The angle of deflection of the ultrasonic beam of the plane.
  • the direction and the element of the combined beam can be adjusted by adjusting the delay between the time when the array element participating in the transmission of the ultrasonic wave is excited by the transmitted pulse.
  • the "deflection angle" of the combined beam formed between the normal directions of the planes, which may be the planar ultrasonic beam, the focused ultrasonic beam or the divergent ultrasonic beam mentioned above, and the like.
  • each area array probe is regarded as a plurality of array elements 112 arranged in two directions, which correspond to the area array probe.
  • Each array element is configured with a corresponding delay control line for adjusting the delay of each array element, and the sound beam can be sounded by changing the delay time of each array element during the process of transmitting and receiving the ultrasonic beam. Beam control and dynamic focusing, thereby changing the direction of the beam, enabling scanning of the beam in three-dimensional space to form a stereoscopic three-dimensional image database.
  • the array probe 1 includes a plurality of array elements 112.
  • the emitted ultrasonic beam can be made along the dotted line arrow F51.
  • the direction of the propagation, and the scanning body A1 for acquiring the three-dimensional image data (the three-dimensional structure drawn by the chain line in FIG. 6(b)) is formed in the three-dimensional space, and the scanning body A1 is relative to the reference body A2 (FIG. 6 (b)
  • the solid structure drawn by the solid line has a predetermined offset, where the reference body A2 is: the normal beam of the ultrasonic beam emitted by the array element participating in the ultrasonic wave is arranged along the plane of the array element (Fig.
  • the scanning body A2 that is propagated in the direction of the solid arrow F52) and formed in the three-dimensional space. It can be seen that the offset of the scanning body A1 relative to the reference body A2 is used to measure the deflection angle in a three-dimensional space of the scanning body formed by propagating in different ultrasonic propagation directions with respect to the reference body, and the offset can be adopted herein. The following two angles are used to combine the metrics: first, in the scanning body, the propagation direction of the ultrasonic beam on the scanning plane A21 formed by the ultrasonic beam (the quadrangle drawn by the dotted line in Fig.
  • the deflection angle ⁇ is selected in the range of [0, 90°); second, as shown in FIG. 6(c), in the plane rectangular coordinate system on the array element arrangement plane P1, from the X-axis inverse
  • the rotation angle ⁇ formed by the hour hand rotation to the line where the propagation direction of the ultrasonic beam is at the line of the projection P51 (the dotted line arrow in the plane P1 in Fig. 6(c)) on the array arrangement plane P1, the rotation angle ⁇ Select within the range [0,360°).
  • the deflection angle ⁇ is zero, the above-described scanning body A1 has an offset of zero with respect to the reference body A2.
  • the plane ultrasonic beam usually covers almost the entire imaging area of the probe 1, so when using planar ultrasound beam imaging, one frame of ultrasound image can be obtained in one shot (this frame of ultrasound image should be understood to include one frame of two-dimensional image data or one frame of three-dimensional image).
  • the image data the same below, so the imaging frame rate can be very high.
  • the frame rate is relatively low when imaging with a focused ultrasound beam.
  • the ability of the focused ultrasonic beam to emit each time is concentrated, and imaging is only performed at the concentration of the power, so that the obtained echo signal has a high signal-to-noise ratio and can be used to obtain a better quality ultrasonic image.
  • An actual velocity vector of a target point within a flow field eg, a point or location of interest within a scan target
  • a flow field eg, other fluids within the organism
  • the real velocity vector of the target point in the fluid field of the fluid within the scanning target is accurately tracked by transmitting the ultrasonic beam using a multi-ultrasonic propagation direction (explained specifically below) and used to display in the ultrasound image, where the ultrasound image may be a three-dimensional ultrasound image .
  • this paper makes full use of the advantages of high frame rate of planar ultrasonic beam imaging to meet the requirements of high frame rate when measuring fluid velocity with ultrasound imaging, in order to obtain more accurate and real-time velocity vector, and to use multiple ultrasound propagation direction to transmit.
  • the plane ultrasonic beam is used to make the velocity vector of the target point closer to the true direction and speed of the target point in the scanning target flow field, so as to be able to display the true velocity direction of the target point in the three-dimensional image or the two-dimensional image. size.
  • an embodiment of the present invention provides an ultrasonic imaging method, which specifically includes the following steps.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam toward the scanning target in at least three ultrasonic propagation directions.
  • each of the array elements in the probe 1 is configured with a corresponding delay line, and the probe is subjected to sound beam control and dynamic focusing by changing the delay time of each element in the probe 1 to obtain different ultrasonic propagation directions.
  • the ultrasonic beam here includes any one of a plane ultrasonic beam, a focused ultrasonic beam, a diverging ultrasonic beam, and the like, and in one embodiment of the present invention, the transmitting circuit 2 excites the probe 1 in at least three ultrasonic propagation directions.
  • the scanning target emits a plane ultrasonic beam.
  • the emission of the planar ultrasonic beam is taken as an example in FIG. 9 (but is not limited to only for flat Surface ultrasonic beam)
  • the transmitting circuit 2 excites the array element 112 participating in the transmitting ultrasonic beam in the probe 1 to emit a planar ultrasonic beam toward the scanning target 12 in one of the ultrasonic propagation directions (such as the pointing of the dotted line shown in FIG. 9)
  • a plurality of approximately parallel scanning planes 113 ie, the solid line quadrilateral 113 in FIG. 9) are formed, and the plurality of scanning planes 113 constitute a scanning body 11 to receive the scanning.
  • the echo returned by the body 11 obtains an ultrasonic beam echo signal, and a frame of planar beam echo image data can be obtained by processing to form a stereoscopic three-dimensional image database.
  • the one-frame planar beam echo image data includes one frame of stereoscopic three-dimensional image data, or can also be regarded as one frame of stereoscopic three-dimensional image data composed of a plurality of two-dimensional image data.
  • FIG. 8 it is a schematic diagram showing three scanning bodies formed in accordance with the process shown in FIG. 9 in three ultrasonic propagation directions.
  • the transmitting circuit 2 excites the laser beam in the probe 1 to participate in the emission of the ultrasonic beam.
  • the array element 4 emits an ultrasonic beam to the scanning target along three ultrasonic propagation directions, and the ultrasonic beam respectively forms three sets of approximately parallel scanning planes 24, 23, 25 when propagating in the space where the scanning target is located, and the three sets of approximately parallel scanning planes 24, 23, 25 respectively form three scanning bodies, receive the echoes returned by the three scanning bodies, obtain three sets of ultrasonic beam echo signals, and obtain three sets of plane beam echo image data through processing to form the same
  • the three sets of three-dimensional image data collected at a time can calculate the velocity vector of the target point in the scanning target according to the three sets of three-dimensional image data.
  • the array elements participating in the ultrasonic transmission in the probe 1 may be part or all, and the array elements participating in the ultrasonic reception may also be part or all.
  • the partial array elements 124 may be used to transmit the ultrasonic beam in the ultrasonic propagation direction 261.
  • the partial array element 123 is used to receive echoes of the ultrasonic waves in the direction 262.
  • some or all of the ultrasonic beam transmitting array elements are excited to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions, so that the ultrasonic beam is in the space where the scanning target is located.
  • Propagation is used to form at least three scanning bodies, each scanning body originating from an ultrasonic beam emitted in the direction of ultrasonic propagation.
  • some or all of the ultrasonic beam emitting elements in the excitation probe 1 respectively emit ultrasonic beams to the scanning target along three ultrasonic propagation directions to form three scanning bodies S1, S2, and S3, using three scanning bodies S1.
  • the data superimposed by the S2 and S3 echo signals calculates the velocity vector of the target point in the scan target 12.
  • the plurality of scanning bodies have a certain relative deflection in space, and the plurality of scanning bodies at least partially overlap.
  • some or all of the ultrasonic beam transmitting array elements are excited to emit a planar ultrasonic beam toward the scanning target along at least three ultrasonic propagation directions, so that the planar ultrasonic beam is in the space where the scanning target is located.
  • Propagation is used to form at least three scanning bodies, each scanning body originating from a planar ultrasonic beam that is emitted in the direction of ultrasonic propagation.
  • ultrasonic beam emitting array elements mentioned above include: part or all of the ultrasonic beam emitting array elements in the probe 1, or a part of a plurality of ultrasonic beam emitting array elements arranged in a plane in the probe 1 or All of the array elements, for example, some or all of the ultrasonic beam emitting array elements mentioned above may be array elements in a rectangular box area of the matrix area array probe (124 in FIG. 10 and FIG.
  • the annular array At least one circle of elements in the probe or array elements in at least one sector (fans are 111 as in Figure 11(c)), and so on.
  • some or all of the ultrasonic beam emitting array elements mentioned above are: part or all of the array elements in the rectangular square area of the matrix area array probe, or at least one circle element or at least one of the annular area array probes or at least Part or all of the array elements within a sector. The following is related to the understanding of some or all of the ultrasonic beam emitting elements.
  • the ultrasonic transmitting array element (a circle in the figure represents an array element) in the probe 1 is divided into a plurality of array element regions 111, and the excitation portion Or all of the array regions 111 emit ultrasonic beams toward the scanning target along at least three ultrasonic propagation directions, so that the ultrasonic beams propagate in the space in which the scanning target is located to form at least three scanning bodies.
  • Each of the array elements 111 has a predetermined delay control mode for controlling the emission delay of the ultrasonic beams of some or all of the ultrasonic transmitting elements in the array element area 111.
  • the ultrasonic echo may be received by some or all of the array regions 111, or the ultrasonic echo may be received by some or all of the ultrasonic transmitting elements of the array region 111.
  • This embodiment can be applied to the emission of the focused ultrasound beam, but is not limited to the emission only for focusing the ultrasound beam. As shown in FIG. 12, taking the emission of the focused ultrasonic beam as an example, each of the array elements 111 is used to generate at least one focused ultrasonic beam (an arc with an arrow in the figure), and then simultaneously generated in a plurality of array elements 111.
  • each real The line arrow indicates a focused ultrasonic beam
  • the scanning body 11 can also be regarded as being constituted by a plurality of scanning planes 113.
  • the ultrasonic transmitting array element in the probe 1 is divided into a plurality of array element regions, and some or all of the array element regions are excited to emit a focused ultrasonic beam toward the scanning target along at least three ultrasonic propagation directions.
  • the focused ultrasound beam is propagated within the space in which the scanning target is located to form at least three scanned bodies. Wherein each of the array elements generates at least one focused ultrasound beam.
  • a ring array type surface array probe as shown in FIG. 11(c) may be used, and thus, the division of the plurality of array element regions may be performed.
  • the face-array probe is evenly divided in the horizontal and vertical directions, or is divided into a plurality of sector-shaped regions in the circumferential direction as the above-described array element region 111 as shown in Fig. 11(c).
  • the probe mentioned in the present invention is not limited to the above-mentioned structure type, and an array probe in which a plurality of array elements are arranged in an irregular array may be used, and the division of the array element region 111 may be as shown in FIG.
  • the method is evenly divided according to the arrangement direction of the array elements or uniformly divided into a plurality of sector-shaped regions according to the circumferential direction, or divided into a plurality of concentric rings as the array element region 111 according to the radial direction, or divided into a plurality of arbitrary block shapes.
  • the array of elements in the probe 1 can be arranged in a plane of any shape, as shown in the heterostructure of the array of ultrasound elements 13 as shown in Fig. 11(d).
  • the array element area 111 therein may be a block element array of any shape including at least one array element.
  • the ultrasonic beams in at least three ultrasonic propagation directions emitted in the above step 100 are mainly for providing basic data for the calculation of the step 400, and the echoes of the ultrasonic beams along an ultrasonic propagation direction are used to calculate the target point along the A velocity component in the direction of propagation of the ultrasound, and in order to make the velocity vector of the target point obtained by the calculation of the present invention more realistic, and more realistically reflect the true blood flow velocity of the blood flow of the target point, in step 400 of the embodiment.
  • the velocity vector of the target point is calculated using at least three echoes of the ultrasonic beam emitted in the ultrasonic propagation direction. Specifically, using at least three velocity components in step 400 to calculate the velocity vector of the target point needs to satisfy the following constraints regarding the direction of ultrasonic propagation:
  • At least three ultrasonic propagation directions corresponding to at least three sets of beam echo signals for calculating the at least three velocity components are not in the same plane.
  • a frame of planar beam echo image data can be obtained by processing to form a two-dimensional image under the same slice.
  • Image data, a plurality of approximately parallel scanning planes 16 form a scanning body 11 (dashed cube in the figure), and all echo signals in the scanning body 11 are obtained, and image data under a plurality of sections can be obtained by processing to form Stereoscopic 3D image data.
  • FIG. 13 it is shown that three scanning planes formed when scanning the scanning space under three ultrasonic propagation directions are formed when the plane ultrasonic beam is emitted to the scanning target along the ultrasonic propagation direction F6 indicated by the solid arrow.
  • the scanning plane 16 forms a scanning plane 15 when a plane ultrasonic beam is emitted to the scanning target along the ultrasonic propagation direction F5 indicated by a two-dot chain arrow, and a plane ultrasonic beam is emitted to the scanning target along the ultrasonic propagation direction F4 indicated by the dotted arrow.
  • a scanning plane 14 is formed.
  • the scanning plane 15 and the scanning plane 16 are perpendicular to each other in FIG. 13, and the propagation directions of both are in the depth direction of the scanning space 11, and therefore, a plurality of approximately parallel scanning planes 15 and scanning planes 16 are formed.
  • the formed scanning bodies are all the ranges shown by the dotted cubes in the figure, which cover the same scanning range, and then use some or all of the ultrasonic transmitting array elements at the same position in the probe, or the same partial array element or all array elements.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions, so that the ultrasonic beam forms at least three in the space where the scanning target is located.
  • the scanning direction can also be performed along N (3 ⁇ N) ultrasonic propagation directions.
  • the ultrasonic beam is emitted, but in the subsequent step 400, when calculating the velocity vector of the above target point, only n velocity vector vectors are used for calculation at a time, where 3 ⁇ n ⁇ N. That is, in the above step 100, the ultrasonic beam may be emitted to the scanning target along at least three ultrasonic propagation directions, wherein adjacent at least three ultrasonic propagation directions are not in the same plane.
  • step 400 at least three groups of beams continuously received by the target point are respectively calculated according to a process of calculating a velocity component of the target point within the scanning target based on a set of beam echo signals of the at least three sets of beam echo signals.
  • a velocity component corresponding to at least three ultrasonic propagation directions corresponding to the echo signal is synthesized according to the velocity components in the at least three ultrasonic propagation directions to obtain a velocity vector of the target point.
  • the ultrasonic beam may be transmitted to the scanning target along N (3 ⁇ N) ultrasonic propagation directions, but in the subsequent step 400, When calculating the velocity vector of the above target point, the calculation is performed each time using N velocity division vectors. That is, in the above step 100, it may be that the ultrasonic beam is emitted to the scanning target along at least three ultrasonic propagation directions, wherein the at least three ultrasonic propagation directions are not in the same plane.
  • step 400 according to a process of calculating a velocity component of the target point in the scanning target based on a set of beam echo signals of the at least three sets of beam echo signals obtained by the receiving, respectively calculating a target point in the A velocity component along all of the ultrasonic propagation directions corresponding to at least three sets of beam echo signals is synthesized according to the velocity components in all the ultrasonic propagation directions to obtain a velocity vector of the target point.
  • each of the transmitting elements is provided with a mechanical driving control unit for driving the transmitting element to deflect the preset angle so that the ultrasonic wave
  • the normal direction of the exit direction with respect to the arrangement plane of the array elements has a predetermined deflection angle.
  • the ultrasonic propagation direction has spatial symmetry. It can also be understood that when the ultrasonic beam is emitted to the scanning target along different ultrasonic propagation directions, at least two ultrasonic propagation directions are symmetrically arranged with respect to the normal line of the array element arrangement plane, and/or relative A plane perpendicular to the plane in which the array elements are arranged is symmetrically disposed. For example, the deflection angles ⁇ of the synthesized ultrasonic beams are the same in the two ultrasonic propagation directions symmetrically disposed, and the projections of the two ultrasonic propagation directions on the array arrangement plane are relative to the array arrangement plane.
  • any one of the plane rectangular coordinate systems in the inner plane is symmetrically arranged with respect to the origin, for example, the difference (or the absolute value of the difference) of the rotational angle ⁇ of the synthetic ultrasonic beam is 180 degrees.
  • the deflection angle ⁇ and the rotation angle ⁇ are referred to the relevant definitions in the foregoing, and the same applies hereinafter.
  • FIG. 15 it is shown that three scanning bodies formed when scanning the scanning space in three ultrasonic propagation directions are formed by emitting an ultrasonic beam to the scanning target along the ultrasonic propagation direction F8 indicated by the solid arrow.
  • the scanning plane in the scanning body is a solid quadrilateral 18, and the scanning plane formed in the scanning body formed when the ultrasonic beam is emitted to the scanning target along the ultrasonic propagation direction F9 indicated by the one-dot chain arrow is a one-dot chain quadrilateral 19, along the double point
  • the scanning plane formed in the scanning body formed when the ultrasonic propagation direction F2 indicated by the scribe arrow is emitted to the scanning target once is a two-dot chain quadrilateral 12.
  • the ultrasonic propagation directions F2 and F9 are symmetrically arranged with respect to the normal line of the array element arrangement plane, or symmetrically arranged with respect to the plane perpendicular to the array element arrangement plane, which can be specifically understood as: symmetrically arranged ultrasonic propagation direction F2 and
  • the deflection angle ⁇ of the synthetic ultrasonic beam on F9 is the same, and the difference (or the absolute value of the difference) of the rotational angle ⁇ is 180 degrees.
  • four scanning bodies formed when scanning a scanning space scan in four ultrasonic propagation directions are given, which is increased on the basis of FIG. 15, and the ultrasonic propagation direction F10 indicated by the dotted arrow arrow is scanned toward the scanning target.
  • the scanning plane formed in the scanning body formed when the ultrasonic beam is emitted once is a dotted quadrilateral 10.
  • the ultrasonic propagation directions F2 and F9 and F8 and F10 are symmetrically arranged with respect to the normal line of the array element arrangement plane, and can be specifically understood as: symmetrically arranged ultrasonic propagation directions F2 and F9 and synthetic ultrasonic beams on F8 and F10.
  • the deflection angle ⁇ is the same, and the difference between the rotation angles ⁇ (or the absolute value of the difference) is 180 degrees.
  • four scanning bodies formed when scanning a scanning space scan in four ultrasonic propagation directions are given, which is increased on the basis of FIG.
  • the scanning plane formed in the scanning body formed when the ultrasonic beam is emitted once is a dotted quadrilateral 21, wherein the ultrasonic propagation directions F2 and F9 are symmetrically arranged with respect to the normal line of the array element array, and F8 and F21 are opposite.
  • a plane symmetrically perpendicular to the plane in which the array elements are arranged can be specifically understood as: the two ultrasonic propagation directions F8 and F21 are symmetrically arranged, and the deflection angles ⁇ of the synthetic ultrasonic beams are the same, and the projections of F8 and F21 on the array arrangement plane are relative to Any straight line symmetry setting of the origin in the Cartesian coordinate system.
  • each pair of ultrasonic propagation directions is symmetrically disposed with respect to a normal line of the array element arrangement plane, and/or symmetrically with respect to a plane perpendicular to the array element arrangement plane.
  • the ultrasonic propagation direction when the number of ultrasonic propagation directions is an even number, the ultrasonic propagation direction is located on a rotating surface centered on the normal line of the array element, and the ultrasonic propagation direction is at the center.
  • the shafts are symmetrically arranged in pairs, as shown in Figure 18.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target along four ultrasonic propagation directions, and the four ultrasonic propagation directions are opposite to each other perpendicular to the plane of the array element.
  • the plane is symmetrically set as shown in Figure 18.
  • the deflection angles ⁇ of the synthesized ultrasonic beams in different ultrasonic propagation directions are the same, and the projections of the ultrasonic propagation directions on the array arrangement plane are opposite to the plane rectangular coordinate system. Any one of the straight line symmetry settings of the origin. For example, the difference between the rotation angles ⁇ between the two (or the absolute value of the difference) is 180 degrees.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target along three ultrasonic propagation directions, and the three ultrasonic propagation directions are 60 degrees two by two. Angle.
  • an array probe in which a plurality of array elements are arranged in a matrix as shown in FIG. 11(a), or a plurality of array elements 124 arranged in a matrix, wherein the array probe or the emitter array region 124 are It can be seen that it is composed of a plurality of sets of linear array array elements, and wherein the linear array array elements can be regarded as being arranged in a plurality of directions, as shown in FIG. 11(a), the plurality of sets of linear array array elements 131 can be regarded as follows.
  • the Y direction is arranged to form an area array probe or a transmission array element area 124.
  • a plurality of sets of linear array array elements 132 are arranged in the X direction to form an area array probe or a transmission array element area 124, and can also be regarded as multiple sets of linear array arrays.
  • the tuples 133 are arranged in the Z direction to form an area array probe or a transmission array element area 124.
  • a plurality of sets of linear array array elements 134 are arranged in the W direction to form an area array probe or a transmission array element area 124, and the like.
  • the process of exciting some or all of the ultrasonic transmitting array elements to transmit the ultrasonic beam to the scanning target along at least three ultrasonic propagation directions includes the following schemes:
  • delay control is performed on a plurality of sets of linear array array elements in some or all of the ultrasonic transmitting array elements in at least three directions, so that the plurality of sets of linear array array elements are excited in one direction and a plurality of sets of linear arrays
  • the array of elements is sequentially excited to emit ultrasonic beams in at least two directions, so that the ultrasonic beams will propagate in at least three ultrasonic propagation directions in the space in which the scanning target is located, and respectively form at least three scanning bodies, wherein, the plurality of sets of linearities respectively When the array element groups are sequentially excited to emit ultrasonic beams in the same direction, a scanning body is formed. At this point, each array element in each set of linear array array elements can be simultaneously fired. As shown in FIG.
  • Quadrilateral 15 delay control of the plurality of sets of linear array elements 131 in the Y direction, so that the plurality of sets of linear array elements 131 are simultaneously excited in the X direction to generate an ultrasonic beam along the ultrasonic propagation direction F6 indicated by the solid arrow , that is, the delay time in the X direction is zero, and the scanning plane formed by the ultrasonic beam propagating in the three-dimensional space is a solid quadrilateral 16; delay control is performed on the plurality of sets of linear array array elements 133 along the Z direction, The plurality of sets of linear array array elements 133 are sequentially excited in the Z direction to generate an ultrasonic beam emitted in the ultrasonic propagation direction F21 indicated by the dotted arrow, and the ultrasonic beam is propagated in the three-dimensional space.
  • Body scanning plane 21 as a dashed quadrangle.
  • delay control is performed on a plurality of sets of linear array array elements in part or all of the ultrasonic transmission array elements in at least three directions, so that the plurality of sets of linear array array elements are sequentially excited and emitted in at least three directions.
  • the ultrasonic beam so that the ultrasonic beam will propagate in at least three ultrasonic propagation directions in the space in which the scanning target is located and respectively form at least three scanning bodies, wherein the plurality of sets of linear array array elements are sequentially excited to emit the ultrasonic beam in the same direction
  • a scanning body is formed.
  • each array element in each set of linear array array elements can be simultaneously fired.
