JP2014175384A - 太陽光発電システム - Google Patents

太陽光発電システム Download PDF

Info

Publication number
JP2014175384A
JP2014175384A JP2013045008A JP2013045008A JP2014175384A JP 2014175384 A JP2014175384 A JP 2014175384A JP 2013045008 A JP2013045008 A JP 2013045008A JP 2013045008 A JP2013045008 A JP 2013045008A JP 2014175384 A JP2014175384 A JP 2014175384A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
power generation
generation system
characteristic information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013045008A
Other languages
English (en)
Inventor
Toshio Egusa
敏夫 江草
Katsuhiko Sekiguchi
勝彦 関口
Masahisa Ishibashi
正久 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013045008A priority Critical patent/JP2014175384A/ja
Publication of JP2014175384A publication Critical patent/JP2014175384A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽電池モジュールの劣化や故障に対して交換品を容易に決定することのできる太陽光発電システムを提供する。
【解決手段】太陽光発電システム1は、太陽電池モジュール2に少なくとも特性情報を記憶させるようにし、その特性情報を管理装置6に送信するようにし、管理装置6に其の特性情報をデータベース登録させるようにした。すなわち、太陽電池モジュール2が導入されると、システムは特性情報の送信により管理装置6において自動的に台帳を作成又は変更する。特性情報は、太陽電池モジュール2が備える太陽電池回路21の電流電圧特性を示す情報である。
【選択図】図1

