WO2016116227A1 - Corps de forme tubulaire en acier austénitique et récepteur solaire - Google Patents

Corps de forme tubulaire en acier austénitique et récepteur solaire Download PDF

Info

Publication number
WO2016116227A1
WO2016116227A1 PCT/EP2015/079841 EP2015079841W WO2016116227A1 WO 2016116227 A1 WO2016116227 A1 WO 2016116227A1 EP 2015079841 W EP2015079841 W EP 2015079841W WO 2016116227 A1 WO2016116227 A1 WO 2016116227A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
tubular body
molten salt
content
solar receiver
Prior art date
Application number
PCT/EP2015/079841
Other languages
German (de)
English (en)
Inventor
Meike SCHMIDT
Markus Arntzen
Sebastian Dreyer
Thomas Kuckelkorn
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Ag filed Critical Schott Ag
Publication of WO2016116227A1 publication Critical patent/WO2016116227A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a tubular body made of steel, in particular austenitic steel, for a molten salt, in particular an absorber tube of a solar receiver with a molten salt as heat transfer medium or another pipeline for conveying a molten salt, and such a solar receiver.
  • the power generation from solar radiation is u.a. possible with concentrating solar thermal power plants.
  • centrally concentrating systems such as, for example, tower power plants or linearly concentrating systems based, for example, on Fresnel technology or parabolic trough technology.
  • Solar receivers for example for parabolic trough solar receiver systems, for example for solar thermal power plants, include, inter alia, a steel tube as absorber tube with a radiation-selective absorber layer and a glass tube as a cladding tube.
  • Pipelines through which a molten salt flows are to be used, for example, in solar power plants, in particular parabolic trough or Fresnel solar power plants.
  • molten salts in particular nitrate-based molten salts, e.g. a mixture of sodium nitrate and potassium nitrate in the ratio of 60 to 40, used.
  • Molten Salt technology has the advantage over direct evaporation technology that, although salt melts have not yet been widely used as a heat transfer medium, they are already used as a heat storage medium, for example in combination with solar thermal power plants with oil
  • Heat transfer fluid The Molten-Salt technology, in which heat transfer fluid and heat storage medium are identical, has the advantage over the technology with oil as heat transfer fluid and salt as heat storage medium that no lossy heat transfer between heat transfer fluid and
  • Heat storage medium must be made.
  • Pipes used for solar thermal power plants are, for example, the steels with the material numbers 1 .4404, 1 .4571 and
  • a disadvantage of all the steels mentioned above is that they are not sufficiently resistant to sensitization to intergranular corrosion. Only when used below 400 ° C, these steels do not change within 100,000 hours so that sensitivity to intercrystalline corrosion is detected when tested according to EN ISO 3651-2.
  • a steel with the material number 1 .4910 has the following composition on a weight basis:
  • a steel with the material number 1 .4941 has the following composition on a weight basis:
  • the invention is therefore based on the object, tubular body
  • Absorber tubes for solar receivers they should also allow good adhesion and resistance to degradation of the absorber layer.
  • Such a requirement profile also includes sufficient
  • the steel used for the tubular body should be inexpensive and have high strength to allow a small wall thickness and thus low weight of the tubular body.
  • Austenitic steels are non-magnetic steels, because of their
  • Alloy components chromium, manganese and / or nickel also at
  • the steel composition of the tubular body according to the invention comprises on a weight basis
  • the contents of the possible impurities Ti, Cu, Al, Nb, Co are, if present at all, preferably not more than
  • a preferred steel composition of the tubular body comprises on a weight basis
  • Another preferred steel composition of the tubular body comprises on a weight basis
  • the Mn content is 0.8% to 1.0%.
  • This content is preferably combined with a low C content, in particular of about 0.01%, for example from 0.010% to 0.01 1%, and / or a high N content, in particular of about 0.16%, for example from 0.155% to 0.160%, and / or a high Cr content, in particular from about 18%, for example from 17.9% to 18.0%.
  • the Mn content is even lower, namely 0.5 to 0.8%.
  • this content is preferably combined with a low C content, in particular about 0.01%, e.g. from 0.010% to 0.01 1%, and / or a high N content, especially about 0.16%, e.g. from 0.155% to 0.160%, and / or a high Cr content, especially about 18%, e.g. from 17.9% to 18.0%.
  • the lower the Mn content the more favorable this is for the aging resistance of the absorber layer, in particular if it is a sputtered absorber layer.
  • Carbon is a strong Austenittruckner and increases with increasing content strength.