  • the actual use of Figure 18 The line quadrilateral 18 replaces the solid line quadrilateral 16 in FIG.
  • the first one is a special case of the second scheme, that is, a delay control strategy with a delay time of zero for a plurality of sets of linear array elements in some or all of the ultrasonic transmitting elements in one direction.
  • a delay control strategy may be employed, each of which delays the deflection angle ⁇ of the ultrasonic beam and the corresponding angle of rotation after the plurality of sets of linear array elements are sequentially excited according to a predetermined delay time.
  • has a corresponding predetermined angle. It is also possible to use more than one delay control strategy when delay control is performed on a plurality of sets of linear array elements in some or all of the ultrasonic transmitting elements along each direction.
  • the ultrasonic beam is propagated along an ultrasonic propagation direction to form a corresponding scanning body.
  • the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body and the corresponding rotational angle ⁇ have a predetermined angle.
  • a plurality of linear array array elements 131 are delayed in the Y direction.
  • the plurality of sets of linear array array elements 131 are sequentially excited in the Y direction to generate an ultrasonic beam emitted in the ultrasonic propagation direction F8 indicated by the solid arrow, and the scanning plane formed by the ultrasonic beam propagating in the three-dimensional space is a solid quadrilateral 18; performing delay control on the plurality of sets of linear array arrays 132 in the X direction according to the first delay control strategy, so that the plurality of sets of linear array arrays 132 are sequentially excited in the X direction to generate arrows along the double dotted line.
  • the ultrasonic propagation direction F2 emits an ultrasonic beam, and the scanning plane formed by the ultrasonic beam propagating in a three-dimensional space is a double-dotted line quadrilateral 12, and a double-dotted line quadrilateral 12 is synthesized ultrasonically.
  • the deflection angle ⁇ of the beam is X1 degrees, and the corresponding rotation angle ⁇ is 180 degrees.
  • the plurality of sets of linear array arrays 132 are delayed in the X direction according to the second delay control strategy, so that the plurality of sets of linear array elements 132 are sequentially excited in the X direction to generate the arrows indicated by the one-dot chain arrows.
  • the ultrasonic wave propagation direction F9 emits an ultrasonic beam
  • the scanning plane formed by the ultrasonic beam propagating in a three-dimensional space is a one-dot chain quadrilateral 19
  • the deflection angle ⁇ of the synthesized ultrasonic beam in the one-dot chain quadrilateral 19 is X1 degree, correspondingly
  • the angle of rotation ⁇ is 0 degrees, of course, the deflection angle ⁇ here may not be equal to X1.
  • the scanning plane formed by the ultrasonic beam propagating in three-dimensional space is a dotted quadrilateral 21.
  • a third implementation scheme is also provided, namely Delaying control of a plurality of sets of linear array array elements in some or all of the ultrasonic transmitting array elements in two directions, and delay control according to at least two delay control strategies in at least one direction
  • the plurality of sets of linear array elements are sequentially excited to emit ultrasonic beams in each direction according to a corresponding delay control strategy, and the ultrasonic beams will propagate in an ultrasonic propagation direction in the space in which the scanning target is located and form a scanning body.
  • each array element in each set of linear array array elements can be simultaneously fired.
  • three scanning bodies formed by scanning spatial scanning imaging in three ultrasonic propagation directions are given, wherein some delay control strategies of multiple sets of linear array array elements 132 are extended along the X direction.
  • the time control is such that the plurality of sets of linear array array elements 132 are sequentially excited in the X direction to generate an ultrasonic beam emitted in the ultrasonic propagation direction F5 indicated by the double-dotted line arrow, and the ultrasonic beam is scanned in the scanning body formed by the three-dimensional space.
  • the plane is a double-dotted line quadrilateral 15, and the deflection angle ⁇ of the synthesized ultrasonic beam in the double-dotted line quadrilateral 15 is selected in the range of (0, 90 degrees), and the corresponding rotation angle ⁇ is 180 degrees;
  • the linear array array element group 131 performs delay control according to the first delay control strategy, so that the plurality of sets of linear array array elements 131 are simultaneously excited in the Y direction to generate an ultrasonic beam along the ultrasonic propagation direction F6 indicated by the solid arrow. That is, the delay time in the Y direction is zero, and the ultrasonic beam is scanned in the scanning body formed by the three-dimensional space.
  • the plane is a solid quadrilateral 16, in which the deflection angle ⁇ of the synthesized ultrasonic beam is 0 degree, and the corresponding rotation angle ⁇ is 0 degrees; and the plurality of sets of linear array elements 131 in the Y direction are according to the second extension
  • the time control algorithm performs delay control, so that the plurality of sets of linear array arrays 131 are sequentially excited in the Y direction to generate an ultrasonic beam emitted in the ultrasonic propagation direction F4 indicated by the dotted arrow, and the ultrasonic beam is propagated in the three-dimensional space.
  • the middle scanning plane is a dotted quadrilateral 14, and the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body is selected within a range of (0, 90 degrees), and the corresponding rotation angle ⁇ is 270 degrees.
  • three scanning bodies formed during scanning of the scanning space in three ultrasonic propagation directions are given, and a plurality of sets of linear array array elements 131 are controlled in the Y direction to make a delay control.
  • the plurality of sets of linear array array elements 131 are sequentially excited in the Y direction to generate an ultrasonic beam emitted in the ultrasonic propagation direction F8 indicated by the solid arrow, and the scanning plane formed by the ultrasonic beam propagating in the three-dimensional space is a solid quadrilateral 18
  • the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body is selected within a range of (0, 90 degrees), and the corresponding rotation angle ⁇ is 270 degrees; the plurality of sets of linear array array elements 132 are first according to the X direction.
  • the delay control strategy performs delay control such that the plurality of sets of linear array elements 132 are sequentially excited in the X direction to generate an ultrasonic beam in the ultrasonic propagation direction F2 indicated by the double-dotted line arrow, and the ultrasonic beam propagates in the three-dimensional space.
  • the scanning plane in the formed scanning body is a two-dot chain quadrangle 12, and the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body is selected within a range of (0, 90 degrees), and the corresponding rotation angle ⁇ is 180 degrees.
  • the plurality of sets of linear array arrays 132 are delayed in the X direction according to the second delay control strategy, so that the plurality of sets of linear array elements 132 are sequentially excited in the X direction to generate the arrows indicated by the one-dot chain arrows.
  • the ultrasonic wave propagation direction F9 emits an ultrasonic beam
  • the scanning plane formed by the ultrasonic beam propagating in a three-dimensional space is a one-dot chain quadrilateral 19
  • the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body is (0, 90 degrees).
  • the corresponding rotation angle ⁇ is 0 degrees.
  • the delay control of the plurality of sets of linear array array elements 131 in the Y direction is further increased, so that the plurality of sets of linear array array elements 131 are sequentially excited along the Y direction to generate edges.
  • the ultrasonic wave direction F10 indicated by the dotted arrow emits an ultrasonic beam, and the scanning plane formed by the ultrasonic beam propagating in a three-dimensional space is a dotted quadrilateral 10, and the deflection angle ⁇ of the synthesized ultrasonic beam in the scanning body is (0, 90) Within the range of degrees, the corresponding angle of rotation ⁇ is 90 degrees.
  • each direction is delayed in accordance with two delay control strategies, and the two delay control strategies are used to implement two ultrasounds.
  • the ultrasonic wave emitting process in which the deflection angle ⁇ of the synthesized ultrasonic beam is the same in the propagation direction and the difference between the corresponding rotation angles ⁇ is 180 degrees.
  • the transmitted ultrasonic beam adopting the above symmetric arrangement manner can obtain the three-dimensional flow field information of the region where the target point is located with the minimum emission space direction, and further, the scanning planes have symmetry in the scanning mode, so that the ultrasonic beam is emitted along each ultrasonic propagation direction. Obtaining the error of the echo signal is consistent, which facilitates the subsequent uniform error compensation processing of the echo signal, thereby improving the accuracy of signal acquisition and improving the accuracy of speed vector tracking of the target point.
  • each set of linear array elements shares a delay line.
  • the above embodiment employs a matrix array of array probes, and the X and Y directions respectively indicate the longitudinal and lateral directions of the area array probe. Therefore, the above-mentioned delay control of a plurality of sets of linear array array elements in some or all of the ultrasonic transmission array elements in each of the two directions is performed, and there are at least one direction in which delay control is performed according to at least two delay control strategies respectively.
  • the process specifically includes:
  • At least one delay control strategy performs delay control.
  • Step 100 taking the plane ultrasonic beam as an example, the above Step 100 can be specifically:
  • the beam is used to form at least two scanning bodies in the space in which the scanning target 12 is located; wherein all the scanning bodies partially overlap.
  • the row linear array array of some or all of the ultrasonic transmitting array elements is subjected to delay control according to at least two delay control strategies, so that all the column linear array array elements can emit at least two deflection angles.
  • Planar ultrasonic beam for forming at least two scanning bodies in a space in which the scanning target 12 is located; and linearly arraying array elements in a part or all of the ultrasonic transmitting elements in the lateral direction are extended according to at least one delay control strategy
  • the time control is such that all of the row linear array elements can emit a planar ultrasonic beam having at least one deflection angle for forming at least one scanning body in the space in which the scanning target 12 is located; wherein all the scanning bodies partially overlap.
  • the deflection angle here refers to the above-mentioned deflection angle ⁇ of the ultrasonic propagation direction in the scanning plane with respect to the normal of the array element arrangement plane.
  • deflection angle
  • it is not limited to the use of a planar ultrasonic beam, and various embodiments such as a diverging ultrasonic beam or a focused ultrasonic beam may be employed in the above embodiments.
  • the shape of the array arrangement plane of the ultrasonic probe 1 is not limited in the above various embodiments, for example, the ring array array probe shown in FIG. 11(c) can be regarded as being arranged in the radial direction.
  • the group of linear array array elements 115 is constructed, and it may be considered to perform delay control on the plurality of sets of linear array array elements in a clockwise or counterclockwise direction according to different delay control strategies, and so on.
  • the above-mentioned linear array array of elements is not limited to only the array of array elements arranged in a line, but also includes an array of array elements arranged in an arc or a circle, such as the ring array shown in FIG. 11(c).
  • some or all of the ultrasonic transmitting elements are arranged in different directions.
  • a plurality of sets of linear array array elements 115 in part or all of the ultrasonic transmission array elements are circumferentially oriented, or some or all of the ultrasonic waves are radially arranged.
  • the plurality of sets of linear array elements 116 in the transmit array element are subjected to delay control.
  • the steps in the above embodiments do not limit the order thereof.
  • the ultrasonic beam is emitted to the scanning target along the plurality of ultrasonic propagation directions.
  • the process of transmitting an ultrasonic beam to a scanning target along a certain ultrasonic propagation direction to obtain a scanning body is called a first emission process, and a process of transmitting an ultrasonic beam to a scanning target along a certain ultrasonic propagation direction to obtain a corresponding scanning body is called
  • the first transmitting step therefore, includes the plurality of first transmitting processes in at least three ultrasonic propagation directions, respectively, in the above step 100.
  • the first transmitting process in each of the ultrasonic propagation directions includes performing at least two first transmitting steps, that is, performing at least along each ultrasonic propagation direction.
  • each set of beam echo signals includes at least two beam echo signals, each beam echo signal originating from an echo obtained by performing the first transmitting step once in an ultrasonic propagation direction.
  • the process of delay-controlling a plurality of sets of linear array elements in a part or all of the ultrasonic transmitting array elements in a direction according to a delay control strategy to obtain a scanned body is regarded as the first a process of transmitting; in a direction, a plurality of sets of linear array elements in a part or all of the ultrasonic transmitting array elements are subjected to a delay control according to a delay control strategy, and a process of obtaining a corresponding scanning body is regarded as the first a transmitting step of performing a plurality of sets of linear array elements in a part or all of the ultrasonic transmitting elements in one direction, according to the first transmitting process in each ultrasonic propagation direction, comprising performing at least two first transmitting steps
  • the delay control strategy performs delay control and the process of obtaining the corresponding scanned body, including the step of transmitting the ultrasonic beam to the scanning target at least twice.
  • the ultrasound is alternately transmitted to the scanning target in accordance with the different directions of ultrasonic propagation described above. bundle.
  • the first transmitting process of transmitting the ultrasonic beam to the scanning target along a certain ultrasonic propagation direction includes a plurality of first transmitting steps, and the first transmitting step is alternately performed according to the difference in the ultrasonic propagation direction.
  • A1 indicates the propagation along the first ultrasound Performing a first transmission step once;
  • A2 means performing a first transmission step in the second ultrasonic propagation direction;
  • A3 means performing a first transmission step in the third ultrasonic propagation direction; and performing an ultrasonic propagation direction from left to right in the execution sequence
  • the first different steps are performed alternately. It can also be understood that the first step is performed once in different ultrasonic propagation directions in sequence to form a repeating unit, and the repeating unit is repeatedly executed.
  • A1 is shown as performing a first transmitting step in the ultrasonic propagation direction F2 (double-dotted line arrow in Fig. 15);
  • A2 is shown in the ultrasonic propagation direction F8 (solid arrow in Fig.
  • the ultrasonic beam is alternately emitted to the scanning target in accordance with the above-described ultrasonic propagation direction, and at least two first transmitting steps are continuously performed in each ultrasonic propagation direction.
  • 19(a) shows that the second first emission step is performed along the first ultrasonic propagation direction; A2 indicates that the second first emission step is performed along the second ultrasonic propagation direction; and A3 indicates that the second ultrasonic propagation direction is performed twice.
  • a transmitting step while for A1, A2 and A3, alternately according to the direction of propagation of the ultrasound.
  • A1 indicates that the first transmitting step is performed twice in the ultrasonic propagation direction F5 (the two-dot chain line arrow in Fig. 14); A2 indicates that the ultrasonic propagation direction F4 (the dotted arrow in Fig. 14) is continuous. Performing 2 times of the first transmitting step; A3 is shown as performing the first transmitting step twice in the ultrasonic propagation direction F6 (the solid arrow in FIG. 14), and repeating the execution in the order of the ultrasonic propagation from the left to the right execution sequence F5, F4, and F6 respectively perform the process of the first transmission step twice.
  • FIG. 19(a) can also be regarded as a repetitive execution unit, and the above step 100 includes a process of repeatedly performing the repetitive execution unit, and each of the repetitive execution units includes two consecutive executions in three ultrasonic propagation directions. The process of a launch step.
  • the emission of two adjacent ultrasonic beams is respectively along two different ultrasonic propagation directions, as shown in FIGS. 20 and 19(b).
  • B1, B2, B3, and B4 represent processes in which the first transmitting step is performed once in the four ultrasonic propagation directions, respectively, and the respective first transmitting steps are alternately performed in the execution order from left to right in accordance with the difference in the ultrasonic propagation direction.
  • B1 represents a first transmitting step in the ultrasonic propagation direction F2 (double-dotted line arrow in Fig. 17);
  • the sound propagation direction F8 solid arrow in Fig.
  • B3 indicates that the first emission step is performed in the ultrasonic propagation direction F9 (dotted line arrow in Fig. 17);
  • B4 indicates the ultrasonic propagation direction F10 ( A dashed arrow in FIG. 17 performs a first transmitting step, and performs a first transmitting step in the ultrasonic propagation directions F2, F8, F9, and F10, respectively, to form a repeating unit, and then repeats the process in the repeating unit.
  • the above embodiment adopts a matrix array array probe, and the plurality of sets of linear or partial ultrasonic emission elements are linearly oriented in two directions.
  • the process of performing delay control on the array element tuple and having delay control according to at least two delay control strategies in at least one direction specifically includes repeatedly performing the following steps:
  • the linear array element groups in some or all of the ultrasonic transmitting array elements are longitudinally controlled in accordance with the first delay control strategy, so that all the column linear array elements can emit a composite with the first deflection angle.
  • the column linear array array elements in some or all of the ultrasonic transmitting array elements are laterally controlled in accordance with the third delay control strategy, so that all the linear array array elements can emit the synthesized ultrasonic waves having the second deflection angle.
  • the linear array array elements in some or all of the ultrasonic emission array elements are longitudinally controlled in accordance with the second delay control strategy, so that all the column linear array elements can emit a synthesis with a third deflection angle.
  • the ultrasonic beam is configured to form at least one third scanning body in a space in which the scanning target 12 is located.
  • the above embodiment realizes three directions of propagation in the ultrasonic propagation direction. Further, in order to realize the symmetrical transmission process, the first delay control strategy and the second delay control strategy are used to realize the deflection angle of the synthesized ultrasonic beam. The difference between the same and corresponding rotation angles ⁇ is 180 degrees.
  • the repeatedly performing process of the foregoing embodiment further includes:
  • the fourth delay control strategy Performing delay control on the column linear array array elements in part or all of the ultrasonic transmitting array elements in the lateral direction according to the fourth delay control strategy, so that all the linear array array elements can emit the synthesized ultrasonic beam having the fourth deflection angle. And forming at least one fourth scanning body in the space where the scanning target 12 is located.
  • four ultrasonic propagation directions are implemented, and further, in order to realize the symmetric transmission process, the third delay control strategy and the fourth delay control strategy are also used to realize the deflection angle of the synthesized ultrasonic beam.
  • the difference between ⁇ and the corresponding rotation angle ⁇ is 180 degrees.
  • the first scanning body is constituted by the scanning plane 18, the second scanning body is constituted by the scanning plane 12, the third scanning body is constituted by the scanning plane 10, and the fourth scanning body is constituted by the scanning plane 19.
  • step 200 the receiving circuit 3 and the beam combining module 4 receive the echo of the ultrasonic beam emitted in the above step 100, and obtain at least three sets of beam echo signals, each group of beam echo signals originating from transmitting in an ultrasonic propagation direction.
  • Ultrasonic beam Specifically, a first transmitting step of transmitting an ultrasonic beam to the scanning target at least twice is performed along each ultrasonic propagation direction, and a beam echo signal is acquired once for each performing the first transmitting step, and correspondingly, each group of beam echo signals includes At least two beam echo signals, each beam echo signal originating from an echo obtained by performing the first transmitting step once in an ultrasonic propagation direction.
  • a frame of ultrasound image can be obtained by processing at least one beam echo signal, which should be understood as a three-dimensional image of one frame or a three-dimensional image composed of a combination of multi-frame two-dimensional images. For example, transmitting an ultrasonic beam to a scanning target along an ultrasonic propagation direction to cause the ultrasonic beam to propagate in a space in which the scanning target is located to form a scanning body, and receiving an echo of the ultrasonic beam obtained by using the scanning body, corresponding to Receive a set of beam echo signals.
  • each beam echo signal needs at least two beam echo signals.
  • step 100 is to transmit a planar ultrasonic beam to the scanning target along at least three ultrasonic propagation directions; and step 200 is to receive an echo of the planar ultrasonic beam to obtain at least three groups.
  • Planar beam echo signals each set of planar beam echo signals originating from a planar ultrasonic beam that is emitted along an ultrasonic propagation direction.
  • the ultrasonic beam is emitted in a direction indicated by a chain line arrow 261, and a corresponding echo is received in a direction indicated by a chain line arrow 262 to obtain a beam echo signal, which is also shown in FIG.
  • the direction of the dotted line arrow 261 is shown to receive the corresponding echo, and the beam echo signal is obtained.
  • step 200 of the present invention it should be understood that the echoes originating from the ultrasonic beam emitted in the above step 100 are received from any direction to obtain a corresponding beam echo signal.
  • step 300 the data processing module 9 calculates a velocity component of the target point within the scan target based on a set of beam echo signals of the at least three sets of beam echo signals. Since the frame rate of the planar ultrasonic beam is fast and the velocity component can be obtained in real time, the velocity component can be calculated using the planar ultrasonic beam echo signal.
  • step 300 is based on a set of planar beam echo signals. Calculating a velocity component of the target point, and acquiring at least three of the velocity components according to the at least three sets of planar beam echo signals. A velocity component in the direction of ultrasonic propagation can be calculated from each set of beam echo signals.
  • a plurality of methods may be used to obtain a velocity component of the target point from the obtained multiple beam echo signals.
  • each set of planar beam echo signals including at least two planar beam echo signals, each plane beam echo signal originating An echo obtained by performing a first transmitting step in the direction of ultrasonic propagation.
  • the following method can be used to calculate the velocity component along a direction of ultrasonic propagation.
  • one frame of ultrasound image data should be understood as one frame of three-dimensional image data, or multi-frame two-dimensional image data
  • the three-dimensional image data is composed, and the set of beam echo signals is derived from an ultrasonic beam emitted in a direction of ultrasonic propagation; the two frames of ultrasonic image data herein may adopt two adjacent frames of ultrasonic image data.
  • the target point along the first time along a super The velocity component in the direction of sound propagation For example, generally, in ultrasonic imaging, Doppler processing is performed on the ultrasonic echo signal using the Doppler principle, and the moving speed of the scanning target or the moving portion therein can be obtained. For example, after the ultrasonic echo signal is obtained, the motion velocity of the scanning target or the moving portion therein can be obtained from the ultrasonic echo signal by the autocorrelation estimation method or the cross-correlation estimation method.
  • a method of performing Doppler processing on an ultrasonic echo signal to obtain a moving speed of a scanning target or a moving portion therein is used to calculate a velocity component from a set of beam echo signals.
  • the specific method is as follows.
  • the ultrasound beam is continuously transmitted multiple times in the same spatial direction for the scanning target; the echo of the ultrasonic beam corresponding to the spatial direction is received multiple times, and multiple beam echo signals are obtained, each time beam return
  • Each value in the wave signal corresponds to a value at a target point when scanning in an ultrasonic propagation direction; thus, the multiple beam echo signals are first Hilbert transformed along the ultrasonic propagation direction, respectively, Multiple sets of image data of values on the target point; after N times of transmission and reception, there are N complex values along the time at each target point position, and then the target point z is calculated according to the following two formulas.
  • the speed of the direction of propagation :
  • Vz is the calculated velocity value along the direction of ultrasonic propagation
  • c is the speed of sound
  • f0 is the center frequency of the probe
  • Tprf is the time interval between two transmitted ultrasound beams
  • N is the number of times of transmission
  • j is the imaginary unit.
  • x(i) is the real part of the ith emission
  • y(i) is the imaginary part of the ith emission.
  • the above formula is a formula for calculating the flow rate at a fixed position.
  • the velocity at each target point can be found by the N complex values.
  • the direction of blood flow velocity is the direction of ultrasound propagation.
  • the velocity component of the punctuation along a direction of propagation of the ultrasound at a certain time It is of course also possible to use any method that can be used in the art or which may be used in the future, which can be used to calculate the velocity of the motion of the scanning target or the moving part thereof by the ultrasonic echo signal, which will not be described in detail herein.
  • step 400 the data processing module 9 obtains the velocity vector of the target point according to the velocity component calculated by at least three of the above steps 300, wherein at least three sets of beam echo signals for calculating the at least three velocity components are The corresponding at least three ultrasonic propagation directions are not in the same plane.
  • the above step 400 includes the following steps:
  • the velocity vector of the target point at the first moment is obtained by velocity synthesis according to the velocity component in the at least three ultrasonic propagation directions at the first time.
  • N is greater than or equal to 3 ultrasonic propagation directions in the above step 100
  • N sets of beam echo signals can be obtained, and each time corresponds to N velocity components.
