WO2016119181A1 - 光伏发电系统及其故障检测方法 - Google Patents

光伏发电系统及其故障检测方法 Download PDF

Info

Publication number
WO2016119181A1
WO2016119181A1 PCT/CN2015/071848 CN2015071848W WO2016119181A1 WO 2016119181 A1 WO2016119181 A1 WO 2016119181A1 CN 2015071848 W CN2015071848 W CN 2015071848W WO 2016119181 A1 WO2016119181 A1 WO 2016119181A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
photovoltaic power
physical address
module
parameters
Prior art date
Application number
PCT/CN2015/071848
Other languages
English (en)
French (fr)
Inventor
谭建军
易金桥
孙先波
黄勇
胡涛
丁尚云
Original Assignee
湖北民族学院
湖北永恒太阳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北民族学院, 湖北永恒太阳能股份有限公司 filed Critical 湖北民族学院
Priority to CN201580000023.5A priority Critical patent/CN104704702B/zh
Priority to US15/547,267 priority patent/US10211778B2/en
Priority to JP2016571456A priority patent/JP6168247B2/ja
Priority to PCT/CN2015/071848 priority patent/WO2016119181A1/zh
Publication of WO2016119181A1 publication Critical patent/WO2016119181A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • H02J13/0017
    • H02J13/0075
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/16The load or loads being an Information and Communication Technology [ICT] facility
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/128Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment involving the use of Internet protocol

