WO2016115954A1 - 半固态金属浆料制备装置及方法 - Google Patents

半固态金属浆料制备装置及方法 Download PDF

Info

Publication number
WO2016115954A1
WO2016115954A1 PCT/CN2015/098241 CN2015098241W WO2016115954A1 WO 2016115954 A1 WO2016115954 A1 WO 2016115954A1 CN 2015098241 W CN2015098241 W CN 2015098241W WO 2016115954 A1 WO2016115954 A1 WO 2016115954A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
semi
cavity
stirring rod
solid
Prior art date
Application number
PCT/CN2015/098241
Other languages
English (en)
French (fr)
Inventor
康永林
祁明凡
周冰
彭典明
郑华伟
刘金
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016115954A1 publication Critical patent/WO2016115954A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled

Definitions

  • the present application relates to the field of semi-solid metal processing technology, for example, to a semi-solid metal slurry preparation apparatus and method.
  • the preparation of semi-solid metal paste is the basis and key to semi-solid metal processing technology.
  • various methods for obtaining semi-solid metal slurry and semi-solid alloy slurry such as single-spiral stirring method, double-spiral stirring method, electromagnetic stirring method, bubble stirring method, low superheat casting and weak mechanical stirring method, turbulent flow effect.
  • Method chemical grain refining method, ultrasonic treatment method, spray deposition method, cooling chute method, continuous rheology conversion method, rotary enthalpy balance method, and the like.
  • a better preparation technique of semi-solid metal slurry there is still a need for a better preparation technique of semi-solid metal slurry, and new pulping devices and technologies are still needed to simplify the process. Reduce costs, increase efficiency, and promote the industrial application of semi-solid metal processing technology.
  • the main technical problem to be solved by the embodiments of the present invention is to provide a new semi-solid metal slurry preparation device and method.
  • an embodiment of the present invention provides a semi-solid metal slurry preparation device, comprising: a gas supply device, an air guiding tube, a stirring rod, and a carrying container for holding a metal melt; the stirring rod is used for One end extending into the metal melt in the carrying container is a stirring end, the stirring end has a cavity therein, and the gas supply means is arranged to pass through the stirring rod to stir the metal melt
  • the air guiding tube injects a cooling gas into the inner cavity of the stirring end.
  • the stirring rod is a hollow structure having a cavity and the cavity is in a longitudinal direction Extending to the stirring end;
  • the stirring rod is composed of a hollow sleeve and a solid column disposed at a central position of the hollow sleeve, the solid column forms a cavity with the inner wall of the hollow sleeve, and the cavity extends in the longitudinal direction To the stirring end;
  • the stirring end of the stirring rod is a hollow structure, and the other part is a solid structure.
  • a venting port communicating with the cavity is further disposed at an upper portion of the stirring end of the stirring rod, and an air inlet of the air guiding tube is disposed to be connected to an air outlet of the air supply device.
  • An air outlet of the air duct is disposed to be connected to the vent or protrudes into the cavity through the vent, and the vent is further configured to allow cooling gas injected into the cavity to finally pass through the vent Flow out of the cavity.
  • the side of the air duct that is disposed to extend into the cavity The wall is provided with an injection hole communicating with the air tube hole, and the injection hole is provided for the cooling gas to be ejected into the cavity through the injection hole.
  • the agitating rod has a stirring blade on the outer wall of the stirring end.
  • the angle between the longitudinal axis and the horizontal plane of the metal melt is 30° to 90°.
  • a stirring control device is further included, coupled to the stirring rod, and arranged to control the rotational speed of the stirring rod when stirring.
  • a temperature detecting device is further provided, arranged to detect the temperature of the metal melt in the carrier vessel.
  • the inner diameter of the air guiding tube is 2 mm to 100 mm.
  • a method for preparing a semi-solid metal slurry by a slurry preparation device comprising:
  • Agitating end of the stirring rod is stirred in a metal melt in the carrying container according to a preset rotation speed and direction, and the air supply device passes the air guiding tube to a cavity of the stirring end according to a preset gas flow rate Injecting cooling gas into the inside;
  • the stirring rod stops stirring, and the gas supply device stops injecting cooling gas into the cavity of the stirring end.
  • the preset rotational speed is 0 to 1000 r/min (revolutions per minute).
  • the preset gas flow rate is 0 to 1000 L/min.
  • the predetermined temperature is equal to the metal liquidus temperature t + ⁇ t of the metal melt, and ⁇ t ranges from 0 ° C to 100 ° C.
  • the semi-solid metal slurry preparation device comprises a gas supply device, an air guiding tube, a stirring rod and a carrying container for holding the metal melt; the stirring rod is used for extending into one end of the metal melt in the carrying container
  • the stirring end has a cavity inside the stirring end, and the gas supply device is arranged to inject a cooling gas into the inner cavity of the stirring end through the air guiding tube when the stirring rod stirs the metal melt, thereby forming a cooling and stirring simultaneous treatment manner.
  • Embodiments of the present invention also provide a method of preparing a semi-solid metal slurry using a semi-solid metal slurry preparation apparatus. It can be seen that the embodiment of the invention realizes the continuous and rapid preparation of the semi-solid metal slurry, and the continuous work is stable and reliable, can simplify the process, reduce the cost, improve the efficiency, and promote the industrial application of the semi-solid metal processing technology.
  • FIG. 1 is a schematic structural view 1 of a stirring rod according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view 2 of a stirring rod according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view 3 of a stirring rod according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of preparing a semi-solid metal slurry by using a semi-solid metal slurry preparation device according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a semi-solid metal slurry preparation device according to an embodiment of the present invention.
  • FIG. 6 is a schematic view 1 showing a state in which a semi-solid metal slurry is prepared by using a semi-solid metal slurry preparation device according to an embodiment of the present invention
  • FIG. 7 is a second schematic diagram of a state in which a semi-solid metal slurry is prepared by using a semi-solid metal slurry preparation device according to an embodiment of the present invention
  • FIG. 8 is a third schematic diagram of a state in which a semi-solid metal slurry is prepared by using a semi-solid metal slurry preparation device according to an embodiment of the present invention
  • FIG. 9 is a schematic view showing the metallographic microstructure of the A356 aluminum alloy semi-solid slurry according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a metallographic microstructure of an ADC12 aluminum alloy semi-solid slurry according to an embodiment of the present invention
  • FIG. 11 is a schematic view showing the metallographic microstructure of a 7075 aluminum alloy semi-solid slurry according to an embodiment of the present invention.
  • FIG. 12 is a schematic view showing the metallographic microstructure of the AZ91D magnesium alloy semi-solid slurry according to an embodiment of the present invention.
  • the embodiment of the invention exemplifies the use of the air-cooled stirring rod technology to prepare a semi-solid slurry (for example, a light alloy semi-solid slurry or other types of metal semi-solid slurry), which can improve the deficiencies of the existing stirring technology and improve the prepared The quality of the semi-solid slurry and the production efficiency of the semi-solid slurry.
  • a semi-solid slurry for example, a light alloy semi-solid slurry or other types of metal semi-solid slurry
  • the semi-solid metal slurry preparation device in this embodiment comprises a gas supply device, an air guiding tube, a stirring rod and a carrying container for holding the metal melt;
  • the carrying container may be a crucible or other vessel capable of withstanding high temperature;
  • the metal The melt may be a magnesium alloy melt, an aluminum alloy melt, a zinc alloy melt or a composite melt;
  • the one end of the stirring rod extending into the metal melt in the carrying container is a stirring end, and the stirring end has a cavity inside (inside) a cavity), when the stirring rod agitates the metal melt in the carrying container, the gas supply device injects a cooling gas into the inner cavity of the stirring end through the air guiding tube, so that cooling and stirring are simultaneously performed, so that the metal melt is stirred due to stirring.
  • the internal temperature field distribution is basically uniform and there is no obvious supercooling gradient, which destroys the dendrite growth environment, thereby obtaining a semi-solid slurry in which a certain proportion of the nearly spherical primary solid phase is uniformly distributed in the liquid phase matrix.