  • N ultrasonic waves in the ultrasonic propagation direction are alternately emitted according to different directions of ultrasonic propagation
  • the N velocity components corresponding to different times are also repeatedly calculated in multiple times, and each time successively calculating N velocity components, The synthesis of the velocity component once calculates the velocity vector corresponding to the current point at the current time.
  • the velocity vector of the calculated target point is closer to the true flow field velocity direction of the three-dimensional space by more than three ultrasonic propagation directions or by increasing the number of ultrasonic propagation directions, then each real time
  • the process of calculating the target point velocity vector by using the beam echo signals corresponding to all the ultrasonic propagation directions in the present embodiment is hereinafter referred to as the longest calculation period of the target point velocity vector, that is, based on the at least three groups of beams according to the above step 300.
  • a set of beam echo signals in the echo signal a process of calculating a velocity component of the target point within the scan target, respectively calculating a target point in the ultrasonic propagation direction corresponding to the at least three types of beam echo signals
  • the velocity component is synthesized according to the velocity components in all the ultrasonic propagation directions to obtain the velocity vector of the target point.
  • the above calculation steps regarding the target point velocity vector can also be reduced.
  • the above step 400 obtains the target point by using velocity synthesis according to the velocity component in at least three ultrasonic propagation directions at the current time.
  • the speed vector at the current moment Specifically, when calculating the velocity vector, the velocity vector may be calculated only according to the three velocity components obtained by the continuous calculation, and at this time, three sets of beam echo signals for calculating the three velocity components and the corresponding three ultrasounds are calculated. The direction of propagation is not in the same plane.
  • the three sets of beam echo signals continuously received in chronological order are derived from the ultrasonic beams emitted in three different ultrasonic propagation directions, and in the above step 400, according to the target point at the same time along the third
  • the velocity component corresponding to the direction of propagation of the ultrasound is obtained by velocity synthesis to obtain the velocity vector of the target point.
  • the velocity components in the three ultrasonic propagation directions corresponding to the three types of beam echo signals continuously received by the target point are respectively calculated, according to the three ultrasonic propagation directions.
  • the velocity component is synthesized to obtain the velocity vector of the target point.
  • the above step 400 is: calculating the scan target according to a set of beam echo signals based on at least three sets of beam echo signals. a process of a velocity component of the target point, respectively calculating a velocity component in the at least three ultrasonic propagation directions corresponding to the at least three types of beam echo signals continuously received by the target point, according to the at least three ultrasonic propagation directions
  • the velocity component is synthesized to obtain the velocity vector of the target point.
  • the velocity component V4 is the velocity in the ultrasonic propagation direction F4
  • the velocity component V6 is the velocity in the ultrasonic propagation direction F6, and the two are combined to obtain the velocity component V1, which will be along the ultrasonic propagation direction F5.
  • the velocity component V5 is velocity-combined with the velocity component V1 to obtain the required velocity vector V0.
  • the method of synthesizing the two-two velocity division vectors here can also be applied to the longest calculation period of the above-mentioned target point velocity vector and the arbitrary velocity vector synthesis calculation between the shortest and longest calculation periods.
  • the present invention is not limited to the use of the above two methods to design the calculation period of the target point velocity vector.
  • the velocity component at a time greater than 3 and less than N ultrasonic propagation directions may be utilized at any time to synthesize the target point at the moment.
  • the velocity vector adjusts the accuracy of the three-dimensional velocity vector calculation of the target point by adjusting the number of ultrasonic propagation directions participating in the calculation period of the single target point velocity vector.
  • the speed vector is executed according to the beam echo signal obtained by the plurality of first transmission steps performed in the broken line frame. Calculation.
  • the calculation process of the above steps 300 and 400 is performed once after the first transmission step is performed twice in each ultrasonic propagation direction, that is, the calculation obtains the first velocity vector.
  • the number of speed components for synthesizing the target point velocity vector may be obtained by a prompt box, a button, a prompt, etc., and the instruction information is generated, and the speed for synthesizing the target point is adjusted according to the instruction information.
  • the number of velocity components of the vector, or the number of ultrasonic propagation directions in the above step 100 is adjusted according to the number of velocity components, to realize the display effect of the custom setting ultrasound imaging.
  • the data processing module 9 may acquire an ultrasound image of at least a portion of the scan target according to the at least three sets of beam echo signals, or may acquire the focused ultrasound beam echo signal obtained by transmitting the focused ultrasound beam to the scan target. Scanning at least a portion of the ultrasound image of the target image.
  • the ultrasound image herein may be a B-picture, a color image, etc.
  • the ultrasound image may be acquired from a plurality of beam echo signals in one of the set of beam echo signals. If the transmitting plane ultrasonic beam is used in the above step 100, it becomes here that the ultrasonic image is acquired according to at least three sets of planar beam echo signals. Since the imaging quality of the planar ultrasonic beam is not as good as that of the focused ultrasound beam, in order to obtain a higher quality ultrasound image, the method further includes the following steps:
  • this step 500 it may be changed to acquire an ultrasound image of at least a part of the scanning target according to the focused ultrasound beam echo signal.
  • any suitable method currently used in the art and currently used in the future can be used, and will not be described in detail herein.
  • any of the types of ultrasonic beams that are not specifically limited to be emitted may be any one of a planar ultrasonic beam, a divergent ultrasonic beam, a focused ultrasonic beam, and the like. If the ultrasonic beam is replaced by a corresponding type of ultrasonic wave, the corresponding echo signal and corresponding adjustment are also made. For example, if the focused ultrasonic beam is emitted in step 100, the beam echo signal in the subsequent step is changed to "focused ultrasound". The beam echo signal", etc., will not be described here.
  • At least one scan is inserted in the process of transmitting the ultrasound beam to the scanning target along at least three ultrasonic propagation directions when acquiring the ultrasound image using the focused ultrasound beam.
  • the target emits a focused ultrasound beam, which uses a focused ultrasound to acquire a high quality ultrasound image, while other ultrasounds acquire a true velocity vector of the target point.
  • the plane ultrasonic beam replacement may be the ultrasonic beam used for the emission in the above step 100, and will not be described in detail herein.
  • step 600 the ultrasonic image obtained by the above 500 and the velocity vector calculated in the above step 400 are displayed.
  • the velocity vector and the ultrasound image can be simultaneously displayed on the display 8.
  • the velocity vector may be superimposed on the ultrasound image.
  • the magnitude of the velocity vector can be decremented a certain amount when the velocity vector is displayed.
  • the "beam echo signal" is also changed to a corresponding beam echo signal in other steps.
  • the transmitting plane ultrasonic beam corresponds to the plane beam return.
  • the wave signal, the focused focused ultrasound beam corresponds to the focused beam echo signal, and so on.
  • the ultrasound echo beam for calculating the velocity vector is acquired using the emission plane ultrasound beam, and the focused ultrasound beam is emitted by the emission.
  • the ultrasound imaging method includes the following steps:
  • Step 701 the transmitting circuit 2 excites the probe 1 to emit a planar ultrasonic beam to the scanning target along at least three ultrasonic propagation directions;
  • Step 702 the receiving circuit 3 and the beam combining module 4 receive the echo of the planar ultrasonic beam, and obtain at least three sets of planar beam echo signals, each set of planar beam echo signals originating from a planar ultrasonic beam emitted in an ultrasonic propagation direction;
  • Step 703 the data processing module 9 calculates a velocity component of the target point in the scan target according to the set of plane beam echo signals in the at least three sets of plane beam echo signals, according to the at least three sets of plane beam echoes.
  • the signal acquires at least three velocity components;
  • Step 704 the data processing module 9 synthesizes the velocity vector of the target point according to the at least three velocity components, wherein at least three sets of beam echo signals for calculating the at least three velocity components, corresponding at least three ultrasounds The direction of propagation is not in the same plane;
  • Step 705 the transmitting circuit 2 excites the probe 1 to emit a focused ultrasonic beam to the scanning target;
  • Step 706 the receiving circuit 3 and the beam combining module 4 receive the echo of the focused ultrasound beam to obtain a focused ultrasound beam echo signal;
  • Step 707 the data processing module 9 acquires an ultrasound image of at least a part of the scan target according to the focused ultrasound beam echo signal;
  • Step 708 displaying the above ultrasound image and the above velocity vector on the display 8.
  • the above steps 701 to 704 only define the types of the ultrasonic beams in the foregoing steps 100 to 400.
  • the specific implementation and various combinations refer to the specific steps 100 to 400 described above.
  • the implementation manners and various combinations of the foregoing steps 701 to 704 are known, and will not be described in detail herein.
  • the ultrasound image may be a three-dimensional ultrasound stereoscopic image, or may be a two-dimensional ultrasound image.
  • a focused ultrasound beam can be emitted multiple times to achieve scanning to obtain a frame of ultrasound image. Therefore, in one embodiment of the invention, the above step 705 includes a second transmitting step of transmitting a focused ultrasound beam to the scanning target a plurality of times, the second transmitting step representing a process of transmitting the focused ultrasound beam to the scanning target once.
  • the combined emission process of the planar ultrasonic beam and the focused ultrasonic beam will be described in detail below.
  • the planar ultrasound is transmitted to the scanning target along at least three ultrasonic propagation directions.
  • a second transmitting step of emitting a focused ultrasound beam to the scanning target at least once is inserted.
  • a high-quality ultrasonic image can be obtained by transmitting a plurality of focused ultrasonic beams, and the resolution of the ultrasonic image is improved.
  • each set of planar beam echo signals comprising at least two planar beams
  • the echo signal, each plane beam echo signal originating from an echo obtained by performing a third transmitting step in a direction of ultrasonic propagation, and therefore, transmitting a plane ultrasonic beam to the scanning target in a direction of ultrasonic propagation is regarded as a third emission
  • the step of transmitting a plane ultrasonic beam toward the scanning target along an ultrasonic propagation direction is regarded as a third emission process, the same as below.
  • each of the emission processes of inserting the focused ultrasonic beam during the emission of the planar ultrasonic beam will be specifically described.
  • the second transmitting step includes: performing a third transmitting step of transmitting the planar ultrasonic beam to the scanning target at least twice in the same ultrasonic propagation direction, and inserting at least one second transmitting step between the adjacent two third transmitting steps .
  • a third transmitting step of transmitting the planar ultrasonic beam to the scanning target at least twice in the same ultrasonic propagation direction, and inserting at least one second transmitting step between the adjacent two third transmitting steps .
  • the difference in the direction of the thin solid arrows indicates that a third emission step is performed in different ultrasonic propagation directions, and the thick solid arrows indicate that the second emission step is performed once.
  • at least one second transmitting step is inserted between two adjacent third transmitting steps.
  • the two third transmitting steps adjacent to the inserted at least one second transmitting step belong to transmitting a plane ultrasonic beam toward the scanning target in different ultrasonic propagation directions. The third launch process. As shown in FIG.
  • the two third emission steps adjacent to the inserted at least one second emission step belong to a third emission process of emitting a planar ultrasonic beam toward the scanning target in the same ultrasonic propagation direction.
  • FIG. 25(d) there is a process of transmitting at least two third emission steps in three ultrasonic propagation directions, respectively, between processes in which two adjacent insertion steps are performed.
  • the process of transmitting the planar ultrasonic beam to the scanning target along each ultrasonic propagation direction includes a plurality of third transmitting steps
  • the third transmitting step is alternately performed according to the difference in the ultrasonic propagation direction, as shown in FIG. 19(b) and FIG.
  • at least the mode shown in Fig. 22 is included when the emission of the focused ultrasonic beam is inserted.
  • the rule of the execution order is completed from left to right, and a thin solid arrow or a dashed arrow indicates that the third emission step for transmitting the planar ultrasonic beam is performed once, and the direction of the thin solid arrow or the dotted arrow is different, And the difference between the dashed arrow and the solid arrow represents that the third emission step is performed along different ultrasonic propagation directions, and one thick solid arrow indicates that the second emission step for transmitting the focused ultrasonic beam is performed once. As shown in Fig. 22(e), a second transmitting step is inserted between two adjacent third transmitting steps. In FIG.
  • the second transmitting step is inserted three times between two adjacent third transmitting steps, and there are seven third transmitting steps between two adjacent insertions of the second transmitting step;
  • FIG. 22(b) is adjacent Twice Inserting a second transmitting step between the third transmitting steps, there are three third transmitting steps between two adjacent insertions of the second transmitting step; and inserting between two adjacent third transmitting steps in FIG. 22(d) 1 second transmission step, there are 2 third emission steps between the processes of two adjacent insertion steps, and two second emission steps between two adjacent third emission steps in FIG. 22(c) In the step, there are 6 third transmission steps between two adjacent insertions of the second transmission step.
  • the second transmitting step when the third transmitting step is alternately performed in accordance with the difference in the ultrasonic propagation direction, the second transmitting step is inserted at least once between the adjacent two third transmitting steps.
  • the second emission step of inserting the focused ultrasound beam in a single time may cause the time delay of acquiring the velocity vector of the target point in the three-dimensional space by using the plane ultrasonic beam, the calculation accuracy of the velocity vector may be affected, so in the present invention
  • one to three second firing steps are inserted between two adjacent third firing steps.
  • the third transmitting step is supplemented once before or after the inserted second transmitting step, and at least one second transmitting step is performed with the insertion.
  • the adjacent two third emission steps belong to a process of transmitting a planar ultrasonic beam toward the scanning target in the same ultrasonic propagation direction.
  • This embodiment is particularly suitable for the case where the second transmission step of a single insertion is more than one time, and the shortest calculation period of one target point velocity vector can be satisfied between the two insertions of the second transmission step, and the image imaging is improved. speed.
  • this embodiment is also particularly suitable for the process of transmitting a planar ultrasonic beam to a scanning target in at least three ultrasonic propagation directions between adjacent two insertions of the second transmitting step, in particular, when adjacent There is a third emission step in at least three ultrasonic propagation directions corresponding to at least three of the velocity components required to calculate the velocity vector between the two insertions of the second transmission step, specifically, two adjacent insertions There is a process between the second emission step of transmitting at least two third emission steps in three ultrasonic propagation directions, respectively. This can display the corresponding bit after obtaining a frame of image with the focus beam.
  • the velocity vector of the target point in the three-dimensional space is reduced, and the time difference of the information tracking between the ultrasound image and the target point velocity vector is reduced, so as to synchronously display the ultrasound image and the target point velocity vector, and improve the display of the ultrasound image and the target point velocity vector. Precision.
  • the plane ultrasound is transmitted along three ultrasonic propagation directions in accordance with the repetitive execution process described below. Beams and focused ultrasound beams, each of which includes the following steps:
  • the first scanning body is formed by emitting an ultrasonic beam to the scanning target along the first ultrasonic propagation direction
  • the first ultrasonic propagation direction may be the direction F5 or F2 shown in FIG. 14, FIG. 15, or FIG.
  • a second scanning body is formed by emitting a planar ultrasonic beam to the scanning target along the second ultrasonic propagation direction, and the second ultrasonic propagation direction may be the direction F4, F8 or F6 shown in FIG. 14, FIG. 15, or FIG.
  • a third scanning body is formed by emitting a planar ultrasonic beam to the scanning target along the third ultrasonic propagation direction, and the third ultrasonic propagation direction may be the direction F6, F9 or F21 shown in FIG. 14, FIG. 15, or FIG.
  • the focused ultrasound beam is emitted at least once to the scanning target.
  • the planar ultrasonic beam is emitted in four ultrasonic propagation directions in accordance with the repeated execution process described below.
  • the ultrasound beam is focused, and each of the repeated executions includes the following steps:
  • a first scanning body is formed by transmitting a planar ultrasonic beam to the scanning target along the first ultrasonic propagation direction, and the first ultrasonic propagation direction may be the direction F2 shown in FIG. 17 and FIG. 18;
  • a second scanning body is formed by transmitting a planar ultrasonic beam to the scanning target along the second ultrasonic propagation direction, and the second ultrasonic propagation direction may be the direction F9 shown in FIG. 17 and FIG. 18;
  • a third scanning body is formed by transmitting a planar ultrasonic beam to the scanning target along the third ultrasonic propagation direction, and the third ultrasonic propagation direction may be the direction F8 shown in FIG. 17 and FIG. 18;
  • the fourth ultrasonic propagation direction may be the direction F10 or F21 shown in FIGS. 17 and 18.
  • the embodiment shown in FIGS. 14 to 18 and the transmission sequence of FIG. 22 may be combined.
  • the planar ultrasonic beam and the focused ultrasonic wave are transmitted along at least three ultrasonic propagation directions according to the corresponding repeated execution process. Beam, no longer explained in detail here.
  • the arrayed arrayed array probes are combined with the emission sequence shown in FIG. 22(b), and the process of inserting the focused ultrasonic beams during the above-described process of transmitting the planar ultrasonic beams includes Repeat the following steps:
  • the row linear array elements in some or all of the ultrasonic transmitting elements are longitudinally controlled in accordance with the first delay control strategy, so that all the column linear array elements can emit a plane having the first deflection angle.
  • the column linear array array elements in some or all of the ultrasonic transmitting array elements are laterally controlled in accordance with the third delay control strategy, so that all the row linear array array elements can emit plane ultrasonic waves having the second deflection angle.
  • the linear array element groups in some or all of the ultrasonic transmitting elements are longitudinally controlled in accordance with the second delay control strategy, so that all the columnar array elements can emit a plane having a third deflection angle.
  • the focused ultrasound is transmitted at least once to the scanning target.
  • the above embodiment implements three transmissions in the direction of ultrasonic propagation, and further, in order to achieve a symmetric transmission process, the first delay control strategy and the second delay control strategy are used to achieve the same deflection angle ⁇ of the synthetic ultrasonic beam. And the difference between the corresponding rotation angles ⁇ is 180 degrees.
  • a matrix array of array probes is used, in combination with the emission sequence shown in FIG. 22(d), in the process of transmitting the plane ultrasonic beam.
  • the process of inserting the focused ultrasound beam includes repeating the following steps multiple times:
  • the first delay control strategy performs delay control so that all the column linear array arrays can emit a planar ultrasonic beam having a first deflection angle for forming at least one first scanning body in the space in which the scanning target 12 is located;
  • the column linear array array of some or all of the ultrasonic transmitting elements in the lateral direction is subjected to delay control according to the third delay control strategy, so that all the row linear array elements can emit a plane having the second deflection angle.
  • the row linear array elements in some or all of the ultrasonic transmitting elements are longitudinally controlled in accordance with the second delay control strategy, so that all the column linear array elements can emit a third deflection angle.
  • the column linear array array elements in some or all of the ultrasonic transmitting array elements are laterally controlled in a lateral direction according to a fourth delay control strategy, so that all the row linear array array elements can emit a plane having a fourth deflection angle.
  • the focused ultrasound is transmitted at least once to the scanning target.
  • the first delay control strategy and the second delay control strategy are used to realize the deflection angle of the synthesized ultrasonic beam.
  • the difference between the same and corresponding rotation angle ⁇ is 180 degrees
  • the third delay control strategy and the fourth delay control strategy are also used to realize the difference between the deflection angle ⁇ of the synthesized ultrasonic beam and the corresponding rotation angle ⁇ . It is 180 degrees.
  • the first scanning body is constituted by the scanning plane 18
  • the second scanning body is constituted by the scanning plane 12
  • the third scanning body is constituted by the scanning plane 10
  • the fourth scanning body is constituted by the scanning plane 19.
  • the embodiment in which the arrayed array probes arranged in the horizontal and vertical directions are respectively excited and the transmission sequence of FIG. 22 can be combined.
  • along the corresponding repeated execution process along at least three Ultrasonic propagation direction emits a plane ultrasonic beam and a focused ultrasound beam, not here Explain in detail.
  • the steps of transmitting the plane ultrasonic beams in each of the above-mentioned embodiments may also be replaced with each other.
  • the column linear array elements in the partial or total ultrasonic transmitting elements may be firstly laterally paired.
  • the linear delay array elements in some or all of the ultrasonic transmission array elements are longitudinally followed by the first delay control strategy and the first The two delay control strategies respectively perform delay control and insert a focus beam emission therein.
  • the first linear delay array control group and the second delay control strategy may be respectively performed along the longitudinal direction for some or all of the linear array array elements in the ultrasonic transmission array element, and then horizontally
  • the column linear array array elements in some or all of the ultrasonic transmitting array elements are respectively subjected to delay control according to the third delay control strategy and the fourth delay control strategy, and the transmission of the focused beam is inserted therein.
  • Each of the above embodiments is a process of inserting a separate focused ultrasonic beam during the process of transmitting a planar ultrasonic beam, and thus, as shown in Figs. 19(a) to (e), the process of emitting a focused ultrasonic beam in accordance with the second transmitting step
  • the focused ultrasound beam can have a directional directivity at an angle.
  • the present invention is not limited to this manner, and another alternative insertion focused laser beam inserted at least once in the second transmitting step in the process of transmitting a planar ultrasonic beam of at least three ultrasonic propagation directions to the scanning target will be explained in detail below. The way the process is launched.
  • the third transmitting step of transmitting the planar ultrasonic beam to the scanning target multiple times during the third emission process of transmitting the planar ultrasonic beam to the scanning target along each ultrasonic propagation direction, when When the third transmission step is alternately performed in a different direction of the ultrasonic propagation direction, the second transmission step is replaced with a second transmission step. As shown in Figs.
  • the rules of the execution order are completed from left to right, and a thin solid arrow indicates that the third emission step for transmitting the plane ultrasonic beam is performed once, and a thick solid arrow indicates A second emission step for emitting the focused ultrasound beam is performed once, and the different pointing directions of the thin solid arrow and the thick solid arrow represent performing the third or second transmitting step in different ultrasonic propagation directions.
  • the third transmitting step at the corresponding position is replaced with three times of the second transmitting step, respectively, in Figures 23(a) and (b).
  • the two adjacent second emission steps include performing at least two of said third emission steps in at least three ultrasonic propagation directions, respectively.
  • This alternative insertion focused ultrasound beam emission may result in the loss of the echo signal of the planar ultrasonic beam that is replaced.
  • the image data corresponding to the echo signal corresponding to the plane ultrasonic wave replaced by the focused ultrasonic wave may pass two frames before or after
  • the image data corresponding to the same ultrasonic propagation direction of several frames is obtained by interpolation, and the corresponding image data in the same ultrasonic propagation direction is obtained according to the plane beam echo signal corresponding to the same ultrasonic propagation direction.
  • the ultrasound imaging method of the present embodiment further needs to include: obtaining, according to the ultrasonic propagation direction corresponding to the replaced third transmission step, the corresponding planar beam echo signal,
  • the third transmitting step of the second transmitting step corresponds to the image data of the plurality of frames before and after the time, and the image data of the corresponding first transmitting step is restored by using the image data of the multiple frames before and after the interpolation, to obtain the replaced first transmitting step.
  • the second second transmitting step includes transmitting at least one third emission in the at least two ultrasonic propagation directions to emit the planar ultrasonic beam to the scanning target. step.
  • the rules of the execution order are completed from left to right, and the thin solid arrows indicate that the array elements arranged in the first direction are excited to emit a third emission step having two deflection angles to the scanning target, and the dotted arrow indicates Exciting the array elements arranged in the second direction to emit a third emission step having two deflection angles to the scanning target, the different pointing directions of the thin solid arrow and the dotted arrow represent performing the third transmitting step in different ultrasonic propagation directions A thick solid arrow indicates that a second transmitting step for transmitting the focused ultrasonic beam is performed once.
  • the embodiment shown in Figure 24 actually performs a plurality of third firing steps based on four ultrasonic propagation directions.