Definitions

  • the invention relates to photovoltaic power generation, in particular to a photovoltaic power generation system and a fault detection method thereof.
  • Solar energy can be converted into electricity by photovoltaic power generation components for storage and utilization, and is considered to be one of the most promising new energy sources.
  • the existing photovoltaic power generation system mainly includes an array of photovoltaic power generation components, a combiner and an inverter.
  • the power outputted by the array of photovoltaic power generation modules connected in series and in parallel is concentrated by the combiner, and then inverted into an alternating current through the inverter to supply power to a specific area or directly into the power grid.
  • the low efficiency of photovoltaic power generation systems has become a bottleneck for the promotion of photovoltaic power generation systems.
  • the current difficulty in improving photovoltaic conversion efficiency makes it necessary to develop other ways to effectively improve the overall efficiency of the photovoltaic power generation system.
  • the technical problem to be solved by the present invention is how to improve the working efficiency of the photovoltaic power generation system to minimize the cost of electricity.
  • the present invention provides a photovoltaic power generation system including at least one a photovoltaic power generation microgrid and a central server capable of communicating with each of said photovoltaic power generation micro-networks via the Internet, and each of said photovoltaic power generation micro-networks comprises:
  • each of the photovoltaic power generation nodes comprising a photovoltaic power generation component, a sensor module for collecting state parameters of the photovoltaic power generation node, and a wireless communication module for wirelessly transmitting state parameters of the photovoltaic power generation node;
  • a micro-network local server capable of receiving state parameters of each of the photovoltaic power generation nodes, determining an operation state of each of the photovoltaic power generation nodes based on the received state parameters of the photovoltaic power generation nodes, and receiving the received state parameters and The determined operational status is sent to the central server via the Internet.
  • a memory is also included.
  • the memory stores the physical address of each of the photovoltaic power generation nodes in association with an ID number
  • the piconet local server is configured to: obtain, according to the status parameter of the received photovoltaic power generation node, a running fault of a certain photovoltaic power generation node, obtain corresponding corresponding from the memory based on an ID number of the photovoltaic power generation node A physical address, and a message indicating that a photovoltaic power generation node at the physical address has failed is sent to the specific client through the central server.
  • a positioning auxiliary terminal is also included.
  • the method further includes:
  • each of the inverters includes a DC-AC conversion module for converting DC power outputted by at least one of the photovoltaic power generation nodes into AC power, and a sensor module for collecting state parameters of the inverter And a wireless communication module for wirelessly transmitting a status parameter of the inverter;
  • An inverter local server capable of receiving status parameters of each of the inverters and transmitting the received status parameters of the inverter to the central server via the Internet.
  • the sensor module of the inverter includes at least one of the following:
  • a voltage transformer for collecting voltage parameters of the inverter
  • a temperature and humidity sensor for collecting temperature and humidity parameters of the inverter
  • a noise sensor is configured to collect ambient noise parameters of the inverter.
  • the sensor module of each of the photovoltaic power generation nodes includes at least one of the following:
  • a voltage sampling circuit for collecting voltage parameters of the photovoltaic power generation component
  • a current sampling circuit for collecting current parameters of the photovoltaic power generation component
  • a temperature and humidity sensor for collecting temperature and humidity parameters of the photovoltaic power generation component
  • the light intensity sensor is configured to collect light intensity parameters of an environment in which the photovoltaic power generation component is located.
  • the present invention further provides a method for detecting a fault of a photovoltaic power generation system, wherein the photovoltaic power generation system adopts a photovoltaic power generation system of any one of the embodiments of the present invention, and the fault detection method includes :
  • Each of the piconet local servers determines an operational status of each of the photovoltaic power generation nodes based on a status parameter of the received photovoltaic power generation node;
  • the piconet local server acquires a corresponding physical address based on the ID number of the photovoltaic power generation node, and sends a photovoltaic power generation node indicating the physical address through the central server. A failed message has occurred to a specific client.
  • the method further includes: storing the physical address of each of the photovoltaic power generation nodes in association with an ID number.
  • each of the photovoltaic power generation is stored in association with the ID number, including:
  • the operator After storing the physical address in association with the ID number, the operator is prompted to install the photovoltaic power generation node to the physical address.
  • the photovoltaic power generation system of the embodiment of the invention has a flexible multi-micro network structure, and can acquire state parameters of photovoltaic power generation nodes in each micro-network, thereby accurately monitoring the working state parameters of each photovoltaic power generation node, and the network structure of the data.
  • the system is well-defined, accurate, reliable, and robust, which can improve the working efficiency of the photovoltaic power generation system, thereby reducing the cost of electricity.
  • FIG. 1 is a schematic structural view of a photovoltaic power generation system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a photovoltaic power generation node of a photovoltaic power generation system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an example of a piconet local server of a photovoltaic power generation system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an inverter of a photovoltaic power generation system according to another embodiment of the present invention.
  • FIG. 5 and FIG. 6 are schematic structural diagrams of a positioning auxiliary terminal of a photovoltaic power generation system according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a fault detection method for a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a fault detection method of a photovoltaic power generation system according to another embodiment of the present invention.
  • the photovoltaic power generation system includes at least one photovoltaic power generation microgrid 1000, and can be connected to each of the photovoltaics via the Internet.
  • a central server 1100 for generating micro-grid communication, and each of the photovoltaic power generation micro-networks 1000 includes:
  • each of the photovoltaic power generation nodes including a photovoltaic power generation component (such as the solar battery component 110 of FIG. 2), a sensor module for collecting state parameters of the photovoltaic power generation node (eg, the sensor module 140 of FIG. 2) And a wireless communication module for wirelessly transmitting a status parameter of the photovoltaic power generation node (eg, the CC2530 module 130 in FIG. 2 can implement the functionality of the wireless communication module);
  • a photovoltaic power generation component such as the solar battery component 110 of FIG. 2
  • a sensor module for collecting state parameters of the photovoltaic power generation node
  • a wireless communication module for wirelessly transmitting a status parameter of the photovoltaic power generation node
  • a piconet local server 200 capable of receiving status parameters of each of the photovoltaic power generation nodes 100, Determining an operating state of each of the photovoltaic power generation nodes 100 based on the received state parameters of the photovoltaic power generation node 100, and transmitting the received state parameters and the determined operating state to the central server 1100 via the Internet, In order to enable the central server 1100 to display status parameters and operational status of each of the photovoltaic power generation nodes 100.
  • the photovoltaic power generation system may include a central server 1100, and a plurality of (M+1) independent wireless sensor micro-networks 1000 communicating with the central server 1100 through the Internet, wherein the M are photovoltaics.
  • Power generation microgrid one for the inverter microgrid.
  • Each photovoltaic power generation microgrid may include a piconet local server and N photovoltaic power generation nodes for wireless communication with each piconet local server.
  • the piconet local server 200#1 is connected to the photovoltaic power generation nodes 100#11 to 100#1N
  • the piconet local server 200#2 is connected to the photovoltaic power generation nodes 100#21 to 100#2N
  • the microgrid local server 200#M is connected to the photovoltaic power generation. Nodes 100#M1 to 100#MN.
  • the system may also include a Personal Computer (PC) client 1200 that communicates with the central server 1100 over the Internet, and a mobile client 1400 that communicates wirelessly with the central server 1100 via the 3G base station 1300.
  • PC Personal Computer
  • the DC power outputted by the information type photovoltaic module array composed of all the photovoltaic power generation nodes 100 in the system is connected in series and in parallel, and passes through the combiners 300#1 to 300#L and the L inverters 400#1. Connected to 400#L, the L inverters communicate with the inverter local server 500 wirelessly.
  • L and N are integers greater than or equal to 1 and less than 100
  • M is an integer greater than or equal to 1.
  • L and N may be equal or unequal, and the specific values of L, N, and M are not limited in the embodiment of the present invention.
  • the number of combiners and inverters may also be unequal.
  • the photovoltaic power generation node 100 may include a solar cell module 110, a direct current-direct current (DC-DC) module 120, a CC2530 module 130 (having a wireless communication function), and a sensor module 140.
  • the sensor module 140 may include at least one of a voltage sampling circuit 141, a current sampling circuit 142, a temperature and humidity sensor 143, and a light intensity sensor 144.
  • a sensor module having other functions may also be provided according to specific needs.
  • the solar cell module 110 is connected to the DC-DC module 120 and the combiner 300, respectively, and the DC-DC module 120
  • the output end is connected to the CC2530 module 130 and the sensor module 140 respectively;
  • the voltage sampling circuit 141 and the current sampling circuit 142 are connected to the output end of the solar cell module 110 at one end, and the other end is connected to the I/O port of the 8051 MCU embedded in the CC2530 module 130.
  • the temperature and humidity sensor 143 and the light intensity sensor 144 are connected to the I/O port of the 8051 MCU embedded in the CC2530 module 130, and the temperature and humidity sensor 143 is used for collecting solar energy.
  • the temperature and humidity parameter of the battery assembly 110 is used to collect the light intensity parameter of the environment in which the solar battery module 110 is located.
  • the solar battery module 110 converts the solar energy into electrical energy and transmits it to the combiner 300 through the output port; on the other hand, the DC-DC module 120 is connected to the output end of the solar battery module 110, The direct current output from the solar module 110 is stepped down to low voltage direct current such as +12V, +5V, and +3.3V to power other modules of the photovoltaic power generation node 100.
  • the voltage sampling circuit 141 and the current sampling circuit 142 can collect the voltage parameter and the current parameter of the output end of the solar cell module 110, and transmit it to the I/O port of the 8051 MCU embedded in the CC2530 module 130 to realize the collection of electrical parameters;
  • the temperature and humidity sensor 143 is closely attached to the back panel of the solar cell module 110, and detects parameters such as temperature and humidity;
  • the light intensity sensor 144 is embedded in the front surface of the solar cell module 110, and collects ambient light intensity parameters; the environmental parameters and the electrical parameters are comprehensively determined by the solar battery module 110.
  • the CC2530 module 130 in the photovoltaic power generation node 100 can wirelessly transmit the parameters collected by the sensor module 140 to the corresponding piconet local server 200 to implement wireless transmission of the state parameters of the photovoltaic power generation node 100.
  • the photovoltaic power generation node 100 can adopt a SUN-220 type high efficiency crystalline silicon solar cell module 110
  • the DC-DC module 120 can adopt a high performance LTC3255 switched capacitor buck converter design
  • the current sampling circuit 142 can adopt a direct current.
  • the sensor TBC10SY collects the photovoltaic component output current
  • the voltage sampling circuit 141 can use the voltage dividing circuit and the voltage follower circuit to sample the photovoltaic component output voltage
  • the temperature and humidity sensor 143 can use the SHT11 digital temperature and humidity sensor to collect the solar panel component 110 backplane environmental parameters.
  • Light intensity sensor 144 can use TSL2561 digital The light intensity sensor collects the light intensity parameter of the front surface of the solar battery component 110, and the electrical parameters and environmental parameters collected by all the sensor modules can be transmitted to the I/O port of the 8051 single chip embedded in the CC2530 module 130.
  • the CC2530 module 130 can be designed with the CC2530F128 chip, and the initialization and networking of the photovoltaic power generation node 100 can be realized by writing an initialization program and an application program.
  • the network topology of the photovoltaic power generation system may be first designed according to the following rules: the photovoltaic power generation node 100 is divided into several matrix units (may be a square matrix, or may be For a relatively concentrated arbitrary shape in a small area, a micro-network local server 200 is installed in the geometric center of each matrix unit, and the power station construction procedure and the physical addressing of the photovoltaic power generation node 100 need to follow the division rules of the matrix unit, and The identification (ID) number of the photovoltaic power generation node 100 is read by the positioning auxiliary terminal during the construction process.
  • the photovoltaic power generation node 100 is divided into several matrix units (may be a square matrix, or may be For a relatively concentrated arbitrary shape in a small area, a micro-network local server 200 is installed in the geometric center of each matrix unit, and the power station construction procedure and the physical addressing of the photovoltaic power generation node 100 need to follow the division rules of the matrix unit, and The identification (ID) number of the photo
  • the photovoltaic power generation nodes 100 After all the photovoltaic power generation nodes 100 are installed, according to the topology relationship of the network structure and the electrical parameters of the entire power station, a corresponding number of micro network local servers 200, inverter local servers 500 and inverters 400 are installed, and all photovoltaics are installed.
  • the output terminals of the power generation node 100 are connected in series and in parallel, and are connected to the inverter 400 through the combiner 300.
  • the piconet local server 200, the inverter local server 500, the central server 1100, and the PC client 1200 are connected to the Internet to implement the networking operation of the system.
  • the mobile client 1400 with the 3G module can access the central server 1100 mainly by accessing the 3G base station 1300 of the Internet.
  • the PC client 1200 can include a desktop computer, a portable computer, an industrial computer, etc., and accesses the Internet through an effective manner, and the PC client software directly downloads all working state information of the photovoltaic power station, including historical data, from the central server 1100.
  • the mobile client 1400 can be a mobile phone with a 3G module, a PAD, and a portable computer.
  • the software running can usually only download the main real-time parameters, such as the overall system status parameters and fault alarm data, from the central server 1100.
  • the photovoltaic power generation system may further include: storing (see the memory 250 in the piconet local server 200 of FIG. 3), the memory 250 stores the physical address of each of the photovoltaic power generation nodes 100 in association with the ID number; see FIG. 1, in the piconet local server 200
  • the corresponding physical address is obtained from the memory based on the ID number of the photovoltaic power generation node 100, and passes through the central server 1100.
  • a message indicating that the photovoltaic power generation node 100 at the physical address has failed is sent to the particular client 1200, 1400.
  • the memory 250 is set in the piconet local server 200 in FIG. 3 is only an example, and the memory may also be disposed in the central server 1100, or a separate memory.
  • the piconet local server 200 in the photovoltaic power generation microgrid may include a power module 220, an ARM processor 210, a CC2530 module 230, a WiFi module 280, a USB module 270, a 485 communication module 260, a memory 250, and an RJ- 45 network module 240.
  • the power module 220 is respectively connected to the ARM processor 210, the CC2530 module 230, the WiFi module 280, the USB module 270, the 485 communication module 260, the memory 250, and the RJ-45 network module 240 to supply power to the module; the CC2530 module 230 passes through the serial port.
  • the method is connected to a high-speed microprocessor such as the ARM processor 210.
  • the ARM processor 210 can communicate with other peripherals through various interface modules such as the 485 communication module 260, the USB module 270, the WiFi module 280, the RJ-45 network module 240, and the like. Ways of information interaction.
  • the high-speed embedded system is mainly implemented by ARM processor, and can also be implemented by means of FPGA, CPLD, etc.
  • the USB module is mainly used for on-site debugging and direct data reading, and data transmission with other modules connected by USB; during the use process, it can be connected through USB data cable, and debugged by the debugging software, or read the micro network.
  • Data in local server storage is a standard industrial data transmission module that can be used for data transmission between the local servers of the piconet. It can also be used for communication between the local server of the piconet and other peripherals, such as central servers, inverters, etc. The data line can be directly connected during use.
  • the WiFi module mainly assists in short-distance wireless transmission between the local server and the peripheral device of the piconet, and the transmission object may be a switch connected to the central server or a dedicated data access and receiving terminal.
  • a portable computer equipped with professional software can also be used as a wireless signal relay station that connects to the Internet by a local server connected to the piconet.
  • the communication setting bar can be clicked to enable WiFi, and the WiFi module starts to work according to actual needs; if it needs to access the Internet, the RJ-45 module has priority, in the case of wired network connection.
  • the WiFi module enters a standby mode, and in the standby mode, it can act as a wireless relay adjacent to the local server.
  • the power module 220 first converts 220V alternating current (mains power supply, can work uninterruptedly) into low voltage direct current such as +12V, +5V and +3.3V, for other The module is powered.
  • the CC2530 module 230 transmits the status parameters sent from the photovoltaic power generation node 100 to the ARM processor 210 connected thereto through the serial port in real time, and the ARM processor 210 can directly maintain the received data according to the status parameter form.
  • the memory 250 In addition, after the RJ-45 network module 240 is connected to the Internet, the ARM processor 210 can transmit the data of the memory 250 to the central server 1100 in real time, thereby realizing permanent storage of the state parameters of the photovoltaic power generation system.
  • the WiFi module 280 can adopt the RTL8188CUS chip design
  • the USB module 270 can adopt the PL2303HX chip design
  • the 485 communication module 260 can adopt the MAX485CPA chip design
  • the CC2530 module 230 can adopt the CC2530F128 chip design
  • RJ- 45 network module 240 can adopt DM9000 chip design
  • ARM processor 210 can adopt S3C6410XH chip design
  • memory 250 can adopt M29W032DB chip design.
  • the piconet local server networking can be realized.
  • the photovoltaic power generation system may further include:
  • each of the inverters 400 includes a DC-AC conversion module for converting DC power outputted by at least one of the photovoltaic power generation nodes into AC power (see DC-AC module 410 of FIG. 4), a sensor module 460 for collecting state parameters of the inverter and a wireless communication module for wirelessly transmitting state parameters of the inverter (see CC2530 module 420 of FIG. 4);
  • An inverter local server 500 is capable of receiving status parameters of each of the inverters and transmitting the received status parameters of the inverter to the central server via the Internet.
  • the inverters 400 connected to the inverter local server 500 can also form a wireless sensor piconet.
  • the inverter 400 may include a power module 430, a DC-AC module 410, a CC2530 module 420, a 485 communication module 470, and a sensor module 460.
  • the sensor module 460 may include at least one of a current transformer 461, a voltage transformer 462, a temperature and humidity sensor 463, and a noise sensor 464.
  • the power module 430 is connected to the CC2530 module 420, the 485 communication module 470 and the sensor module 460 to supply power to the module; the input end of the DC-AC module 420 is connected to the inverter, and the output end is connected to the AC combiner 300, DC-
  • the AC module is also connected to the I/O port of the 8051 MCU embedded in the CC2530 module 420 through the current transformer 461 and the voltage transformer 462 respectively; the temperature and humidity sensor 463 and the noise sensor 464 collect the internal parameters of the inverter box, and the CC2530 module.
  • the I/O port of the 805 embedded MCU is connected; the CC2530 module 420 also exchanges information with other peripherals through the 485 communication module 470.
  • the power module 430 can convert 220V AC into low voltage DC such as +12V, +5V, and +3.3V to power other modules.
  • the current transformer 461 is used to collect the current parameter of the inverter; the voltage transformer 462 collects the voltage parameter of the inverter.
  • the current transformer 461 and the voltage transformer 462 collect the electrical parameters of the DC side and the AC side of the dry circuit, and then transmit to the I/O port of the 8051 MCU with the A/D function embedded in the CC2530 module 420 through the signal conditioning circuit to realize the electrical parameters.
  • the temperature and humidity sensor 463 and the noise sensor 464 are placed inside the inverter box to detect parameters such as temperature, humidity, and noise inside the cabinet of the inverter 400.
  • the CC2530 module 420 in the inverter 400 has a radio frequency transceiver module, and can periodically transmit the collected electrical parameters to the inverter local server 500 through the radio frequency mode, thereby implementing wireless transmission of the state parameters of the inverter.
  • the MAX485CPA can be used.
  • Chip design 485 communication module 470 current transformer 461 can use KCE-IZ01 type DC current transformer and TA1626-4M type AC current transformer, voltage transformer 462 can use JLBV1000FA type DC voltage transformer and TVS1908-03 type AC voltage