  • the stirring rod in this embodiment has an internal cavity, and the internal cavity extends at least to the agitating end of the stirring rod.
  • the following is exemplarily illustrated with several exemplary internal agitating rod structures, it being understood that the inner agitating rods are not limited to the following configurations.
  • the stirring rod 11 has a hollow structure, and the cavity 111 in the middle of the stirring rod 11 extends in the longitudinal direction to the stirring end of the stirring rod 11 (in the figure of this embodiment, the stirring rod) 11 at the lower end) to ensure that the cooling gas can be injected into the inside of the stirring end; at the upper end of the stirring rod 11 (which may also be any part above the stirring end), a venting opening 112 communicating with the cavity is also provided, and when working, the air guiding tube
  • the air inlet is connected to the air outlet of the air supply device, and the air outlet of the air duct is directly connected to the air vent 112 or extends into the cavity 111 through the air vent 112, and the cooling gas injected into the cavity 111 finally passes through the air vent.
  • the depth of the air duct extending into the cavity 111 in this example can be flexibly adjusted according to actual needs, and can be extended into the middle or lower part of the cavity 111 here.
  • the outer wall of the agitating end is closed, ie gas impermeable.
  • the stirring rod is composed of a hollow sleeve 22 and a solid column 223 disposed at a central position of the hollow sleeve 22; a cavity 221 is formed between the solid column 223 and the inner wall of the hollow sleeve 22, and The cavity 221 extends longitudinally to the agitating end of the stirring rod (in the example illustration, the lower end of the stirring rod); to ensure that the cooling gas can be injected into the inside of the stirring end; at the upper end of the stirring rod 11 (may also be agitating) Any portion above the end is further provided with a vent 222 communicating with the cavity.
  • the air inlet of the air duct is connected to the air outlet of the air supply device, and the air outlet of the air duct is directly connected to or through the air vent 222.
  • the port 222 extends into the cavity 221, and the cooling gas injected into the cavity 221 finally flows out of the cavity 221 through the vent 222. It should be understood that the depth of the air duct extending into the cavity 221 in this example can also be flexibly adjusted according to actual needs, and can be extended into the middle or lower part of the cavity 221 here.
  • the lower end of the stirring rod 33 is a stirring end, the stirring end is hollow and has a cavity 331, and the other part of the stirring rod 33 is a solid structure; the upper part of the stirring end of the stirring rod 33 is A vent 332 is also provided in communication with the cavity.
  • the air inlet of the air duct is connected to the air outlet of the air supply device, and the air outlet of the air duct is directly connected to the vent 332 or extends into the cavity through the vent 332.
  • the cooling gas injected into the cavity 111 is finally passed out of the cavity 331 through the vent 332.
  • the depth of the air duct extending into the cavity 331 in the present example can also be flexibly adjusted according to actual needs, and can be extended into the middle or the lower part of the cavity 331 here.
  • vent provided on the stirring rod in this embodiment may be used only as an air inlet, and at least another air outlet communicating with the cavity of the stirring rod is disposed at other positions on the stirring rod for exhausting.
  • the position of the gas outlet is such that the discharged gas cannot enter the molten metal in the carrying vessel.
  • the stirring rod in this embodiment has a cylindrical shape, and may of course have other shapes according to actual needs.
  • the stirring rod can be made of stainless steel, graphite, cast iron, abrasive steel or coated copper alloy, and the stirring shaft of the stirring rod extends into the metal melt in the carrying container, and its longitudinal axis and the metal melt The angle between the horizontal planes is 30° to 90°, for example 90°.
  • the longitudinal axis of the air guiding tube portion that protrudes may be parallel to the longitudinal axis of the stirring end of the stirring rod.
  • At least one side of the air guiding tube that extends into the cavity may be provided with at least one hole communicating with the air guiding tube hole.
  • the injection hole is sprayed directly into the inner cavity of the stirring rod through the injection hole to improve the efficiency and the cooling effect; at this time, the bottom of the air guiding tube can be closed without providing the air outlet.
  • the cooling gas in this embodiment may be any gas that can be used for refrigeration, such as air or other cooling gas.
  • the stirring blade may be further disposed on the outer wall of the stirring end of the stirring rod, and the stirring blade may be disposed in one or more pieces, and the plurality of pieces may be evenly distributed on the outer wall of the stirring end. Stir the blades.
  • the semi-solid metal slurry preparation device in this embodiment further includes a stirring control device connected to the stirring rod for controlling the rotation speed of the stirring rod when stirring, for example, the rotation speed can be controlled to be 0 to 1000 r/min.
  • the semi-solid metal paste preparation apparatus in this embodiment further includes temperature detecting means for detecting the temperature of the metal melt in the carrying vessel.
  • the temperature detecting device may be various temperature detecting circuits, for example, may be a temperature detecting circuit including a thermocouple; after the temperature detecting device detects that the temperature of the metal melt in the carrying container reaches a preset temperature, the stirring control may be manually operated.
  • the device and the air supply device respectively stop agitation and air supply, and the temperature detecting device can also be connected with the agitation control device and the air supply device to automatically control the agitation control after detecting that the temperature of the metal melt in the carrier container reaches a preset temperature
  • the device and the air supply device stop agitation and air supply, respectively.
  • the various sizes of the stirring rod and the air guiding tube in this embodiment may be specific
  • the application scene can be flexibly set.
  • the wall thickness of the stirring rod can be set to 3 mm to 10 mm; the inner diameter of the air guiding tube is 2 mm to 100 mm; and the air supply device injects cooling gas into the inner cavity of the stirring rod through the air guiding tube according to the preset gas flow rate.
  • the preset gas flow rate is 0 to 1000 L/min.
  • the semi-solid metal slurry may be magnesium Semi-solid slurry of alloy, aluminum alloy, zinc alloy or composite material.
  • the method is shown in Figure 4 and includes:
  • Step 401 preparing a metal melt in a carrying container (for example, a metal melt obtained by a process of melting, refining, etc. in a carrying container), or adding the prepared metal melt to a carrying container;
  • a carrying container for example, a metal melt obtained by a process of melting, refining, etc. in a carrying container
  • Step 402 Control the stirring end of the stirring rod to be stirred in the metal melt in the carrying container according to a preset rotation speed and direction, and the gas supply device injects the cooling gas into the cavity of the stirring end through the air guiding tube according to the preset gas flow rate, The cooling and stirring are simultaneously performed;
  • the preset rotation speed in the step is, for example, 0 to 1000 r/min, and the preset gas flow rate is, for example, 0 to 1000 L/min;
  • the control of the stirring rod in this step can be realized by the stirring control device, and can even be manually controlled in a scene where the control precision is not high; the stirring direction can be performed in one direction (for example, clockwise or counterclockwise) from start to finish, or Adjust the direction of rotation during mixing.
  • Step 403 after the metal melt in the container to be carried is cooled to a predetermined temperature, the stirring of the stirring rod is stopped, and the gas supply device stops injecting the cooling gas into the cavity; the temperature of the metal melt in the carrying container can be detected by the temperature detecting device.
  • the stirring control device and the air supply device may be manually operated to stop the agitation and air supply, respectively, or the load may be detected by the temperature detecting device.
  • the stirring control device and the gas supply device are automatically controlled to stop agitation and gas supply, respectively; in addition, the predetermined temperature in the step is set to be equal to the metal liquidus temperature of the metal melt.
  • the range of t+ ⁇ t, ⁇ t is 0 ° C ⁇ 100 ° C.
  • the liquidus temperature of the corresponding A356 aluminum alloy is 615 ° C
  • the predetermined temperature at this time is equal to 615 ° C + ⁇ t
  • the value of ⁇ t ranges from 0 ° C to 100 ° C.
  • the semi-solid metal slurry preparation device comprises a gas supply device 1, an air guiding tube 2, a stirring rod 3 (this example adopts a hollow stirring rod of the structure shown in FIG. 1), and is used for holding a metal melt. 4 ⁇ 5, the stirring end of the stirring rod 3 extends into the metal melt 4 in the crucible 5, and the stirring blade 7 is provided at the stirring end of the stirring rod 3 to improve the stirring efficiency and effect; the semi-solid metal slurry preparation