  • the second second transmitting step includes two third transmitting steps respectively in two ultrasonic propagation directions and one third emission step in two ultrasonic propagation directions.
  • the two second transmitting steps respectively include transmitting at least two times in at least three ultrasonic propagation directions for the A third emission step of the scanning target transmitting the planar ultrasonic beam. The purpose of this is to ensure that a correlated plane ultrasonic echo signal that performs the shortest calculation period of the above-described target point velocity vector can be obtained between the two processes of emitting the focused ultrasound beam.
  • the two adjacent second transmitting steps The total number of third transmission steps corresponding to different ultrasonic propagation directions for transmitting a planar ultrasonic beam to the scanning target is the same, that is, uniform in the process of transmitting the planar ultrasonic beam to the scanning target along at least three ultrasonic propagation directions Inserting the second transmitting step.
  • FIG. 22(a) there are nine third emission steps between two adjacent second emission steps, and two third emission steps between two adjacent second emission steps in FIG. 22(b).
  • FIG. 22(d) there are two third emission steps between two adjacent second emission steps, and two adjacent second emission steps shown in FIG. 22(c) and FIG. 23 contain six times. Three launch steps.
  • the six third transmission steps shown in FIG. 22(c) and FIG. 23 include a third transmission step of transmitting a planar ultrasonic beam to the scanning target in a different ultrasonic propagation direction between the two adjacent second transmission steps.
  • the emission process of the focused ultrasonic beam can be uniformly inserted into the process of transmitting the planar ultrasonic beam in a plurality of ultrasonic propagation directions by using the insertion method, so that the time for the interpolation of the subsequent image data can be accurately located, and the time for the interpolation to be restored can be accurately determined and improved.
  • the computing speed of the computer reduces the computational complexity of image processing.
  • the velocity vector and the ultrasound image may be displayed.
  • the velocity vector and the ultrasound image can be displayed simultaneously on the display 8.
  • the velocity vector can be overlaid on the ultrasound image. Also, in order to ensure that the human eye can comfortably perceive the velocity vector, the velocity vector will be decelerated and displayed.
  • FIG. 7 or FIG. 21 is a schematic flow chart of an ultrasonic imaging method according to an embodiment of the present invention. It should be understood that although the various steps in the flowchart of FIG. 7 or FIG. 21 are sequentially displayed as indicated by the arrows, these steps are not necessarily performed in the order indicated by the arrows. Except as explicitly stated herein, the execution of these steps is not strictly limited, and may be performed in other sequences. Moreover, at least some of the steps in FIG. 7 or FIG.
  • 21 may include a plurality of sub-steps or stages, which are not necessarily performed at the same time, but may be executed at different times, and the execution order thereof is also It is not necessarily performed sequentially, but may be performed alternately or alternately with at least a portion of other steps or sub-steps or stages of other steps.
  • the above various embodiments are only described in the specific description for the implementation of the corresponding steps in FIG. 7 or FIG. 21, but in the case where the logic is not contradictory, the above various embodiments can be combined with each other to form a new technology. The new technical solution is still within the scope of the present disclosure.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product carried on a non-transitory computer readable storage carrier (eg The ROM, the magnetic disk, and the optical disk include a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the system structure and method described in the embodiments of the present invention.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.
  • the present invention also provides an ultrasound imaging system comprising: the following components:
  • a transmitting circuit 2 for exciting the probe 1 to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions; wherein the transmitting circuit 2 excites part or all of the ultrasonic transmitting elements in the probe 1 to scan the target along at least three ultrasonic propagation directions
  • the ultrasonic beam is emitted to form at least three scanning bodies; or the transmitting circuit 2 divides the probe 1 into a plurality of array elements, and excites part or all of the array elements to emit ultrasonic beams to the scanning target along at least three ultrasonic propagation directions to form at least three Scanning bodies, wherein each scanning body is derived from an ultrasonic beam emitted in an ultrasonic propagation direction;
  • a receiving circuit 3 and a beam combining module 4 configured to receive an echo of the ultrasonic beam, and obtain at least three sets of beam echo signals, each set of beam echo signals originating from an ultrasonic beam emitted along an ultrasonic propagation direction; specifically Performing at least two steps of transmitting an ultrasonic beam to the scanning target along each ultrasonic propagation direction, each set of beam echo signals including at least two beam echo signals, each beam echo signal originating from an ultrasonic propagation direction An echo obtained by the step of transmitting an ultrasonic beam to a scanning target at a time.
  • the data processing module 9 is configured to calculate, according to the set of beam echo signals of the at least three sets of beam echo signals, a velocity component of the target point in the scan target, and obtain at least three according to the at least three sets of beam echo signals.
  • the velocity component obtains the velocity of the target point according to at least three velocity components a vector, wherein at least three sets of beam echo signals for calculating the at least three of the velocity components, the corresponding at least three ultrasonic propagation directions are not in the same plane; and are further configured to acquire at least the scan target a portion of the ultrasound image; and
  • a display 8 for displaying a velocity vector and an ultrasound image.
  • the data processing module 9 may include a signal processing module 6 and/or an image processing module 7 for performing the above-mentioned speed division.
  • the vector and velocity vector calculation process that is, the foregoing steps 300 and 400, and the image processing module 7 is used to perform the above-described process related to image processing, that is, the aforementioned step 500.
  • the transmitting circuit 2 is configured to perform the aforementioned step 100, and the receiving circuit 3 and the beam combining module 4 are configured to perform the aforementioned step 200.
  • each module refer to the specific description of each step, which is not described here.
  • the transmitting circuit 2 also excites the probe 1 to emit a focused ultrasonic beam to the scanning target, and inserts the ultrasonic beam at least once during the transmission of the ultrasonic beam to the scanning target along at least three ultrasonic propagation directions.
  • the receiving circuit 3 and the beam combining module 4 receive the echo of the focused ultrasonic beam to obtain the focused ultrasonic beam echo signal, and the data processing module 9 acquires the ultrasonic image based on the focused ultrasonic beam echo signal.
  • the data processing module 9 can also acquire the ultrasound image according to the at least three sets of beam echo signals.
  • the data processing module further generates, by acquiring, the number of the ultrasonic propagation directions selected by the user or the number of velocity components for synthesizing the velocity vector.
  • Command information adjusting the number of the ultrasonic propagation directions according to the instruction information, and determining the number of velocity components for synthesizing the velocity vector according to the number of the ultrasonic propagation directions, or adjusting the velocity vector for synthesizing the target point The number of speed components.
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions, and at least three adjacent ultrasonic propagation directions are not the same.
  • the above data processing module 9 calculates the above The target point is a velocity component along at least three ultrasonic propagation directions corresponding to at least three types of beam echo signals continuously received, and the velocity vector of the target point is synthesized according to the velocity components in the at least three ultrasonic propagation directions. .
  • the transmitting circuit 2 excites the probe 1 to emit an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions, and all the ultrasonic propagation directions are not in the same plane; the data processing module 9
  • the velocity vector of the target point is synthesized according to the velocity components in all the ultrasonic propagation directions according to the velocity components corresponding to the above-mentioned target points in the above-mentioned at least three types of beam echo signals.
  • the transmitting circuit 2 excites the probe 1 to transmit the ultrasonic beam to the scanning target along at least three ultrasonic propagation directions. Referring to the detailed description of the foregoing, it will not be repeated here.
  • the present invention is not limited to the use of the area array probe to implement a specific ultrasonic beam emission process.
  • the above-mentioned related description may also be implemented by using only a line array of probes, and it is necessary to provide for adjusting the probe.
  • An actuator for spatial position of the ultrasonic transmitting array element which can be moved or rotated to a desired spatial position by using an actuator to control the ultrasonic transmitting element in the probe according to a preset ultrasonic propagation direction, forming a different ultrasonic propagation as mentioned above
  • the scanned body is oriented to achieve a process of transmitting an ultrasonic beam to the scanning target along at least three ultrasonic propagation directions.
  • both the planar ultrasonic beam and the focused ultrasonic beam may be used for imaging during the imaging process.
  • the present invention can use a planar ultrasonic beam to obtain a velocity vector, thereby taking advantage of the high frame rate of planar ultrasonic beam imaging to meet the requirement of high frame rate when measuring fluid velocity with ultrasound imaging; a focused ultrasound beam can be used to obtain a scanning target.
  • Ultrasound image which makes full use of the high signal-to-noise ratio of the focused ultrasound beam imaging echo signal, the obtained ultrasonic image quality and high lateral resolution, so as to obtain a good image for the user to observe.
  • the planar ultrasonic beam and the focused ultrasonic beam are alternating emissions over time, i.e., the emission of the focused ultrasonic beam is interspersed between the emission of the planar ultrasonic beam.
  • the continuity of the velocity vector is maintained, and the synchronization of the velocity vector with the ultrasound image (for example, B image) is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声成像方法和系统,其系统包括:探头(1);发射电路(2),用于激励所述探头(1)向扫描目标发射至少三个超声传播方向的超声波束;接收电路(4)和波束合成模块(5),用于分别接收多个超声传播方向对应的超声波束的回波以获得每个超声传播方向对应的波束回波信号;数据处理模块(9),用于根据每个超声传播方向对应的波束回波信号,获得扫描目标内的目标点的速度矢量,以及根据波束回波信号获取扫描目标的至少一部分的超声图像;及显示器(8),用于显示所述速度矢量和所述超声图像。所述超声成像方法和系统可以获得准确度高、实时性好的速度矢量,使该速度矢量能够更加贴近真实流体的流速方向。

Description

超声成像方法和系统 技术领域
本发明涉及医用超声成像领域,尤其是涉及一种能够获得目标点速度矢量的超声成像方法和系统。
背景技术
在医用超声成像中,通过超声成像检测获得扫生物体内的运动目标(例如,运动的组织、血液或其他流体等等)的速度矢量是非常有益的。
但是,传统的多普勒超声只能测得沿超声波发射的方向(或者说超声波传播的方向)的流速。即使应用两个角度合成的速度矢量也只能反映流体在一个二维平面内的速度,无法真实的提供其三维空间内的实际速度的大小和方向。再者,传统的用聚焦波成像测量运动目标的速度的方法中,由于时间分辨率有限,特别是在测量速度较大的运动目标时,由于聚焦波发射成像是一线一线扫描的,因此难以保证速度测量的空间连续性。
发明内容
基于此,有必要针对现有技术中存在的问题,提供一种能够获得目标点速度矢量的超声成像方法和系统,其能够使获得的速度矢量更加贴近真实流体的流速方向。
本发明提供的一种超声成像方法,其包括:
沿至少三个超声传播方向向扫描目标发射超声波束;
接收所述超声波束的回波,获得至少三组波束回波信号,每组波束回波信号源自一个超声传播方向上发射的超声波束;
基于所述至少三组波束回波信号中的一组波束回波信号,计算所述扫描 目标内目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个速度分量;
根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组波束回波信号所对应的至少三个超声传播方向不在同一平面内;
获取所述扫描目标的至少一部分的超声图像;
显示所述超声图像和所述速度矢量。
一种超声成像方法,其包括:
沿至少三个超声传播方向向扫描目标发射平面超声波束;
接收所述平面超声波束的回波,获得至少三组平面波束回波信号,每组平面波束回波信号源自一个超声传播方向上发射的平面超声波束;
基于所述至少三组平面波束回波信号中的一组平面波束回波信号,计算所述扫描目标内的目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个速度分量;
根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组平面波束回波信号所对应的至少三个超声传播方向不在同一平面内;
向所述扫描目标发射聚焦超声波束;
接收所述聚焦超声波束的回波,获得聚焦超声波束回波信号;
根据所述聚焦超声波束回波信号,获取所述扫描目标的至少一部分的超声图像;
显示所述超声图像和所述速度矢量。
一种超声成像系统,其包括:
探头;
发射电路,用于激励所述探头沿至少三个超声传播方向向扫描目标发射超声波束;
接收电路和波束合成模块,用于接收所述超声波束的回波,获得至少三 组波束回波信号,每组波束回波信号源自沿一个超声传播方向上发射的超声波束;
数据处理模块,用于基于所述至少三组波束回波信号中的一组波束回波信号,计算所述扫描目标内目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个速度分量,根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组波束回波信号所对应的至少三个超声传播方向不在同一平面内;所述数据处理模块还用于获取所述扫描目标的至少一部分的超声图像;及
显示器,用于显示所述超声图像和所述速度矢量。
利用本发明的超声成像系统可以获得目标点在真实三维空间中近似真实的速度矢量,并使该速度矢量能够更加贴近流体在三维空间中的真实流速方向,更进一步地,还可以提高速度矢量的准确度和实时性。本发明一个实施例提供的超声成像方法中,在成像过程中既可以使用平面超声波束、也可以使用聚焦超声波束进行成像。使用平面超声波束来获得速度矢量,从而充分利用平面超声波束成像帧率高的优点以满足用超声成像测量流体速度时的高帧率的要求;可以使用聚焦超声波束来获得扫描目标的超声图像,从而充分利用聚焦超声波束成像回波信号信噪比高、获得的超声图像质量较好、横向分辨率高的优点,以便于获得良好的图像供用户观察。
附图说明
图1为本发明一个实施例的超声成像系统的框图示意图;
图2为本发明一个实施例的垂直发射的平面超声波束的示意图;
图3为本发明一个实施例的偏转发射的平面超声波束的示意图;
图4为本发明一个实施例的聚焦超声波束的示意图;
图5为本发明一个实施例中发散超声波束的示意图;
图6(a)为二维面阵探头阵元示意图,图6(b)为本发明中利用二维面阵探头沿某一超声传播方向进行三维图像扫描的示意图,图6(c)为图6(b)中扫 描体相对偏移量的度量方式示意图;
图7为本发明方法一个实施例的流程示意图;
图8为本发明一个实施例的超声成像方法的扫描空间内各个扫描平面的空间位置示意图;
图9为图8中一个超声传播方向上形成一个扫描体的空间示意图;
图10为本发明一个实施例中沿三个超声传播方向上形成三个扫描体的空间叠加效果示意图;
图11(a)为本发明的一个实施例中面阵探头的阵元分布与阵元位置的关系示意图,图11(b)为本发明的一个实施例中面阵探头中阵元分块的示意图,图11(c)为本发明的一个实施例中环阵探头中阵元分块的示意图,图11(d)为本发明的一个实施例中阵元为异性排布的探头结构示意图;
图12为本发明的其中一个实施例中利用阵元分块区获得扫描体的空间位置示意图;
图13为本发明其中一个实施例中实现三个超声传播方向扫描的位置示意图;
图14为本发明的其中一个实施例中实现三个超声传播方向扫描的位置示意图;
图15为本发明的其中一个实施例中实现三个超声传播方向扫描的位置示意图;
图16为本发明的其中一个实施例中实现三个超声传播方向扫描的位置示意图;
图17为本发明的其中一个实施例中实现四个超声传播方向扫描的实施例的位置示意图;
图18为本发明的其中一个实现四个超声传播方向扫描的实施例的位置示意图;
图19(a)和图19(b)为本发明一些实施例的多个超声波束的发射方式示意图;
图20为本发明实现四个超声传播方向发射超声波束的发射方式示意图;
图21为本发明的其中一个实施例的超声成像方法的流程示意图;
图22(a)至图22(e)为本发明一些实施例中在多个平面超声波束中插入聚焦超声波束发射的发射方式示意图;
图23(a)和图23(b)为本发明一些实施例中在多个平面超声波束中替换式插入聚焦超声波束发射的发射方式示意图;
图24为本发明的其中一个实现四个超声传播方向发射平面超声波束的实施例中插入聚焦超声波束发射过程的发射方式示意图;
图25(a)至图25(d)为基于图19(a)和图19(b)所示实施例插入聚焦超声波束发射的发射方式示意图。
具体实施方式
图1为本发明一个实施例的超声成像系统的结构框图示意图。如图1所示,该超声成像系统通常包括:探头1、发射电路2、发射/接收选择开关3、接收电路4、波束合成模块5、信号处理模块6、图像处理模块7和显示器8。
在超声成像过程中,发射电路2将经过延迟聚焦的具有一定幅度和极性的发射脉冲通过发射/接收选择开关3发送到探头1。探头1受发射脉冲的激励,向扫描目标(例如,人体或者动物体内的器官、组织等中存在的血管或者生物体内其他其内有流体流动的脉管,图中未示出)发射超声波,经一定延时后接收从目标区域反射回来的带有扫描目标的信息的超声回波,并将此超声回波重新转换为电信号。接收电路接收探头1转换生成的电信号,获得超声回波信号,并将这些超声回波信号送入波束合成模块5。波束合成模块5对超声回波信号进行聚焦延时、加权和通道求和等处理,然后将超声回波信号送入信号处理模块6进行相关的信号处理。
经过信号处理模块6处理的超声回波信号送入图像处理模块7。图像处理模块7根据用户所需成像模式的不同,对信号进行不同的处理,获得不同模式的图像数据,然后经对数压缩、动态范围调整、数字扫描变换等处理形 成不同模式的超声图像,如B图像,C图像,D图像等等。
图像处理模块7生成的超声图像送入显示器8进行显示。
探头1通常包括多个阵元的阵列。在每次发射超声波时,探头1的所有阵元或者所有阵元中的一部分参与超声波的发射。此时,这些参与超声波发射的阵元中的每个阵元或者每部分阵元分别受到发射脉冲的激励并分别发射超声波,这些阵元分别发射的超声波在传播过程中发生叠加,形成被发射到扫描目标的合成超声波束,该合成超声波束的方向即为本文中所提到的超声传播方向。
参与超声波发射的阵元可以同时被发射脉冲激励;或者,参与超声波发射的阵元被发射脉冲激励的时间之间可以有一定的延时。通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,可改变上述合成超声波束的传播方向,下文将具体说明。
通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,也可以使参与超声波的发射的各个阵元发射的超声波在传播过程中不会聚焦,也不会完全发散,而是形成整体上大体上为平面的平面波。本文中,称这种无焦点的平面波为“平面超声波束”。
或者,通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,可以使各个阵元发射的超声波束在预定位置叠加,使得在该预定位置处超声波的强度最大,也就是使各个阵元发射的超声波“聚焦”到该预定位置处,该聚焦的预定位置称为“焦点”,这样,获得的合成的超声波束是聚焦到该焦点处的波束,本文中称之为“聚焦超声波束”。例如,图4为发射聚焦超声波束的示意图。这里,参与超声波的发射的阵元(图4中,仅仅探头1中的部分阵元参与了超声波的发射)以预定的发射时延(即参与超声波的发射的阵元被发射脉冲激励的时间之间存在预定的时延)的方式工作,各阵元发射的超声波在焦点处聚焦,形成聚焦超声波束。
又或者,通过控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,使参与超声波的发射的各个阵元发射的超声波在传播过程中发生发 散,形成整体上大体上为发散波。本文中,称这种发散形式的超声波为“发散超声波束”。如图5所示的发散超声波束。
线性排列的多个阵元同时给予电脉冲信号激励,各个阵元同时发射超声波,合成的超声波束的传播方向与阵元排列平面的法线方向一致。例如,如图2所示的垂直发射的平面波,此时参与超声波的发射的各个阵元之间没有时延(即各阵元被发射脉冲激励的时间之间没有时延),各个阵元被发射脉冲同时激励。生成的超声波束为平面波,即平面超声波束,并且该平面超声波束的传播方向与探头1的发射出超声波的表面大体垂直,即合成的超声波束的传播方向与阵元排列平面的法线方向之间的角度为零度。但是,如果施加到各个阵元间的激励脉冲有一个时间延时,各个阵元也依次按照此时间延时发射超声波束,则合成的超声波束的传播方向与阵元排列平面的法线方向就具有一定的角度,即为合成波束的偏转角度,改变上述时间延时,也就可以调整合成波束的偏转角度的大小和在合成波束的扫描平面内相对于阵元排列平面的法线方向的偏转方向。例如,图3所示为偏转发射的平面波,此时参与超声波的发射的各个阵元之间有预定的时延(即各阵元被发射脉冲激励的时间之间有预定的时延),各个阵元被发射脉冲按照预定的顺序激励。生成的超声波束为平面波,即平面超声波束,并且该平面超声波束的传播方向与探头1的阵元排列平面的法线方向成一定的角度(例如,图3中的角a),该角度即为该平面超声波束的偏转角度。通过改变时延时间,可以调整角a的大小。
同理,无论是平面超声波束、聚焦超声波波束还是发散超声波束,均可以通过调整控制参与超声波的发射的阵元被发射脉冲激励的时间之间的延时,来调整合成波束的方向与阵元排列平面的法线方向之间所形成的合成波束的“偏转角度”,这里的合成波束可以为上文提到的平面超声波束、聚焦超声波波束或发散超声波束等等。
然而,在实现三维超声成像时,如图6(a)所示,采用面阵探头,每个面阵探头看作多个阵元112按照横纵两个方向排列形成,对应于面阵探头中的 每个阵元都配置相应的延迟控制线用于调整每个阵元的时延,在发射与接收超声波束的过程中只要改变每个阵元不同的时延时间,就可以对超声波束进行声束控制和动态聚焦,从而改变波束的指向,实现波束在三维空间内的扫描,形成立体三维图像数据库。又如图6(b)所示,面阵探头1中包括多个阵元112,通过改变参与超声波发射的阵元对应的时延时间,可以使发射的超声波束沿点划线箭头F51所示的方向传播、并在三维空间内形成用于获取三维图像数据的扫描体A1(图6(b)中点划线绘制的立体结构),此扫描体A1相对于参考体A2(图6(b)中实线绘制的立体结构)具有预定的偏移量,这里的参考体A2为:使参与超声波发射的阵元发射的超声波束沿阵元排列平面的法线(图6(b)中的实线箭头F52)所在方向传播,并在三维空间内形成的扫描体A2。可见,上述扫描体A1相对于参考体A2具有的偏移量用于衡量沿不同超声传播方向传播形成的扫描体相对于参考体的一个三维空间中的偏转角,本文中该偏移量可通过以下两个角度来组合度量:第一,在扫描体内,超声波束形成的扫描平面A21(图6(b)中点划线绘制的四边形)上超声波束的传播方向与阵元排列平面的法线具有一预定的偏转角度Φ,偏转角度Φ在[0,90°)范围内选择;第二,如图6(c),在阵元排列平面P1上的平面直角坐标系中,从X轴逆时针旋转到超声波束的传播方向在阵元排列平面P1上的投影P51(图6(c)中平面P1内的点划线箭头)所在直线处而形成的旋转夹角θ,此旋转夹角θ在[0,360°)范围内选择。当偏转角度Φ为零时,上述扫描体A1相对于参考体A2具有的偏移量为零。在实现三维超声成像时,通过改变每个阵元不同的时延时间,可以改变上述偏转角度Φ和旋转夹角θ的大小,从而调整上述扫描体A1相对于参考体A2的偏移量,实现在三维空间内沿不同的超声传播方向形成不同的扫描体。
平面超声波束通常几乎覆盖探头1的整个成像区域,因此使用平面超声波束成像时,一次发射就可以得到一帧超声图像(此一帧超声图像应当理解为包括一帧二维图像数据或一帧三维图像数据,下文同),因此成像帧率可以很高。而使用聚焦超声波束成像时,因为波束聚焦于焦点处,因此每次只 能得到一根或者几根扫描线,需要多次发射后才能得到成像区域内的所有扫描线从而组合所有扫描线获得成像区域的一帧超声图像。因此,使用聚焦超声波束成像时帧率相对较低。但是聚焦超声波束每次发射的能力较集中,而且仅在能力集中处成像,因此获得的回波信号信噪比高,可用以获得质量较好的超声图像。
为了在超声图像中精确跟踪并显示扫描目标(例如,人体或者动物体内的器官、组织等中存在的血管或者生物体内其他其内有流体流动的脉管,等等)内的流体(例如,血液或者生物体内的其他流体等等)的流场内的目标点(例如,扫描目标内感兴趣的点或者位置)的真实速度矢量(下文中详述),本文提供了一种超声成像方法,其中通过使用多超声传播方向(下文将具体解释)发射超声波束来精确跟踪扫描目标内流体的流体场内目标点的真实速度矢量,并用以显示在超声图像中,这里的超声图像可以为三维超声图像。此外,本文还充分利用平面超声波束成像帧率高的优点以满足用超声成像测量流体速度时的高帧率的要求,以便于获得更加精确、更实时的速度矢量,并且利用多超声传播方向发射平面超声波束的方式来使目标点的速度矢量更加贴近目标点在扫描目标流场中真实的方向和速度大小,以便能够实现在三维立体图像或二维成像图像中显示目标点真实的速度方向和大小。下文中将结合附图详细说明本发明的各个具体实施例。
如图7所示,本发明的一个实施例提供了一种超声成像方法,其具体包括以下步骤。
在步骤100中,发射电路2激励探头1沿至少三个超声传播方向向扫描目标发射超声波束。其中,对探头1中的每一个阵元配置相应的延迟线,通过改变探头1中每个阵元的延迟时间对探头进行声束控制和动态聚焦,来获得不同的超声传播方向。这里的超声波束包括平面超声波束、聚焦超声波束、发散超声波束等超声波束等中的任意一种,而在本发明的一个实施例中,发射电路2激励探头1沿至少三个超声传播方向向扫描目标发射平面超声波束。
如图9所示,图9中以平面超声波束的发射为例(但不限于仅适用于平 面超声波束),发射电路2激励探头1中的参与发射超声波束的阵元112沿其中一个超声传播方向(比如图9中所示的点划线的指向)向扫描目标12发射平面超声波束时,超声波束在上述扫描目标12所在的空间内传播时形成多个近似平行的扫描平面113(即图9中的实线四边形113),此多个扫描平面113构成一个扫描体11,接收此扫描体11返回的回波,获得超声波束回波信号,通过处理即可获得一帧平面波束回波图像数据,用以形成立体三维图像数据库。此一帧平面波束回波图像数据包括一帧立体三维图像数据,或者还可以看作多幅二维图像数据构成的一帧立体三维图像数据。又如图8所示,其给出了沿三个超声传播方向下按照图9所示的过程形成三个扫描体的示意图,图8中,发射电路2激励探头1中的参与发射超声波束的阵元4沿三个超声传播方向向扫描目标发射超声波束,超声波束在扫描目标所在的空间内传播时分别形成三组近似平行的扫描平面24、23、25,此三组近似平行的扫描平面24、23、25分别形成三个扫描体,接收此三个扫描体返回的回波,获得三组超声波束回波信号,通过处理即可获得三组平面波束回波图像数据,用以形成同一时刻采集的三组立三维图像数据,根据此三组立三维图像数据可计算扫描目标内目标点的速度矢量。图8中,探头1中参与超声波发射的阵元可以是部分或者全部,而参与超声波接收的阵元也可以是部分或者全部,图8中可以利用部分阵元124沿超声传播方向261发射超声波束,而利用部分阵元123沿方向262接收超声波的回波。
因此,在本发明的其中一个实施例中,上述步骤100中,激励部分或全部超声波束发射阵元沿至少三个超声传播方向向扫描目标发射超声波束,使超声波束在扫描目标所在的空间内传播用以形成至少三个扫描体,每个扫描体源自一个超声传播方向上发射的超声波束。如图10所示,分别激励探头1中的部分或全部超声波束发射阵元沿三个超声传播方向向扫描目标发射超声波束,形成三个扫描体S1、S2、S3,利用三个扫描体S1、S2、S3回波信号叠加的数据计算扫描目标12内目标点的速度矢量。多个扫描体在空间上两两相对具有一定的偏转,并且多个扫描体至少存在部分重合。基于上述实施例, 在本发明的另一个实施例中,上述步骤100中,激励部分或全部超声波束发射阵元沿至少三个超声传播方向向扫描目标发射平面超声波束,使平面超声波束在扫描目标所在的空间内传播用以形成至少三个扫描体,每个扫描体源自一个超声传播方向上发射的平面超声波束。当然,本文此处不限于只采用发射平面超声波束,还可以采用发散超声波束或者聚焦超声波束等等。并且,上述提到的部分或全部超声波束发射阵元包括:探头1中的部分或全部超声波束发射阵元、或者位于探头1中排列成一个平面的多个超声波束发射阵元中的部分或全部阵元,例如,上述提到的部分或全部超声波束发射阵元可以是矩阵面阵探头中的一个矩形方框区域内的阵元(如图10和图8中的124),环形面阵探头中的至少一圈阵元或者至少一个扇形块内的阵元(扇形块如图11(c)中的111),等等。也可以理解为,上述提到的部分或全部超声波束发射阵元是:矩阵面阵探头中矩形方框区域内阵元的部分或全部、或者环形面阵探头中的至少一圈阵元或至少一个扇形块内的阵元的部分或全部。下文涉及到部分或全部超声波束发射阵元的同此理解。
此外,在本发明的另一个实施例中,如图11(b)所示,将探头1中的超声波发射阵元(图中一个圆圈表示一个阵元)分成多块阵元区111,激励部分或全部阵元区111沿至少三个超声传播方向向扫描目标发射超声波束,使超声波束在扫描目标所在的空间内传播用以形成至少三个扫描体。每个阵元区111中具有预定的延时控制方式,用以控制阵元区111中部分或全部超声波发射阵元的超声波束的发射时延。此时,可以采用部分或全部阵元区111接收超声回波,或者采用阵元区111中部分或全部超声波发射阵元接收超声回波。此实施例可以适用于聚焦超声波束的发射,但不限于仅用于聚焦超声波束的发射。如图12所示以聚焦超声波束的发射为例,每个阵元区111用于产生至少一根聚焦超声波束(图中带箭头的弧线),于是在多个阵元区111同时激发产生聚焦超声波束时,可使多根聚焦超声波束在扫描目标所在的空间内传播形成一个由聚焦超声波束形成的扫描体11,扫描体11内位于同一平面内的聚焦超声波束形成一个扫描平面113(图中实线箭头所示,每个实 线箭头表示一根聚焦超声波束),而扫描体11也可以看作是由多个扫描平面113构成。通过改变每个阵元区111中参与发射超声波的发射阵元的时延大小,可以改变聚焦超声波束的指向,从而改变多根聚焦超声波束在扫描目标所在空间内的传播方向。因此,在本发明的又一个实施例中,将探头1中的超声波发射阵元分成多块阵元区,激励部分或全部阵元区沿至少三个超声传播方向向扫描目标发射聚焦超声波束,使聚焦超声波束在扫描目标所在的空间内传播用以形成至少三个扫描体。其中,每个阵元区产生至少一根聚焦超声波束。
基于上述各个实施例中,除了采用矩阵型排列的面阵探头,还可以采用如图11(c)所示的环阵型的面阵探头,于是,对于上述多块阵元区的划分可以采用图11(b)中沿面阵探头的横纵方向均匀划分,或者如图11(c)中按照周向均匀分割为多个扇形区域作为上述阵元区111。同理,本文所提到的探头不限于上述结构类型,还可以采用多个阵元排列成不规则的阵列所构成的面阵探头,而对于上述阵元区111的划分可参见图11所示的方式,按照阵元的排布方向均匀划分或者按照周向均匀分割为多个扇形区域,或者按照径向分割为多个同心圆环作为上述阵元区111,或者划分多个任意的块状阵元区等等。在本发明的一个实施例中,如图11(d)所示的超声阵元13排列的异性结构,探头1中的阵元可排列成任意形状的平面。而其中的阵元区111可以为包括至少一个阵元的任意形状的块状阵元区。
在上述步骤100中发射的至少三个超声传播方向上的超声波束,主要是为了给步骤400的计算提供基础的数据,沿一个超声传播方向上的超声波束的回波用以计算目标点沿该超声传播方向上的一个速度分量,而为了使本发明计算获得的目标点的速度矢量能更加贴合实际情况,更加真实的反映目标点血流的真实血流速度,则在本实施例步骤400中采用至少三个超声传播方向上发射的超声波束的回波来计算目标点的速度矢量。具体地,步骤400中采用至少三个速度分量来计算目标点的速度矢量需要满足以下有关超声传播方向的约束条件:
用于计算此至少三个速度分量的至少三组波束回波信号所对应的至少三个超声传播方向不在同一平面内。
图13至图18给出的实施例中仅绘制沿一个超声传播方向形成的扫描体中的一个扫描平面的示意图,目的在于更加形象地区分沿各个不同的超声传播方向上形成扫描体的区别。如图13所示,图13中沿其中一个超声传播方向(比如图13中的实线箭头方向F6)向扫描目标发射超声波束时,可在上述扫描目标所在的扫描空间中的扫描断面上传播超声波束相应形成扫描平面16(即图13中的实线四边形16),获得超声波束回波信号,通过处理即可获得一帧平面波束回波图像数据,用以形成同一个切面下的二维图像数据,多个近似平行的扫描平面16形成扫描体11(图中的虚线立方体),获得扫描体11内所有的回波信号,通过处理即可获得多个切面下的图像数据,用以形成立体三维图像数据。如图13所示,其给出了三个超声传播方向下对扫描空间扫描成像时形成的三个扫描平面,沿实线箭头所表示的超声传播方向F6向扫描目标发射一次平面超声波束时形成扫描平面16,沿双点划线箭头所表示的超声传播方向F5向扫描目标发射一次平面超声波束时形成扫描平面15,沿虚线箭头所表示的超声传播方向F4向扫描目标发射一次平面超声波束时形成扫描平面14,图13中扫描平面15与扫描平面16是相互垂直的,则两者的传播方向均是沿扫描空间11的深度方向,因此,多个近似平行的扫描平面15与扫描平面16所形成的扫描体均为图中虚线立方体所示的范围,其覆盖相同的扫描范围,则在利用探头中同一位置处的部分或全部超声波发射阵元、或者同一部分阵元区或全部阵元区形成上述扫描平面15与扫描平面16时,视为具有相同的超声传播方向;而扫描平面14与上述扫描平面15和扫描平面16的超声传播方向则不相同。于是,在本发明的一个实施例中,上述步骤100中,发射电路2激励探头1沿至少三个超声传播方向向扫描目标发射超声波束,使超声波束在扫描目标所在的空间内形成至少三个扫描体,至少三个扫描体在空间上存在至少一部分重合。
当然,在上述步骤100中,也可沿N(3≤N)个超声传播方向向扫描目 标发射超声波束,但在后续步骤400中,用于计算上述目标点的速度矢量时,每次仅采用n个速度分矢量进行计算,此处的3≤n<N。也就是说,在上述步骤100中可以是:沿至少三个超声传播方向向扫描目标发射超声波束,其中相邻的至少三个超声传播方向不在同一平面内。那么,在步骤400中,依据基于至少三组波束回波信号中的一组波束回波信号、计算扫描目标内目标点的一个速度分量的过程,分别计算目标点在连续接收的至少三组波束回波信号中所对应的沿至少三个超声传播方向上的速度分量,根据此至少三个超声传播方向上的速度分量,合成获得目标点的速度矢量。
又如,为了缩减运算量、降低扫描和运算的复杂度,在上述步骤100中,也可沿N(3≤N)个超声传播方向向扫描目标发射超声波束,但在后续步骤400中,用于计算上述目标点的速度矢量时,每次采用N个速度分矢量进行计算。也就是说,在上述步骤100中可以是:沿至少三个超声传播方向向扫描目标发射超声波束,其中此至少三个超声传播方向不在同一平面内。那么,在步骤400中,依据基于接收获得的至少三组波束回波信号中的一组波束回波信号、计算所述扫描目标内目标点的一个速度分量的过程,分别计算目标点在所述至少三组波束回波信号中所对应的沿所有超声传播方向上的速度分量,根据此所有超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
为了能满足上述有关超声传播方向的约束条件,无论是按照上述“相邻的至少三个超声传播方向不在同一平面内”或者“此至少三个超声传播方向不在同一平面内”的实现方式,均可通过调整参与超声波束发射的发射阵元的时延时间、和/或驱动参与超声波束发射的发射阵元实现偏转使超声波出射方向发生改变,来获得不同的超声传播方向。这里提到的驱动参与超声波束发射的发射阵元实现偏转使超声波出射方向发生改变,如为每个发射阵元都配置一机械驱动控制单元,用以驱动发射阵元偏转预设角度,使得超声波出射方向相对阵元排列平面的法线具有预定的偏转角。
为了降低后续计算的复杂度,便于后续计算对回波信号进行补偿,上述 超声传播方向具有空间对称性,也可以理解为,沿不同超声传播方向向扫描目标发射超声波束时,其中至少存在两个超声传播方向相对于阵元排列平面的法线对称设置,和/或相对垂直于阵元排列平面的平面对称设置,例如,对称设置的两个超声传播方向上合成超声波束的偏转角度Φ相同、此两个超声传播方向在阵列排列平面上的投影相对于在阵列排列平面内的平面直角坐标系中的任意一过原点的直线对称设置,例如合成超声波束的旋转夹角θ之差(或者差的绝对值)为180度。这里的偏转角度Φ和旋转夹角θ参见前文中的相关定义,下文同。如图15所示,其给出了三个超声传播方向下对扫描空间扫描成像时形成的三个扫描体,沿实线箭头所表示的超声传播方向F8向扫描目标发射一次超声波束时形成的扫描体中扫描平面为实线四边形18,沿单点划线箭头所表示的超声传播方向F9向扫描目标发射一次超声波束时形成的扫描体中扫描平面为单点划线四边形19,沿双点划线箭头所表示的超声传播方向F2向扫描目标发射一次超声波束时形成的扫描体中扫描平面为双点划线四边形12。由图15可见,超声传播方向F2和F9相对于阵元排列平面的法线对称设置,或相对垂直于阵元排列平面的平面也对称设置,可以具体理解为:对称设置的超声传播方向F2和F9上合成超声波束的偏转角度Φ相同、且旋转夹角θ之差(或者差的绝对值)为180度。如图17所示,给出了四个超声传播方向下对扫描空间扫描成像时形成的四个扫描体,其在图15的基础上增加,沿虚线箭头所表示的超声传播方向F10向扫描目标发射一次超声波束时形成的扫描体中扫描平面为虚线四边形10。由图17可见,超声传播方向F2和F9以及F8和F10相对于阵元排列平面的法线对称设置,可以具体理解为:对称设置的超声传播方向F2和F9以及F8和F10上合成超声波束的偏转角度Φ相同、且旋转夹角θ之差(或者差的绝对值)为180度。如图18所示,给出了四个超声传播方向下对扫描空间扫描成像时形成的四个扫描体,其在图15的基础上增加,沿虚线箭头所表示的超声传播方向F21向扫描目标发射一次超声波束时形成的扫描体中扫描平面为虚线四边形21,其中超声传播方向F2和F9相对于阵元排列平面的法线对称设置,而F8和F21相对 垂直于阵元排列平面的平面对称设置,可以具体理解为:对称设置的两个超声传播方向F8和F21上合成超声波束的偏转角度Φ相同、且F8和F21在阵列排列平面上的投影相对于平面直角坐标系中任意一过原点的直线对称设置。基于上述实施例可见,在本发明的一个实施例中,每对超声传播方向相对阵元排列平面的法线对称设置,和/或相对垂直于阵元排列平面的平面对称设置。
又如,在本发明的另一个实施例中,超声传播方向的个数为偶数时,超声传播方向位于以阵元排列平面的法线为中心轴的旋转面上,且超声传播方向以此中心轴两两对称设置,如图18所示。在本发明的其中一个实施例中,上述步骤100中发射电路2激励探头1沿四个超声传播方向向扫描目标发射超声波束,此四个超声传播方向两两相对于垂直于阵元排列平面的平面对称设置,如图18所示。或者还可以理解为,在本发明的其中一个实施例中,不同超声传播方向上合成超声波束的偏转角度Φ相同、且这些超声传播方向在阵列排列平面上的投影两两相对于平面直角坐标系中任意一过原点的直线对称设置。例如,两两之间的旋转夹角θ之差(或者差的绝对值)为180度。在本发明的又一个实施例中,如图15所示,上述步骤100中发射电路2激励探头1沿三个超声传播方向向扫描目标发射超声波束,此三个超声传播方向两两呈60度夹角。
此外,如图11(a)所示的多个阵元排列成矩阵的面阵探头,或者是多个阵元排列成矩阵的发射阵元区域124,其中面阵探头或发射阵元区域124均可以看成是由多组线性阵列阵元组构成,并且其中此线性阵列阵元组可以视为按照多个方向排列,如图11(a)中可以看成多组线性阵列阵元组131按照Y方向排列形成面阵探头或发射阵元区域124,还可以看成多组线性阵列阵元组132按照X方向排列形成面阵探头或发射阵元区域124,还可以看成多组线性阵列阵元组133按照Z方向排列形成面阵探头或发射阵元区域124,还可以看成多组线性阵列阵元组134按照W方向排列形成面阵探头或发射阵元区域124,等等。
因此,为了简化延迟线控制方案,在本发明的一个实施例中,激励部分或全部超声波发射阵元沿至少三个超声传播方向向扫描目标发射超声波束的过程包括以下几种方案:
第一种,沿至少三个方向分别对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制,使得多组线性阵列阵元组沿一个方向被激发和多组线性阵列阵元组分别沿至少两个方向依次被激发发射超声波束,从而超声波束将在扫描目标所在的空间内沿至少三个超声传播方向传播、并分别形成至少三个扫描体,其中,多组线性阵列阵元组沿同一方向依次被激发发射超声波束时形成一个扫描体。此时,每组线性阵列阵元组中的各个阵元可以被同时激发。如图16所示,给出了三个超声传播方向下对扫描空间扫描成像时形成的三个扫描体,其中,沿X方向对多组线性阵列阵元组132进行延时控制,使得多组线性阵列阵元组132沿Y方向依次被激发产生沿双点划线箭头所示的超声传播方向F5发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为双点划线四边形15;沿Y方向对多组线性阵列阵元组131进行延时控制,使得多组线性阵列阵元组131沿X方向同时被激发产生沿实线箭头所示的超声传播方向F6发射超声波束,即沿X方向的延时时间为零,超声波束在三维空间中传播所形成的扫描体中扫描平面为实线四边形16;沿Z方向对多组线性阵列阵元组133进行延时控制,使得多组线性阵列阵元组133沿Z方向依次被激发产生沿虚线箭头所示的超声传播方向F21发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为虚线四边形21。
第二种,沿至少三个方向分别对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制,使得多组线性阵列阵元组分别沿至少三个方向依次被激发发射超声波束,从而超声波束将在扫描目标所在的空间内沿至少三个超声传播方向传播并分别形成至少三个扫描体,其中,多组线性阵列阵元组沿同一方向依次被激发发射超声波束时形成一个扫描体。此时,每组线性阵列阵元组中的各个阵元可以被同时激发。如图16所示,用图18中的实 线四边形18替换图16中的实线四边形16,即,沿Y方向对多组线性阵列阵元组131进行延时控制,使得多组线性阵列阵元组131沿Y方向依次被激发产生沿实线箭头所示的超声传播方向F8发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为实线四边形18。其实第一种是第二种方案的一个特例,即在其中一个方向上对部分或全部超声波发射阵元中的多组线性阵列阵元组,提供延时时间为零的延时控制策略。
又例如,在本发明的一个实施例中,上述第一种和第二种方式中,沿每个方向对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制时,可以采用一种延时控制策略,每种延时控制策略按照预定的延时时间令多组线性阵列阵元组依次被激发后、在扫描体内合成超声波束的偏转角度Φ和相应的旋转夹角θ具有相对应的预定角度。也可以是,沿每个方向对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制时,采用一种以上的延时控制策略。可见,沿一个方向按照一种延时控制策略对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制时,实现沿一个超声传播方向传播超声波束形成相应的扫描体,在该扫描体中合成超声波束的偏转角度Φ和相应的旋转夹角θ具有预定角度。于是为了能够利用同一个探头1实现沿更多的超声传播方向对扫描目标进行三维空间的扫描,在本发明的一个实施例中,沿每个方向按照至少一种延时控制策略对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制。如图18所示,给出了四个超声传播方向下对扫描空间扫描成像时形成的四个扫描体,其中,沿Y方向对多组线性阵列阵元组131进行某一种延时控制,使得多组线性阵列阵元组131沿Y方向依次被激发产生沿实线箭头所示的超声传播方向F8发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为实线四边形18;沿X方向对多组线性阵列阵元组132按照第一种延时控制策略进行延时控制,使得多组线性阵列阵元组132沿X方向依次被激发产生沿双点划线箭头所示的超声传播方向F2发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为双点划线四边形12,双点划线四边形12内合成超声 波束的偏转角度Φ为X1度,相应的旋转夹角θ为180度。沿X方向对多组线性阵列阵元组132按照第二种延时控制策略进行延时控制,使得多组线性阵列阵元组132沿X方向依次被激发产生沿单点划线箭头所示的超声传播方向F9发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为单点划线四边形19,单点划线四边形19内合成超声波束的偏转角度Φ为X1度,相应的旋转夹角θ为0度,当然这里的偏转角度Φ也可以不等于X1。沿Z方向对多组线性阵列阵元组133进行某一种延时控制,使得多组线性阵列阵元组133沿Z方向依次被激发产生沿虚线箭头所示的超声传播方向F21发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为虚线四边形21。
此外,为了优化探头中各个阵元的激发方案,便于阵元的激励操作,以及简化探头延时线的操作,则在本发明的其中一个实施例中,还提供了第三种实现方案,即,沿两个方向分别对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制,并且存在有至少一个方向上分别按照至少两种延时控制策略进行延时控制,使得多组线性阵列阵元组沿每个方向按照相应的延时控制策略依次被激发发射超声波束,超声波束将在扫描目标所在的空间内沿一个超声传播方向传播并形成一个扫描体。此时,每组线性阵列阵元组中的各个阵元可以被同时激发。如图14所示,给出了三个超声传播方向下对扫描空间扫描成像时形成的三个扫描体,其中,沿X方向对多组线性阵列阵元组132某种延时控制策略进行延时控制,使得多组线性阵列阵元组132沿X方向依次被激发产生沿双点划线箭头所示的超声传播方向F5发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为双点划线四边形15,双点划线四边形15内合成超声波束的偏转角度Φ在(0,90度)范围内选择,相应的旋转夹角θ为180度;沿Y方向对多组线性阵列阵元组131按照第一种延时控制策略进行延时控制,使得多组线性阵列阵元组131沿Y方向同时被激发产生沿实线箭头所示的超声传播方向F6发射超声波束,即沿Y方向的延时时间为零,超声波束在三维空间中传播所形成的扫描体中扫描 平面为实线四边形16,在此扫描体中合成超声波束的偏转角度Φ为0度,相应的旋转夹角θ为0度;沿Y方向对多组线性阵列阵元组131按照第二种延时控制策略进行延时控制,使得多组线性阵列阵元组131沿Y方向依次被激发产生沿虚线箭头所示的超声传播方向F4发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为虚线四边形14,在此扫描体中合成超声波束的偏转角度Φ在(0,90度)的范围内选择,相应的旋转夹角θ为270度。又如图15所示,给出了三个超声传播方向下对扫描空间扫描成像时形成的三个扫描体,沿Y方向对多组线性阵列阵元组131进行某一种延时控制,使得多组线性阵列阵元组131沿Y方向依次被激发产生沿实线箭头所示的超声传播方向F8发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为实线四边形18,在此扫描体中合成超声波束的偏转角度Φ在(0,90度)的范围内选择,相应的旋转夹角θ为270度;沿X方向对多组线性阵列阵元组132按照第一种延时控制策略进行延时控制,使得多组线性阵列阵元组132沿X方向依次被激发产生沿双点划线箭头所示的超声传播方向F2发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为双点划线四边形12,在此扫描体中合成超声波束的偏转角度Φ在(0,90度)的范围内选择,相应的旋转夹角θ为180度。沿X方向对多组线性阵列阵元组132按照第二种延时控制策略进行延时控制,使得多组线性阵列阵元组132沿X方向依次被激发产生沿单点划线箭头所示的超声传播方向F9发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为单点划线四边形19,在此扫描体中合成超声波束的偏转角度Φ在(0,90度)的范围内选择,相应的旋转夹角θ为0度。又如图17所示,在图15的基础上,再增加沿Y方向对多组线性阵列阵元组131进行延时控制,使得多组线性阵列阵元组131沿Y方向依次被激发产生沿虚线箭头所示的超声传播方向F10发射超声波束,超声波束在三维空间中传播所形成的扫描体中扫描平面为虚线四边形10,在此扫描体中合成超声波束的偏转角度Φ在(0,90度)的范围内选择,相应的旋转夹角θ为90度。
为了保证前述提到的传播方向的对称性,在本发明的一个实施例中,每个方向按照两种延时控制策略进行延时控制,并且此两种延时控制策略用于实现两个超声传播方向上合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度的超声波发射过程。采用上述对称设置方式的发射超声波束可以以最少的发射空间方向得到目标点所在的区域的三维流场信息,此外这种扫描方式下各个扫描平面具有对称性,使得沿各个超声传播方向发射超声波束获得回波信号的误差一致,方便后续对回波信号进行统一的误差补偿处理,从而提高信号采集的精确度,提升目标点的速度矢量跟踪精确性。
采用上述实施例,则在探头1中可以采用少量的延迟线进行延时控制,例如,每组线性阵列阵元组共用一个延迟线。在本发明的一个实施例中,探头1中采用两个方向上多组线性阵列阵元组的个数之和,例如,图11(a)所示,沿X方向具有六组线性阵列阵元组132,沿Y方向上具有六组线性阵列阵元组131,沿Z方向上具有九组线性阵列阵元组133,沿W方向上具有九组线性阵列阵元组131。若选沿X和Y方向进行延时控制,即最少可以需要6+6=12个延迟线。
基于上述实施例,在本发明的一个实施例中,上述实施例采用矩阵排列的面阵探头,而X、Y方向分别表示面阵探头的纵向和横向。因此,上述沿两个方向分别对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制、并且存在有至少一个方向上分别按照至少两种延时控制策略进行延时控制的过程具体地包括:
沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照至少一种延时控制策略进行延时控制,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照至少两种延时控制策略进行延时控制;或者,
沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照至少两种延时控制策略进行延时控制,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照至少一种延时控制策略进行延时控制。
例如,在本发明的其中一个实施例中,以发射平面超声波束为例,上述 步骤100可以具体的为:
沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照至少一种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有至少一个偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一个扫描体;
沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照至少两种延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有至少两个偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少两个扫描体;其中,所有扫描体存在部分重合。
又或者,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照至少两种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有至少两个偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少两个扫描体;沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照至少一种延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有至少一个偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一个扫描体;其中,所有扫描体存在部分重合。
这里的偏转角度即指上文提到的在扫描平面内超声传播方向相对于阵元排列平面的法线的偏转角度Φ。当然,本文中不限于仅采用平面超声波束,上述各个实施例中还可以采用如发散超声波束或者聚焦超声波束等等。
此外,本文中上述各个实施例中也不限制超声探头1的阵元排列平面的形状,例如,如图11(c)所示的环阵面阵探头可以看成是,沿径向排列的多组线性阵列阵元组115构成,而可以考虑沿顺时针或者逆时针方向分别按照不同的延时控制策略来对上述多组线性阵列阵元组进行延时控制,等等。当然,上述提到的线性阵列阵元组不限于仅指排列线状的阵元阵列,还包括排列成弧线状或圆周状的阵元阵列,例如图11(c)所示的环阵面阵探头中沿周向排列的线性阵列阵元组116或者沿周向排列的一圈阵元阵列。同理,在上述各个实施例所示的实现方式中,沿不同方向对部分或全部超声波发射阵元 中的多组线性阵列阵元组进行延时控制时,可以理解为,沿周向对部分或全部超声波发射阵元中的多组线性阵列阵元组115、或者沿径向对部分或全部超声波发射阵元中的多组线性阵列阵元组116进行延时控制。
然而,上述实施例中的各个步骤不限制其先后顺序,采用上述方式通过调整合成超声波束的偏转角度Φ和旋转夹角θ,来实现沿多个超声传播方向向扫描目标发射超声波束的过程中,沿某一超声传播方向向扫描目标发射超声波束获得一个扫描体的过程称之为第一发射过程,沿某一超声传播方向向扫描目标发射一次超声波束获得一次相应扫描体的过程称之为第一发射步骤,因此,上述步骤100中包括:分别沿至少三个超声传播方向上的多个第一发射过程。为便于计算速度矢量,在本发明的一个实施例中,沿每个超声传播方向上的第一发射过程中包括执行至少两次第一发射步骤,也即,沿每个超声传播方向上执行至少两次向扫描目标发射超声波束的第一发射步骤。因此,每组波束回波信号包括至少两次波束回波信号,每次波束回波信号源自沿一个超声传播方向上执行一次所述第一发射步骤获得的回波。例如,上述各个实施例中,沿一个方向对部分或全部超声波发射阵元中的多组线性阵列阵元组按照一种延时控制策略进行延时控制、获得一个扫描体的过程,视为第一发射过程;而沿一个方向对部分或全部超声波发射阵元中的多组线性阵列阵元组按照一种延时控制策略进行一次延时控制、获得一次相应扫描体的过程,视为第一发射步骤,基于沿每个超声传播方向上的第一发射过程包括执行至少两次第一发射步骤,则沿一个方向对部分或全部超声波发射阵元中的多组线性阵列阵元组按照一种延时控制策略进行延时控制、获得相应扫描体的过程,包括至少两次向扫描目标发射超声波束的步骤。
此外,为了能使获得回波数据能计算同一时刻的目标点血流速度,具体地,则在本发明的一个实施例中,按照上述超声传播方向的不同交替向所述扫描目标发射所述超声波束。例如,如图19(b)所示,沿某一个超声传播方向向扫描目标发射超声波束的第一发射过程包括多次第一发射步骤,按照上述超声传播方向的不同交替执行上述第一发射步骤,A1表示沿第一超声传播方 向执行一次第一发射步骤;A2表示沿第二超声传播方向执行一次第一发射步骤;A3表示沿第三超声传播方向执行一次第一发射步骤;从左到右的执行顺序中按照超声传播方向的不同交替执行第一发射步骤。也可以理解为,依次沿不同的超声传播方向分别执行一次第一步骤形成一重复单元、并重复执行该重复单元。结合图15所示的实施例,A1表示为沿超声传播方向F2(图15中双点划线箭头)执行一次第一发射步骤;A2表示为沿超声传播方向F8(图15中实线箭头)执行一次第一发射步骤;A3表示为沿超声传播方向F9(图15中点划线箭头)执行一次第一发射步骤,从左到右的执行顺序中,重复执行依次按照沿超声传播方向F2、F8、F9分别执行一次第一发射步骤的过程。
又如,如图19(a)所示,按照上述超声传播方向的不同交替向扫描目标发射超声波束的过程,且沿每个超声传播方向连续执行至少两次第一发射步骤。图19(a)中A1表示沿第一超声传播方向执行二次第一发射步骤;A2表示沿第二超声传播方向执行二次第一发射步骤;A3表示沿第三超声传播方向执行二次第一发射步骤,而对于A1、A2和A3则按照超声传播方向的不同交替执行。结合图14所示的实施例,A1表示沿超声传播方向F5(图14中双点划线箭头)连续执行2次第一发射步骤;A2表示沿超声传播方向F4(图14中虚线箭头)连续执行2次第一发射步骤;A3表示为沿超声传播方向F6(图14中实线箭头)连续执行2次第一发射步骤,从左到右的执行顺序中,重复执行依次按照沿超声传播方向F5、F4、F6分别连续执行2次第一发射步骤的过程。还可以将图19(a)看做是一个重复执行单元,上述步骤100包括多次重复执行该重复执行单元的过程,每个重复执行单元中包括分别沿三个超声传播方向连续执行两次第一发射步骤的过程。
或者,相邻两次超声波束的发射分别沿两个不同的超声传播方向,如图20和图19(b)所示。图20中B1、B2、B3、B4表示分别沿四个超声传播方向执行一次第一发射步骤的过程,从左到右的执行顺序中按照超声传播方向的不同交替执行各个第一发射步骤。结合图17所示的实施例,B1表示沿超声传播方向F2(图17中双点划线箭头)执行一次第一发射步骤;B2表示沿超 声传播方向F8(图17中实线箭头)执行一次第一发射步骤;B3表示沿超声传播方向F9(图17中点划线箭头)执行一次第一发射步骤;B4表示沿超声传播方向F10(图17中虚线箭头)执行一次第一发射步骤,先后沿超声传播方向F2、F8、F9、F10分别执行一次第一发射步骤形成一重复单元,然后重复执行该重复单元中的过程。
基于上述实施例所示的交叉执行方案,在本发明的一个实施例中,上述实施例采用矩阵排列的面阵探头,上述沿两个方向分别对部分或全部超声波发射阵元中的多组线性阵列阵元组进行延时控制、并且存在有至少一个方向上分别按照至少两种延时控制策略进行延时控制的过程具体包括多次重复执行以下步骤:
首先,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第一种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第一偏转角度的合成超声波束,用以在扫描目标12所在的空间内形成至少一次第一扫描体;
然后,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第三延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有第二偏转角度的合成超声波束,用以在扫描目标12所在的空间内形成至少一次第二扫描体;
其次,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第二种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第三偏转角度的合成超声波束,用以在扫描目标12所在的空间内形成至少一次第三扫描体。
上述实施例实现了三个超声传播方向的发射,更进一步地,为了实现对称性的发射过程,第一种延时控制策略和第二种延时控制策略用于实现合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度。
同样地,在本发明的又一个实施例中,上述实施例的重复执行过程中还包括:
沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第四延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有第四偏转角度的合成超声波束,用以在扫描目标12所在的空间内形成至少一次第四扫描体。本实施例中实现了四个超声传播方向的发射,更进一步地,为了实现对称性的发射过程,第三种延时控制策略和第四延时控制策略也用于实现合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度。例如图17所示,第一扫描体由扫描平面18构成,第二扫描体由扫描平面12构成,第三扫描体由扫描平面10构成,第四扫描体由扫描平面19构成。
在步骤200中,接收电路3和波束合成模块4接收上述步骤100发射的超声波束的回波,获得至少三组波束回波信号,每组波束回波信号源自沿一个超声传播方向上发射的超声波束。具体地,沿每个超声传播方向上执行至少两次向扫描目标发射超声波束的第一发射步骤,每执行一次第一发射步骤获取一次波束回波信号,对应地,每组波束回波信号包括至少两次波束回波信号,每次波束回波信号源自一个超声传播方向上执行一次所述第一发射步骤获得的回波。通过至少一次波束回波信号经过处理可以获得一帧超声图像,此一帧图像应当理解为一帧三维图像,或者多帧二维图像的组合构成的三维图像。例如,沿一个超声传播方向向扫描目标发射超声波束使超声波束在扫描目标所在的空间内传播形成一个扫描体的第一发射过程中,接收利用此扫描体获得的超声波束的回波,对应为接收一组波束回波信号。而其中,沿一个超声传播方向向扫描目标发射一次超声波束使超声波束在扫描目标所在的空间内传播形成一次相应扫描体的第一发射步骤中,接收利用此扫描体获得的超声波束的回波,对应为获得一次波束回波信号。为了后续能有效计算目标点的速度分量,则每组波束回波信号至少需要两次波束回波信号。
因为平面超声波束的帧率快,可以实时计算获得速度分量,则可以采用发射平面超声波束获得回波信号来计算下述步骤中的速度分量。于是,在本发明的一个实施例中,步骤100为沿至少三个超声传播方向向扫描目标发射平面超声波束;步骤200则为接收所述平面超声波束的回波,获得至少三组 平面波束回波信号,每组平面波束回波信号源自沿一个超声传播方向上发射的平面超声波束。
此外,如图8所示,沿点划线箭头261所示的方向发射超声波束,并沿点划线箭头262所示的方向接收相应的回波,获得波束回波信号,也可沿图8所示的点划线箭头261方向接收相应的回波,获得波束回波信号,这属于本领域的常用技术手段,在此不累述。但是,在本发明的步骤200中应当理解为从任意方向接收源自上述步骤100发射的超声波束的回波,获得相应的波束回波信号。
在步骤300中,数据处理模块9根据所述至少三组波束回波信号中的一组波束回波信号,计算扫描目标内目标点的一个速度分量。因为平面超声波束的帧率快,可以实时计算获得速度分量,则可以采用平面超声波束回波信号计算速度分量,则在本发明的一个实施例中步骤300为根据其中一组平面波束回波信号,计算所述目标点的一个速度分量,依据所述至少三组平面波束回波信号获取至少三个所述速度分量。根据每一组波束回波信号可以计算一个超声传播方向上的速度分量。本发明的实施例中,可以使用多种方法根据获得的多次波束回波信号获得目标点的一个速度分量。
沿每个超声传播方向上执行至少两次向扫描目标发射平面超声波束的第一发射步骤,每组平面波束回波信号包括至少两次平面波束回波信号,每次平面波束回波信号源自一个超声传播方向上执行一次第一发射步骤获得的回波。基于此每组平面波束回波信号中的至少两次平面波束回波信号,可采用以下方法计算沿一个超声传播方向上的速度分量。
首先,提取其中一组波束回波信号中的至少两次波束回波信号,获得两帧超声图像数据(这里的一帧超声图像数据应当理解为一帧三维图像数据,或者多帧二维图像数据构成的三维图像数据),所述一组波束回波信号源自一超声传播方向上发射的超声波束;这里的两帧超声图像数据可以采用相邻两帧超声图像数据。
然后,根据所述两帧超声图像数据,计算上述目标点在第一时刻沿一超 声传播方向上的速度分量。例如,通常,在超声成像中,利用多普勒原理,对超声回波信号进行多普勒处理,可以获得扫描目标或者其内的运动部分的运动速度。例如,获得了超声回波信号之后,通过自相关估计方法或者互相关估计方法,可以根据超声回波信号获得扫描目标或者其内的运动部分的运动速度。在本发明的一个实施例中,利用对超声回波信号进行多普勒处理以获得扫描目标或者其内的运动部分的运动速度的方法,来根据其中一组波束回波信号计算一个速度分量。具体方法如下所示。
在多普勒超声成像方法中,针对扫描目标在同一空间方向连续发射多次超声波束;接收多次在该空间方向对应的超声波束的回波,获得多次波束回波信号,每一次波束回波信号中每个值对应了在一个超声传播方向上进行扫描时一个目标点上的值;于是,首先将所述多次波束回波信号分别沿超声传播方向做Hilbert变换,得到采用复数表示每个目标点上值的多组图像数据;N次发射接收后,在每一个目标点位置上就有沿时间变化的N个复数值,然后,按照下述两个公式计算目标点z在超声波的传播方向的速度大小:
Figure PCTCN2015072022-appb-000001
          公式(1)
Figure PCTCN2015072022-appb-000002
公式(2)
其中,Vz是计算出来的沿超声传播方向的速度值,c是声速,f0是探头的中心频率,Tprf是两次发射超声波束之间的时间间隔,N为发射的次数,j是虚数单位,x(i)是第i次发射上的实部,y(i)是第i次发射上的虚部,
Figure PCTCN2015072022-appb-000003
为取虚部算子,
Figure PCTCN2015072022-appb-000004
为取实部算子。以上公式为一个固定位置上的流速计算公式。
其次,以此类推,每个目标点上的速度通过这N个复数值都可以求出。
最后,血流速度的方向为超声传播方向。
此外还可以使用类似斑点追踪的方法,基于两帧超声图像数据来获取目 标点在某一时刻沿所述一超声传播方向上的速度分量。当然还可以使用本领域中目前正在使用或者将来可能使用的任何可以用以通过超声回波信号计算扫描目标或者其内的运动部分的运动上速度的方法,在此不再详述。
在步骤400中,数据处理模块9根据至少三个上述步骤300计算的速度分量,获得上述目标点的速度矢量,其中,用于计算此至少三个速度分量的至少三组波束回波信号、所对应的至少三个超声传播方向不在同一平面内,具体可参见上述步骤100中的相关解释说明。在本发明的一个实施例中,上述步骤400包括以下步骤:
首先,获取目标点在第一时刻沿至少三个超声传播方向上的速度分量;
然后,根据第一时刻沿至少三个超声传播方向上的速度分量,利用速度合成获得目标点在第一时刻的速度矢量。
又如,若上述步骤100中沿N(N大于等于3)个超声传播方向向扫描目标发射超声波束,可以获得N组波束回波信号,每个时刻对应有N个速度分量。按照超声传播方向的不同交替发射N个超声传播方向上的超声波束时,同时也在多次重复计算不同时刻分别对应的这N个速度分量,在每次连续计算获得N个速度分量时,做一次速度分量的合成,计算一次目标点在当前时刻对应的速度矢量。在本发明的一个实施例中,通过三个以上的超声传播方向或者通过增加超声传播方向的数量,来使计算的目标点的速度矢量更加贴近三维空间的真实流场流速方向,那么每一次实时计算目标点的速度矢量时,就需要按照上述实施例考虑所有超声传播方向对应的波束回波信号,使得实时计算的目标点的速度矢量更加接近真实值。下文将本实施例的利用所有超声传播方向对应的波束回波信号计算一次目标点速度矢量的过程简称为目标点速度矢量的最长计算周期,即依据上述步骤300中基于所述至少三组波束回波信号中的一组波束回波信号、计算扫描目标内目标点的一个速度分量的过程,分别计算目标点在所述至少三类波束回波信号中所对应的沿所有超声传播方向上的速度分量,根据此所有超声传播方向上的速度分量,合成获得目标点的速度矢量。此时,只要在步骤100沿至少三个超声传播方向向扫描 目标发射超声波束的过程中,使所有超声传播方向不在同一平面内,即可满足上述步骤300中有关法线不在同一平面内的约束条件。
然而,还可以缩减上述关于目标点速度矢量的计算步骤。在本发明的一个具体实施例中,当N大于等于3时,为了提高速度矢量的运算速度,上述步骤400根据当前时刻沿至少三个超声传播方向上的速度分量,利用速度合成获得上述目标点在当前时刻的速度矢量。具体地,在计算速度矢量时,可以仅依据连续计算获得的三个速度分量计算一次速度矢量,而此时用于计算这三个速度分量的三组波束回波信号、所对应的三个超声传播方向不在同一平面内。因此,在本发明的一个实施例中,按照时间顺序连续接收的三组波束回波信号源自三个不同超声传播方向上发射的超声波束,上述步骤400中,根据目标点在同一时刻沿三个超声传播方向上对应的速度分量,通过速度合成获得目标点的速度矢量。采用本实施例可以缩短每次计算目标点三维速度矢量的时间,提高实时计算速度矢量的效率,保证目标点速度矢量显示的连续性。下文将本实施例的利用三个速度分量计算一次目标点速度矢量的过程简称为目标点速度矢量的最短计算周期。也就是说,依据上述步骤300的计算过程,分别计算目标点在连续接收的三类波束回波信号中所对应的沿三个超声传播方向上的速度分量,根据此三个超声传播方向上的速度分量,合成获得目标点的速度矢量。