Description

本発明の実施形態は、太陽電池モジュールを複数備える太陽光発電システムに関する。
近年の燃料費の高騰や環境保護意識の高まりを受けて、太陽光を利用する発電が注目を集めている。太陽光発電は、燃料費が不要であり、また温暖化ガスを放出しないためである。従来は、家庭やビルや工場等に太陽光発電システムを敷設して、その施設で消費する電力を補助する程度に留まっていたが、近年は、広大な敷地に多数の太陽電池モジュールを敷き詰めたメガソーラーシステムを構築することにより、補助的な役割であった太陽光発電システムが基幹発電の一役を担い、地域の電力を賄うよう期待されている。
この太陽光発電システムにおいて、各太陽電池モジュールは時間経過とともに、個別の環境や耐久性能に応じて様々な進行態様で劣化又は故障していく。当然、劣化や故障が発生した場合には、その太陽電池モジュールを交換又は修理することとなる。その前提として劣化や故障の検出を行うために、太陽電池モジュールに故障診断手段を設けて、診断結果とモジュールのIDを組み合わせてサーバ等に送信する技術が提案されている(例えば、特許文献1及び2参照。)。
そして、故障又は劣化が検出された太陽電池モジュールが特定されると、その交換又は修理に取りかかる。ここで、重要なのは、交換のために新たに導入しようとする太陽電池モジュールの性能である。ストリング中において飛び抜けて定格電流の高い太陽電池モジュールを設置しても無意味であるし、また性能が全く異なる太陽電池モジュールを導入すると、システム全体としての電流電圧特性が歪となり、効率的な発電を妨げることとなる。
特開2004−260015号公報 特開2009−267031号公報
そこで、従来は、交換対象の太陽電池モジュールがわかると、その太陽電池モジュールの性能を参考にして、新たに導入しようとする太陽電池モジュールを決定するのであるが、その太陽電池モジュールの性能を特定することが容易ではなかった。
すなわち、現状では、太陽電池モジュールは、手作業で作成された紙ファイルや電子ファイルなどにより台帳管理がなされているからである。膨大な太陽電池モジュールの資料から必要な情報を台帳から探すのは多大な労力を必要とし、時には台帳に太陽電池モジュールの性能が記されておらず、太陽電池モジュールの型番等を頼りにメーカに問い合わせる等の必要があった。
そのため、太陽電池モジュールの劣化や故障を即時に検出することはできても、その対処は遅れがちになり、太陽光発電システム全体としての運用効率を低下させるおそれがある。本発明の実施形態は、上記の課題を解消するために提案されたものであり、太陽電池モジュールの劣化や故障に対して交換品を容易に決定することのできる太陽光発電システムを提供することを目的としている。
上記の目的を達成するために、実施形態に係る太陽光発電システムは、太陽電池モジュールとパワーコンディショナと管理装置とを通信系統で結んだ太陽光発電システムであって、前記太陽電池モジュールは、太陽電池回路と、前記太陽電池モジュールの電流電圧特性に関する特性情報を記憶する記憶手段と、前記記憶手段に記憶された特性情報を送信する送信手段と、を備え、前記管理装置は、前記特性情報を受信する受信手段と、前記受信手段で受信した前記特性情報をデータベース登録して記憶する記憶手段と、を備えること、を特徴とする。
前記管理装置は、複数の前記特性情報に基づき、システム全体の電流電圧特性を解析する解析手段を更に備えるようにしてもよい。また、前記解析手段は、システム全体の電流電圧特性に基づき、最も高い最大電力点を導出するMPPTアルゴリズムを探索するようにしてもよい。
第1の実施形態に係る太陽光発電システムの全体を示す概略構成図である。 太陽電池モジュールの構成図である。 太陽電池モジュールに記憶されている情報を示す模式図である。 パワーコンディショナの構成図である。 管理装置の構成図である。 太陽電池モジュールのデータ管理動作を示すフローチャートである。 特性情報を利用して最適なMPPTアルゴリズムを特定する動作を示すフローチャートである。 太陽光発電システムのシステム全体の電流電圧特性を示すグラフである。 最適なMPPTアルゴリズムが特定されたことによる太陽光発電システムの制御を示すフローチャートである。 第2の実施形態に係る管理装置の構成図である。
(第1の実施形態)
(全体構成)
図1は、第1の実施形態に係る太陽光発電システム全体を示す構成図である。図1に示すように、太陽光発電システム1は、電力系統100に連系する所謂メガソーラー発電所であり、多数の太陽電池モジュール2を有し、太陽光を電力に変換して電力系統に送出する。太陽電池モジュール2は、太陽電池ストリング等の区分毎に直列に接続されている。各太陽電池モジュール2は、複数枚の太陽電池セルをパネル状に並べ、太陽光を受光することで光起電力効果により直流電力を発生させる。複数の太陽電池セルよりなる発電回路を太陽電池回路21という。