  • the apparatus further includes a thermocouple 6 for detecting the temperature of the molten metal 4; during the stirring process, the gas supply means 1 passes the cooling gas (for example, air) while the stirring rod 3 is agitating by the principle of air cooling and stirring.
  • the gas pipe 2 is injected into the inner cavity of the stirring rod 3, and the injected cooling gas flows out from the gap between the air guiding tube 2 and the inner wall of the stirring rod 3, and the stirring rod 3 is continuously cooled to accelerate the cooling of the metal melt 4 and promote the metal melt.
  • the nucleation effect when the metal melt 4 is cooled to a predetermined temperature, the stirring and aeration are stopped, and a semi-solid slurry in which a certain proportion of the nearly spherical primary solid phase 8 is uniformly distributed in the liquid phase matrix can be obtained.
  • the semi-solid metal slurry preparation device has the advantages of simple structure, convenient application, high efficiency, continuous and rapid production, safety and reliability, and is suitable for preparation of a plurality of light alloy or composite semi-solid slurry, especially suitable for preparing large volume semi-solid slurry. And industrial production.
  • the liquidus and solidus temperatures of the test A356 aluminum alloy were 615 ° C and 556 ° C, respectively, and the aluminum alloy ingot was placed in a crucible resistance furnace with a preheating temperature of 350 ° C until the temperature of the alloy liquid was raised to 720 ° C. Refining, pressing the dried hexachloroethane into the bottom of the melt with a bell jar (adding 0.5% of the total weight of the alloy liquid), and gently shaking to perform melt degassing, slag refining, and finally The alloy melt is cooled to 650 ° C and then kept warm;
  • the stirring rod is placed vertically in the alloy melt, the stirring rod is rotated at a speed of 200 r/min, the gas inlet amount into the stirring rod is 245 L/min, the wall thickness of the stirring rod is 3 mm, the diameter of the stirring rod inner chamber is 15 mm, and the diameter of the vent tube 5mm, the stirring blade is two-plate shape, after stirring for 25s (seconds), the stirring and aeration are stopped.
  • the alloy melt temperature is in a semi-solid range, and a certain proportion of the nearly spherical primary solid phase is evenly distributed in the liquid phase matrix.
  • the stirring and cooling process is shown in Figure 6-8.
  • Figure 6 shows that there is no near-spherical nascent solid phase 8 in the molten metal during initial stirring and cooling.
  • Figure 7 shows the near-spherical nascent solid phase 8 in the molten metal after stirring for a period of time.
  • Figure 8 shows It shows a lot of near-spherical nascent solid phase 8 produced in the metal melt after stirring for 25 s. So far, the A356 aluminum alloy semi-solid slurry is prepared, and the slurry microstructure is as shown in Fig. 9, and the average grain size is 61 ⁇ m. The shape is round and evenly distributed.
  • the liquidus and solidus temperatures of the ADC12 aluminum alloy used in the test were 580 ° C and 515 ° C, respectively, and the aluminum alloy ingot was placed in a crucible resistance furnace with a preheating temperature of 300 ° C until the temperature of the alloy liquid was raised to 700 ° C. Refining, pressing the dried hexachloroethane into the bottom of the melt with a bell jar (adding 0.5% of the total weight of the alloy liquid), and gently shaking to perform melt degassing, slag refining, and finally The alloy melt is cooled to 630 ° C and then kept warm;
  • the stirring rod is placed vertically in the alloy melt.
  • the stirring rod rotates at a speed of 300r/min.
  • the gas inlet into the stirring rod is 245L/min
  • the wall thickness of the stirring rod is 6mm
  • the diameter of the stirring rod is 15mm
  • the diameter of the snorkel is 5mm
  • the stirring blade is two-plate shape, after stirring for 20s, the stirring and aeration are stopped.
  • the alloy melt temperature is in the semi-solid range, and a certain proportion of the near-spherical nascent solid phase is uniformly suspended in the liquid phase matrix, ADC12 aluminum alloy.
  • the semi-solid slurry was prepared, and its slurry structure was as shown in Fig. 10.
  • the average grain size was only 37 ⁇ m, and the morphology was round and uniform.
  • the liquidus and solidus temperatures of the test 7075 aluminum alloy were 635 ° C and 477 ° C, respectively, and the aluminum alloy ingot was placed in a crucible resistance furnace with a preheating temperature of 400 ° C until the temperature of the alloy liquid was raised to 720 ° C. Refining, pressing the dried hexachloroethane into the bottom of the melt with a bell jar (adding 0.5% of the total weight of the alloy liquid), and gently shaking to perform melt degassing, slag refining, and finally The alloy melt was cooled to 660 ° C and then kept warm.
  • the stirring rod is placed vertically in the alloy melt, the stirring rod is rotated at a speed of 100 r/min, the gas inlet amount into the stirring rod is 245 L/min, the wall thickness of the stirring rod is 4 mm, the diameter of the stirring rod inner chamber is 15 mm, and the diameter of the vent tube 5mm, the stirring blade is two-plate shape, after stirring for 20s, the stirring and aeration are stopped.
  • the alloy melt temperature is in the semi-solid range, and the 7075 aluminum alloy semi-solid slurry is prepared, and the slurry structure is as shown in FIG.
  • the average grain size is 43 ⁇ m, and the morphology is round and uniform.
  • the liquidus and solidus temperatures of the AZ91D magnesium alloy used in the test were 595 ° C and 470 ° C, respectively, and the aluminum alloy ingot was placed in a crucible resistance furnace with a preheating temperature of 350 ° C until the temperature of the alloy liquid was raised to 700 ° C.
  • the magnesium alloy in the furnace is protected by argon gas and a covering agent. After the slag is cleaned, the alloy melt is cooled to 620 ° C for heat preservation;
  • the stirring rod is placed vertically in the alloy melt, the stirring rod rotates at a speed of 200 r/min, the gas inlet amount into the stirring rod is 123 L/min, the wall thickness of the stirring rod is 5 mm, the diameter of the stirring rod inner chamber is 15 mm, and the diameter of the vent tube 5mm, the stirring blade is two-plate shape, after stirring for 25s, the stirring and aeration are stopped.
  • the alloy melt temperature is in the semi-solid range, and a certain proportion of the near-spherical nascent solid phase is uniformly suspended in the liquid phase matrix, AZ91D magnesium.
  • the semi-solid slurry of the alloy was prepared, and the slurry structure was as shown in Fig. 12. The average grain size was 45 ⁇ m, and the morphology was round and uniform.
  • the continuous rapid pulping technology of the air-cooled stirring rod provided by the embodiment of the invention is a further development and improvement of the mechanical stirring pulping technology, and the mixing and air cooling technology are integrated, which is an advanced semi-solid metal slurry preparation.
  • Technology with respect to the prior art, has at least the following advantages:
  • the semi-solid metal slurry preparation device has the advantages of simple structure, low cost, convenient use, continuous and stable operation, high efficiency, and is suitable for preparation of semi-solid slurry of magnesium alloy, aluminum alloy, zinc alloy or composite material,
  • the metal melt temperature, stirring speed, stirring time and gas inlet amount can be precisely controlled and easy to be industrialized;
  • the stirring rod accelerates the cooling of the metal melt and promotes the nucleation of the metal melt. Due to the stirring action, the temperature field and the concentration field of the melt can be quickly and uniformly achieved in the obtained semi-solid state.
  • the primary solid phase morphology is round, uniform and uniform in size;
  • the semi-solid metal slurry preparation device eliminates the complicated low superheat pouring, greatly reduces the difficulty of liquid line pouring, and is easy to control; the traditional double-spiral stirring is eliminated, and the stirring rod working condition of the double spiral structure is solved. Poor, high consumption, short life, troublesome cleaning and disassembly, suitable for narrow alloy range; elimination of inclined plate casting and various sprue casting, avoiding the problem of sloping plate and sprue surface sticking, no need to clean frequently, save Time and effort.
  • the semi-solid metal slurry preparation device and method provided by the embodiments of the present invention realize the simultaneous cooling and stirring of the metal melt, so that the internal temperature of the metal melt during the flow due to the stirring
  • the field distribution is substantially uniform and there is no significant subcooling gradient, thereby obtaining a semi-solid slurry in which a certain proportion of the nearly spherical nascent solid phase is uniformly distributed in the liquid phase matrix. It can be seen that the embodiment of the invention realizes the continuous and rapid preparation of the semi-solid metal slurry, and the continuous work is stable and reliable, can simplify the process, reduce the cost, improve the efficiency, and promote the industrial application of the semi-solid metal processing technology.