  • the content of carbon if any, should be low, as indicated by the upper limit and preferred upper limits, to minimize the risk of intergranular corrosion sensitization due to chromium carbides.
  • Manganese is an austenite former.
  • the content of manganese should be low, and less, and in preferred embodiments, significantly lower than the standard composition of 1 .4910 permits. Thus, premature degradation of the absorber layer on the absorber tube is counteracted.
  • the manganese content and the boron content in said range contribute to
  • the content of the Austenitchanners chrome should be relatively high, namely at the upper limit of the standard composition of .49 0, since it improves the general corrosion resistance and in particular the steel is more resistant to Nitratsalzschmelzen.
  • molybdenum advantageously increases creep rupture strength and corrosion resistance.
  • the molybdenum content should remain low as indicated by the upper limit to ensure a cost-effective steel.
  • the molybdenum content therefore varies within the composition range according to the invention only within very narrow limits.
  • the content of the austenite former nickel should remain low, as indicated by the upper limit and the preferred upper limit
  • Phosphorus and sulfur may be present. Their salary is limited to the mentioned upper limits and preferred upper limits to the negative Prevent influence of these alloying elements on the ductility of the steel as far as possible.
  • This alloyed with molybdenum and nitrogen steel of the composition of the invention has proved to be very resistant in molten salt and shows in particular compared to non-molybdenum and nitrogen alloyed steels a lower corrosion.
  • Wall thickness of 2.0 mm after the same treatment after 4,000 hours a wall thickness of 15 ⁇ , which extrapolated to 200,000 hours corresponds to a wall thickness of 0.75 mm.
  • a piece of pipe made of steel according to the invention thus shows a 33% increase
  • the wall thickness of the tubular body according to the invention can be designed to be 30% lower than that of a comparable tubular body from 1 .4941. This brings not only cost, but also weight advantages.
  • This austenitic steel composition the components of which vary only within very narrow limits, combines in a particularly advantageous manner
  • the invention particularly modifies and further develops the composition of 1 .4910 in that, in addition to the properties known to it, excellent resistance to salt melts has been demonstrated.
  • excellent resistance to salt melts has been demonstrated.
  • the steel according to the invention showed no susceptibility after 4,000 hours
  • Composition range and from this first by hot rolling, then by cold rolling production of coils in the desired thickness band or sheet formed cold and then by fusion welding for
  • a solution annealing is carried out in order to at least partially reverse the microstructure change, in particular chromium carbide formation, during cold working and welding.
  • a seamless tube e.g. be produced by extrusion. Even a seamless tube is solution annealed, for example, to undo the above-mentioned chromium carbide formation at least partially.
  • Figure 1 is a solar receiver end with absorber tube
  • Figure 2 is a pipeline
  • a solar receiver 1 In Fig. 1, one end of a solar receiver 1 is shown schematically in section.
  • the solar receiver 1 has an existing cladding tube 2 and an arranged in the cladding tube 2 absorber tube 3, which is coated on its outside with radiation-selective coating for absorbing solar radiation.
  • the receiver has a stretch compensation device in the form of a bellows 4. The inner end of the bellows 4 is over
  • the absorber tube 3 consists of a composition of the
  • Connecting element 5 is made of stainless steel, preferably of the same steel as the absorber tube 3.
  • the glass-metal transition element 6 is made of Kovar, and the bellows 4 is made of stainless steel.
  • Connection element and inventive steel tube are gas-tight welded together.
  • the invention is not limited to this specific embodiment of the transition from the steel tube to the glass tube. Arrangements and connections of the tubes in other shapes and with other materials are possible.
  • Sputtering chamber is not affected by the steel. Thus, particularly homogeneous layers are obtained.
  • FIG. 2 shows the longitudinal section of a pipeline section. Shown is in addition to the tube 7 and the molten salt 8 an devisterrorismleiter 9. There are also corresponding pipes with endeavorAlbleitern instead of a
  • the steel according to embodiment A1 showed in the test with moving sample in Nitratsalzschmelze (simulated turbulent flow) at 550 ° C less than 10 ⁇ material removal in 4000 test hours.
  • tubular body according to the invention for use as absorber tubes of a solar receiver with a molten salt as heat transfer medium or as other pipelines for promoting a molten salt, so as pressure-carrying pipelines, are outstandingly suitable.
  • Outdoor weathering which means humidity, wetness, heat, cold, salty air,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