この太陽光発電システム1は、送電系として、太陽電池モジュール2とPCS4と連系変圧器5とを備えている。PCS4は、パワーコンディショナーである。複数の太陽電池モジュール2が直列接続されて太陽電池ストリングをなし、複数の太陽電池ストリングがPCS4と電力線である直流ケーブル3に直列接続され、更に、複数台のPCS4を一纏めにして、その後段に連系変圧器5が接続されている。尚、一般的に、太陽電池ストリングとPCS4との間に開閉器等を収容した接続箱が介在する。
また、この太陽光発電システム1は管理装置6を備え、また太陽電池モジュール2とPCS4にはデータの送受信手段22、43が備えられており、太陽光発電システム1には太陽電池モジュール2の管理及び制御のための通信系統が敷設されている。管理装置6は、所謂コンピュータであり、その機能は、データ管理、データ解析、及び解析結果に応じた太陽電池モジュール2の制御内容の決定である。データ管理は、太陽電池モジュール2の台帳管理である。データ解析は、太陽光発電システム1のシステム全体の電流電圧特性の特定である。決定される制御内容は、各太陽電池モジュール2を最大電力点で稼動させるためのMPPTアルゴリズムである。
(各部構成)
図2乃至5に、この太陽光発電システム1の各装置の詳細構成を示す。図2は、太陽電池モジュール2の構成図である。図2に示すように、太陽電池モジュール2は、太陽電池回路21、太陽電池モジュール2に関するモジュール情報を記憶する記憶部23、及びモジュール情報をPCS4へ送信する送受信手段22を備える。更に、送受信手段22は、電力線搬送通信(Power Line Communication)を用いて行い、モジュール情報を通信信号に変換する信号生成部24、及び太陽電池回路21から出力される直流電圧に通信信号を重畳する結合部25を備える。
記憶部23は、不揮発性メモリであり、例えば、ROM、フラッシュメモリ、又はRFIDタグである。図3に、この記憶部23に記憶されているモジュール情報を示す。記憶部23には、太陽電池モジュール2を識別するID情報、製造年月日情報、使用履歴情報、及び電流電圧の特性情報がデジタルデータとして記憶されている。ID情報は、例えば製造番号である。使用履歴情報は、新品又は中古を示す。特性情報は、太陽電池モジュール2の短絡電流と開放電圧とをI−Vカーブで結んだ電流電圧特性であり、太陽電池モジュール2が出力する各電流値と各電圧値を対応付けている。
信号生成部24は、主にHiレベルの電圧とLoレベルの電圧とを切り換えるスイッチを含み構成され、記憶部23のモジュール情報を信号化する。すなわち、信号生成部24は、モジュール情報に従ってスイッチをオンオフすることで、デジタルデータから通信信号を生成し、結合部25へ出力する。このとき、信号生成部24は、モジュール情報に太陽電池モジュール2の位置情報を付加した上で信号化する。位置情報は、例えば太陽電池モジュール2の接続関係やGPSによる緯度経度の情報である。
尚、記憶部23がRFIDタグの場合、記憶部23は例えば太陽電池モジュール2の外表面に貼着され、信号生成部24は、記憶部23に対して電波を送受信するリーダを其の記憶部23の近傍に有し、近接無線通信によりモジュール情報を読み取る。リーダは、固定的に配置しなくとも、ハンディタイプとし、作業員が記憶部23に近づけるようにすることもできる。
結合部25は、例えば、直列接続された結合コンデンサ25aと結合トランス25bからなり、太陽電池回路21に対して並列に接続されている。信号生成部24の通信信号は、結合トランス25bに入力され、結合コンデンサ25aを経て直流電圧成分が遮断された上で、太陽電池回路21の直流電圧に重畳される。
図4は、PCS4の構成図である。図4に示すように、PCS4は、直流ケーブル3で繋がれた太陽電池モジュール2を管理装置6が決定したMPPTアルゴリズムで制御して最大電力点に合わせ、また太陽電池モジュール2が出力する直流電力を電力系統100の交流波形に合わせる。すなわち、PCS4は、MPPT制御機能付きのDC−DCコンバータ41、インバータ42、及び送受信手段43を備える。
送受信手段43は、直流ケーブル3に接続された分離部44とLANアダプタ45とを備える。分離部44は、ノード点を有し、直列接続されたコンデンサ44aとトランス44bとを一方の分岐ラインに有し、トランス44bを介してLANアダプタ45と接続し、他方の分岐ラインにコイル44cを有し、コイル44cを介してDC−DCコンバータ41と接続する。
この分離部44は、コンデンサ44aで太陽電池回路21由来の直流成分を遮断することで、通信信号を分離し、トランス44bを介して通信信号をLANアダプタ45に入力する。また、コイル44cで通信信号である交流成分を遮断することで、太陽電池回路21から送出された直流電力を分離し、DC−DCコンバータ41に入力する。
LANアダプタ45は、分離部44で抽出された通信信号を管理装置6に送信する。例えば、LANアダプタ45は、TCP/IPプロトコル等の通信規約に準拠し、管理装置6を宛先とするアドレスを通信信号に付加し、管理装置6が参加するネットワークへ送出する。