  • the transformer uses the SHT11 digital temperature and humidity sensor 463 and the TZ-2KA type noise sensor 464 to collect the environmental parameters of the inverter box.
  • the electrical parameters and environmental parameters collected by all the sensor modules 460 can be transmitted to the CC2530 module 420.
  • the CC2530 module 420 can be designed by using the CC2530F128 chip, and the networking of the inverter 400 can be realized by writing an application program.
  • the DC-AC module 410 can be an inverter having a function of converting direct current to alternating current, which is common to a photovoltaic power station; the 485 communication module 470 is connected to a serial port of the CC2530F128 chip, and is connected to other peripherals.
  • the embodiment of the present invention can implement the associative storage of the ID number and the physical address of the photovoltaic power generation node 100 by positioning the auxiliary terminal 600.
  • the positioning assistance terminal 600 determines the physical address of the photovoltaic power generation node 100 to be installed, acquires the ID number of the photovoltaic power generation node 100 to be installed to the physical address, and associates the physical address with the ID number. After the joint storage, the operator is prompted to install the photovoltaic power generation node to the physical address.
  • the association between the physical address and the ID number can be saved as a lookup table database, and subsequently imported into the corresponding piconet local server 200.
  • the corresponding application program and the initialization program can be written.
  • the solar module 110 of the photovoltaic power generation node receives the illumination
  • the CC2530 module 130 starts to work, first runs an initialization program, and transmits its own ID number to the surrounding positioning assistance terminal 600. If the positioning assistance terminal 600 receives the data information of the ID number and successfully matches the specified physical address, the positioning assistance terminal 600 sends a confirmation command to the CC2530 module 130 of the photovoltaic power generation node 100, and prompts the sound and light information to present the scene. staff of.
  • the light emitting diode (LED) indicator light is turned on for a certain time, such as 5 seconds, and then goes out, indicating that the initialization process is completed, the application is run, and the power is reset again.
  • a certain time such as 5 seconds
  • photovoltaics that have been initialized The power generation node 100 runs the application directly. If the photovoltaic power generation node sees the light in the unsealed package, after the CC2530 module runs the initialization program, it has not received the confirmation command from any positioning auxiliary terminal, and the initialization program is continuously cycled. It should be noted that the photovoltaic power generation nodes that usually do not complete the initialization process cannot participate in the networking.
  • the positioning assistance terminal 600 may include a power module 610, a CC2530 module 620, a USB module 630, and an RS232 module 640.
  • the power module 610 is connected to the CC2530 module 620, the USB module 630, and the RS232 module 640, respectively, to supply power to the modules.
  • the CC2530 module 620 is connected to a user terminal, such as a portable computer, via an RS232 module 640 and a USB module 630 for transmitting the ID number of the photovoltaic power generation node 100.
  • the power module 610 When the positioning auxiliary terminal 600 is in operation, the power module 610 first turns +5V to +3.3V to supply power to the CC2530 module 620, the USB module 630, and the RS232 module 640. After the positioning auxiliary terminal is connected to the portable computer through the USB interface 630, a search command is issued through the CC2530 module 620, and when the receiving photovoltaic power generation node sends its own ID number, it is transmitted to the portable computer through the RS232 module 640 and the USB module 630, and the computer completes the ID number. After matching with the physical address data form, an instruction is transmitted to the CC2530 module 620, and the CC2530 module 620 sends the command to the photovoltaic power generation node to inform the initialization process.
  • the USB module 630 can be designed by using the PL2303HX chip, the RS232 module 640 is designed by using the MAX3232E chip, and the CC2530 module 620 is designed by using the CC2530F128 chip, and the program is connected to the positioning auxiliary terminal by running the program.
  • the portable computer application can realize the setting table of the ID number-physical address of the photovoltaic power generation node to realize the networking of the information type photovoltaic component array.
  • the CC2530 module disposed in the photovoltaic power generation node, the micro network local server, the inverter, the inverter local server, the positioning auxiliary terminal, and the like mainly includes a wireless communication module and a microprocessor. To realize signal processing and wireless transmission of data, it has the function of self-organizing network, and can also adopt MCU+CC2420, CC2430, CC2431, CC2531, CC2533, LPR2430, MCU+nRF905, MCU+nRF2401 are implemented.
  • the photovoltaic power generation system provided by the invention has a flexible multi-micro network structure, and can acquire state parameters of photovoltaic power generation nodes in each micro-grid, thereby accurately monitoring the working state parameters of each photovoltaic power generation node, and the network structure of the data.
  • the system is well-defined, accurate, reliable, and robust, which can improve the working efficiency of the photovoltaic power generation system, thereby reducing the cost of electricity.
  • wireless sensor network technology to build a complex information network system based on wired and wireless communication methods is conducive to convenient and reliable information transmission and intelligent management of the system, improve the stability and reliability of the system operation, and extend the use. life.
  • the optimal strategy of system power conversion can be realized, and the working efficiency of the whole system can be improved.
  • Various client modes are adopted to meet the customer needs of different identities, and the information is complete and the display is intuitive. Easy to operate and so on.
  • the central server can use a professional database to manage and store data, information integration, scientific management, security, stability, and ease of use.
  • a professional database to manage and store data, information integration, scientific management, security, stability, and ease of use.
  • a variety of clients can meet the needs of different identity users, with obvious advantages such as intuitive display, easy operation, and effective management.
  • the information-based photovoltaic power generation system with multi-micro network structure can be used for large-scale photovoltaic power plants arranged in an array, photovoltaic power plants distributed in multiple dispersed areas, small-scale photovoltaic power plants, and multiple independent distributed domestic photovoltaic power plants. , rooftop photovoltaic power stations, etc.
  • Each of the photovoltaic power generation micro-grids includes a micro-network local server and several photovoltaic power generation nodes, and the networking mode is an ad-hoc network. Therefore, the network structure is flexible, the network access network is convenient and fast, and the network topology is extensible. Since the independent micro-network can be connected to the central server through the Internet, it is convenient for customers to manage and maintain through remote access.
  • the micro-network also saves the historical data of the working status of the photovoltaic power generation node in the local storage for a certain period of time, even in the It can also run independently in the case of off-network, and upload historical data to the central server when it is re-entered.
  • the user can also directly access (for example, a USB connection) the micro-network local server through the client device (for example, a notebook) to access each of the independent micro-networks. State parameters of the photovoltaic power generation node.
  • FIG. 7 is a schematic flowchart of a fault detection method for a photovoltaic power generation system according to an embodiment of the present invention.
  • the fault detection method may be applied to a photovoltaic power generation system of any of the above embodiments.
  • the method may specifically include the following steps:
  • Step 704 Each of the piconet local servers determines an operating state of each of the photovoltaic power generation nodes based on a status parameter of the received photovoltaic power generation node.
  • Step 705 In a case where it is determined that an operation failure occurs in a photovoltaic power generation node, the piconet local server acquires a corresponding physical address based on an ID number of the photovoltaic power generation node, and sends, by using the central server, a location indicating the physical address.
  • the photovoltaic node has a faulty message to a specific client.
  • the physical address of each of the photovoltaic power generation nodes may be stored in association with the ID number in advance, and may specifically include:
  • Step 701 Determine a physical address of a photovoltaic power generation node to be installed.
  • Step 702 Obtain an ID number of a photovoltaic power generation node to be installed to the physical address.
  • Step 703 After storing the physical address in association with the ID number, prompting an operator to install the photovoltaic power generation node to the physical address.
  • the relationship between the ID number and the physical address of each photovoltaic power generation node connected to each micro-network server may be imported, and when it is determined that a photovoltaic power generation node is faulty, the fault location may be conveniently determined, thereby performing troubleshooting. Wait for processing.
  • FIG. 8 is a schematic flowchart of a method for detecting a fault of a photovoltaic power generation system according to another embodiment of the present invention.
  • the fault detection method may be applied to a photovoltaic power generation system of any of the above embodiments.
  • the method may specifically include the following steps:
  • Step 801 producing a photovoltaic power generation node.
  • a wireless sensor network node including components such as the sensor module 140 and the CC2530 module 130 may be produced, and may be written to the CC2530 module 130 in the wireless sensor network node.
  • the corresponding program is given a unique ID number.
  • the program written by the CC2530 module 130 of the photovoltaic power generation node 100 is divided into two parts, one is an initialization program, including a unique 64-bit binary ID number preparation; the other part is an application program for realizing information collection and processing of the sensor module. And storage and other functions, and can send the collected data periodically by wireless.
  • the produced solar cell module 110 can then be assembled with a wireless sensor network node to obtain a photovoltaic power generation node.
  • Step 802 The solar cell module 110 of the photovoltaic power generation node to be installed works, and the node initializes and transmits its own ID number to the positioning auxiliary terminal. Specifically, referring to FIG. 2, FIG. 5 and FIG. 6, when the photovoltaic power generation node 100 is installed in the field, the package of the photovoltaic power generation node 100 is unpacked so that the solar battery module 110 receives the light, and the CC2530 module 130 starts to work, and the ID number is first used. It is sent to the positioning assistance terminal 600.
  • Step 803 The positioning assistance terminal 600 associates the ID number of the photovoltaic power generation node to be installed with the physical address.
  • the software running on the portable computer connected to the positioning assistant terminal 600 corresponds to the actual physical address and the ID number according to a prescribed installation procedure.
  • Step 804 After the association is successful, prompting to install the photovoltaic power generation node 100.
  • the photovoltaic power generation array in the photovoltaic power generation system is divided into several matrix units (photovoltaic power generation microgrids), and each matrix unit includes 50 photovoltaic power generation nodes, which have 5 rows*10 columns.
  • the physical address naming rule of the first matrix unit the physical address of the first row of photovoltaic power generation nodes is A0101-A0110 (A represents the area, the first two digits represent the line number, the last two digits represent the column number), and the second The physical address of the photovoltaic power generation node is A0201-A0210, ..., and the physical address of the fifth row photovoltaic power generation node is A0501-A0510.
  • the physical address naming rules of the second matrix unit the physical address of the first row of photovoltaic power generation nodes is A0111-A0120, the physical address of the second row of photovoltaic power generation nodes is A0211-A0220, ..., the physical address of the fifth row of photovoltaic power generation nodes For A0511-A0520. And so on.
  • the on-site installation and construction process it is required to be installed according to the network topology structure divided by the above partition rules, and multiple matrix units can be constructed at the same time.
  • the construction process of the first matrix unit as an example, it is required to follow A0101, A0102, A0103, ..., A0110, A0201, A0202, A0203, ..., A0210, A0301, A0302, A0303, ..., A0310, A0401, A0402.
  • the physical addresses of A0403, ..., A0410, A0501, A0502, A0503, ..., A0510 are sequentially installed.
  • the positioning auxiliary terminal 600 and the positioning assistance software installed on the portable computer connected thereto are programmed according to the physical address, the first default physical address is A0101; when the first photovoltaic power generation node 100 is unpacked, Because the solar cell module 110 receives light to start power generation, the DC-DC module 120 of the photovoltaic power generation node 100 operates, the CC2530 module 130 is powered on, runs an initialization program, and periodically sends its own ID number at the photovoltaic power generation node 100 and positioning.
  • the linear distance of the auxiliary terminal 600 is less than a certain length, for example, 5 meters, the positioning auxiliary terminal can effectively read the ID number sent by the CC2530 module 130 of the photovoltaic power generation node 100.
  • the positioning auxiliary terminal 600 After the positioning auxiliary terminal 600 obtains an ID number, it can be sent to the portable computer connected thereto through the USB interface 630. After the portable computer records the physical address A0101 and the ID number of the photovoltaic power generation node 100 through software, a confirmation command can be sent. The positioning auxiliary terminal 600 is given, and the field staff is presented with an acousto-optic prompt, and the positioning auxiliary terminal 600 transmits the confirmation command to the photovoltaic power generation node 100 to be installed through the CC2530 module 620.
  • the photovoltaic power generation node 100 After receiving the confirmation command, the photovoltaic power generation node 100 completes the initialization of the program, and the LED indicator of the photovoltaic power generation node is turned on for 5 seconds and then goes out, prompting the field staff to install the initialized photovoltaic power generation node 100 at the physical address A0101. After the initial success of the photovoltaic power generation node 100, the initialization program is no longer run after the power-on reset, and the application is directly run.
  • a micro-network local server 200 needs to be installed in each matrix unit, and its location is preferably at the geometric center of the matrix unit.
  • the photovoltaic power generation node of the embodiment of the invention adopts no difference installation.
  • a batch of photovoltaic power generation nodes There is no sequence in the field installation process, and any one of a batch of photovoltaic power generation nodes can be installed at any position.
  • each photovoltaic power generation node carries out a unique ID number in the production process. This ID number is also a unique identifier for identifying the solar battery module 110. For on-site inspection and maintenance, it is also necessary to physically perform on-site installation of the photovoltaic power generation node.
  • the field staff can only find the photovoltaic power generation node through the physical address, therefore, the physical address and the installation need to be installed in the field installation process.
  • the ID number of the photovoltaic power generation node at the physical address corresponds.
  • each inverter can be similarly mounted.
  • Step 805 Import the database of the ID number and the physical address generated by the positioning auxiliary terminal 600 and the software into the corresponding micro-network local server 200 to realize the networking of the entire multi-micro-network structure photovoltaic power generation system.
  • multiple positioning assistant terminals and software may be used to generate multiple ID numbers and physical address databases, and then the database is merged and subdivided according to the topology of the network to ensure The ID number corresponds to the network topology managed by the physical address database and the piconet local server, so that the new ID number and physical address database can be imported into the corresponding piconet local server. If the ID number of the photovoltaic power generation node is not imported into the corresponding micro network local server, the photovoltaic power generation node cannot implement network access.
  • the central server 1100 can install a professional server program for collecting, processing, analyzing, and storing data from all the piconet local servers 200 and the inverter local server 500, and performing data management through the database, and the data is large in the central server.
  • the scale is permanently saved on the hard disk.
  • the micro-network local server 200 and the inverter local server 500 are also installed with professional software.
  • the CC2530 module 230 is first turned on to receive data from the photovoltaic power generation node 100. The information is sent to the ARM processor 210 through serial communication.
  • the ARM processor 210 After the ARM processor 210 receives the data, it has the ID that has been imported. The number form is compared, and if the received data is a state parameter of the photovoltaic power generation node of the ID number to be stored, the storage is performed; if the ID number of the received data is not in the ID number form saved in the memory, the Data is cleared.
  • the central server may also obtain status parameters of each inverter 400 from the inverter local server 500.
  • Step 806 Read status parameters of each photovoltaic power generation node from the central server through the client, and query real-time status and historical parameters.
  • the software running the mobile client 1400 and/or the PC client 1200 can read system data from the central server 1000, and the operating state of the information-type photovoltaic power generation system can be viewed through the client software.
  • the PC client 1200 is a desktop, industrial computer and portable computer connected to the Internet through a wired or wireless connection, and a professional PC client software is installed. After the software is started, the whole is downloaded from the central server 1100 through the Internet.
  • the data of the photovoltaic power generation system includes the voltage, current, temperature and humidity, light intensity of each photovoltaic power generation node 100, voltage and current of the DC side and the AC side of the inverter, conversion efficiency, AC side power quality factor, inverter box Temperature, humidity and noise, total system power generation and other parameters.
  • the photovoltaic power generation array can be divided into several zones according to the network topology structure, and each zone is a photovoltaic power generation node managed by a microgrid local server.
  • the dialog window can display the current characteristic parameters of the node, as well as information such as the physical address.
  • the mobile client 1400 can be a mobile phone, a PAD, a portable computer, etc. that communicates over a 3G network, and is equipped with professional mobile client software.
  • part of the data of the photovoltaic power generation system can be downloaded from the central server 1100 by accessing the 3G base station 1300 of the Internet, including the voltage and current of each photovoltaic power generation node 100, the voltage of the DC side of the inverter, and the voltage of the AC side. Parameters such as current, conversion efficiency, and total system power generation.
  • the network topology is also maintained.
  • the dialog window displays the current feature parameters of the node and the physical address. And other information.
  • the central server can also send the acquired status parameters of each inverter to a specific client through the Internet.
  • Step 807 In the case that an operation failure occurs in the photovoltaic power generation node, obtain a corresponding physical address based on the ID number of the photovoltaic power generation node.
  • the client software connected to the central server can mark and prompt, click the failed photovoltaic power generation node icon, obtain the prompted fault information, and the physical address of the faulty photovoltaic power generation node. .
  • the icon representing the photovoltaic power generation node and the area icon of the photovoltaic power generation node may be marked with different colors, and flashing prompts, when the node icon is clicked, the dialog window will prompt the fault.
  • the physical address of the node, the staff member confirms that it has been checked after the record, and the time required for the repair is entered on site.
  • the fault flashing prompt may not be performed during the maintenance time of the node, but the node icon is still the fault unresolved color.
  • the node icon color automatically returns to normal; if the repair time is up, the fault is not effectively excluded, the fault node The fault message will be prompted again.
  • the permissions of the mobile client can usually be limited. For example, the mobile client can view the fault information and physical address of the current faulty node, but has no permission to set the fault repair time and fault cancellation.
  • the central server finds that the inverter has an operational failure, it can also send the inverter a fault message to a specific client.
  • Step 808 The field worker finds the faulty photovoltaic power generation node according to the physical address, and removes the fault according to the fault prompt.
  • the node fault state may include an abnormality of the environmental parameters such as the output voltage and current parameters of the solar cell module 110, temperature, humidity, and illumination, or may be abnormal in other circuits of the photovoltaic power generation node, and may be replaced on site or returned to the factory for maintenance. Similarly, it is also possible to process the failed inverter.
  • Step 809 After the fault is rectified, the client can be released by using the management software fault prompt message. The system is back to normal.
  • the invention not only can monitor the running state of the photovoltaic power generation system in real time, but also can detect the common fault state, and assist the fault release through the precise positioning strategy, which has an important reality for improving the management level and informationization degree of the traditional photovoltaic power station. Significance, with the application value in the field of photovoltaic power generation applications and related power industry.
  • the function is implemented in the form of computer software and sold or used as a stand-alone product, it is considered to some extent that all or part of the technical solution of the present invention (for example, a part contributing to the prior art) is It is embodied in the form of computer software products.
  • the computer software product is typically stored in a computer readable non-volatile storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all of the methods of various embodiments of the present invention. Or part of the steps.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Abstract