L'invention concerne un corps de forme tubulaire en acier austénitique pour un sel fondu, notamment un tube absorbeur d'un récepteur solaire avec un sel fondu en tant que caloporteur ou une autre conduite tubulaire servant à transporter un sel fondu. L'invention concerne également un tel récepteur solaire.
PCT/EP2015/079841 2015-01-21 2015-12-15 Corps de forme tubulaire en acier austénitique et récepteur solaire WO2016116227A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015200881.9A DE102015200881A1 (de) 2015-01-21 2015-01-21 Rohrförmiger Körper aus austenitischem Stahl sowie Solarreceiver
DE102015200881.9 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016116227A1 true WO2016116227A1 (fr) 2016-07-28

Family

ID=55027721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/079841 WO2016116227A1 (fr) 2015-01-21 2015-12-15 Corps de forme tubulaire en acier austénitique et récepteur solaire

Country Status (2)

Country Link
DE (1) DE102015200881A1 (fr)
WO (1) WO2016116227A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021037926A1 (fr) 2019-08-29 2021-03-04 Mannesmann Stainless Tubes GmbH Alliage d'acier austénitique ayant une résistance à la corrosion améliorée sous charge à haute température et procédé de production d'un corps tubulaire à partir de ce dernier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102506230B1 (ko) 2017-10-03 2023-03-06 닛폰세이테츠 가부시키가이샤 오스테나이트계 스테인리스강
WO2019168119A1 (fr) * 2018-02-28 2019-09-06 日本製鉄株式会社 Joint soudé en acier inoxydable austénitique
DE102020132193A1 (de) 2019-12-06 2021-06-10 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175526A1 (en) * 1972-03-13 1973-10-26 Siderurgie Fse Inst Rech Heat treatment of stainless steel - contg boron and having austenitic grain structure
US4999159A (en) * 1990-02-13 1991-03-12 Nisshin Steel Company, Ltd. Heat-resistant austenitic stainless steel
KR100276325B1 (ko) * 1996-12-21 2000-12-15 이구택 내입계부식성과 고온강도가 우수한 오스테나이트계 스테인레스강
DE102006056536B3 (de) 2006-11-27 2008-02-28 Schott Ag Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
DE102008010199A1 (de) 2008-02-20 2009-08-27 Schott Ag Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
US20120279607A1 (en) 2010-06-09 2012-11-08 Sumitomo Metal Industries, Ltd. Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175526A1 (en) * 1972-03-13 1973-10-26 Siderurgie Fse Inst Rech Heat treatment of stainless steel - contg boron and having austenitic grain structure
US4999159A (en) * 1990-02-13 1991-03-12 Nisshin Steel Company, Ltd. Heat-resistant austenitic stainless steel
KR100276325B1 (ko) * 1996-12-21 2000-12-15 이구택 내입계부식성과 고온강도가 우수한 오스테나이트계 스테인레스강
DE102006056536B3 (de) 2006-11-27 2008-02-28 Schott Ag Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
DE102008010199A1 (de) 2008-02-20 2009-08-27 Schott Ag Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
US20120279607A1 (en) 2010-06-09 2012-11-08 Sumitomo Metal Industries, Ltd. Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021037926A1 (fr) 2019-08-29 2021-03-04 Mannesmann Stainless Tubes GmbH Alliage d'acier austénitique ayant une résistance à la corrosion améliorée sous charge à haute température et procédé de production d'un corps tubulaire à partir de ce dernier
US20220282350A1 (en) * 2019-08-29 2022-09-08 Mannesmann Stainless Tubes GmbH Austenitic steel alloy having an improved corrosion resistance under high-temperature loading and method for producing a tubular body therefrom