那么介于上述目标点速度矢量的最短计算周期和最长计算周期之间的情况时,上述步骤400为:依据基于至少三组波束回波信号中的一组波束回波信号、计算扫描目标内目标点的一个速度分量的过程,分别计算目标点在连续接收的至少三类波束回波信号中所对应的沿至少三个超声传播方向上的速度分量,根据此至少三个超声传播方向上的速度分量,合成获得目标点的速度矢量。此时只要在上述步骤100沿至少三个超声传播方向向扫描目标发射超声波束的过程中,使相邻的至少三个超声传播方向不在同一平面内,即可满足上述步骤300中有关法线不在同一平面内的约束条件。
下面将结合图14详细说明在目标点速度矢量的最短计算周期中如何实 现速度分矢量合成的。基于图14所示的实施例中,速度分量V4是沿超声传播方向F4的速度,速度分量V6是沿超声传播方向F6的速度,将两者合成后获得速度分量V1,将沿超声传播方向F5的速度分量V5与速度分量V1进行速度合成,获得所需要的速度矢量V0。这里的两两速度分矢量进行合成的方法也可以应用于上述目标点速度矢量的最长计算周期、以及介于最短与最长计算周期之间的任意速度矢量合成计算中。
本发明也不限于只采用以上两种方式来设计目标点速度矢量的计算周期,比如,可以利用任意时刻沿大于3小于N个超声传播方向上的速度分量,来合成上述目标点在该时刻的速度矢量,通过调节参与单次目标点速度矢量的计算周期的超声传播方向的个数,实现对目标点的三维速度矢量计算精度的调节。如图19(a)和(b)、图20所示,从左到右的执行顺序中,根据虚线框内执行的多次第一发射步骤所获得的波束回波信号,执行一次速度矢量的计算。于是,在本发明的又一个实施例中,沿每个超声传播方向连续执行两次第一发射步骤后执行一次上述步骤300和步骤400的计算过程,即计算获得一次速度矢量。单次计算速度矢量的过程中速度分量的个数越多,计算精度越高,但是成像速度也会因此受到制约,因此在本发明的一个实施例中,通过提供一提示框、按键、提示符等方式获取用户择一选择的超声传播方向个数,生成指令信息,根据该指令信息调整所述超声成像方法中的超声传播方向个数,并依据超声传播方向个数确定用于合成目标点速度矢量的速度分量的个数。或者,还可以通过一提示框、按键、提示符等方式获取用户择一选择的用于合成目标点速度矢量的速度分量的个数,生成指令信息,根据该指令信息调整用于合成目标点速度矢量的速度分量的个数,或依据速度分量的个数调整上述步骤100中超声传播方向的个数,用以实现自定义设置超声成像的显示效果。
在步骤500中,数据处理模块9可以根据上述至少三组波束回波信号,获取扫描目标的至少一部分的超声图像,也可以根据向扫描目标发射聚焦超声波束获得的聚焦超声波束回波信号,获取扫描目标的至少一部分的超声图 像。当然,这里的超声图像可以是B图、彩色图像等等模式,在步骤500中,可根据其中一组波束回波信号中的多次波束回波信号,获取所述超声图像。若上述步骤100中采用发射平面超声波束,则这里变为,根据至少三组平面波束回波信号,获取所述超声图像。由于平面超声波束的成像质量没有聚焦超声波束效果好,则为了获取更高质量的超声图像,在所述方法中还包括以下步骤:
向所述扫描目标发射聚焦超声波束;
接收所述聚焦超声波束的回波,获得聚焦超声波束回波信号;
则,在本步骤500中,可以变更为:根据所述聚焦超声波束回波信号,获取所述扫描目标的至少一部分的超声图像。
至于根据相应的波束回波信号获取超声图像的方法可以使用本领域内目前和将来通常使用的任何适合的方法,在此不再详述。
上述各个实施例中,凡是未具体限定发射的超声波束的类型的,均可以采用平面超声波束、发散超声波束、聚焦超声波束等中的任何一种。若上述超声波束替换为相应类型的超声波类型,则相应的回波信号以及也做相应的调整,例如,步骤100中发射聚焦超声波束,则后续步骤中的波束回波信号则变更为“聚焦超声波束回波信号”,等等,在此不再累述。
此外,为了能使速度矢量的计算和超声图像的成像同步,则在利用聚焦超声波束获取超声图像时,在沿至少三个超声传播方向向扫描目标发射超声波束的过程中,插入至少一次向扫描目标发射聚焦超声波束的步骤,利用聚焦超声波获取高质量的超声图像,而采用其他超声波获取目标点的真实速度矢量。而有关聚焦超声波束的插入方式可参见下文中有关“在平面超声波束的发射过程中插入聚焦超声波束的发射过程”的各个实施例,并将下文中提到的各种插入方式的实施例中的平面超声波束置换为上述步骤100中发射所采用的超声波束即可,在此不详述。
在步骤600中,显示上述500获得的超声图像和上述步骤400计算的速度矢量。在获得了在扫描目标内的目标点的速度矢量和扫描目标的至少一部 分的超声图像之后,可以将该速度矢量和该超声图像同时显示在显示器8上。例如,一个实施例中,可以将该速度矢量叠加显示在该超声图像上。此外,因为速度矢量的实际速度将大于人眼信息获得速率,则在显示速度矢量时,可以对速度矢量的大小进行一定的倍减。
上述步骤100中选用了如平面超声波束等其中一种超声波束的,则在其他步骤中“波束回波信号”也变更为相应的波束回波信号,例如,发射平面超声波束则对应平面波束回波信号,发射聚焦超声波束则对应聚焦波束回波信号,等等。为了超声成像的图像质量效果、以及加快速度矢量的计算速度,则在本发明的一个实施例中,利用发射平面超声波束来获取用于计算速度矢量的超声回波信号,而利用发射聚焦超声波束来获取超声图像,具体地,如图21所示,该超声成像方法包括以下步骤:
步骤701,发射电路2激励探头1沿至少三个超声传播方向向扫描目标发射平面超声波束;
步骤702,接收电路3和波束合成模块4接收上述平面超声波束的回波,获得至少三组平面波束回波信号,每组平面波束回波信号源自一个超声传播方向上发射的平面超声波束;
步骤703,数据处理模块9根据所述至少三组平面波束回波信号中的一组平面波束回波信号,计算扫描目标内的目标点的一个速度分量,依据所述至少三组平面波束回波信号获取至少三个速度分量;
步骤704,数据处理模块9根据至少三个速度分量,合成获得目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组波束回波信号、所对应的至少三个超声传播方向不在同一平面内;
步骤705,发射电路2激励探头1向扫描目标发射聚焦超声波束;
步骤706,接收电路3和波束合成模块4接收聚焦超声波束的回波,获得聚焦超声波束回波信号;
步骤707,数据处理模块9根据聚焦超声波束回波信号,获取扫描目标的至少一部分的超声图像;
步骤708,在显示器8上显示上述超声图像和上述速度矢量。
在本实施例中,上述步骤701至步骤704仅仅只是限定了前述步骤100至步骤400中的超声波束的类型,具体的实现方式和各种组合实施例可参见上述有关步骤100至步骤400的具体说明,例如,只需要将前述步骤100至步骤400中的超声波束置换为“平面超声波束”和将波束回波信号置换为“平面波束回波信号”等等,即可通过前文所述的内容获知上述步骤701至步骤704的实现方式和各种组合实施例,在此不再详述。
此外,在步骤707中,超声图像可以三维超声立体图像,也可以是二维超声图像。为了获得更加高质量的超声图像可以多次发射聚焦超声波束来实现扫描获得一帧超声图像。因此在本发明的一个实施例中,上述步骤705包括多次向扫描目标发射聚焦超声波束的第二发射步骤,该第二发射步骤表示向扫描目标发射一次聚焦超声波束的过程。下文将详细说明在平面超声波束和聚焦超声波束的结合发射过程。
为了保证获得的扫描目标的至少一部分的超声图像与上述获得的目标点的速度矢量在时间上的一致性,本发明的一个实施例中,在沿至少三个超声传播方向向扫描目标发射平面超声波束的过程中,插入至少一次向扫描目标发射聚焦超声波束的第二发射步骤。本实施例中通过发射多次聚焦超声波束可以获得高质量的超声图像,提高超声图像的分辨率。对于沿至少三个超声传播方向向扫描目标发射平面超声波束的过程参见上述有关步骤100的详细说明,在此不再详述。
为了保证获取用于计算速度分量的最少信号数据,沿每个超声传播方向上执行至少两次向扫描目标发射平面超声波束的第三发射步骤,每组平面波束回波信号包括至少两次平面波束回波信号,每次平面波束回波信号源自沿一个超声传播方向上执行一次第三发射步骤获得的回波,因此,沿一个超声传播方向向扫描目标发射一次平面超声波束视为第三发射步骤,而沿一个超声传播方向向扫描目标发射平面超声波束视为第三发射过程,下文同。以下将具体说明在平面超声波束的发射过程中插入聚焦超声波束的发射过程的各 个实施例。
例如,如图25所示,在图19(a)所示的平面超声波束按照超声传播方向的不同交替向扫描目标发射平面超声波束的过程中,插入至少一次向扫描目标发射聚焦超声波束的第二发射步骤,其具体方式包括:沿同一个超声传播方向连续执行至少两次向扫描目标发射平面超声波束的第三发射步骤,相邻两次第三发射步骤之间插入至少一次第二发射步骤。如图25所示,细实线箭头的方向不同表示沿不同的超声传播方向上执行一次第三发射步骤,粗实线箭头表示执行一次第二发射步骤。如图25(b)所示,相邻两次第三发射步骤之间插入至少一次第二发射步骤。而在本发明的另一个实例中,如图25(a)所示,与插入的至少一次第二发射步骤相邻的两次第三发射步骤属于沿不同超声传播方向向扫描目标发射平面超声波束的第三发射过程。如图25(c)所示,与插入的至少一次第二发射步骤相邻的两次第三发射步骤属于沿相同超声传播方向向扫描目标发射平面超声波束的第三发射过程。此外,在本发明的其中一个实施例中,相邻两次插入第二发射步骤的过程之间存在沿至少两个超声传播方向向扫描目标发射平面超声波束的第三发射过程。具体地,如图25(d)所示,相邻两次插入第二发射步骤的过程之间存在分别沿三个超声传播方向上发射至少两次第三发射步骤的过程。
又例如,若沿每个超声传播方向向扫描目标发射平面超声波束的过程包括多次第三发射步骤,按照超声传播方向的不同交替执行上述第三发射步骤,如图19(b)和图20所示,在插入聚焦超声波束的发射时至少包括图22所示的方式。图22中,执行顺序的规则为从左到右完成,一个细实线箭头或虚线箭头表示执行一次用于发射平面超声波束的第三发射步骤,细实线箭头或虚线箭头的指向方向不同、以及虚线箭头和实线箭头不同代表沿不同的超声传播方向执行第三发射步骤,一个粗实线箭头表示执行一次用于发射聚焦超声波束的第二发射步骤。如图22(e)中所示,相邻两次第三发射步骤之间插入一次第二发射步骤。图22(a)中相邻两次第三发射步骤之间插入3次第二发射步骤,相邻两次插入第二发射步骤之间存在7次第三发射步骤;图22(b)相邻两次 第三发射步骤之间插入1次第二发射步骤,相邻两次插入第二发射步骤之间存在3次第三发射步骤;图22(d)中相邻两次第三发射步骤之间插入1次第二发射步骤,相邻两次插入第二发射步骤的过程之间存在2次第三发射步骤;图22(c)中相邻两次第三发射步骤之间插入2次第二发射步骤,相邻两次插入第二发射步骤之间存在6次第三发射步骤。因此,在本发明的一个实施例中,当按照超声传播方向的不同交替执行第三发射步骤时,相邻两次第三发射步骤之间插入至少一次第二发射步骤。具体地,相邻两次插入第二发射步骤的过程之间存在沿至少两个超声传播方向上向扫描目标发射平面超声波束的第三发射过程。更进一步地,相邻两次插入第二发射步骤的过程之间存在至少两次沿不同超声传播方向的第三发射步骤。这样可以不会因为聚焦超声波束的发射影响平面超声波束的正常发射顺序,避免干扰平面超声回波信号的接收和后续处理。若单次插入聚焦超声波束的第二发射步骤过多可能会使利用平面超声波束获取目标点在三维空间中的速度矢量的时间延迟,会影响速度矢量的计算精度,所以,在本发明的另一个实施例中,相邻两次第三发射步骤之间插入一次至三次第二发射步骤。
基于此,如图22(c)所示,在本发明的其中一个实施例中,在插入的第二发射步骤前或后补发射一次第三发射步骤,使与插入的至少一次第二发射步骤相邻的两次第三发射步骤属于沿同一超声传播方向上向扫描目标发射平面超声波束的过程。这一实施例特别适用于单次插入的第二发射步骤多于一次的情况,可以并且使得在两次插入第二发射步骤的过程之间满足一次目标点速度矢量的最短计算周期,提高图像成像速度。此外,这一实施例也特别适用于,当相邻两次插入第二发射步骤的过程之间存在沿至少三个超声传播方向上向扫描目标发射平面超声波束的过程,特别是,当相邻两次插入第二发射步骤的过程之间存在一次计算速度矢量所需的至少三个所述速度分量对应的沿至少三个超声传播方向上的第三发射步骤,具体地,相邻两次插入第二发射步骤的过程之间存在分别沿三个超声传播方向上发射至少两次第三发射步骤的过程。这样做可以在利用聚焦波束获得一帧图像之后即显示相应的位 置目标点在三维空间中的速度矢量,减少超声图像与目标点速度矢量之间信息跟踪的时间差,以求尽可能同步显示超声图像与目标点速度矢量,提高超声图像与目标点速度矢量的显示精度。
例如,结合图14、图15和图16所示的实施例以及图22(b)的发射顺序,在本发明的一个实施例中,按照下述重复执行过程沿三个超声传播方向发射平面超声波束和聚焦超声波束,而每个重复执行过程中包括以下步骤:
首先,沿第一超声传播方向向扫描目标发射一次超声波束形成一次第一扫描体,此第一超声传播方向可以为图14、图15或图16所示的方向F5或F2;
然后,沿第二超声传播方向向扫描目标发射一次平面超声波束形成一次第二扫描体,此第二超声传播方向可以为图14、图15或图16所示的方向F4、F8或F6;
其次,沿第三超声传播方向向扫描目标发射一次平面超声波束形成一次第三扫描体,此第三超声传播方向可以为图14、图15或图16所示的方向F6、F9或F21;
再次,向扫描目标发射至少一次聚焦超声波束。
又例如,结合图17、图18所示的实施例以及图22(d)的发射顺序,在本发明的一个实施例中,按照下述重复执行过程沿四个超声传播方向发射平面超声波束和聚焦超声波束,而每个重复执行过程中包括以下步骤:
首先,沿第一超声传播方向向扫描目标发射一次平面超声波束形成一次第一扫描体,此第一超声传播方向可以为图17、图18所示的方向F2;
然后,沿第二超声传播方向向扫描目标发射一次平面超声波束形成一次第二扫描体,此第二超声传播方向可以为图17、图18所示的方向F9;
其次,向扫描目标发射至少一次聚焦超声波;
再次,沿第三超声传播方向向扫描目标发射一次平面超声波束形成一次第三扫描体,此第三超声传播方向可以为图17、图18所示的方向F8;
最后,沿第四超声传播方向向扫描目标发射一次平面超声波束形成一次 第三扫描体,此第四超声传播方向可以为图17、图18所示的方向F10或F21。
同理,可以结合上述图14至18所示的实施例以及图22的发射顺序,在本发明的实施例中,按照相应的重复执行过程沿至少三个超声传播方向发射平面超声波束和聚焦超声波束,在此不再详细解释。
此外,在本发明的又一个实施例中,采用矩阵排列的面阵探头,并结合图22(b)所示的发射顺序,在上述发射平面超声波束的过程中插入聚焦超声波束的过程包括多次重复执行以下步骤:
首先,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第一种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第一偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第一扫描体;
然后,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第三延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有第二偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第二扫描体;
其次,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第二种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第三偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第三扫描体;
再次,向扫描目标发射至少一次聚焦超声波。
上述实施例实现了三个超声传播方向的发射,更进一步地,为了实现对称性的发射过程,第一种延时控制策略和第二延时控制策略用于实现合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度。
此外,在上述实施例的基础上,在本发明的其中一个实施例中,采用矩阵排列的面阵探头,并结合图22(d)所示的发射顺序,在上述发射平面超声波束的过程中插入聚焦超声波束的过程包括多次重复执行以下步骤:
第一,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照 第一种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第一偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第一扫描体;
第二,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第三延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有第二偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第二扫描体;
第三,向扫描目标发射至少一次聚焦超声波;
第四,沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第二种延时控制策略进行延时控制,使所有列线性阵列阵元组可以发射具有第三偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第三扫描体;
第五,沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第四延时控制策略进行延时控制,使所有行线性阵列阵元组可以发射具有第四偏转角度的平面超声波束,用以在扫描目标12所在的空间内形成至少一次第四扫描体;
第六,向扫描目标发射至少一次聚焦超声波。
上述实施例中实现了四个超声传播方向的发射,更进一步地,为了实现对称性的发射过程,第一种延时控制策略和第二延时控制策略用于实现合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度,且第三种延时控制策略和第四延时控制策略也用于实现合成超声波束的偏转角度Φ相同、且相应旋转夹角θ之差为180度。例如图17所示,第一扫描体由扫描平面18构成,第二扫描体由扫描平面12构成,第三扫描体由扫描平面10构成,第四扫描体由扫描平面19构成。
同理,可以结合上述分别沿横纵两个方向对矩阵排列的面阵探头进行激发的实施例以及图22的发射顺序,在本发明的实施例中,按照相应的重复执行过程沿至少三个超声传播方向发射平面超声波束和聚焦超声波束,在此不 再详细解释。当然,上述实施例中中每个重复执行过程中的有关平面超声波束的发射步骤也是可以相互置换顺序的,例如,可以先沿横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第三延时控制策略和第四延时控制策略分别进行延时控制后,再沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第一种延时控制策略和第二种延时控制策略分别进行延时控制,并在其中插入聚焦波束的发射。又如,还可以先沿沿纵向对部分或全部超声波发射阵元中的行线性阵列阵元组按照第一种延时控制策略和第二种延时控制策略分别进行延时控制后,再横向对部分或全部超声波发射阵元中的列线性阵列阵元组按照第三种延时控制策略和第四种延时控制策略分别进行延时控制,并在其中插入聚焦波束的发射。
上述各个实施例均是在发射平面超声波束的过程中插入独立的聚焦超声波束的发射过程,因此如图19(a)至(e)所示,其按照第二发射步骤发射聚焦超声波束的过程时,聚焦超声波束可以具有一定角度的方向指向性。当然本发明也不限于这一种方式,以下将详细解释另一种在向扫描目标发射至少三个超声传播方向的平面超声波束的过程中插入至少一次第二发射步骤的替换式插入聚焦超声波束发射过程的方式。
基于上述实施例,本发明的一个实施例中,沿每个超声传播方向向扫描目标发射平面超声波束的第三发射过程中包括多次向扫描目标发射平面超声波束的第三发射步骤,当按照超声传播方向的不同交替执行所述第三发射步骤时,用一次第二发射步骤替代一次第三发射步骤。如图23(a)和(b)所示,执行顺序的规则为从左到右完成,一个细实线箭头表示执行一次用于发射平面超声波束的第三发射步骤,一个粗实线箭头表示执行一次用于发射聚焦超声波束的第二发射步骤,细实线箭头和粗实线箭头的指向方向不同代表在不同的超声传播方向下执行第三发射步骤或第二发射步骤。图23(a)和(b)中分别显示了用三次第二发射步骤替换了相应位置处的第三发射步骤。在图23(a)和(b)中,相邻两次第二发射步骤之间包括沿至少三个超声传播方向分别执行至少二次所述第三发射步骤。这种替换式插入聚焦超声波束发射 过程的方式会导致被替换掉的平面超声波束回波信号的丢失,则在后续图像处理过程中,被聚焦超声波替代的平面超声波对应的回波信号对应的图像数据,可以通过前后两帧或者前后几帧的同一超声传播方向下对应的图像数据插值获得,这里的同一超声传播方向下对应的图像数据根据同一超声传播方向对应的平面波束回波信号获得。所以如果采用本实施例的插入聚焦超声波束发射过程,则本实施例的超声成像方法还需要包括:根据被替代的第三发射步骤对应的超声传播方向、相应的平面波束回波信号,获得被替代的第三发射步骤对应时刻的前后多帧的图像数据,利用此前后多帧的图像数据插值恢复被替代的第一发射步骤对应时刻的图像数据,用以获得被替代的第一发射步骤对应的超声传播方向下扫描目标内的目标点的速度分矢量。
基于上述实施例,本发明的一个实施例中,两次第二发射步骤之间包括沿至少两个超声传播方向分别发射至少一次用以向所述扫描目标发射所述平面超声波束的第三发射步骤。如图24所示,执行顺序的规则为从左到右完成,细实线箭头表示激发沿第一方向排布的阵元向扫描目标发射具有两个偏转角度的第三发射步骤,虚线箭头表示激发沿第二方向排布的阵元向扫描目标发射具有两个偏转角度的第三发射步骤,细实线箭头和虚线箭头的指向方向不同代表在不同的超声传播方向下执行上述第三发射步骤,一个粗实线箭头表示执行一次用于发射聚焦超声波束的第二发射步骤。图24所示的实施例实际是基于四个超声传播方向执行多次第三发射步骤。在图24所示的实施例中,两次第二发射步骤之间包括沿2个超声传播方向分别发射2次第三发射步骤、和沿2个超声传播方向分别发射1次第三发射步骤。本发明的另一个可以实施例中,利用上述替换式插入聚焦超声波束发射过程的方式中,两次第二发射步骤之间包括沿至少三个超声传播方向分别发射至少二次用以向所述扫描目标发射所述平面超声波束的第三发射步骤。这样的目的在于保证在两次发射聚焦超声波束的过程之间能够获得执行一次上述目标点速度矢量的最短计算周期的相关平面超声波回波信号。
基于上述实施例,本发明的一个实施例中,上述相邻两次第二发射步骤 之间含有的不同超声传播方向对应的用以向扫描目标发射平面超声波束的第三发射步骤的总次数相同,即在沿至少三个超声传播方向向扫描目标发射平面超声波束的过程中,均匀插入所述第二发射步骤。例如,图22(a)中相邻两次第二发射步骤之间含有9次第三发射步骤,图22(b)中相邻两次第二发射步骤之间含有3次第三发射步骤,图22(d)中相邻两次第二发射步骤之间含有2次第三发射步骤,图22(c)和图23所示的相邻两次第二发射步骤之间均含有6次第三发射步骤。其中,图22(c)和图23所示的六次第三发射步骤包括按照位于相邻两次第二发射步骤之间的不同超声传播方向向扫描目标发射平面超声波束的第三发射步骤。这样可以将聚焦超声波束的发射过程均匀的利用插入的方式插入到多个超声传播方向上发射平面超声波束的过程中,便于后续图像数据进行插值计算时能够精确定位待插值恢复的时刻,并提高计算机的运算速度,降低图像处理的运算复杂度。
在获得了在扫描目标内的目标点的速度矢量和扫描目标的至少一部分的超声图像之后,在步骤708中,可以显示该速度矢量和该超声图像。例如,可以将该速度矢量和该超声图像同时显示在显示器8上。例如,一个实施例中,可以将该速度矢量重叠显示在该超声图像上。同样为了,保证人眼能舒服感知速度矢量,则将会对速度矢量进行减速处理后进行显示。
图7或图21为本发明一个实施例的超声成像方法的流程示意图。应该理解的是,虽然图7或图21的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图7或图21中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。以上各个实施例在具体说明中仅只针对图7或图21中相应步骤的实现方式进行了阐述,然而在逻辑不相矛盾的情况下,上述各个实施例是可以相互组合的而形成新的技术 方案的,而该新的技术方案依然在本具体实施方式的公开范围内。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品承载在一个非易失性计算机可读存储载体(如ROM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的系统结构和方法。
基于上述超声成像方法,本发明在此还提供了一种超声成像系统,其包括:以下组成部件:
探头1;
发射电路2,用于激励探头1沿至少三个超声传播方向向扫描目标发射超声波束;其中,发射电路2激励探头1中的部分或全部超声波发射阵元沿至少三个超声传播方向向扫描目标发射超声波束,形成至少三个扫描体;或发射电路2将探头1分成多块阵元区,并激励部分或全部阵元区沿至少三个超声传播方向向扫描目标发射超声波束,形成至少三个扫描体,其中,每个扫描体源自一个超声传播方向上发射的超声波束;
接收电路3和波束合成模块4,用于接收所述超声波束的回波,获得至少三组波束回波信号,每组波束回波信号源自沿一个超声传播方向上发射的超声波束;具体地,沿每个超声传播方向上执行至少两次向扫描目标发射超声波束的步骤,每组波束回波信号包括至少两次波束回波信号,每次波束回波信号源自一个超声传播方向上执行一次向扫描目标发射超声波束的步骤获得的回波。
数据处理模块9,用于基于所述至少三组波束回波信号中的一组波束回波信号,计算扫描目标内目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个所述速度分量,根据至少三个速度分量,获得目标点的速 度矢量,其中,用于计算所述至少三个所述速度分量的至少三组波束回波信号、所对应的至少三个超声传播方向不在同一平面内;还用于获取所述扫描目标的至少一部分的超声图像;及
显示器8,用于显示速度矢量和超声图像。
基于上述实施例,如图1所示,在本发明的一个实施例中,上述数据处理模块9可以包括信号处理模块6和/或图像处理模块7,信号处理模块6用于执行上述有关速度分矢量和速度矢量的计算过程,即前述步骤300和步骤400,而图像处理模块7用于执行上述有关图像处理的过程,即前述步骤500。发射电路2用于执行前述步骤100,接收电路3和波束合成模块4用于执行前述步骤200。则有关各个模块的具体实现方法参见前述各个步骤的具体说明,在此不再累述。
基于上述实施例,在本发明的一个实施例中,发射电路2还激励探头1向扫描目标发射聚焦超声波束,在沿至少三个超声传播方向向扫描目标发射超声波束的过程中,插入至少一次向所述扫描目标发射聚焦超声波束的步骤。并且,接收电路3和波束合成模块4接收聚焦超声波束的回波获得聚焦超声波束回波信号,数据处理模块9根据聚焦超声波束回波信号获取超声图像。而在本发明的另一个实施例中,数据处理模块9也可以根据上述至少三组波束回波信号获取所述超声图像。上述过程中的具体实现方式可参见前文中有关步骤100的详细说明,在此不再累述。
基于上述实施例,在本发明的一个实施例中,上述数据处理模块还通过获取用户择一选择的所述超声传播方向的个数或者用于合成所述速度矢量的速度分量的个数,生成指令信息;根据所述指令信息,调整所述超声传播方向个数,并依据该超声传播方向个数确定用于合成所述速度矢量的速度分量的个数,或者调整用于合成目标点速度矢量的速度分量的个数。
基于上述实施例,在本发明的一个实施例中,上述发射电路2激励上述探头1沿至少三个超声传播方向向扫描目标发射超声波束的过程中,相邻的至少三个超声传播方向不在同一平面内;上述数据处理模块9通过计算上述 目标点在连续接收的至少三类波束回波信号中所对应的沿至少三个超声传播方向上的速度分量,依据此至少三个超声传播方向上的速度分量,合成获得上述目标点的速度矢量。而在本发明的另一个实施例中,上述发射电路2激励上述探头1沿至少三个超声传播方向向扫描目标发射超声波束的过程中,所有超声传播方向不在同一平面内;上述数据处理模块9通过计算上述目标点在上述至少三类波束回波信号中所对应的沿所有超声传播方向上的速度分量,依据此所有超声传播方向上的速度分量,合成获得上述目标点的速度矢量。上述过程中的具体实现方式可参见前文中有关步骤100等部分的详细说明,在此不再累述。