DC−DCコンバータ41は、太陽電池回路21が出力する直流電圧を最大電力点の発電電圧に合わせる。このDC−DCコンバータ41は、FET等のスイッチ41aとLC回路41bとMPPT制御部41cとを備える。スイッチ41aは、MPPT制御部41cの制御に応じて、分離部44からの入力電圧をオンオフする。LC回路41bは、スイッチ41aのオンオフにより発生した断続的な直流電圧が入力され、デューティー比に応じて変更された直流電圧を生成する。MPPT制御部41cは、管理装置6が決定したMPPTアルゴリズムに従ってスイッチ41aをオンオフするパルス信号を生成して、スイッチ41aに入力する。
インバータ42は、DC−DCコンバータ41から出力された直流電力を電力系統の交流波形に合わせる。このインバータ42は、トランジスタ等の複数のスイッチング素子、パルス発生器、及び高調波フィルタ回路を有し、PWM制御方式により駆動する。スイッチング素子を各種の組み合わせでオンオフすることにより、そのオンオフのタイミングとオンオフの時間に基づき直流電力から交流電力を生成する。スイッチング素子のオンオフタイミングは、パルス発生器が出力するパルス信号に応じている。パルス発生器は交流波形データとインバータ42で生成された交流波形の偏差を検出して、この偏差を縮めるパルス信号を出力する。
連系変圧器5は、太陽光発電システム1から電力系統100に電力を送出するために、PCS4から出力された交流電圧を昇圧する。
図5は、管理装置6の構成を示す機能ブロック図である。この管理装置6は、演算制御装置(CPU)、主記憶装置(RAM)、外部記憶装置(HDD等)、LANアダプタ、モニタやプリンタといった出力装置、及びキーボードやマウスやタッチパネルといった入力装置を含むコンピュータである。外部記憶装置には、オペレーションシステム及びシステム管理プログラムが記憶される。
この管理装置6は、システム管理プログラムの実行により、太陽電池モジュール2のデータ管理部61、太陽光発電システム1のシステム全体の電流電圧特性を特定するデータ解析部62、及び太陽電池モジュール2のMPPTアルゴリズムを決定する制御部63を備える。
データ管理部61は、主にCPUとLANアダプタを含み構成され、PCS4から受信した通信信号をモジュール情報に変換してデータベースに登録する。データベースには、ID情報、製造年月日情報、使用履歴情報、特性情報、及び位置情報が関連づけて記憶される。また、データ管理部61は、データベースの内容を表形式にレイアウトした表示画面データを生成し、モニタ等の出力部に出力する。データ解析部62は、主にCPUを含み構成され、システム全体の電流電圧特性を示すシステム特性情報を生成する。システム特性情報は、データベースに登録されている特性情報を、縦軸を電流、横軸を電圧として合算することで生成される。また、データ解析部62は、システム特性情報から各種のMPPTアルゴリズムにより導かれる各種の最大電力点を算出し、最大電力点同士を比較して、最も数値の高い最大電力を算出できたMPPTアルゴリズムを特定する。制御部63は、データ解析部62で特定されたMPPTアルゴリズムを識別する制御信号を生成し、PCS4のDC−DCコンバータ41が備えるMPPT制御部41cにネットワークを介して入力する。
ここで、各種のMPPTアルゴリズムとは、例えば、山登り法や電圧追従法である。山登り法は、電圧を変化させながら出力電力の前後比較を行い、変化前の出力電力が変化後の出力電力よりも大きくなる点を検出することで最大電力点を見出す方法である。電圧追従法は、開放電圧の約80%等のように、予め一定に定めた電圧で太陽電池モジュール2を動作させる方法である。
(作用)
このような太陽光発電システム1の作用を説明する。図6は、システムによる太陽電池モジュール2のデータ管理動作を示すフローチャートである。図7は、特性情報を利用して最適なMPPTアルゴリズムを特定する動作を示すフローチャートである。
(データ管理)
図6に示すように、まず、システム導入時又は一部のモジュールの入れ替え時、新たな太陽電池モジュール2が敷設されると(ステップS01)、信号生成部24は、プラグアンドプレイにより記憶部23からモジュール情報を読み出して(ステップS02)、モジュール情報を内容とする通信信号を生成する(ステップS03)。結合部25は、通信信号を太陽電池回路21から入力された直流電圧に重畳し(ステップS04)、直流ケーブル3に送出する(ステップS05)。尚、プラグアンドプレイによる通信信号の送信の他、一定周期で送るようにしてもよい。
直流ケーブル3に送出された通信信号は、太陽電池回路21が生成した直流電圧に重畳されてPCS4に入力される。PCS4において、分離部44は、直流成分を遮断して交流成分を通過させることで、通信信号を分離し(ステップS06)、LANアダプタ45は、分離された通信信号をネットワークを介して管理装置6へ送信する(ステップS07)。