Also Published As

Publication number Publication date
DE102015200881A1 (de) 2016-07-21

Similar Documents

Publication Publication Date Title
DE102009052994A1 (de) Ferritischer rostfreier Stahl und Stahlblech für Heizrohre bzw. Wärmerohre, und Heizrohr bzw. Wärmerohr und Hochtemperatursystem zur Rückgewinnung von Abgaswärme
US6060180A (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
WO2016116227A1 (fr) Corps de forme tubulaire en acier austénitique et récepteur solaire
DE69923318T2 (de) Fortentwickelte ultrasuperkritische boilerrohrlegierung
EP3027783B1 (fr) Corps tubulaire en acier austénitique et récepteur solaire
US20190352752A1 (en) Duplex stainless steel and method for producing same
DE112018005465T5 (de) Stahl für ultra-überkritisches thermisches Kraftwerk und Verfahren zur Herstellung desselben
EP0233437B1 (fr) Tube ou réservoir résistant à la corrosion et constitué de deux couches métalliques
DE102008011856A1 (de) Hochfester niedriglegierter Stahl für nahtlose Rohre mit hervorragender Schweißbarkeit und Korrosionsbeständigkeit
DE3207032A1 (de) Staehle mit niedrigen c-,cr-und mo-gehalten
DE102020132219A1 (de) Verwendung einer Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE3432337A1 (de) Verfahren zur herstellung eines stahles und dessen verwendung
DE2331134B2 (de) Walzplattierte Werkstoffe aus einem Grundwerkstoff aus Stahl und aus Plattierauflagen aus korrosionsbeständigen, austenitischen Stählen
EP3016775B1 (fr) Procédé de fabrication de corps creux en acier résistant à la chaleur
DE2051609C3 (de) Verwendung eines austenitischen rostfreien Stahls als Werkstoff für die Herstellung von geschweißten Druckkesseln für den kryogenen Betrieb und die Herstellung von kaltgezogenen drahtförmigen Formkörpern
DE102020132193A1 (de) Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE3101174C2 (de) Wärmetauscher, insbesondere Winderhitzer
CH644403A5 (de) Manganstahl.
DE102019123174A1 (de) Austenitische Stahllegierung mit verbesserter Korrosionsbeständigkeit bei Hochtemperaturbeanspruchung
DE60214859T2 (de) Aus austenitischem oder halbaustenitischem stahl bestehende teile einer anlage zur herstellung von schwefelsäure und verfahren zum korrosionschutz
EP3499172A1 (fr) Surchauffeur comportant un agencement de tubes soumis aux gaz de combustion comportant des tubes soudés longitudinalement pour générateur de vapeur aux gaz de fumée corrosifs
EP0718852B1 (fr) Enceinte de sécurité pour centrale nucléaire
DE1943369A1 (de) Elektrodendraht zum Schweissen mit ungeschuetztem Bogen
DE2153766C3 (de) Verwendung ferritischer Chrom-Molybdän-Stähle für Apparatebauteile
DE1558508C (de) Verwendung eines martensitaushärtbaren Chrom-Nickel-Stahls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15817177

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15817177

Country of ref document: EP

Kind code of ref document: A1