一种光伏发电系统及其故障检测方法,所述光伏发电系统包括至少一个光伏发电微网(1000)和能够经由英特网与各所述光伏发电微网(1000)通信的中心服务器(1100),并且各所述光伏发电微网(1000)包括:多个光伏发电节点(100#11,…,100#NM),各所述光伏发电节点(100#11,…,100#NM)包括光伏发电组件(110)、用于采集光伏发电节点(100#11,…,100#NM)的状态参数的传感器模块(140)以及用于无线发送光伏发电节点(100#11,…,100#NM)的状态参数的无线通信模块(130);微网本地服务器(200#1,…,200#M),其能够接收各光伏发电节点(100#11,…,100#NM)的状态参数,确定各光伏发电节点(100#11,…,100#NM)的运行状态,并将所接收到的状态参数和所确定的运行状态经由英特网发送至所述中心服务器(1100)。该光伏发电系统具有灵活的多微网结构,能够对每个光伏发电节点(100#11,…,100#NM)的工作状态参数进行精确监测,数据的网络结构层次分明,能够提高光伏发电系统的工作效率。

Description

光伏发电系统及其故障检测方法 技术领域
本发明涉及光伏发电,尤其涉及一种光伏发电系统及其故障检测方法。
背景技术
太阳能可以通过光伏发电组件转换成电能并进行存储和利用,被认为是目前最有发展潜力的新能源之一。
现有的光伏发电系统主要包括光伏发电组件阵列、汇流器和逆变器。一般来说,由串联和并联方式连接的光伏发电组件阵列输出的电能经汇流器集中后,通过逆变器逆变成交流电,以对特定区域的负载供电或者直接并入电网。
然而,光伏发电系统的工作效率低成了推广应用光伏发电系统的瓶颈。这主要是因为,目前实验室研发的单晶硅电池片的转换效率不超过25.0%,多晶硅电池片的转换效率不超过20.4%,而单晶硅光伏发电组件的整体效率不超过21%,从而使得整个光伏发电系统的工作效率更低。换言之,目前光伏转换效率的难以提高,使得有必要研发其他途径来有效提高光伏发电系统的整体工作效率。
发明内容
技术问题
有鉴于此,本发明要解决的技术问题是,如何提高光伏发电系统的工作效率以尽量降低电价成本。
解决方案
为了解决上述技术问题,本发明提供一种光伏发电系统,包括至少一个 光伏发电微网和能够经由英特网与各所述光伏发电微网通信的中心服务器,并且各所述光伏发电微网包括:
多个光伏发电节点,各所述光伏发电节点包括光伏发电组件、用于采集所述光伏发电节点的状态参数的传感器模块以及用于无线发送所述光伏发电节点的状态参数的无线通信模块;
微网本地服务器,其能够接收各所述光伏发电节点的状态参数,基于所接收到的光伏发电节点的状态参数确定各所述光伏发电节点的运行状态,并将所接收到的状态参数和所确定的运行状态经由英特网发送至所述中心服务器。
对于上述光伏发电系统,在一种可能的实现方式中,还包括存储器,
所述存储器将各所述光伏发电节点的物理地址与ID号相关联地存储;
所述微网本地服务器被配置为:在基于所接收到的光伏发电节点的状态参数确定某个光伏发电节点出现运行故障的情况下,基于该光伏发电节点的ID号从所述存储器获取相应的物理地址,并通过所述中心服务器发送表示该物理地址处的光伏发电节点出现了故障的消息至特定的客户端。
对于上述光伏发电系统,在一种可能的实现方式中,还包括定位辅助终端,
所述定位辅助终端确定待安装光伏发电节点的物理地址,获取待安装至该物理地址的光伏发电节点的ID号,并在将该物理地址与该ID号相关联地存储至所述存储器之后,提示操作人员将该光伏发电节点安装至该物理地址。
对于上述光伏发电系统,在一种可能的实现方式中,还包括:
至少一个逆变器,各所述逆变器包括用于将至少一个所述光伏发电节点输出的直流电转换为交流电的直流-交流转换模块、用于采集所述逆变器的状态参数的传感器模块以及用于无线发送所述逆变器的状态参数的无线通信模块;
逆变器本地服务器,其能够接收各所述逆变器的状态参数,并将所接收到的所述逆变器的状态参数经由英特网发送至所述中心服务器。
对于上述光伏发电系统,在一种可能的实现方式中,所述逆变器的传感器模块包括以下至少一种:
电流互感器,用于采集所述逆变器的电流参数;
电压互感器,用于采集所述逆变器的电压参数;
温湿度传感器,用于采集所述逆变器的温湿度参数;
噪声传感器,用于采集所述逆变器的环境噪声参数。
对于上述光伏发电系统,在一种可能的实现方式中,各所述光伏发电节点的传感器模块包括以下至少一种:
电压采样电路,用于采集所述光伏发电组件的电压参数;
电流采样电路,用于采集所述光伏发电组件的电流参数;
温湿度传感器,用于采集所述光伏发电组件的温湿度参数;
光强传感器,用于采集所述光伏发电组件所处环境的光强参数。
为了解决上述技术问题,本发明还提供一种光伏发电系统的故障检测方法,其特征在于,所述光伏发电系统采用本发明实施例中任意一种结构的光伏发电系统,所述故障检测方法包括:
各所述微网本地服务器基于所接收到的光伏发电节点的状态参数确定各所述光伏发电节点的运行状态;以及
在确定某个光伏发电节点出现运行故障的情况下,所述微网本地服务器基于该光伏发电节点的ID号获取相应的物理地址,并通过所述中心服务器发送表示该物理地址处的光伏发电节点出现了故障的消息至特定的客户端。
对于上述故障检测方法,在一种可能的实现方式中,还包括:将各所述光伏发电节点的物理地址与ID号相关联地存储。
对于上述故障检测方法,在一种可能的实现方式中,将各所述光伏发电 节点的物理地址与ID号相关联地存储,包括:
确定待安装光伏发电节点的物理地址;
获取待安装至该物理地址的光伏发电节点的ID号;以及
在将该物理地址与该ID号相关联地进行存储之后,提示操作人员将该光伏发电节点安装至该物理地址。
有益效果
本发明实施例的光伏发电系统具有灵活的多微网结构,能够获取各微网中的光伏发电节点的状态参数,从而能够对每个光伏发电节点的工作状态参数进行精确监测,数据的网络结构层次分明,具有数据完备、精确、稳定可靠、鲁棒性强等特点,能够提高光伏发电系统的工作效率,从而可以降低电价成本。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1是本发明一实施例的光伏发电系统的结构示意图;
图2是本发明一实施例的光伏发电系统的光伏发电节点的结构示意图;
图3是本发明另一实施例的光伏发电系统的微网本地服务器的一种示例的结构示意图;
图4是本发明另一实施例的光伏发电系统的逆变器的结构示意图;
图5和图6是本发明另一实施例的光伏发电系统的定位辅助终端的结构示意图;
图7为本发明一实施例提供的光伏发电系统的故障检测方法的流程示意 图;
图8为本发明另一实施例提供的光伏发电系统的故障检测方法的流程示意图。
具体实施方式
以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
实施例一
图1是本发明一实施例的光伏发电系统的结构示意图,如图1所示,所述光伏发电系统包括至少一个光伏发电微网1000,以及能够经由英特网(Internet)与各所述光伏发电微网通信的中心服务器1100,并且各所述光伏发电微网1000包括:
多个光伏发电节点100,各所述光伏发电节点包括光伏发电组件(例如图2的太阳能电池组件110)、用于采集所述光伏发电节点的状态参数的传感器模块(例如图2的传感器模块140)以及用于无线发送所述光伏发电节点的状态参数的无线通信模块(例如,图2中CC2530模块130可以实现无线通信模块的功能);以及
微网本地服务器200,其能够接收各所述光伏发电节点100的状态参数, 基于所接收到的光伏发电节点100的状态参数确定各所述光伏发电节点100的运行状态,并将所接收到的状态参数和所确定的运行状态经由英特网发送至所述中心服务器1100,以使得所述中心服务器1100能够显示各所述光伏发电节点100的状态参数和运行状态。
如图1所示,该光伏发电系统可以包括一个中心服务器1100,以及与中心服务器1100通过英特网通讯的多个(M+1)互相独立的无线传感器微网1000,其中,M个为光伏发电微网,一个为逆变器微网。每个光伏发电微网中可以包括一个微网本地服务器以及与每个微网本地服务器进行无线通讯的N个光伏发电节点。例如,微网本地服务器200#1连接光伏发电节点100#11至100#1N,微网本地服务器200#2连接光伏发电节点100#21至100#2N,微网本地服务器200#M连接光伏发电节点100#M1至100#MN。此外,该系统还可以包括与中心服务器1100通过英特网通讯的个人计算机(Personal Computer,PC)客户端1200,以及与中心服务器1100通过3G基站1300进行无线通讯的移动客户端1400。该系统中所有的光伏发电节点100组成的信息型光伏组件阵列输出的直流电能,通过串联和并联的方式进行连接,并通过汇流器300#1至300#L与L个逆变器400#1至400#L相连,L个逆变器通过无线方式与逆变器本地服务器500通讯。其中,L和N为大于等于1小于100的整数,M为大于等于1的整数,L和N可以相等也可以不相等,本发明实施例不限制L、N、M的具体数值。此外,汇流器与逆变器的数量也可以不相等。
如图2所示,该光伏发电节点100可以包括太阳能电池组件110、直流-直流(Direct Current-Direct Current,DC-DC)模块120、CC2530模块130(具有无线通信功能)和传感器模块140。其中,传感器模块140可以包括电压采样电路141、电流采样电路142、温湿度传感器143和光强传感器144的至少一种,当然也可以根据具体需求设置具有其他功能的传感器模块。具体而言,太阳能电池组件110分别与DC-DC模块120和汇流器300相连,DC-DC模块120 的输出端分别与CC2530模块130和传感器模块140相连;电压采样电路141和电流采样电路142一端与太阳能电池组件110输出端相连,另一端与CC2530模块130内嵌的8051单片机的I/O口相连,分别用于采集太阳能电池组件110的电压参数和电流参数;温湿度传感器143和光强传感器144,与CC2530模块130内嵌的8051单片机的I/O口相连,温湿度传感器143用于采集太阳能电池组件110的温湿度参数,光强传感器144用于采集太阳能电池组件110所处环境的光强参数。
在光伏发电节点100工作时,一方面,太阳能电池组件110将太阳能转换成电能,通过输出端口传输给汇流器300;另一方面,DC-DC模块120与太阳能电池组件110的输出端相连,将太阳能电池组件110输出的直流电降压成例如+12V、+5V和+3.3V的低压直流电,为光伏发电节点100的其他模块供电。此外,电压采样电路141和电流采样电路142可以采集太阳能电池组件110输出端电压参数和电流参数,传输给CC2530模块130内嵌的8051单片机的I/O口,实现电参数的采集;温湿度传感器143紧贴在太阳能电池组件110背板,检测其温湿度等参数;光强传感器144嵌入在太阳能电池组件110的正面,采集环境光强参数;环境参数和电参数是综合判断太阳能电池组件110的工作状态的重要依据。光伏发电节点100中的CC2530模块130可以将传感器模块140采集到的参数通过无线方式发送给对应的微网本地服务器200,实现光伏发电节点100状态参数的无线传输。
举例而言,光伏发电节点100可以采用SUN-220型高效率晶硅太阳能电池组件110,DC-DC模块120可以采用高性能的LTC3255开关电容降压转换器设计,电流采样电路142可以采用直流电流传感器TBC10SY采集光伏组件输出电流,电压采样电路141可以采用分压电路和电压跟随器电路采样光伏组件输出电压,温湿度传感器143可以采用SHT11数字式温湿度传感器采集太阳能电池组件110背板环境参数,光强传感器144可以采用TSL2561型数字式 光强传感器采集太阳能电池组件110正面的光强参数,上述所有传感器模块采集的电参数和环境参数均可以被传输给CC2530模块130内嵌的8051单片机的I/O口。CC2530模块130可以采用CC2530F128芯片设计,通过写入初始化程序和应用程序,可以实现光伏发电节点100的初始化和组网。
在本发明实施例中,首先可以根据光伏发电站建设规模和地理位置按照如下规则设计光伏发电系统的网络拓扑结构:将所有光伏发电节点100划分成若干个矩阵单元(可以为方阵,也可以为某个小区域内相对集中的任意形状),每个矩阵单元的几何中心安装一个微网本地服务器200,电站施工规程和光伏发电节点100的物理编址需要遵循矩阵单元的划分规则,并在电站施工过程中通过定位辅助终端读取光伏发电节点100的标识(ID)号。所有光伏发电节点100安装完毕后,再根据网络结构的拓扑关系以及整个电站的电气参数要求,安装相应数量的微网本地服务器200、逆变器本地服务器500和逆变器400,并将所有光伏发电节点100的输出端采用串联和并联的形式进行连接,通过汇流器300与逆变器400相连。最后将微网本地服务器200、逆变器本地服务器500、中心服务器1100和PC客户端1200等接入英特网,实现系统的组网运行。此外,带有3G模块的移动客户端1400主要可以通过接入英特网的3G基站1300访问中心服务器1100。
优选地,PC客户端1200可以包括台式机、便携式电脑和工控机等,通过有效方式接入英特网,PC客户端软件直接从中心服务器1100下载光伏发电站的所有工作状态信息,包括历史数据;移动客户端1400可以为带有3G模块的手机、PAD和便携式电脑,其运行的软件通常只能从中心服务器1100下载主要的实时参数,例如系统总体状态参数和故障告警数据等。
实施例二
图3是本发明另一实施例的光伏发电系统的微网本地服务器的一种示例的结构示意图。在上一实施例的基础上,该光伏发电系统还可以包括:存储 器(参见图3的微网本地服务器200中的存储器250),所述存储器250将各所述光伏发电节点100的物理地址与ID号相关联地存储;参见图1,在微网本地服务器200基于所接收到的光伏发电节点100的状态参数确定某个光伏发电节点100出现运行故障的情况下,基于该光伏发电节点100的ID号从所述存储器获取相应的物理地址,并通过中心服务器1100发送表示该物理地址处的光伏发电节点100出现了故障的消息至特定的客户端1200、1400。