Abstract

一种半固态金属浆料制备装置,包括供气装置(1)、导气管(2)、搅拌杆(3)以及用于盛放金属熔体(4)的承载容器;搅拌杆用于伸入承载容器中金属熔体内的一端为搅拌端,搅拌端内部具有空腔,供气装置设置为在搅拌杆对金属熔体进行搅拌时通过导气管向搅拌端内部空腔内注入冷却气体。还公开了一种利用半固态金属浆料制备装置制备半固态金属浆料的方法。冷却与搅拌同时进行,使得金属熔体在由于搅拌而流动的过程中内部温度场分布基本均匀且不会有明显的过冷梯度,从而获得金属熔体的液相基体中均匀分布着一定比例的近球状初生固相的半固态浆料。

Description

半固态金属浆料制备装置及方法 技术领域
本申请涉及半固态金属加工技术领域,例如涉及一种半固态金属浆料制备装置及方法。
背景技术
半固态金属浆料的制备是半固态金属加工技术的基础与关键。获取半固态金属浆料和半固态合金浆料的方法有多种,如单螺旋搅拌法、双螺旋搅拌法、电磁搅拌法、气泡搅拌法、低过热度浇注和弱机械搅拌法、紊流效应法、化学晶粒细化法、超声波处理法、喷射沉积法、冷却斜槽法、连续流变转换法、旋转热焓平衡法等。但为了降低半固态金属浆料的制备成本和实现稳定连续可靠的工业化生产,仍需要有更好的半固态金属浆料的制备技术,仍需提出新的制浆装置和技术,以便简化工艺,降低成本,提高效率,推动半固态金属加工技术的工业化应用。
发明内容
本发明实施例要解决的主要技术问题是,提供一种新的半固态金属浆料制备装置及方法。
为解决上述技术问题,本发明实施例提供一种半固态金属浆料制备装置,包括:供气装置、导气管、搅拌杆以及用于盛放金属熔体的承载容器;所述搅拌杆用于伸入所述承载容器中金属熔体内的一端为搅拌端,所述搅拌端内部具有空腔,所述供气装置设置为在所述搅拌杆对所述金属熔体进行搅拌时通过所述导气管向所述搅拌端内部空腔内注入冷却气体。
在本发明的实施例中,所述搅拌杆为具有空腔的中空结构且该空腔在纵向 上延伸至所述搅拌端;
或所述搅拌杆由一中空套筒和设置于所述中空套筒中心位置的实心柱构成,所述实心柱与所述中空套筒内壁之间形成空腔,且该空腔在纵向上延伸至所述搅拌端;
或所述搅拌杆的搅拌端为中空结构,其他部分为实心结构。
在本发明的实施例中,所述搅拌杆搅拌端上方部位还设有与所述空腔连通的通气口,所述导气管的入气口设置为与所述供气装置的出气口连接,所述导气管的出气口设置为与所述通气口连接或通过所述通气口伸入所述空腔,所述通气口还设置为供注入所述空腔内的冷却气体最终通过所述通气口流出所述空腔。
在本发明的实施例中,在所述导气管的出气口设置为通过所述通气口伸入所述空腔时,所述导气管的、设置为伸入所述空腔中的部分的侧壁上设有与导气管管孔相通的喷射孔,所述喷射孔设置为供所述冷却气体通过所述喷射孔向所述空腔内喷射。
在本发明的实施例中,所述搅拌杆的搅拌端外壁上还设有搅拌叶片。
在本发明的实施例中,所述搅拌杆的搅拌端伸入所述承载容器中金属熔体内时,其纵向轴线与金属熔体的水平面之间的夹角为30°~90°。
在本发明的实施例中,还包括搅拌控制装置,与所述搅拌杆连接,且设置为控制所述搅拌杆搅拌时的转速。
在本发明的实施例中,还包括温度检测装置,设置为检测所述承载容器中金属熔体的温度。
在本发明的实施例中,所述导气管的内径为2mm~100mm。
为了解决上述问题,本发明实施例还提供了一种利用如上所述的半固态金 属浆料制备装置制备半固态金属浆料的方法,包括:
在所述承载容器中制备金属熔体,或将制备好的金属熔体加入所述承载容器中;
所述搅拌杆的搅拌端在所述承载容器中的金属熔体内按照预设转速和方向进行搅拌,且所述供气装置通过所述导气管按预设气体流量向所述搅拌端的空腔内注入冷却气体;
待所述承载容器中的金属熔体冷却至预定温度后,所述搅拌杆停止搅拌,所述供气装置停止向所述搅拌端的空腔内注入冷却气体。
在本发明的实施例中,所述预设转速为0~1000r/min(revolutions per minute,转数/分钟)。
在本发明的实施例中,所述预设气体流量为0~1000L/min。
在本发明的实施例中,所述预定温度等于所述金属熔体的金属液相线温度t+Δt,Δt的取值范围为0℃~100℃。
本发明实施例的有益效果是:
本发明实施例提供的半固态金属浆料制备装置包括供气装置、导气管、搅拌杆以及用于盛放金属熔体的承载容器;搅拌杆用于伸入承载容器中金属熔体内的一端为搅拌端,搅拌端内部具有空腔,供气装置设置为在搅拌杆对金属熔体进行搅拌时通过导气管向搅拌端内部空腔内注入冷却气体,形成冷却与搅拌同时进行的处理方式,使得金属熔体在由于搅拌而流动的过程中内部温度场分布基本均匀且不会有明显的过冷梯度,破坏了枝晶生长环境,从而获得液相基体中均匀分布一定比例的近球状初生固相的半固态浆料。本发明实施例还提供了利用半固态金属浆料制备装置制备半固态金属浆料的方法。可见本发明实施例实现了半固态金属浆料的连续快速制备,连续工作稳定可靠,可以简化工艺,降低成本,提高效率,推动半固态金属加工技术的工业化应用。
附图说明
图1为本发明实施例提供的搅拌杆的结构示意图一;
图2为本发明实施例提供的搅拌杆的结构示意图二;
图3为本发明实施例提供的搅拌杆的结构示意图三;
图4为本发明实施例提供的利用半固态金属浆料制备装置制备半固态金属浆料的流程示意图;
图5为本发明实施例提供的半固态金属浆料制备装置的结构示意图;
图6为本发明实施例提供的利用半固态金属浆料制备装置制备半固态金属浆料的状态示意图一;
图7为本发明实施例提供的利用半固态金属浆料制备装置制备半固态金属浆料的状态示意图二;
图8为本发明实施例提供的利用半固态金属浆料制备装置制备半固态金属浆料的状态示意图三;
图9为本发明实施例提供的A356铝合金半固态浆料的金相显微组织示意图;
图10为本发明实施例提供的ADC12铝合金半固态浆料的金相显微组织示意图;
图11为本发明实施例提供的7075铝合金半固态浆料的金相显微组织示意图;
图12为本发明实施例提供的AZ91D镁合金半固态浆料的金相显微组织示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明实施例作进一步详细说明。这里所述的本发明实施例是用于举例说明,而并非用于限制本申请。
本发明实施例示例了采用气冷搅拌杆技术来制备半固态浆料(例如轻合金半固态浆料或其他类型的金属半固态浆料),可以改善现有搅拌技术的不足,提高所制备的半固态浆料的质量,并提高半固态浆料的生产效率。本实施例中的半固态金属浆料制备装置包括供气装置、导气管、搅拌杆以及用于盛放金属熔体的承载容器;该承载容器可以是坩埚或者其他可以承受高温的器皿;该金属熔体可以是镁合金熔体、铝合金熔体、锌合金熔体或者复合材料熔体等;搅拌杆伸入承载容器中金属熔体内的一端为搅拌端,搅拌端内部具有空腔(内腔),在搅拌杆对承载容器内的金属熔体进行搅拌时,供气装置通过导气管向搅拌端内部空腔内注入冷却气体,从而冷却与搅拌同时进行,使得金属熔体在由于搅拌而流动的过程中内部温度场分布基本均匀且不会有明显的过冷梯度,破坏了枝晶生长环境,从而获得液相基体中均匀分布一定比例的近球状初生固相的半固态浆料。