管理装置6において、データ管理部61は、受信した通信信号からモジュール情報を復元し(ステップS08)、データベースに登録しておく(ステップS09)。ユーザによる入力装置を用いた操作により、管理装置6に台帳閲覧コマンドが与えられると(ステップS10)、データ管理部61は、データベースから太陽電池モジュール2の一覧を表した台帳をレイアウトした表示画面を生成し(ステップS11)、モニタ等の出力装置に出力する(ステップS12)。
台帳のレイアウトにおいて、データ管理部61は、例えば、現在日時と製造年月日との差分を取り、予め保持している期間データと差分とを比較し、製造年月日からの経過期間が期間データを超過している場合には、その計算の元となった製造年月日に関連付けられている太陽電池モジュール2のID項目に対して台帳上で強調表示を行う。強調表示は、例えば文字色の変更又は項目背景色の変更である。ユーザは、この台帳を閲覧し、製造年月日などから交換の必要な太陽電池モジュール2を探索し、特性情報から似たような電流電圧特性を有する太陽電池モジュール2を準備することができる。
(データ解析)
図7に示すように、ユーザが入力装置を用いた操作により、管理装置6にデータ解析コマンドが与えられると(ステップS21)、データ解析部62は、データベースから全ての特性情報を読み出し(ステップS22)、I−Vカーブを加算していき、システム特性情報を生成する(ステップS23)。詳細には、直列接続同士は電圧値を電流ごとに加算し、並列接続同士は電流値を電圧ごとに加算する。
そして、データ解析部62は、作成されたシステム特性情報のグラフをレイアウトした表示画面を生成し(ステップS24)、出力装置に出力する(ステップS25)。ユーザは、表示画面において、システム特性情報を閲覧することで、現在の太陽光発電システム1が有するシステム全体の電流電圧特性の形状を確認し、発電計画立案の参考にし、また太陽電池モジュール2の交換の参考にし、または最適なMPPTアルゴリズムの選択の参考にすることができる。
更に、システム全体の電流電圧特性を算出した後、ユーザによる入力装置の操作により、アルゴリズム選択コマンドが管理装置6に与えられると(ステップS26)、データ解析部62は、順番に用意されているMPPTアルゴリズムを用いて、システム全体の電流電圧特性から各最大電力点を算出する(ステップS27)。
全てのMPPTアルゴリズムについての最大電力点の算出が終了すると、データ解析部62は、各最大電力点を比較して最も数値の高い最大電力点を探索する(ステップS28)。そして、この探索により特定された最も数値の高い最大電力点を算出できたMPPTアルゴリズムを選択し(ステップS29)、表示画面に文字としてレイアウトし(ステップS30)、出力装置に出力する(ステップS31)。ユーザは、最適なMPPTアルゴリズムを認識でき、太陽光発電システム1を効率的に運用することができる。
例えば、図8にシステム全体の電流電圧特性を示す。図8の(a)は、システム導入時であり、太陽電池モジュール2の性能が揃っている場合である。図8の(b)は、一部の太陽電池モジュール2が交換された場合である。
図8の(a)に示すように、システム導入時は山が一つの段差のない電流電圧特性が見られる。そのため、山登り法と呼ばれるMPPTアルゴリズムが最適である。しかし、システム導入から時間が経過すると、一部の太陽電池モジュール2が故障や劣化により交換され、性能がシステム導入時とは異なる太陽電池モジュール2に置き換わっている場合が多い。
そうすると、図8の(b)に示すように、システム全体の電流電圧特性は複数の山が生じた形状となっており、山登り法によると最初に登る山の頂点で最大電力点が求まってしまい、真に最大となる電力点を導くことができない。そこで、山登り法以外にも各種のMPPTアルゴリズムを試すことで、真に最大となる電力点が導出できる可能性を高くでき、少なくとも極力高い電力点を導くことができる。
(制御)
図9に示すように、最適なMPPTアルゴリズムが特定された後、ユーザの入力装置を用いた操作により制御方法変更コマンドが管理装置6に与えられると(ステップS41)、制御部63は、データ解析部62で特定されたMPPTアルゴリズムを識別する制御信号を生成し(ステップS42)、PCS4に送信する(ステップS43)。
PCS4では、MPPT制御部41cが制御信号を受け取り、制御信号に該当するMPPTアルゴリズムで太陽電池モジュール2から入力された直流電圧を変更し、直流電力を最大電力点に近づける(ステップS44)。
尚、制御部63は、最適なMPPTアルゴリズムが示す太陽光発電システム1全体の最大電力点に対応する電流及び電圧を太陽電池モジュール2別に按分し、MPPT制御部41cに其の按分された電流値及び電圧値を示す制御信号を送信するようにしてもよい。MPPT制御部41cは、最大電力点を探索することなく、最適な電流及び電圧に太陽電池モジュール2の出力を調整することができる。
(効果)
以上のように、本実施形態に係る太陽光発電システム1は、太陽電池モジュール2に少なくとも特性情報を記憶させるようにし、その特性情報を管理装置6に送信するようにし、管理装置6に其の特性情報をデータベース登録させるようにした。これにより、太陽電池モジュール2を紙や電子ファイルで管理する必要はなくなり、台帳の作成及び変更に対する労力を最小限に軽減できるとともに、その台帳に基づく特性情報の把握が容易になる。そのため、交換対象の太陽電池モジュール2の把握や、交換により新たに導入される太陽電池モジュール2の性能選定を即時性をもって行うことができ、太陽光発電システム1の運用効率が向上する。