其中,图3中存储器250设置在微网本地服务器200仅是一种示例,存储器还可以设置在中心服务器1100,或者采用独立的存储器。
如图3所示,光伏发电微网中的微网本地服务器200可以包括电源模块220、ARM处理器210、CC2530模块230、WiFi模块280、USB模块270、485通讯模块260、存储器250和RJ-45网络模块240。其中,电源模块220分别与ARM处理器210、CC2530模块230、WiFi模块280、USB模块270、485通讯模块260、存储器250和RJ-45网络模块240相连,为上述模块供电;CC2530模块230通过串口方式与高速微处理器例如ARM处理器210相连,ARM处理器210可以通过各种接口模块例如485通讯模块260、USB模块270、WiFi模块280、RJ-45网络模块240等与其他外设进行多种方式的信息交互。
其中,高速嵌入式系统主要采用ARM处理器实现,也可以采用FPGA、CPLD等方式实现。USB模块主要用于现场调试和数据直接读取,以及与采用USB方式连接的其他模块进行数据传输;在使用过程中可以通过USB数据线连接,并通过调试软件进行现场调试,或者读取微网本地服务器存储器中的数据。485通讯模块是标准的工业数据传输模块,可以用于微网本地服务器之间的数据传输,也可以用于微网本地服务器与其他外设,例如中心服务器、逆变器等电力设备之间通信;使用过程中可以直接连接数据线。WiFi模块主要辅助微网本地服务器与外设之间进行短距离的无线传输,传输对象可以是连接到中心服务器的交换机,也可以是专用的数据访问和接收终端, 例如装有专业软件的便携式电脑,也可以作为邻近微网本地服务器连接因特网的无线信号中继站等。在微网本地服务器的控制面板上,通讯设置栏可以点击开启WiFi,WiFi模块则根据实际需要开始工作;如果需要接入英特网,RJ-45模块则具有优先权,在有线网连接的情况下,WiFi模块进入等待模式,在等待模式下,可以作为邻近本地服务器的无线中继。
在光伏发电微网中的微网本地服务器200工作时,电源模块220首先将220V交流电(市电供电,可以不间断工作)转换成例如+12V、+5V和+3.3V的低压直流电,为其他模块供电。系统成功组网后,CC2530模块230将来自光伏发电节点100发送的状态参数通过串口方式实时传输给与之相连的ARM处理器210,ARM处理器210可以将接收到的数据按照状态参数表单直接保持在存储器250中。此外,当RJ-45网络模块240接入因特网后,ARM处理器210可以将存储器250的数据实时发送给中心服务器1100,从而实现光伏发电系统的状态参数永久存储。
举例而言,微网本地服务器200中,WiFi模块280可以采用RTL8188CUS芯片设计,USB模块270可以采用PL2303HX芯片设计,485通讯模块260可以采用MAX485CPA芯片设计,CC2530模块230可以采用CC2530F128芯片设计,RJ-45网络模块240可以采用DM9000芯片设计,ARM处理器210可以采用S3C6410XH芯片设计,存储器250可以采用M29W032DB芯片设计。进一步地,通过在CC2530F128芯片和S3C6410XH芯片中写入程序,可以实现微网本地服务器组网。
在一种可能的实现方式中,如图1和图4所示,光伏发电系统还可以包括:
至少一个逆变器400,各所述逆变器400包括用于将至少一个所述光伏发电节点输出的直流电转换为交流电的直流-交流转换模块(参见图4的DC-AC模块410)、用于采集所述逆变器的状态参数的传感器模块460以及用于无线发送所述逆变器的状态参数的无线通信模块(参见图4的CC2530模块420);
逆变器本地服务器500,其能够接收各所述逆变器的状态参数,并将所接收到的所述逆变器的状态参数经由英特网发送至所述中心服务器。
其中,逆变器本地服务器500的结构可以参见图3的微网本地服务器200的相关描述。逆变器本地服务器500与其连接的各逆变器400也能够组成一个无线传感器微网。
如图4所示,逆变器400可以包括电源模块430、DC-AC模块410、CC2530模块420、485通讯模块470和传感器模块460。其中,传感器模块460可以包括电流互感器461、电压互感器462、温湿度传感器463和噪声传感器464的至少一种。其中,电源模块430与CC2530模块420、485通讯模块470和传感器模块460相连,为上述模块供电;DC-AC模块420的输入端与逆变器相连,输出端与交流汇流器300相连,DC-AC模块还通过电流互感器461和电压互感器462分别与CC2530模块420内嵌的8051单片机的I/O口相连;温湿度传感器463和噪声传感器464采集逆变器箱体内部参数,与CC2530模块420内嵌的8051单片机的I/O口相连;CC2530模块420还通过485通讯模块470与其他外设进行信息交互。
在逆变器400工作时,电源模块430可以将220V交流电转换成例如+12V、+5V和+3.3V的低压直流电,为其他模块供电。其中,电流互感器461用于采集逆变器的电流参数;电压互感器462采集逆变器的电压参数。电流互感器461和电压互感器462采集干路上直流侧和交流侧的电参数后,通过信号调理电路传输给CC2530模块420内嵌的8051单片机带A/D功能的I/O口,实现电参数的采集;温湿度传感器463和噪声传感器464放置在逆变器箱体内部,检测逆变器400的箱体内部的温湿度和噪声等参数。逆变器400中的CC2530模块420具有射频收发模块,可以将采集到电参数通过无线射频方式定时发送给逆变器本地服务器500,从而实现逆变器的状态参数的无线传输。
举例而言,在本发明实施例的信息型的逆变器中,可以采用MAX485CPA 芯片设计485通讯模块470,电流互感器461可以采用KCE-IZ01型直流电流互感器和TA1626-4M型交流电流互感器,电压互感器462可以采用JLBV1000FA型直流电压互感器和TVS1908-03型交流电压互感器,采用SHT11数字式温湿度传感器463和TZ-2KA型噪声传感器464采集逆变器箱体的环境参数,上述所有传感器模块460采集的电参数和环境参数均可以被传输给CC2530模块420内嵌的8051单片机的I/O口。此外,可以采用CC2530F128芯片设计CC2530模块420,通过写入应用程序,实现逆变器400的组网。DC-AC模块410可以采用光伏电站通用的具有将直流转换为交流功能的逆变器;485通讯模块470与CC2530F128芯片的串口相连,连通其他外设。
在一种可能的实现方式中,如图5所示,本发明实施例可以通过定位辅助终端600来实现光伏发电节点100的ID号与物理地址的关联存储。在本发明的实施例中,定位辅助终端600确定待安装光伏发电节点100的物理地址,获取待安装至该物理地址的光伏发电节点100的ID号,并在将该物理地址与该ID号相关联地存储之后,提示操作人员将该光伏发电节点安装至该物理地址。物理地址与ID号的关联关系可以保存为对照表数据库,后续导入相应的微网本地服务器200中。
具体地,在光伏发电节点100生产的某个环节如最后一个环节,可以写入相应的应用程序和初始化程序。在光伏发电节点的太阳能电池组件110接收光照时,CC2530模块130开始工作,首先运行初始化程序,发送自身的ID号给周围的定位辅助终端600。如果有定位辅助终端600接收到ID号的数据信息,并成功与规定的物理地址对应匹配,则定位辅助终端600向该光伏发电节点100的CC2530模块130发送确认指令,并进行声光信息提示现场的工作人员。当光伏发电节点100的CC2530模块130收到确认指令后,发光二极管(Light Emitting Diode,LED)指示灯长亮一定时间如5秒后熄灭,表示初始化过程完毕,运行应用程序,且再次上电复位以后,已经进行初始化的光伏 发电节点100直接运行应用程序。如果光伏发电节点在开封包装见到光照,CC2530模块运行初始化程序后,一直没有接收到来自任何定位辅助终端的确认指令,则一直循环运行初始化程序。需要注意的是,通常没有完成初始化过程的光伏发电节点不能参与组网。
如图6所示,定位辅助终端600可以包括电源模块610、CC2530模块620、USB模块630和RS232模块640。其中,电源模块610分别与CC2530模块620、USB模块630和RS232模块640相连,为上述模块供电。CC2530模块620通过RS232模块640和USB模块630与用户终端例如便携式电脑相连,用于传输光伏发电节点100的ID号。
在定位辅助终端600工作时,电源模块610首先将+5V转+3.3V,为CC2530模块620、USB模块630和RS232模块640供电。当定位辅助终端通过USB接口630连接到便携式电脑后,通过CC2530模块620发出搜索指令,当接收光伏发电节点发送自身的ID号,通过RS232模块640和USB模块630传输给便携式电脑,电脑完成ID号与物理地址数据表单的匹配后,传输一个指令给CC2530模块620,CC2530模块620再将该指令发送给光伏发电节点,告知其初始化过程完毕。
举例而言,在定位辅助终端600中,可以采用PL2303HX芯片设计USB模块630,采用MAX3232E芯片设计RS232模块640,采用CC2530F128芯片设计CC2530模块620,通过写入定位辅助终端程序,并运行与之相连的便携式电脑应用程序,能够实现辅助建立光伏发电节点的ID号-物理地址的对照表,实现信息型光伏组件阵列的组网。
需要注意的是,本发明实施例中设置于光伏发电节点、微网本地服务器、逆变器、逆变器本地服务器、定位辅助终端等内部的CC2530模块主要包括无线通信模块和微处理器,能够实现信号的处理和数据的无线传输,具有自组网功能,也可以采用MCU+CC2420、CC2430、CC2431、CC2531、CC2533、 LPR2430、MCU+nRF905、MCU+nRF2401等方式实现。
本发明提供的光伏发电系统,具有灵活的多微网结构,能够获取各微网中的光伏发电节点的状态参数,从而能够对每个光伏发电节点的工作状态参数进行精确监测,数据的网络结构层次分明,具有数据完备、精确、稳定可靠、鲁棒性强等特点,能够提高光伏发电系统的工作效率,从而可以降低电价成本。
此外,采用无线传感器网络技术,构建基于有线和无线通信方式有机结合的复杂的信息网络系统,有利于信息方便可靠传输和系统的智能化管理,提高了系统运行的稳定性和可靠性,延长使用寿命。
此外,通过对逆变器的远程控制,能够实现系统电能转换的最优化策略,提高整个系统的工作效率;采用多种客户端模式,满足了不同身份的客户需求,具有信息完整、显示直观、操作简便等特点。
此外,中心服务器可以采用专业的数据库对数据进行管理和存储,信息集成、管理科学、安全稳定、使用方便。采用多种客户端可以满足不同身份用户的需求,具有显示直观、操作简便、管理有效等显著优点。
具体而言,多微网结构的信息型光伏发电系统可以用于阵列式排布的大型光伏电站、分布式安装在多个分散区域的光伏电站、小型光伏电站、多个独立分布的家用光伏电站、屋顶光伏电站等。其中每个光伏发电微网包含一个微网本地服务器和若干个光伏发电节点,组网方式为自组网,因此具有网络结构灵活、入网组网方便快捷、网络拓扑可扩展性强等特点。由于独立的微网可以通过英特网与中心服务器相连,方便客户通过远程访问方式进行管理和维护,微网也同时将光伏发电节点工作状态的历史数据在一定时间内保存在本地存储器,即使在脱网情况下也能独立运行,并在再次入网时上传历史数据到中心服务器。在微网脱网的情况下,用户也可以通过客户端设备(例如笔记本)直接(例如USB连接)微网本地服务器,访问某个独立微网的各 光伏发电节点的状态参数。
实施例三
图7为本发明一实施例提供的光伏发电系统的故障检测方法的流程示意图,该故障检测方法可以应用于上述实施例中任意一种结构的光伏发电系统,该方法具体可以包括以下步骤:
步骤704、各所述微网本地服务器基于所接收到的光伏发电节点的状态参数确定各所述光伏发电节点的运行状态。
步骤705、在确定某个光伏发电节点出现运行故障的情况下,所述微网本地服务器基于该光伏发电节点的ID号获取相应的物理地址,并通过所述中心服务器发送表示该物理地址处的光伏发电节点出现了故障的消息至特定的客户端。
在一种可能的实现方式中,可以预先将各所述光伏发电节点的物理地址与ID号相关联地存储,具体可以包括:
步骤701、确定待安装光伏发电节点的物理地址。
步骤702、获取待安装至该物理地址的光伏发电节点的ID号。
步骤703、在将该物理地址与该ID号相关联地进行存储之后,提示操作人员将该光伏发电节点安装至该物理地址。
其中,可以向各微网服务器中导入其所连接的各光伏发电节点的ID号与物理地址的关系,在确定发现某个光伏发电节点出现故障时,可以方便地确定故障位置,从而进行故障排除等处理。
实施例四
图8为本发明另一实施例提供的光伏发电系统的故障检测方法的流程示意图,该故障检测方法可以应用于上述实施例中任意一种结构的光伏发电系统,该方法具体可以包括以下步骤:
步骤801、生产光伏发电节点。
具体而言,参见图2,在光伏发电节点100的生产过程中,可以生产包括传感器模块140和CC2530模块130等部件的无线传感器网络节点,并可以给无线传感器网络节点中的CC2530模块130写入相应的程序,并赋予唯一的ID号。例如,光伏发电节点100的CC2530模块130写入的程序分为两部分,一部分为初始化程序,包括唯一的64位二进制ID号编制;另一部分为应用程序,用于实现传感器模块的信息采集、处理和存储等功能,并可以通过无线方式定时发送采集的数据。然后,可以将生产的太阳能电池组件110与无线传感器网络节点组装得到光伏发电节点。
步骤802、待安装的光伏发电节点的太阳能电池组件110工作,节点初始化并发送自身的ID号至定位辅助终端。具体而言,参见图2、图5和图6,在现场安装光伏发电节点100时,拆封光伏发电节点100的包装使其太阳能电池组件110接收光照,CC2530模块130开始工作,首先将ID号发送给定位辅助终端600。
步骤803、定位辅助终端600将待安装的光伏发电节点的ID号与物理地址关联。具体而言,与定位辅助终端600相连的便携式电脑运行的软件,并根据规定的安装规程将实际的物理地址与ID号对应。
步骤804、关联成功后,提示安装该光伏发电节点100。