也即本实施例中的搅拌杆具有内部空腔,且该内部空腔至少延伸至搅拌杆的搅拌端。下面以几种示例性内空搅拌杆结构进行示例性的说明,应当理解的是,内空搅拌杆并不仅限于以下几种结构。
请参见图1所示的搅拌杆11,搅拌杆11为中空结构,且该搅拌杆11中间的空腔111在纵向上延伸至搅拌杆11的搅拌端(在该实施例的图中为搅拌杆11的下端),以保证冷却气体可以注入至搅拌端内部;在搅拌杆11的上端(也可以是搅拌端上方的任意部位)还设有与空腔连通的通气口112,工作时,导气管的入气口与供气装置的出气口连接,导气管的出气口与通气口112直接连接或通过该通气口112伸入空腔111,注入空腔111内的冷却气体最终通过通气口 112流出空腔111。应当理解的是,本示例中导气管伸入空腔111的深度可以根据实际需要灵活调整设置,此处可以伸入空腔111的中部或中下部。搅拌端的外壁封闭的,即不透气的。
请参见图2所示的搅拌杆,搅拌杆为由中空套筒22和设置于中空套筒22中心位置的实心柱223构成;实心柱223与中空套筒22内壁之间形成空腔221,且该空腔221在纵向上延伸至搅拌杆的搅拌端(在该示例图示中为搅拌杆的下端);以保证冷却气体可以注入至搅拌端内部;在搅拌杆11的上端(也可以是搅拌端上方的任意部位)还设有与空腔连通的通气口222,工作时,导气管的入气口与供气装置的出气口连接,导气管的出气口与通气口222直接连接或通过该通气口222伸入空腔221,注入空腔221内的冷却气体最终通过通气口222流出空腔221。应当理解的是,该示例中导气管伸入空腔221的深度也可以根据实际需要灵活调整设置,此处可以伸入空腔221的中部或中下部。
请参见图3所示的搅拌杆33,搅拌杆33下端为搅拌端,搅拌端为中空结构并具有腔体331,搅拌杆33的其他部分则为实心结构;在搅拌杆33的搅拌端上方部位还设有与空腔连通的通气口332,工作时,导气管的入气口与供气装置的出气口连接,导气管的出气口与通气口332直接连接或通过该通气口332伸入空腔331,注入空腔111内的冷却气体最终通过通气口332流出空腔331。应当理解的是,本示例中导气管伸入空腔331的深度也可以根据实际需要灵活调整设置,此处可以伸入空腔331的中部或中下部。
应当理解的是,本实施例中的搅拌杆上设置的通气口可以仅作为进气口用,而在搅拌杆上的其他位置设置至少一个与搅拌杆空腔相通的出气口以用于排气,该出气口的位置需保证排出的气体不能进入承载容器中的金属熔体内。
本实施例中的搅拌杆为圆柱形,当然根据实际需要也可以具有其他形状。 本实施例中搅拌杆可采用不锈钢、石墨、铸铁、磨具钢或镀膜铜合金等材料制成,且搅拌杆的搅拌端伸入承载容器中金属熔体内时,其纵向轴线与金属熔体的水平面之间的夹角为30°~90°,例如90°。本实施例中,当导气管的出气口通过通气口伸入搅拌杆内部空腔时,伸入的导气管部分的纵向轴线可以与搅拌杆搅拌端的纵向轴线平行。
本实施例中,在导气管的出气口通过通气口伸入搅拌杆内部空腔的情况下,在导气管伸入空腔的部分的侧壁上还可设置至少一个与导气管管孔相通的喷射孔,此时通过该喷射孔直接向搅拌杆内部空腔内喷射冷却气体,以提升效率和制冷效果;此时,导气管底部可封闭而不设置出气口。应当理解的是,本实施例中的冷却气体可以是各种能用于制冷的气体,例如空气或其他冷却气体。
在本实施例中,为了提升搅拌效率和效果,还可进一步在搅拌杆的搅拌端外壁上设置搅拌叶片,该搅拌叶片可以设置为一片或多片,可以在搅拌端外壁上均匀分布设置多片搅拌叶片。
本实施例中的半固态金属浆料制备装置还包括搅拌控制装置,与搅拌杆连接,用于控制搅拌杆搅拌时的转速,例如可以控制该转速为0~1000r/min。
本实施例中的半固态金属浆料制备装置还包括温度检测装置,用于检测承载容器中金属熔体的温度。该温度检测装置可以是各种温度检测电路,例如可以是包含热电偶的温度检测电路;在通过该温度检测装置检测到承载容器中金属熔体的温度达到预设温度后,可以手动操作搅拌控制装置和供气装置分别停止搅动和供气,该温度检测装置也可与搅拌控制装置和供气装置连接,以在检测到承载容器中金属熔体的温度达到预设温度后,自动控制搅拌控制装置和供气装置分别停止搅动和供气。
应当理解的是,本实施例中搅拌杆以及导气管的各种尺寸都可以根据具体 应用场景灵活设置,例如可以设置搅拌杆的壁厚为3mm~10mm;导气管的内径为2mm~100mm;供气装置通过该导气管按预设气体流量向搅拌杆内部空腔内注入冷却气体,该预设气体流量为0~1000L/min。
在以上本发明实施例所示的半固态金属浆料制备装置基础上,还提供一种利用该半固态金属浆料制备装置制备半固态金属浆料的方法,该半固态金属浆料可以是镁合金、铝合金、锌合金或者复合材料等类型的半固态浆料。该方法请参见图4所示,包括:
步骤401:在承载容器中制备金属熔体(例如在承载容器中经熔化、精炼等工艺加工得到金属熔体),或将制备好的金属熔体加入承载容器中;
步骤402:控制搅拌杆的搅拌端在承载容器中的金属熔体内按照预设转速和方向进行搅拌,且供气装置通过导气管按预设气体流量向搅拌端的空腔内注入冷却气体,以实现冷却和搅拌同时进行;该步骤中的预设转速例如为0~1000r/min,预设气体流量例如为0~1000L/min;
该步骤中对搅拌杆的控制可以通过搅拌控制装置实现,在控制精度要求不高的场景下甚至可以手动控制;搅拌方向可以自始至终沿着一个方向(例如顺时针或逆时针)进行,也可以在搅拌过程中调整转动方向。
步骤403:待承载容器中的金属熔体冷却至预定温度后,停止搅拌杆的搅拌,且供气装置停止向空腔内注入冷却气体;可以通过温度检测装置检测承载容器中金属熔体的温度;在通过该温度检测装置检测到承载容器中金属熔体的温度达到预设温度后,可以手动操作搅拌控制装置和供气装置分别停止搅动和供气,也可以通过温度检测装置在检测到承载容器中金属熔体的温度达到预设温度后,自动控制搅拌控制装置和供气装置分别停止搅动和供气;另外,该步骤中的预定温度设定为等于金属熔体的金属液相线温度t+Δt,Δt的取值范围为 0℃~100℃。例如,假设金属熔体为A356铝合金熔体,对应的A356铝合金的液相线温度为615℃,此时的预定温度等于615℃+Δt,Δt的取值范围为0℃~100℃。
为了更好的理解本发明实施例,下面以一种示例性半固态金属浆料制备装置结合几种类型的金属熔体对本发明实施例进行进一步的示例性说明。