太陽電池モジュール2のモジュール情報を送信する手法としては、電力線搬送通信の他、無線LANや有線LANやシリアルケーブル等の通信専用回線、その他、ケーブルの取り回しや無線通信可能範囲等を考慮の上、あらゆる手法を採ることができる。但し、電力搬送通信によると、モジュール情報を送受信するための伝送ケーブルの取り回し、無線を中継する装置の情報送受信範囲や許容帯域に基づく設置箇所や数の選定等に労力を割く必要が無くなり、経済性に優れる。
また、管理装置6において、複数のモジュール情報に基づいてシステム全体の電流電圧特性を解析するようにした。これにより、交換により新たに導入しようとする太陽電池モジュール2の選定に、太陽光発電システム1の電流電圧特性を考慮することができ、太陽光発電システム1の性能維持に努めることが容易となる。また、太陽光発電システム1の電流電圧特性の実体を把握することができ、電力系統における精度の高い発電計画が可能となる。また、MPPTアルゴリズムの選択等の効率のよい太陽光発電システム1の運用も可能となり、経済性に優れる。
尚、管理装置6は所謂コンピュータであるが、太陽光発電システム1の構内の何れに設置することもでき、小規模プラントであればPCS4内に設置するようにしてもよい。また、管理装置6は、一台のコンピュータであっても分散型コンピュータであってもよく、またソフトウェア処理に替えて専用回路で構成してもよい。
また、管理装置6は、システム全体の電流電圧特性に基づき、最も高い最大電力点を導出するMPPTアルゴリズムを探索するようにした。これにより、最適なMPPTアルゴリズムを用いて太陽光発電システム1を運用することが容易となるため、経済的で効率的にシステムを運用することができる。
また、管理装置6は、探索されたMPPTアルゴリズムに対応した、太陽電池モジュール2の出力電力を調整するための制御信号を、PCS4へ伝達する制御部63を更に備えるようにし、PCS4は、その制御信号に応じて太陽電池モジュール2を制御するようにした。制御信号の内容は、探索されたMPPTアルゴリズムを識別する情報、そのアルゴリズムにより導出されるシステムの最大電力点を按分して得られる太陽電池モジュール2ごとの最大電力点、又は、その最大電力点に対応する電流又は電圧の何れでもよい。これにより、最適なMPPTアルゴリズムを即座に制御に反映することができ、太陽電池モジュール2の交換に際して生ずる労力を軽減することができる。
以上のように、本実施形態によれば、紙ベースで太陽電池モジュール2を管理していた場合に発生した労力を様々な点で削減することができ、運用コストの削減、太陽光発電システム1の効率的な運用を実現できる。
(第2の実施形態)
太陽電池モジュール2が記憶するモジュール情報に電流電圧特性を示す特性情報がない場合、管理装置6は広域通信網の情報サイトから特性情報を入手するようにすることもできる。すなわち、図10に示すように、第2の実施形態に係る太陽光発電システム1において、管理装置6は、インターネット等の広域通信網にアクセス可能な情報取得部64を備えている。情報取得部64は、主にCPUと広域通信網に対するモデムを含み構成され、情報サイトに対するデータベースクライアントである。
この情報取得部64は、モジュール情報に含まれるID、又は製造メーカ及び製造年月日を抽出条件として、電流電圧特性を示す特性情報の検索及び送信を要求するコマンドを情報サイトに送信する。情報サイトは、受信したコマンドに応じて、IDに関連付けられた特性情報を検索し、該当の特性情報を情報取得部64へ送信する。情報取得部64は、特性情報を受信すると、その特性情報をデータ管理部64に渡し、データ管理部は特性情報をデータベース登録して記憶しておく。
これにより、モジュール情報の内容を削減することができ、記憶部23の容量を削減することができる。そのため、膨大な数量分設置される太陽電池モジュール2が個々にコスト削減に寄与し、太陽光発電システム1全体として大きなコスト削減となる。
(その他の実施の形態)
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 太陽光発電システム
2 太陽電池モジュール
21 太陽電池回路
22 送受信手段
23 記憶部
24 信号生成部
25 結合部
25a 結合コンデンサ
25b 結合トランス
3 直流ケーブル
4 PCS
41 DC−DCコンバータ
41a スイッチ
41b LC回路
41c MPPT制御部
42 インバータ
43 送受信手段
44 分離部
44a コンデンサ
44b トランス
44c コイル
45 LANアダプタ
5 連係変圧器
6 管理装置
61 データ管理部
62 データ解析部
63 制御部
64 情報取得部
100 電力系統