例如,假设将光伏发电系统中的光伏发电阵列划分成若干个矩阵单元(光伏发电微网),每个矩阵单元包括50个光伏发电节点,共有5行*10列。其中,第一个矩阵单元的物理地址命名规则:第一行光伏发电节点的物理地址为A0101-A0110(A表示区域,前两位数字表示行号,后两位数字表示列号),第二行光伏发电节点的物理地址为A0201-A0210,……,第五行光伏发电节点的物理地址为A0501-A0510。第二个矩阵单元的物理地址命名规则:第一行光伏发电节点的物理地址为A0111-A0120,第二行光伏发电节点的物理地址为A0211-A0220,……,第五行光伏发电节点的物理地址为 A0511-A0520。以此类推。
在现场安装施工过程中,需按照上述分区规则划分的网络拓扑结构安装,可以多个矩阵单元同时施工。以第一个矩阵单元施工过程为例,要求按照A0101、A0102、A0103、……、A0110、A0201、A0202、A0203、……、A0210、A0301、A0302、A0303、……、A0310、A0401、A0402、A0403、……、A0410、A0501、A0502、A0503、……、A0510的物理地址顺序安装。
首先,定位辅助终端600和与之相连的便携式电脑上安装的定位辅助软件,根据物理地址编写规则,第一个默认的物理地址为A0101;当第一块光伏发电节点100包装被拆封时,因为其太阳能电池组件110接收光照开始发电,光伏发电节点100的DC-DC模块120工作,CC2530模块130上电工作,运行初始化程序,定时循环对外发送自身的ID号,在光伏发电节点100与定位辅助终端600直线距离小于一定长度例如5米的情况下,定位辅助终端能够有效读取到光伏发电节点100的CC2530模块130发送的ID号。
当定位辅助终端600获取一个ID号以后,可以通过USB接口630发送给与之相连的便携式电脑,便携式电脑通过软件记录下该光伏发电节点100的物理地址A0101和ID号后,可以发送一条确认指令给定位辅助终端600,并给现场工作人员进行声光提示,定位辅助终端600将确认指令通过CC2530模块620发送给待安装的光伏发电节点100。光伏发电节点100接收到确认指令后,完成程序初始化,光伏发电节点的LED指示灯长亮5秒后熄灭,提示现场工作人员可以将初始化完毕的光伏发电节点100安装在物理地址为A0101的位置。初始化成功的光伏发电节点100再次上电复位后不再运行初始化程序,直接运行应用程序。
按照类似步骤顺序安装剩下的光伏发电节点。其中,本实施例中各矩阵单元中需要安装一个微网本地服务器200,其位置优选为在矩阵单元的几何中心。本发明实施例的光伏发电节点采用无差别安装。即一批光伏发电节点 在现场安装过程中没有先后顺序,可以在一批光伏发电节点中任意抽取一件安装在任何位置。但是每个光伏发电节点在生产过程中都进行了唯一的ID编号,这个ID号也是识别该太阳能电池组件110的唯一标识,为了现场巡检和维护,还需要对现场安装的光伏发电节点进行物理编址,例如A0206(表示第二行,第六列的太阳能电池组件110),现场工作人员也只能通过物理地址寻找光伏发电节点,因此,需要在现场安装过程中将物理地址与安装在该物理地址处的光伏发电节点的ID号对应。
此外,也可以对各逆变器进行类似地安装。
步骤805、将通过定位辅助终端600和软件生成的ID号与物理地址的数据库导入对应的微网本地服务器200,实现整个多微网结构光伏发电系统的组网。
举例而言,在步骤702中如果有多个施工小组,则可以采用多个定位辅助终端和软件生成多个ID号与物理地址数据库,然后根据网络的拓扑结构进行数据库的融合和再划分,确保ID号与物理地址数据库和微网本地服务器所管理的网络拓扑结构对应,以能够将新的ID号与物理地址数据库导入到对应的微网本地服务器中。如果光伏发电节点的ID号没有被导入对应的微网本地服务器,则该光伏发电节点不能实现入网。
此外,所有光伏发电节点现场安装完毕后,运行中心服务器和本地服务器程序。其中,中心服务器1100可以安装专业的服务器程序,用于收集、处理、分析和存储来自所有微网本地服务器200、逆变器本地服务器500的数据,并通过数据库进行数据管理,数据在中心服务器超大规模硬盘上永久保存。微网本地服务器200、逆变器本地服务器500也安装有专业软件,当微网本地服务器200、逆变器本地服务器500上电工作后,首先开启CC2530模块230,接收来自光伏发电节点100的数据信息,并将接收到的数据通过串口通信方式发送给ARM处理器210。ARM处理器210接收到数据后,与已经导入的ID 号表单进行比对,如果接收到的数据为需要存储的ID号的光伏发电节点的状态参数,则进行存储;如果接收到的数据的ID号不在存储器中保存的ID号表单中,则可以将数据清除。
类似地,中心服务器还可以从逆变器本地服务器500获取各逆变器400的状态参数。
步骤806、通过客户端从中心服务器读取各光伏发电节点的状态参数,查询实时状态和历史参数。
具体而言,运行移动客户端1400和/或PC客户端1200的软件,可以从中心服务器1000读取系统数据,通过客户端软件可以查看信息型光伏发电系统的运行状态。
例如,PC客户端1200为通过有线或无线方式连接英特网的台式机、工控机和便携式电脑,并安装了专业的PC客户端软件,软件启动后,通过英特网从中心服务器1100下载整个光伏发电系统的数据,包括每个光伏发电节点100的电压、电流、温湿度、光强,逆变器直流侧和交流侧的电压和电流、转换效率、交流侧电能品质因数、逆变器箱体温湿度和噪声、系统总发电量等参数。在PC客户端软件中,可以根据网络拓扑结构,将光伏发电阵列分成若干个区,每个区为一个微网本地服务器管理的所有光伏发电节点。当用户点击某个光伏发电节点图标时,对话框窗口可以显示该节点的当前特征参数,以及物理地址等信息。
再如,移动客户端1400可以为通过3G网络通讯的手机、PAD和便携式电脑等,其安装有专业的移动客户端软件。软件启动后,通过接入英特网的3G基站1300可以从中心服务器1100下载光伏发电系统的部分数据,包括每个光伏发电节点100的电压、电流、逆变器直流侧和交流侧的电压和电流、转换效率、系统总发电量等参数。在移动客户端软件中,同样保持网络拓扑结构,当点击节点图标时,对话框窗口显示该节点的当前特征参数,以及物理地址 等信息。
类似地,中心服务器还可以通过英特网将所获取的各逆变器的状态参数发送给特定的客户端。
步骤807、在光伏发电节点出现运行故障的情况下,基于该光伏发电节点的ID号获取相应的物理地址。
具体而言,如果某个光伏发电节点100工作异常,与中心服务器连接的客户端软件可以进行标记和提示,点击出现故障的光伏发电节点图标,获取提示的故障信息和故障光伏发电节点的物理地址。
例如,当系统中的某个光伏发电节点出现故障时,代表该光伏发电节点的图标和其所在的区域图标可以采用不同的颜色进行标记,并闪烁提示,当点击节点图标,对话窗口将提示故障节点的物理地址,工作人员记录后确认已经查看,并现场输入维修需要的时间。其中,该节点维修时间内可以不再进行故障闪烁提示,但节点图标仍然为故障未解除颜色,当故障解除后,节点图标颜色自动回复正常;如果维修时间到,故障没有被有效排除,故障节点将再次提示故障信息。通常可以对移动客户端的权限进行限定,例如,移动客户端可以查看当前故障节点的故障信息和物理地址,但无权限设置故障维修时间和故障解除。
类似地,中心服务器在发现逆变器的出现运行故障的情况下,也可以将该逆变器出现了故障的消息至特定的客户端。
步骤808、现场工作人员根据物理地址找到出现故障的光伏发电节点,根据故障提示排除故障。
其中,节点故障状态可能包括太阳能电池组件110输出电压和电流参数、温湿度和光照等环境参数异常,也可能是光伏发电节点其他电路工作异常,可以现场更换或返厂维修。类似地,也可以对出现故障的逆变器进行处理。
步骤809、排除故障之后,客户端可以通过管理软件故障提示信息解除, 系统恢复正常。
本发明不仅可以对光伏发电系统的运行状态进行实时监测,还可以对常见故障状态进行检测,并通过精确定位策略辅助故障解除,对提升传统光伏发电站的管理水平和信息化程度具有重要的现实意义,具有在光伏发电应用领域及相关电力行业推广应用价值。
本领域普通技术人员可以意识到,本文所描述的实施例中的各示例性单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件形式来实现,取决于技术方案的特定应用和设计约束条件。专业技术人员可以针对特定的应用选择不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
如果以计算机软件的形式来实现所述功能并作为独立的产品销售或使用时,则在一定程度上可认为本发明的技术方案的全部或部分(例如对现有技术做出贡献的部分)是以计算机软件产品的形式体现的。该计算机软件产品通常存储在计算机可读取的非易失性存储介质中,包括若干指令用以使得计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各实施例方法的全部或部分步骤。而前述的存储介质包括U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种光伏发电系统,其特征在于,所述光伏发电系统包括至少一个光伏发电微网和能够经由英特网与各所述光伏发电微网通信的中心服务器,并且各所述光伏发电微网包括:
    多个光伏发电节点,各所述光伏发电节点包括光伏发电组件、用于采集所述光伏发电节点的状态参数的传感器模块以及用于无线发送所述光伏发电节点的状态参数的无线通信模块;
    微网本地服务器,其能够接收各所述光伏发电节点的状态参数,基于所接收到的光伏发电节点的状态参数确定各所述光伏发电节点的运行状态,并将所接收到的状态参数和所确定的运行状态经由英特网发送至所述中心服务器。
  2. 根据权利要求1所述的光伏发电系统,其特征在于,还包括存储器,
    所述存储器将各所述光伏发电节点的物理地址与ID号相关联地存储;
    所述微网本地服务器被配置为:在基于所接收到的光伏发电节点的状态参数确定某个光伏发电节点出现运行故障的情况下,基于该光伏发电节点的ID号从所述存储器获取相应的物理地址,并通过所述中心服务器发送表示该物理地址处的光伏发电节点出现了故障的消息至特定的客户端。
  3. 根据权利要求2所述的光伏发电系统,其特征在于,还包括定位辅助终端,
    所述定位辅助终端确定待安装光伏发电节点的物理地址,获取待安装至该物理地址的光伏发电节点的ID号,并在将该物理地址与该ID号相关联地存储至所述存储器之后,提示操作人员将该光伏发电节点安装至该物理地址。
  4. 根据权利要求3所述的光伏发电系统,其特征在于,还包括:
    至少一个逆变器,各所述逆变器包括用于将至少一个所述光伏发电节点输出的直流电转换为交流电的直流-交流转换模块、用于采集所述逆变器的状态参数的传感器模块以及用于无线发送所述逆变器的状态参数的无线通 信模块;
    逆变器本地服务器,其能够接收各所述逆变器的状态参数,并将所接收到的所述逆变器的状态参数经由英特网发送至所述中心服务器。
  5. 根据权利要求4所述的光伏发电系统,其特征在于,所述逆变器的传感器模块包括以下至少一种:
    电流互感器,用于采集所述逆变器的电流参数;
    电压互感器,用于采集所述逆变器的电压参数;
    温湿度传感器,用于采集所述逆变器的温湿度参数;
    噪声传感器,用于采集所述逆变器的环境噪声参数。
  6. 根据权利要求1至5中任一项所述的光伏发电系统,其特征在于,各所述光伏发电节点的传感器模块包括以下至少一种:
    电压采样电路,用于采集所述光伏发电组件的电压参数;
    电流采样电路,用于采集所述光伏发电组件的电流参数;
    温湿度传感器,用于采集所述光伏发电组件的温湿度参数;
    光强传感器,用于采集所述光伏发电组件所处环境的光强参数。
  7. 一种光伏发电系统的故障检测方法,其特征在于,所述光伏发电系统采用如权利要求1至6中任一项所述的光伏发电系统,所述故障检测方法包括:
    各所述微网本地服务器基于所接收到的光伏发电节点的状态参数确定各所述光伏发电节点的运行状态;以及
    在确定某个光伏发电节点出现运行故障的情况下,所述微网本地服务器基于该光伏发电节点的ID号获取相应的物理地址,并通过所述中心服务器发送表示该物理地址处的光伏发电节点出现了故障的消息至特定的客户端。
  8. 根据权利要求7所述的方法,其特征在于,还包括:将各所述光伏发电节点的物理地址与ID号相关联地存储。
  9. 根据权利要求8所述的方法,其特征在于,将各所述光伏发电节点的物理地址与ID号相关联地存储,包括:
    确定待安装光伏发电节点的物理地址;
    获取待安装至该物理地址的光伏发电节点的ID号;以及
    在将该物理地址与该ID号相关联地进行存储之后,提示操作人员将该光伏发电节点安装至该物理地址。
PCT/CN2015/071848 2015-01-29 2015-01-29 光伏发电系统及其故障检测方法 WO2016119181A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580000023.5A CN104704702B (zh) 2015-01-29 2015-01-29 光伏发电系统及其故障检测方法
US15/547,267 US10211778B2 (en) 2015-01-29 2015-01-29 Photovoltaic power generation system and malfunction detection method therefor
JP2016571456A JP6168247B2 (ja) 2015-01-29 2015-01-29 光起電力発電システムおよびその故障検出方法
PCT/CN2015/071848 WO2016119181A1 (zh) 2015-01-29 2015-01-29 光伏发电系统及其故障检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071848 WO2016119181A1 (zh) 2015-01-29 2015-01-29 光伏发电系统及其故障检测方法