上述实施例中发射电路2激励探头1沿至少三个超声传播方向向扫描目标发射超声波束的发射方式参见前文中有关内容的详细说明,在此不再累述。
当然,本发明不限于上述采用面阵探头来实现具体的超声波束发射过程,比如前述相关说明中提到的也可以仅采用线阵排列的探头来实现,这时就需要提供用于调整探头中超声波发射阵元的空间位置的执行机构,其可以根据预设的超声传播方向利用执行机构控制探头中的超声波发射阵元移动或者旋转至所需的空间位置,形成前文提到的沿不同超声传播方向所获得的扫描体,从而实现沿至少三个超声传播方向向扫描目标发射超声波束的过程。
本发明实施例中提供的超声成像方法及其超声成像系统中,在成像过程中可以既使用平面超声波束、也可以使用聚焦超声波束进行成像。本发明可以使用平面超声波束来获得速度矢量,从而充分利用平面超声波束成像帧率高的优点以满足用超声成像测量流体速度时的高帧率的要求;可以使用聚焦超声波束来获得扫描目标的超声图像,从而充分利用聚焦超声波束成像回波信号信噪比高、获得的超声图像质量较好、横向分辨率高的优点,以便于获得良好的图像供用户观察。这样,既能够获得准确度高、实时性好的高帧率的近似真实环境下的三维速度矢量,也能够获得具有良好质量的图像(例如,B图像),从而在呈现速度矢量(例如,血流的速度矢量)的同时,周围的组织和管壁等器官依然可以在灰阶图上清晰可见。
而且,本发明的一些实施例中,平面超声波束和聚焦超声波束为随时间的交替发射,即聚焦超声波束的发射分散插入平面超声波束的发射之间。这样,既保持了速度矢量的连续性,又保证了速度矢量与超声图像(例如,B图像)的同步性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (32)

  1. 一种超声成像方法,其包括:
    沿至少三个超声传播方向向扫描目标发射超声波束;
    接收所述超声波束的回波,获得至少三组波束回波信号,每组波束回波信号源自一个超声传播方向上发射的超声波束;
    基于所述至少三组波束回波信号中的一组波束回波信号,计算所述扫描目标内目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个速度分量;
    根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组波束回波信号所对应的至少三个超声传播方向不在同一平面内;
    获取所述扫描目标的至少一部分的超声图像;
    显示所述超声图像和所述速度矢量。
  2. 根据权利要求1所述的超声成像方法,其特征在于,按照所述超声传播方向的不同交替向所述扫描目标发射所述超声波束。
  3. 根据权利要求1所述的超声成像方法,其特征在于,所述方法中,沿每个超声传播方向上执行至少两次向扫描目标发射超声波束的步骤,所述每组波束回波信号包括至少两次波束回波信号,每次波束回波信号源自沿一个超声传播方向上执行一次向扫描目标发射超声波束的步骤所获得的回波。
  4. 根据权利要求1所述的超声成像方法,其特征在于,所述获取所述扫描目标的至少一部分的超声图像的过程包括:
    根据所述至少三组波束回波信号获取所述超声图像;或者,
    向所述扫描目标发射聚焦超声波束;
    接收所述聚焦超声波束的回波,获得聚焦超声波束回波信号;
    根据所述聚焦超声波束回波信号,获取所述超声图像。
  5. 根据权利要求4所述的超声成像方法,其特征在于,在所述沿至少三个超声传播方向向扫描目标发射超声波束的过程中,插入至少一次向所述扫描目标发射聚焦超声波束的步骤。
  6. 根据权利要求1所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射超声波束的过程包括:
    激励部分或全部超声波发射阵元沿至少三个超声传播方向向扫描目标发射超声波束,使所述超声波束在所述扫描目标所在的空间内传播用以形成至少三个扫描体;
    或者,将超声波发射阵元分成多块阵元区,激励部分或全部阵元区沿至少三个超声传播方向向扫描目标发射超声波束,使所述超声波束在所述扫描目标所在的空间内传播用以形成至少三个扫描体,其中,每个扫描体源自一个超声传播方向上发射的超声波束。
  7. 根据权利要求3所述的超声成像方法,其特征在于,所述方法中,沿每个超声传播方向执行至少两次向扫描目标发射超声波束的步骤后,计算一次所述速度分量。
  8. 根据权利要求2所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射超声波束的过程中,相邻的至少三个超声传播方向不在同一平面内。
  9. 根据权利要求8所述的超声成像方法,其特征在于,依据所述至少三组波束回波信号获取至少三个速度分量并根据至少三个速度分量合成获得所述目标点的速度矢量的过程包括:
    计算所述目标点在连续接收的至少三组波束回波信号中所对应的沿至少三个超声传播方向上的速度分量;
    根据此至少三个超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  10. 根据权利要求1所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射超声波束的过程中,所有超声传播方向不在 同一平面内。
  11. 根据权利要求10所述的超声成像方法,其特征在于,依据所述至少三组波束回波信号获取至少三个速度分量并根据至少三个速度分量合成获得所述目标点的速度矢量的过程包括:
    计算所述目标点在所述至少三类波束回波信号中所对应的沿所有超声传播方向上的速度分量;
    根据此所有超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  12. 根据权利要求1所述的超声成像方法,其特征在于,所述方法还包括:
    获取用户择一选择的所述超声传播方向的个数或者用于合成所述速度矢量的速度分量的个数,生成指令信息;
    根据所述指令信息,调整所述超声传播方向个数,并依据该超声传播方向个数确定用于合成所述速度矢量的速度分量的个数,或者调整用于合成目标点速度矢量的速度分量的个数。
  13. 一种超声成像方法,其包括:
    沿至少三个超声传播方向向扫描目标发射平面超声波束;
    接收所述平面超声波束的回波,获得至少三组平面波束回波信号,每组平面波束回波信号源自一个超声传播方向上发射的平面超声波束;
    基于所述至少三组平面波束回波信号中的一组平面波束回波信号,计算所述扫描目标内的目标点的一个速度分量,依据所述至少三组平面波束回波信号获取至少三个速度分量;
    根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组平面波束回波信号所对应的至少三个超声传播方向不在同一平面内;
    向所述扫描目标发射聚焦超声波束;
    接收所述聚焦超声波束的回波,获得聚焦超声波束回波信号;
    根据所述聚焦超声波束回波信号,获取所述扫描目标的至少一部分的超声图像;
    显示所述超声图像和所述速度矢量。
  14. 根据权利要求13所述的超声成像方法,其特征在于,按照所述超声传播方向的不同交替向所述扫描目标发射所述平面超声波束。
  15. 根据权利要求14所述的超声成像方法,其特征在于,在所述沿至少三个超声传播方向向扫描目标发射平面超声波束的过程中,插入至少一次向扫描目标发射聚焦超声波束的步骤。
  16. 根据权利要求13所述的超声成像方法,其特征在于,所述向所述扫描目标发射聚焦超声波束的过程包括多次向扫描目标发射聚焦超声波束的步骤,沿每个超声传播方向上执行至少两次向扫描目标发射平面超声波束的步骤,所述每组平面波束回波信号包括至少两次平面波束回波信号,每次平面波束回波信号源自沿一个超声传播方向上执行一次向扫描目标发射聚焦超声波束的步骤所获得的回波。
  17. 根据权利要求13所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射平面超声波束的过程包括:
    激励部分或全部超声波发射阵元沿至少三个超声传播方向向扫描目标发射平面超声波束,形成至少三个扫描体,每个扫描体源自一个超声传播方向上发射的平面超声波束。
  18. 根据权利要求16所述的超声成像方法,其特征在于,所述方法中,沿每个超声传播方向执行至少两次向扫描目标发射平面超声波束的步骤后,计算一次所述速度分量。
  19. 根据权利要求14所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射平面超声波束的过程中,相邻的至少三个超声传播方向不在同一平面内。
  20. 根据权利要求19所述的超声成像方法,其特征在于,依据所述至少 三组波束回波信号获取至少三个速度分量并根据至少三个速度分量合成获得所述目标点的速度矢量的过程包括:
    计算所述目标点在连续接收的至少三组平面波束回波信号中所对应的沿至少三个超声传播方向上的速度分量;
    根据此至少三个超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  21. 根据权利要求13所述的超声成像方法,其特征在于,所述沿至少三个超声传播方向向扫描目标发射平面超声波束的过程中,所有超声传播方向不在同一平面内;
  22. 根据权利要求21所述的超声成像方法,其特征在于,依据所述至少三组波束回波信号获取至少三个速度分量并根据至少三个速度分量合成获得所述目标点的速度矢量的过程包括:
    计算所述目标点在所述至少三组平面波束回波信号中所对应的沿所有超声传播方向上的速度分量;
    根据此所有超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  23. 根据权利要求13所述的超声成像方法,其特征在于,所述方法还包括:
    获取用户择一选择的所述超声传播方向的个数或者用于合成所述速度矢量的速度分量的个数,生成指令信息;
    根据所述指令信息,调整所述超声传播方向个数,并依据该超声传播方向个数确定用于合成所述速度矢量的速度分量的个数,或者调整用于合成目标点速度矢量的速度分量的个数。
  24. 一种超声成像系统,其特征在于,包括:
    探头;
    发射电路,用于激励所述探头沿至少三个超声传播方向向扫描目标发射 超声波束;
    接收电路和波束合成模块,用于接收所述超声波束的回波,获得至少三组波束回波信号,每组波束回波信号源自沿一个超声传播方向上发射的超声波束;
    数据处理模块,用于基于所述至少三组波束回波信号中的一组波束回波信号,计算所述扫描目标内目标点的一个速度分量,依据所述至少三组波束回波信号获取至少三个速度分量,根据至少三个速度分量,合成获得所述目标点的速度矢量,其中,用于计算所述至少三个速度分量的至少三组波束回波信号所对应的至少三个超声传播方向不在同一平面内;所述数据处理模块还用于获取所述扫描目标的至少一部分的超声图像;及
    显示器,用于显示所述超声图像和所述速度矢量。
  25. 根据权利要求24所述的超声成像系统,其特征在于,沿每个超声传播方向上执行至少两次向扫描目标发射超声波束的步骤,所述每组波束回波信号包括至少两次波束回波信号,每次波束回波信号源自沿一个超声传播方向上执行一次向扫描目标发射超声波束的步骤所获得的回波。
  26. 根据权利要求24所述的超声成像系统,其特征在于,按照所述超声传播方向的不同交替向所述扫描目标发射所述超声波束。
  27. 根据权利要求24所述的超声成像系统,其特征在于,所述数据处理模块根据所述至少三组波束回波信号获取所述超声图像。
  28. 根据权利要求26所述的超声成像系统,其特征在于,所述发射电路还激励所述探头向所述扫描目标发射聚焦超声波束,在所述沿至少三个超声传播方向向扫描目标发射超声波束的过程中,插入至少一次向所述扫描目标发射聚焦超声波束的步骤;所述接收电路和波束合成模块接收所述聚焦超声波束的回波获得聚焦超声波束回波信号,所述数据处理模块根据所述聚焦超声波束回波信号获取所述超声图像。
  29. 根据权利要求24所述的超声成像系统,其特征在于,所述发射电路激励所述探头中的部分或全部超声波发射阵元沿至少三个超声传播方向向扫 描目标发射超声波束,形成至少三个扫描体;或者所述发射电路将所述探头分成多块阵元区,并激励部分或全部阵元区沿至少三个超声传播方向向扫描目标发射超声波束,形成至少三个扫描体,其中,每个扫描体源自一个超声传播方向上发射的超声波束。
  30. 根据权利要求26所述的超声成像系统,其特征在于,所述发射电路激励所述探头沿至少三个超声传播方向向扫描目标发射超声波束的过程中,相邻的至少三个超声传播方向不在同一平面内;所述数据处理模块通过计算所述目标点在连续接收的至少三类波束回波信号中所对应的沿至少三个超声传播方向上的速度分量,依据此至少三个超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  31. 根据权利要求24所述的超声成像系统,其特征在于,所述发射电路激励所述探头沿至少三个超声传播方向向扫描目标发射超声波束的过程中,所有超声传播方向不在同一平面内;所述数据处理模块通过计算所述目标点在所述至少三类波束回波信号中所对应的沿所有超声传播方向上的速度分量,依据此所有超声传播方向上的速度分量,合成获得所述目标点的速度矢量。
  32. 根据权利要求24所述的超声成像方法,其特征在于,所述数据处理模块还通过获取用户择一选择的所述超声传播方向的个数或者用于合成所述速度矢量的速度分量的个数,生成指令信息;根据所述指令信息,调整所述超声传播方向个数,并依据该超声传播方向个数确定用于合成所述速度矢量的速度分量的个数,或者调整用于合成目标点速度矢量的速度分量的个数。
PCT/CN2015/072022 2015-01-30 2015-01-30 超声成像方法和系统 WO2016119247A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/072022 WO2016119247A1 (zh) 2015-01-30 2015-01-30 超声成像方法和系统
CN201580009361.5A CN106061398B (zh) 2015-01-30 2015-01-30 超声成像方法和系统
US15/632,176 US10976422B2 (en) 2015-01-30 2017-06-23 Ultrasound imaging methods and systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072022 WO2016119247A1 (zh) 2015-01-30 2015-01-30 超声成像方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/632,176 Continuation US10976422B2 (en) 2015-01-30 2017-06-23 Ultrasound imaging methods and systems

Publications (1)

Publication Number Publication Date
WO2016119247A1 true WO2016119247A1 (zh) 2016-08-04

Family

ID=56542241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072022 WO2016119247A1 (zh) 2015-01-30 2015-01-30 超声成像方法和系统

Country Status (3)

Country Link
US (1) US10976422B2 (zh)
CN (1) CN106061398B (zh)
WO (1) WO2016119247A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124349A1 (zh) * 2018-12-18 2020-06-25 深圳迈瑞生物医疗电子股份有限公司 一种超声成像系统及血流成像方法
CN112263277A (zh) * 2020-11-17 2021-01-26 深圳开立生物医疗科技股份有限公司 一种超声多普勒血流成像方法、装置、设备及计算机介质
WO2021042324A1 (zh) * 2019-09-05 2021-03-11 深圳迈瑞生物医疗电子股份有限公司 超声三维成像方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011235B2 (ja) * 2012-10-17 2016-10-19 セイコーエプソン株式会社 超音波測定装置、プローブヘッド、超音波プローブ、電子機器及び超音波診断装置
US11529124B2 (en) * 2015-03-31 2022-12-20 Samsung Electronics Co., Ltd. Artifact removing method and diagnostic apparatus using the same
CN109009223A (zh) * 2017-12-30 2018-12-18 飞依诺科技(苏州)有限公司 超声造影成像方法及系统
WO2019155364A1 (en) * 2018-02-07 2019-08-15 Bahador Makkiabadi Plane wave ultrasound imaging
US11079357B2 (en) * 2018-03-26 2021-08-03 The Boeing Company Method and apparatus for enhanced visualization of anomalies in a structure
JP7334486B2 (ja) * 2019-06-07 2023-08-29 コニカミノルタ株式会社 超音波診断装置、超音波診断装置の制御方法、及び、超音波診断装置の制御プログラム
CN110327077B (zh) * 2019-07-09 2022-04-15 深圳开立生物医疗科技股份有限公司 一种血流显示方法、装置及超声设备和存储介质
CN110930465B (zh) * 2019-11-29 2023-07-28 京东方科技集团股份有限公司 一种超声成像方法及设备
CN111603197B (zh) * 2020-05-29 2023-05-05 深圳开立生物医疗科技股份有限公司 超声设备及超声成像系统的扫查控制方法及相关组件
CN112782705B (zh) * 2020-12-31 2023-04-28 闽南师范大学 一种超声声层析流场成像方法及其装置
CN117379093B (zh) * 2023-12-11 2024-03-15 深圳英美达医疗技术有限公司 一种基于环阵换能器的超声成像方法及超声探头系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068697A1 (en) * 1999-05-10 2000-11-16 B-K Medical A/S Vector velocity estimation using directional beam forming and cross-correlation
CN101357069A (zh) * 2007-07-24 2009-02-04 株式会社东芝 超声波诊断装置及超声波诊断装置的音响输出方法
CN101828929A (zh) * 2009-03-11 2010-09-15 中国科学技术大学 利用视在位移的多普勒血流速度矢量测量方法
CN103181789A (zh) * 2011-12-28 2013-07-03 三星麦迪森株式会社 基于决定数据提供矢量多普勒图像的超声波系统和方法
CN104168835A (zh) * 2012-03-16 2014-11-26 国立大学法人东京大学 流体流速检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126137A (ja) * 1990-09-17 1992-04-27 Aloka Co Ltd 超音波ドプラ診断装置
US20070083099A1 (en) * 2005-09-29 2007-04-12 Henderson Stephen W Path related three dimensional medical imaging
EP2441390B1 (en) * 2009-06-09 2017-03-01 National Institute of Advanced Industrial Science And Technology Device for examining vascular function
US9204858B2 (en) * 2010-02-05 2015-12-08 Ultrasonix Medical Corporation Ultrasound pulse-wave doppler measurement of blood flow velocity and/or turbulence
CN101919711B (zh) * 2010-08-25 2013-03-20 四川省医学科学院(四川省人民医院) 基于多普勒图像信息的心脏流场速度矢量场可视化描述方法
EP2514368B1 (en) * 2011-04-18 2017-09-20 TomTec Imaging Systems GmbH Method for transforming a Doppler velocity dataset into a velocity vector field
KR20130075486A (ko) * 2011-12-27 2013-07-05 삼성메디슨 주식회사 송신 지연을 이용하여 벡터 정보를 검출하는 초음파 시스템 및 방법
US10537310B2 (en) * 2012-04-18 2020-01-21 Hitachi, Ltd. Ultrasound image capture device and ultrasound image capture method
WO2015129336A1 (ja) * 2014-02-28 2015-09-03 日立アロカメディカル株式会社 超音波撮像装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068697A1 (en) * 1999-05-10 2000-11-16 B-K Medical A/S Vector velocity estimation using directional beam forming and cross-correlation
CN101357069A (zh) * 2007-07-24 2009-02-04 株式会社东芝 超声波诊断装置及超声波诊断装置的音响输出方法
CN101828929A (zh) * 2009-03-11 2010-09-15 中国科学技术大学 利用视在位移的多普勒血流速度矢量测量方法
CN103181789A (zh) * 2011-12-28 2013-07-03 三星麦迪森株式会社 基于决定数据提供矢量多普勒图像的超声波系统和方法
CN104168835A (zh) * 2012-03-16 2014-11-26 国立大学法人东京大学 流体流速检测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124349A1 (zh) * 2018-12-18 2020-06-25 深圳迈瑞生物医疗电子股份有限公司 一种超声成像系统及血流成像方法
CN112702956A (zh) * 2018-12-18 2021-04-23 深圳迈瑞生物医疗电子股份有限公司 一种超声成像系统及血流成像方法
US20210378626A1 (en) * 2018-12-18 2021-12-09 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasonic imaging system and blood flow imaging method
CN112702956B (zh) * 2018-12-18 2023-09-26 深圳迈瑞生物医疗电子股份有限公司 一种超声成像系统及血流成像方法
WO2021042324A1 (zh) * 2019-09-05 2021-03-11 深圳迈瑞生物医疗电子股份有限公司 超声三维成像方法和装置
CN114072063A (zh) * 2019-09-05 2022-02-18 深圳迈瑞生物医疗电子股份有限公司 超声三维成像方法和装置
CN112263277A (zh) * 2020-11-17 2021-01-26 深圳开立生物医疗科技股份有限公司 一种超声多普勒血流成像方法、装置、设备及计算机介质

Also Published As

Publication number Publication date
US20170285156A1 (en) 2017-10-05
US10976422B2 (en) 2021-04-13
CN106061398A (zh) 2016-10-26
CN106061398B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2016119247A1 (zh) 超声成像方法和系统
JP6053860B2 (ja) 医療用超音波イメージングシステムにおいて剪断波情報を求めるためのコンピュータプログラム
JP5373308B2 (ja) 超音波撮像装置及び超音波撮像方法
WO2017035838A1 (zh) 超声灰阶成像系统及方法
US10588598B2 (en) Ultrasonic inspection apparatus
JP6193124B2 (ja) 超音波診断装置及び超音波画像生成方法
JP6793444B2 (ja) 超音波診断装置
CN105530870B (zh) 一种超声成像方法和系统
US20150196280A1 (en) Ultrasound diagnostic apparatus, ultrasound image generating method, and recording medium
WO2014050797A1 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
WO2016060017A1 (ja) 超音波診断装置
US20200367862A1 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
JPWO2015166869A1 (ja) 超音波撮像装置
Bae et al. Ultrasonic sector imaging using plane wave synthetic focusing with a convex array transducer
JP2016154749A (ja) 超音波診断装置、及び超音波診断装置の制御方法
US11751849B2 (en) High-resolution and/or high-contrast 3-D and/or 4-D ultrasound imaging with a 1-D transducer array
CN107569254B (zh) 超声波信号处理装置、超声波信号处理方法以及超声波诊断装置
JP7124505B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
US20200077977A1 (en) Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method
JP2020018845A (ja) 超音波診断装置及び制御プログラム
JP5405804B2 (ja) Bcモード映像を形成する超音波システム及び方法
JP2019130050A (ja) 超音波信号処理装置、超音波信号処理方法、および、超音波診断装置
CN114072063B (zh) 超声三维成像方法和装置
CN114027873B (zh) 一种超声成像方法、装置及计算机可读存储介质
Campbell et al. An Ultrafast High-Frequency Hardware Beamformer for a Phased Array Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15879455

Country of ref document: EP

Kind code of ref document: A1