Claims (8)

  1. 太陽電池モジュールとパワーコンディショナと管理装置とを通信系統で結んだ太陽光発電システムであって、
    前記太陽電池モジュールは、
    太陽電池回路と、
    前記太陽電池モジュールの電流電圧特性に関する特性情報を記憶する記憶手段と、
    前記記憶手段に記憶された特性情報を送信する送信手段と、
    を備え、
    前記管理装置は、
    前記特性情報を受信する受信手段と、
    前記受信手段で受信した前記特性情報をデータベース登録して記憶する記憶手段と、
    を備えること、
    を特徴とする太陽光発電システム。
  2. 前記管理装置は、
    複数の前記特性情報に基づき、システム全体の電流電圧特性を解析する解析手段を更に備えること、
    を特徴とする請求項1記載の太陽光発電システム。
  3. 前記解析手段は、
    システム全体の電流電圧特性に基づき、最も高い最大電力点を導出するMPPTアルゴリズムを探索すること、
    を特徴とする請求項2記載の太陽光発電システム。
  4. 前記管理装置は、
    前記探索されたMPPTアルゴリズムに対応した、前記太陽電池モジュールの出力電力を調整するための制御信号を、前記パワーコンディショナに伝達する制御手段を更に備え、
    前記パワーコンディショナは、
    前記伝達された制御信号に応じて前記太陽電池モジュールを制御すること、
    を特徴とする請求項3記載の太陽光発電システム。
  5. 前記太陽電池モジュールの記憶手段は、
    前記特性情報に加えて、前記太陽電池モジュールのID、製造年月日、使用履歴を記憶すること、
    を特徴とする請求項1乃至4の何れかに記載の太陽光発電システム。
  6. 前記管理装置は、
    広域通信網に設置された情報サイトから、前記太陽電池モジュールのID、又は製造メーカ及び製造年月日に基づいて前記太陽電池回路の電流電圧特性を取得すること、
    を特徴とする請求項5記載の太陽光発電システム。
  7. 前記太陽電池モジュールの送信手段は、
    前記太陽電池回路が生成した直流に前記特性情報を内容とする通信信号を重畳し、前記太陽電池モジュールと前記パワーコンディショナとを繋ぐ電力線を介して送信すること、
    を特徴とする請求項1乃至6の何れかに記載の太陽光発電システム。
  8. 前記太陽電池モジュールの送信手段は、
    無線通信手段であること、
    を特徴とする請求項1乃至6の何れかに記載の太陽光発電システム。
JP2013045008A 2013-03-07 2013-03-07 太陽光発電システム Pending JP2014175384A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045008A JP2014175384A (ja) 2013-03-07 2013-03-07 太陽光発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045008A JP2014175384A (ja) 2013-03-07 2013-03-07 太陽光発電システム