Publications (1)

Publication Number Publication Date
WO2016119181A1 true WO2016119181A1 (zh) 2016-08-04

Family

ID=53350110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071848 WO2016119181A1 (zh) 2015-01-29 2015-01-29 光伏发电系统及其故障检测方法

Country Status (4)

Country Link
US (1) US10211778B2 (zh)
JP (1) JP6168247B2 (zh)
CN (1) CN104704702B (zh)
WO (1) WO2016119181A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685667A (zh) * 2017-01-21 2017-05-17 广东工业大学 一种基于RS232接口的Zigbee无线传输转换装置
CN112736899A (zh) * 2020-12-23 2021-04-30 国网冀北电力有限公司秦皇岛供电公司 一种微电网规划方案评价指标计算方法以及装置
CN112910411A (zh) * 2021-01-25 2021-06-04 杭州易达光电有限公司 一种区域化光伏运维管理系统
CN114069869A (zh) * 2021-11-25 2022-02-18 中北大学 一种分布式光伏源网荷储能量流控制方法
CN114090828A (zh) * 2022-01-24 2022-02-25 一道新能源科技(衢州)有限公司 应用于轻质化光伏组件生产的大数据处理方法及系统
CN116843793A (zh) * 2023-08-30 2023-10-03 杭州禾迈电力电子股份有限公司 布局图生成方法、装置、系统及存储介质