请参见图5所示,该半固态金属浆料制备装置包括供气装置1、导气管2、搅拌杆3(该示例采用图1所示结构的中空搅拌杆)以及用于盛放金属熔体4的坩埚5,搅拌杆3的搅拌端伸入坩埚5中的金属熔体4内,在搅拌杆3的搅拌端设置有搅拌叶片7,以提升搅拌效率和效果;该半固态金属浆料制备装置还包括用于检测金属熔体4的温度的热电偶6;在搅拌过程中,利用气冷和搅拌的原理,在搅拌杆3搅拌的同时供气装置1将冷却气体(例如空气)通过导气管2注入搅拌杆3的内部空腔,注入的冷却气体从导气管2与搅拌杆3内壁之间的空隙流出,对搅拌杆3形成持续冷却,达到加速金属熔体4冷却并促进金属熔体的形核效果,当金属熔体4冷却至预定温度后停止搅拌和通气,便可获得液相基体中均匀分布一定比例的近球状初生固相8的半固态浆料。该半固态金属浆料制备装置构造简单,应用方便、效率高,可连续快速生产,安全可靠、适用于多种轻合金或者复合材料半固态浆料制备,尤其适合于制备大容积半固态浆料和工业化生产。
下面以几种金属熔体的加工过程对本发明实施例做示例性说明:
A356铝合金熔体:
1、制备合金熔体:
试验用A356铝合金的液相线和固相线温度分别为615℃和556℃,将铝合金锭放入到预热温度为350℃的坩埚电阻炉内,待合金液温度升温到720℃后进行精炼,用钟罩将烘干后的六氯乙烷压入熔体底部(加入量为合金液总重量的0.5%),并轻轻摇动,进行熔体除气、除渣精炼处理,最后将合金熔体降温至650℃后保温;
2、搅拌冷却:
设搅拌杆垂直放置到合金熔体中,搅拌杆以转速200r/min转动,通入搅拌杆的气体通入量为245L/min,搅拌杆壁厚3mm,搅拌杆内腔直径15mm,通气管直径5mm,搅拌叶片为两片板状,通气搅拌25s(秒)后,停止搅拌通气,此时合金熔体温度处于半固态区间,其液相基体中均匀分布一定比例的近球状初生固相,该搅拌冷却过程请参见图6-8所示。
图6所示为初始搅拌冷却时金属熔体内还没有近球状初生固相8,图7所示为搅拌冷却一段时间后在金属熔体中逐渐有近球状初生固相8产生,图8所示为搅拌25s后在金属熔体中产生的很多近球状初生固相8,至此A356铝合金半固态浆料制备完成,其浆料显微组织如图9所示,平均晶粒尺寸为61μm,形貌圆整且分布均匀。
ADC12铝合金熔体:
1、制备合金熔体:
试验用ADC12铝合金的液相线和固相线温度分别为580℃和515℃,将铝合金锭放入到预热温度为300℃的坩埚电阻炉内,待合金液温度升温到700℃后进行精炼,用钟罩将烘干后的六氯乙烷压入熔体底部(加入量为合金液总重量的0.5%),并轻轻摇动,进行熔体除气、除渣精炼处理,最后将合金熔体降温至630℃后保温;
2、搅拌冷却:
设搅拌杆垂直放置到合金熔体中,搅拌杆以转速300r/min转动,通入搅拌杆的气体通入量为245L/min,搅拌杆壁厚6mm,搅拌杆内腔直径15mm,通气管直径5mm,搅拌叶片为两片板状,通气搅拌20s后,停止搅拌通气,此时合金熔体温度处于半固态区间,其液相基体中均匀悬浮着一定比例的近球状初生固相,ADC12铝合金半固态浆料制备完成,其浆料组织如图10所示,平均晶粒尺寸仅为37μm,形貌圆整且分布均匀。
7075铝合金熔体:
1、制合金熔体:
试验用7075铝合金的液相线和固相线温度分别为635℃和477℃,将铝合金锭放入到预热温度为400℃的坩埚电阻炉内,待合金液温度升温到720℃后进行精炼,用钟罩将烘干后的六氯乙烷压入熔体底部(加入量为合金液总重量的0.5%),并轻轻摇动,进行熔体除气、除渣精炼处理,最后将合金熔体降温至660℃后保温。
2、搅拌冷却:
设搅拌杆垂直放置到合金熔体中,搅拌杆以转速100r/min转动,通入搅拌杆的气体通入量为245L/min,搅拌杆壁厚4mm,搅拌杆内腔直径15mm,通气管直径5mm,搅拌叶片为两片板状,通气搅拌20s后,停止搅拌通气,此时,合金熔体温度处于半固态区间,7075铝合金半固态浆料制备完成,其浆料组织如图11所示,平均晶粒尺寸为43μm,形貌圆整且分布均匀。
AZ91D镁合金熔体:
1、制合金熔体:
试验用AZ91D镁合金的液相线和固相线温度分别为595℃和470℃,将铝合金锭放入到预热温度为350℃的坩埚电阻炉内,待合金液温度升温到700℃后进行精炼,熔炼过程中,炉内镁合金采用氩气和覆盖剂保护,清渣干净后,将合金熔体降温至620℃保温;
2、搅拌冷却:
设搅拌杆垂直放置到合金熔体中,搅拌杆以转速200r/min转动,通入搅拌杆的气体通入量为123L/min,搅拌杆壁厚5mm,搅拌杆内腔直径15mm,通气管直径5mm,搅拌叶片为两片板状,通气搅拌25s后,停止搅拌通气,此时,合金熔体温度处于半固态区间,其液相基体中均匀悬浮着一定比例的近球状初生固相,AZ91D镁合金半固态浆料制备完成,其浆料组织如图12所示,平均晶粒尺寸为45μm,形貌圆整且分布均匀。
可见,本发明实施例提供的气冷搅拌杆连续快速制浆技术是机械搅拌制浆技术的进一步发展与完善,将搅拌与气冷技术融为一体,是一种先进的半固态金属浆料制备技术,相对于现有技术,其至少具备以下优点:
1、该半固态金属浆料制备装置结构简单,成本低,使用方便,可连续稳定工作,效率高,适用于镁合金、铝合金、锌合金或者复合材料等类型的半固态浆料的制备,金属熔体温度、搅拌速度、搅拌时间和气体通入量可做到精确控制,易于工业化推广;
2、搅拌杆在持续气冷过程中,加速了金属熔体冷却,促进了金属熔体的形核,由于搅拌作用,熔体的温度场和浓度场可以快速达到均匀一致,在获得的半固态浆料中,初生固相形貌圆整、分布和大小均匀;
3、通过向搅拌杆内部注入冷却气体,在搅拌杆上同时完成了均匀搅拌和快速冷却工序,相比于现有搅拌技术,效率高、投资少;采用通气冷却,安全可靠;导气管可插入搅拌杆内腔,不与熔体接触,不会造成部分气体滞留在合金熔体中,更不会造成堵料积料问题;
4、冷却气体选择范围广,可以选择空气,可进一步大大降低制浆成本,同时具有环境友好特征;
5、该半固态金属浆料制备装置取消了复杂的低过热度浇注,大大降低了液相线浇注的难度,易于控制;取消了传统的双螺旋搅拌,解决了双螺旋结构存在搅拌杆工况差,消耗高,寿命短,清理拆卸麻烦,适用合金范围窄的问题;取消了倾斜板浇注和各种浇道浇注,避免了倾斜板及浇道表面粘料的难题,不需频繁清理,省时省力。
以上内容是结合示例性的实施方式对本申请所作的进一步详细说明,但是不能认定本发明的具体实施例只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干推演或替换,这些推演或替换都应当视为属于本申请的保护范围。
工业实用性
通过本发明实施例提供的半固态金属浆料制备装置和方法,实现了金属熔体的冷却与搅拌同时进行,使得金属熔体在由于搅拌而流动的过程中内部温度 场分布基本均匀且不会有明显的过冷梯度,从而获得液相基体中均匀分布一定比例的近球状初生固相的半固态浆料。可见,本发明实施例实现了半固态金属浆料的连续快速制备,连续工作稳定可靠,可以简化工艺,降低成本,提高效率,推动半固态金属加工技术的工业化应用。