Publications (1)

Publication Number Publication Date
JP2014175384A true JP2014175384A (ja) 2014-09-22

Family

ID=51696346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045008A Pending JP2014175384A (ja) 2013-03-07 2013-03-07 太陽光発電システム

Country Status (1)

Country Link
JP (1) JP2014175384A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513452A (ja) * 2015-01-29 2017-05-25 フーベイ ユニバーシティ フォー ナショナリティズ 光起電力発電システムおよびその故障検出方法
JP2017153284A (ja) * 2016-02-25 2017-08-31 京セラ株式会社 太陽光発電システム、その制御方法及び太陽光発電システムを搭載した移動体
WO2019208163A1 (ja) * 2018-04-25 2019-10-31 三洋電機株式会社 管理装置、電源システム
JP2021086237A (ja) * 2019-11-25 2021-06-03 株式会社日立製作所 保守管理システム及び保守管理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513452A (ja) * 2015-01-29 2017-05-25 フーベイ ユニバーシティ フォー ナショナリティズ 光起電力発電システムおよびその故障検出方法
JP2017153284A (ja) * 2016-02-25 2017-08-31 京セラ株式会社 太陽光発電システム、その制御方法及び太陽光発電システムを搭載した移動体
WO2019208163A1 (ja) * 2018-04-25 2019-10-31 三洋電機株式会社 管理装置、電源システム
CN112055926A (zh) * 2018-04-25 2020-12-08 三洋电机株式会社 管理装置、电源系统
JPWO2019208163A1 (ja) * 2018-04-25 2021-05-20 三洋電機株式会社 管理装置、電源システム
US20210159710A1 (en) * 2018-04-25 2021-05-27 Sanyo Electric Co., Ltd. Management device and power supply system
US11626741B2 (en) 2018-04-25 2023-04-11 Sanyo Electric Co., Ltd. Management device and power supply system
JP7325406B2 (ja) 2018-04-25 2023-08-14 三洋電機株式会社 管理装置、電源システム
JP2021086237A (ja) * 2019-11-25 2021-06-03 株式会社日立製作所 保守管理システム及び保守管理方法
WO2021106582A1 (ja) * 2019-11-25 2021-06-03 株式会社日立製作所 保守管理システム及び保守管理方法

Similar Documents

Publication Publication Date Title
EP2941708B1 (en) System and method for developing, deploying and implementing power system computer applications
US8593151B2 (en) Inductive monitoring of a power transmission line of an electrical network
CN103366051B (zh) 一次设备和二次设备建模的方法与系统
CN103675492B (zh) 一种用电监测分析方法、便携式用电监测分析装置及系统
CN104122876A (zh) 空气压缩机物联网监控系统
JP2014175384A (ja) 太陽光発電システム
US20210165476A1 (en) Systems and methods for intelligent alarm grouping
JP5952090B2 (ja) 太陽光発電量推定システム、推定方法および太陽光発電系統制御システム
CN105579992A (zh) 选择并显示轮询和流式电力系统测量结果
KR101809205B1 (ko) 공장 에너지 관리 시스템
CN102360470A (zh) 一种电力系统信息匹配方法及其系统
US11777813B2 (en) Systems and methods for event assignment of dynamically changing islands
US20150212124A1 (en) Power distribution management apparatus, display control method, and recording medium
CN105264446B (zh) 用于与监视监测和控制布置相连接的仪器和方法
CN116451876A (zh) 一种基于人工智能的配电网故障预测和主动检修系统
CN114778936A (zh) 电能计量异常的监控方法、监控器、系统以及电子设备
JP5985871B2 (ja) 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
CN102254101B (zh) 一种电网系统的智能云分析系统及其数据分析方法
Khan et al. Smart distribution mechanisms—Part I: from the perspectives of planning
KR20140029670A (ko) 스마트태그 기반 증강현실을 이용한 에너지저장시스템(ess) 모니터링 시스템 및 그를 이용한 모니터링 방법
Hennig et al. Ancillary services analysis of an offshore wind farm cluster–technical integration steps of a simulation tool
CN116094174A (zh) 基于知识图谱的电网运维监控方法、系统、设备及介质
CN103164429A (zh) 核电站定位监视画面的方法、系统、服务器及终端
CN109193781A (zh) 一种光伏电站逆变器选择方法
Fuchs et al. Challenges of grid integration of distributed generation in the interdisciplinary research project Smart Nord