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559035B (zh) * 2015-09-30 2019-02-15 天津创来智能光伏科技有限公司 太阳能电池阵列以及太阳能电池组件监测装置
CN107294492A (zh) 2016-04-13 2017-10-24 苏州瑞得恩光能科技有限公司 一种大型光伏阵列中电池面板的故障检测定位系统
CN107017835B (zh) * 2016-09-14 2018-10-12 湖北民族学院 光伏组件的故障监测系统及方法
CN106845562B (zh) * 2017-03-21 2018-12-07 湖北民族学院 光伏组件的故障监测系统及数据处理方法
CN106971526A (zh) * 2017-05-23 2017-07-21 扬州鸿淏新能源科技有限公司 光伏应用系统远程监测系统
CN109256854B (zh) * 2017-07-12 2023-04-18 丰郅(上海)新能源科技有限公司 基于无线通信实现对分散型光伏电站进行监控的方法
CN107563638A (zh) * 2017-08-30 2018-01-09 广东盘古信息科技股份有限公司 使用手机替代安灯系统的方法
CN107579706A (zh) * 2017-09-06 2018-01-12 洛阳市质量技术监督检验测试中心 一种基于微网技术的光伏发电故障诊断系统
CN109842370A (zh) * 2017-11-29 2019-06-04 熊猫电站控股有限公司 应用太阳能光伏发电单元关联标识的方法及系统
DE112019000535T5 (de) * 2018-01-25 2020-10-22 Clean Energy Factory Co. , Ltd. Solarmodul
CN108879933A (zh) * 2018-08-06 2018-11-23 上海晶夏新能源科技有限公司 一种新型模块化光伏发电系统
CN109511098A (zh) * 2018-11-23 2019-03-22 湖北民族学院 光伏电力交易系统及分布式光伏电站
CN109794121A (zh) * 2018-12-27 2019-05-24 董靖扬 一种具有光伏供电的煤矿降尘系统
CN112583111A (zh) * 2019-09-29 2021-03-30 河南许继仪表有限公司 一种光伏发电汇流箱无线数据采集系统
CN112017072A (zh) * 2020-08-26 2020-12-01 阳光电源(上海)有限公司 光伏系统、组串内设备的定位方法和mlpe设备及其排序方法
CN111884586A (zh) 2020-08-26 2020-11-03 阳光电源(上海)有限公司 一种光伏系统以及组串内各设备的定位方法
KR102414192B1 (ko) * 2020-08-28 2022-06-29 전현진 로라 통신 기반의 태양광 발전에 대한 센서 데이터를 관리하기 위한 장치 및 이를 위한 방법
CN112729815A (zh) * 2020-12-21 2021-04-30 云南迦南飞奇科技有限公司 基于无线网络的输送线健康状况在线故障大数据预警方法
CN113176025B (zh) * 2021-03-11 2022-08-23 山东光实能源有限公司 一种光伏路面承重变形失效风险评估方法
CN113098135A (zh) * 2021-04-16 2021-07-09 安徽理工大学 一种用于微电网调度的温度监测系统
US20230147729A1 (en) * 2021-11-11 2023-05-11 Hitachi, Ltd. Ad-hoc der machine data aggregation for co-simulation, deep learning and fault-tolerant power systems
CN115175023B (zh) * 2022-09-07 2022-11-08 安徽南瑞中天电力电子有限公司 一种基于光伏逆变器的物联表抄表方法、系统及装置
CN117749089A (zh) * 2024-02-19 2024-03-22 北京智芯微电子科技有限公司 光伏电站异常识别方法、装置、设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291052A (zh) * 2011-08-22 2011-12-21 浙江昱能光伏科技集成有限公司 太阳能光伏系统及其能量采集优化方法和故障检测方法
US20130188396A1 (en) * 2012-01-24 2013-07-25 Robert Bosch Gmbh System and Method for System-Level Power Point Control of a Photovoltaic Device
CN103235221A (zh) * 2013-04-18 2013-08-07 河海大学常州校区 光伏电站远程监控的故障检测系统及检测方法
CN103618380A (zh) * 2013-11-07 2014-03-05 南车株洲电力机车研究所有限公司 基于光伏微电网的智能监控系统
CN103823417A (zh) * 2012-11-16 2014-05-28 飞秒光电科技(西安)有限公司 一种太阳能光伏发电远程智能监控系统
US20140229031A1 (en) * 2013-02-14 2014-08-14 Petra Solar, Inc. Micro-Inverter Based AC-Coupled Photovoltaic Microgrid System with Wireless Smart-Grid Controls
CN104009544A (zh) * 2014-05-09 2014-08-27 北京源深节能技术有限责任公司 一种光伏发电远程控制及通讯的系统及方法
CN104601086A (zh) * 2015-01-29 2015-05-06 湖北民族学院 光伏发电系统及其故障检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309217C (zh) * 2004-05-14 2007-04-04 中国联合通信有限公司 一种用于通信网络中的故障定位方法及装置
FR2918232B1 (fr) * 2007-06-28 2010-11-26 Airbus France Procedes et dispositifs pour la communication de donnees de diagnostic dans un reseau de communication temps reel
US8264195B2 (en) * 2008-10-01 2012-09-11 Paceco Corp. Network topology for monitoring and controlling a solar panel array
JP2010098591A (ja) * 2008-10-17 2010-04-30 Fujitsu Ltd 障害監視システム、サーバ装置およびノード装置
JP2010123880A (ja) * 2008-11-21 2010-06-03 Ntt Facilities Inc 故障判定システム、故障判定方法、コンピュータプログラム
JP2011181853A (ja) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp 太陽光発電システム、メンテナンス端末及びデータ収集装置
JP2012039433A (ja) * 2010-08-09 2012-02-23 Buffalo Inc 集線装置および集線装置を用いた管理方法
US9502902B2 (en) * 2012-06-26 2016-11-22 Solarcity Corporation System, method and apparatus for generating layout of devices in solar installations
JP2014175384A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 太陽光発電システム
CN103543326B (zh) 2013-10-18 2016-02-24 国家电网公司 一种测定光伏组件的发电功率的系统
CN104199394B (zh) 2014-07-31 2017-02-08 广州日滨科技发展有限公司 液压支架电液控制系统电源监控方法、系统及监测子系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291052A (zh) * 2011-08-22 2011-12-21 浙江昱能光伏科技集成有限公司 太阳能光伏系统及其能量采集优化方法和故障检测方法
US20130188396A1 (en) * 2012-01-24 2013-07-25 Robert Bosch Gmbh System and Method for System-Level Power Point Control of a Photovoltaic Device
CN103823417A (zh) * 2012-11-16 2014-05-28 飞秒光电科技(西安)有限公司 一种太阳能光伏发电远程智能监控系统
US20140229031A1 (en) * 2013-02-14 2014-08-14 Petra Solar, Inc. Micro-Inverter Based AC-Coupled Photovoltaic Microgrid System with Wireless Smart-Grid Controls
CN103235221A (zh) * 2013-04-18 2013-08-07 河海大学常州校区 光伏电站远程监控的故障检测系统及检测方法
CN103618380A (zh) * 2013-11-07 2014-03-05 南车株洲电力机车研究所有限公司 基于光伏微电网的智能监控系统
CN104009544A (zh) * 2014-05-09 2014-08-27 北京源深节能技术有限责任公司 一种光伏发电远程控制及通讯的系统及方法
CN104601086A (zh) * 2015-01-29 2015-05-06 湖北民族学院 光伏发电系统及其故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, RUIDONG ET AL.: "Fault Location of Photovoltaic Array Based on Gaussian Process", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 28, no. 6, 30 June 2013 (2013-06-30), ISSN: 1000-6753 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685667A (zh) * 2017-01-21 2017-05-17 广东工业大学 一种基于RS232接口的Zigbee无线传输转换装置
CN112736899A (zh) * 2020-12-23 2021-04-30 国网冀北电力有限公司秦皇岛供电公司 一种微电网规划方案评价指标计算方法以及装置
CN112910411A (zh) * 2021-01-25 2021-06-04 杭州易达光电有限公司 一种区域化光伏运维管理系统
CN114069869A (zh) * 2021-11-25 2022-02-18 中北大学 一种分布式光伏源网荷储能量流控制方法
CN114069869B (zh) * 2021-11-25 2023-06-23 中北大学 一种分布式光伏源网荷储能量流控制方法
CN114090828A (zh) * 2022-01-24 2022-02-25 一道新能源科技(衢州)有限公司 应用于轻质化光伏组件生产的大数据处理方法及系统
CN114090828B (zh) * 2022-01-24 2022-04-22 一道新能源科技(衢州)有限公司 应用于轻质化光伏组件生产的大数据处理方法及系统
CN116843793A (zh) * 2023-08-30 2023-10-03 杭州禾迈电力电子股份有限公司 布局图生成方法、装置、系统及存储介质
CN116843793B (zh) * 2023-08-30 2023-12-15 杭州禾迈电力电子股份有限公司 布局图生成方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN104704702A (zh) 2015-06-10
JP2017513452A (ja) 2017-05-25
JP6168247B2 (ja) 2017-07-26
CN104704702B (zh) 2017-01-11
US10211778B2 (en) 2019-02-19
US20180278206A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2016119181A1 (zh) 光伏发电系统及其故障检测方法
CN208850076U (zh) 基于NB-IoT的室内环境监测系统
US9204208B2 (en) Smartgrid energy-usage-data storage and presentation systems, devices, protocol, and processes including an announcement protocol
US8983784B2 (en) Smartgrid energy-usage-data storage and presentation systems, devices, protocol, and processes including a storage distribution process and protocol
CN104601086B (zh) 光伏发电系统及其故障检测方法
JP5550725B2 (ja) 再配置された分散型発電機コンポーネントを識別するための方法及び装置
CN104269922B (zh) 一种基于gprs/gis的分布式电源参数监测方法与系统
CN109151072A (zh) 一种基于雾节点的边缘计算系统
US9322668B2 (en) Smartgrid energy-usage-data storage and presentation systems, devices, protocol, and processes
US20120158328A1 (en) Smartgrid Energy-Usage-Data Storage and Presentation Systems, Devices, Protocol, and Processes Including a Storage Distribution Process
Mishra et al. A novel efficient design of intelligent street lighting monitoring system using ZigBee network of devices and sensors on embedded internet technology
KR20060010995A (ko) 인터넷을 활용한 태양광발전 원격 모니터링 장치 및 방법
CN201657028U (zh) 一种大规模风力发电监控系统
CN207470355U (zh) 一种新型风力发电场监控系统
CN206757872U (zh) 光伏应用系统远程监测系统
CN103809535A (zh) 基于ZigBee技术的光伏阵列监测装置
CN114977503B (zh) 一种集成系统运行状态的全链条监测系统及方法
CN206164602U (zh) 一种空气源热泵专家远程管理云服务系统
CN204030729U (zh) 一种分布式电源监测系统
CN210927564U (zh) 一种用于光伏电站的数据采集系统
CN205158617U (zh) 基于rfid射频技术的设备巡检维护和数据采集系统
CN102378432A (zh) 太阳能路灯供电网络监控系统
KR101710888B1 (ko) 태양광 발전설비의 관리 서비스 플랫폼 및 그 제공방법
CN108806230A (zh) 一种基于红外识别的智能通讯采集装置
CN218335427U (zh) 一种离网光储电源系统健康诊断装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15547267

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.17)

122 Ep: pct application non-entry in european phase

Ref document number: 15879389

Country of ref document: EP

Kind code of ref document: A1