Claims (13)

  1. 一种半固态金属浆料制备装置,包括:供气装置、导气管、搅拌杆以及用于盛放金属熔体的承载容器;所述搅拌杆用于伸入所述承载容器中金属熔体内的一端为搅拌端,所述搅拌端内部具有空腔,所述供气装置设置为在所述搅拌杆对所述金属熔体进行搅拌时通过所述导气管向所述搅拌端内部空腔内注入冷却气体。
  2. 如权利要求1所述的半固态金属浆料制备装置,其中,所述搅拌杆为具有空腔的中空结构且空腔在纵向上延伸至所述搅拌端;
    或所述搅拌杆由一中空套筒和设置于所述中空套筒中心位置的实心柱构成,所述实心柱与所述中空套筒内壁之间形成空腔,且该空腔在纵向上延伸至所述搅拌端;
    或所述搅拌杆的搅拌端为中空结构,其他部分为实心结构。
  3. 如权利要求2所述的半固态金属浆料制备装置,其中,所述搅拌杆搅拌端上方部位还设有与所述空腔连通的通气口,所述导气管的入气口设置为与所述供气装置的出气口连接,所述导气管的出气口设置为与所述通气口连接或通过所述通气口伸入所述空腔,所述通气口还设置为供注入所述空腔内的冷却气体最终通过所述通气口流出所述空腔。
  4. 如权利要求3所述的半固态金属浆料制备装置,其中,在所述导气管的出气口设置为通过所述通气口伸入所述空腔时,所述导气管的、设置为伸入所述空腔中的部分的侧壁上设有与导气管管孔相通的喷射孔,所述喷射孔设置为供所述冷却气体通过所述喷射孔向所述空腔内喷射。
  5. 如权利要求1-4任一项所述的半固态金属浆料制备装置,其中,所述搅拌杆的搅拌端外壁上还设有搅拌叶片。
  6. 如权利要求1-4任一项所述的半固态金属浆料制备装置,其中,所述搅拌杆的搅拌端伸入所述承载容器中金属熔体内时,其纵向轴线与所述金属熔体的水平面之间的夹角为30°~90°。
  7. 如权利要求1-4任一项所述的半固态金属浆料制备装置,其中,还包括 搅拌控制装置,其与所述搅拌杆连接,且设置为控制所述搅拌杆搅拌时的转速。
  8. 如权利要求1-4任一项所述的半固态金属浆料制备装置,其中,还包括温度检测装置,设置为检测所述承载容器中金属熔体的温度。
  9. 如权利要求1-4任一项所述的半固态金属浆料制备装置,其中,所述导气管的内径为2mm~100mm。
  10. 一种利用如权利要求1-9任一项所述的半固态金属浆料制备装置制备半固态金属浆料的方法,其中,包括:
    在所述承载容器中制备金属熔体,或将制备好的金属熔体加入所述承载容器中;
    所述搅拌杆的搅拌端在所述承载容器中的金属熔体内按照预设转速和方向进行搅拌,且所述供气装置通过所述导气管按预设气体流量向所述搅拌端的空腔内注入冷却气体;
    待所述承载容器中的金属熔体冷却至预定温度后,所述搅拌杆停止搅拌,所述供气装置停止向所述搅拌端的空腔内注入冷却气体。
  11. 如权利要求10所述的制备半固态金属浆料的方法,其中,所述预设转速为0~1000r/min。
  12. 如权利要求10或11所述的制备半固态金属浆料的方法,其中,所述预设气体流量为0~1000L/min。
  13. 如权利要求10或11所述的制备半固态金属浆料的方法,其中,所述预定温度等于所述金属熔体的金属液相线温度t+Δt,Δt的取值范围为0℃~100℃。
PCT/CN2015/098241 2015-01-21 2015-12-22 半固态金属浆料制备装置及方法 WO2016115954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510031678.0A CN105855498A (zh) 2015-01-21 2015-01-21 半固态金属浆料制备装置及方法
CN201510031678.0 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016115954A1 true WO2016115954A1 (zh) 2016-07-28

Family

ID=56416400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098241 WO2016115954A1 (zh) 2015-01-21 2015-12-22 半固态金属浆料制备装置及方法

Country Status (2)

Country Link
CN (1) CN105855498A (zh)
WO (1) WO2016115954A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106938328A (zh) * 2017-05-17 2017-07-11 安徽中鑫压铸技术研发有限公司 全自动封闭式半固态制浆机
CN106944599A (zh) * 2017-04-21 2017-07-14 苏州金澄精密铸造有限公司 半固态制浆用制浆机及半固态制浆方法
CN108188359A (zh) * 2018-02-01 2018-06-22 南昌大学 一种金属液体除气除渣装置
CN110153386A (zh) * 2019-06-20 2019-08-23 西安建筑科技大学 一种用于制备半固态坯料的旋转振动搅拌装置
CN111468688A (zh) * 2020-05-12 2020-07-31 安徽圣尔沃智能装备有限公司 一种半固态制浆设备
CN113648873A (zh) * 2021-08-31 2021-11-16 重庆顺多利机车有限责任公司 半固态模锻制浆机搅拌器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108067600A (zh) * 2016-11-17 2018-05-25 机械科学研究总院(将乐)半固态技术研究所有限公司 一种高效低成本制造半固态Al-Si系铝合金铸件的流变成形方法
CN106955980B (zh) * 2017-04-20 2022-10-18 昆山伟拓压铸机械有限公司 有色金属半固态汤料成型装置及制备方法
CN106914598A (zh) * 2017-05-11 2017-07-04 昆山盛事达机械有限公司 铝合金及镁合金的半固态浆料的制备机构
CN107058781B (zh) * 2017-06-16 2018-08-03 尚圣杰 金属连续发泡工艺
CN109604538A (zh) * 2018-12-26 2019-04-12 沃尔曼科技张家港有限公司 一种永磁复合电磁搅拌制备半固态金属浆料的方法
CN110438342A (zh) * 2019-08-30 2019-11-12 尚智强 半固态制浆方法及铝合金零件制备方法
CN110449562A (zh) * 2019-09-05 2019-11-15 广州和德轻量化成型技术有限公司 用于铝合金挤压铸造机的流变制浆设备及流变制浆方法
CN111036862B (zh) * 2019-12-31 2021-08-17 北京科技大学 强冷和复合搅拌工艺制备大体积半固态浆料的方法和装置
CN111001779B (zh) * 2019-12-31 2021-08-10 北京科技大学 一种无需半固态浆料转移直接制浆与成形的系统和工艺
CN114150170B (zh) * 2021-11-30 2022-10-14 大连交通大学 制备铝合金半固态复合浆料的搅拌装置、搅拌方法和应用
CN114273632B (zh) * 2021-12-16 2023-06-23 福建省瑞奥麦特轻金属有限责任公司 一种液冷式铝合金半固态制浆工艺

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297003A (ja) * 2004-04-12 2005-10-27 Topy Ind Ltd 軽金属または軽合金の半凝固スラリー製造方法および鋳造方法。
CN101875105A (zh) * 2009-11-21 2010-11-03 华中科技大学 一种半固态浆料制备方法和装置
CN103173638A (zh) * 2013-02-27 2013-06-26 慈溪市汇丽机电有限公司 低过热度高效激冷制备半固态金属浆料的方法及装置
CN203128638U (zh) * 2013-02-27 2013-08-14 慈溪市汇丽机电有限公司 低过热度高效激冷制备半固态金属浆料的装置
CN103817309A (zh) * 2014-02-25 2014-05-28 张英华 半固态金属铸造设备及其工艺流程
CN104907527A (zh) * 2015-06-17 2015-09-16 深圳领威科技有限公司 半固态制浆设备、半固态制浆系统和半固态制浆方法
CN104907526A (zh) * 2015-06-17 2015-09-16 深圳领威科技有限公司 半固态制浆及给汤集成结构
CN104988343A (zh) * 2015-08-12 2015-10-21 北京科技大学 一种气冷多管搅拌制备轻合金半固态浆料的装置及方法
CN105014020A (zh) * 2015-08-12 2015-11-04 北京科技大学 一种制备大直径半固态合金坯料的装置和方法
CN204770580U (zh) * 2015-06-17 2015-11-18 深圳领威科技有限公司 半固态制浆及给汤集成结构
CN204768363U (zh) * 2015-06-17 2015-11-18 深圳领威科技有限公司 用于半固态制浆的搅拌棒
CN105149549A (zh) * 2015-09-21 2015-12-16 珠海市润星泰电器有限公司 一种制备半固态浆料的装置及方法
CN204898039U (zh) * 2015-08-12 2015-12-23 北京科技大学 一种气冷多管搅拌制备轻合金半固态浆料的装置
CN204953866U (zh) * 2015-06-17 2016-01-13 深圳领威科技有限公司 半固态制浆设备和半固态制浆系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346904C (zh) * 2003-03-04 2007-11-07 伊德拉王子公司 由液态金属合金成分生产金属部件的方法
JP2006122921A (ja) * 2004-10-26 2006-05-18 Toyota Motor Corp 半溶融鋳造で用いる棒状ビレットおよび半溶融鋳造法
CN101618438B (zh) * 2008-07-04 2012-07-11 北京有色金属研究总院 一种制备半固态合金流变浆料或坯料的装置
CN101745629A (zh) * 2008-12-16 2010-06-23 北京有色金属研究总院 环缝式电磁搅拌制备半固态合金流变浆料或坯料的方法
DE102010051342A1 (de) * 2010-11-13 2012-05-16 Volkswagen Ag Vorrichtung und Verfahren zur Behandlung einer Metallschmelze
CN103008603A (zh) * 2011-09-27 2013-04-03 苏州三基铸造装备股份有限公司 金属合金半固态浆料的制备方法及装置
CN104232953B (zh) * 2014-09-18 2016-10-26 珠海市润星泰电器有限公司 一种轻金属合金半固态浆料制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005297003A (ja) * 2004-04-12 2005-10-27 Topy Ind Ltd 軽金属または軽合金の半凝固スラリー製造方法および鋳造方法。
CN101875105A (zh) * 2009-11-21 2010-11-03 华中科技大学 一种半固态浆料制备方法和装置
CN103173638A (zh) * 2013-02-27 2013-06-26 慈溪市汇丽机电有限公司 低过热度高效激冷制备半固态金属浆料的方法及装置
CN203128638U (zh) * 2013-02-27 2013-08-14 慈溪市汇丽机电有限公司 低过热度高效激冷制备半固态金属浆料的装置
CN103817309A (zh) * 2014-02-25 2014-05-28 张英华 半固态金属铸造设备及其工艺流程
CN104907526A (zh) * 2015-06-17 2015-09-16 深圳领威科技有限公司 半固态制浆及给汤集成结构
CN104907527A (zh) * 2015-06-17 2015-09-16 深圳领威科技有限公司 半固态制浆设备、半固态制浆系统和半固态制浆方法
CN204770580U (zh) * 2015-06-17 2015-11-18 深圳领威科技有限公司 半固态制浆及给汤集成结构
CN204768363U (zh) * 2015-06-17 2015-11-18 深圳领威科技有限公司 用于半固态制浆的搅拌棒
CN204953866U (zh) * 2015-06-17 2016-01-13 深圳领威科技有限公司 半固态制浆设备和半固态制浆系统
CN104988343A (zh) * 2015-08-12 2015-10-21 北京科技大学 一种气冷多管搅拌制备轻合金半固态浆料的装置及方法
CN105014020A (zh) * 2015-08-12 2015-11-04 北京科技大学 一种制备大直径半固态合金坯料的装置和方法
CN204898039U (zh) * 2015-08-12 2015-12-23 北京科技大学 一种气冷多管搅拌制备轻合金半固态浆料的装置
CN105149549A (zh) * 2015-09-21 2015-12-16 珠海市润星泰电器有限公司 一种制备半固态浆料的装置及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944599A (zh) * 2017-04-21 2017-07-14 苏州金澄精密铸造有限公司 半固态制浆用制浆机及半固态制浆方法
CN106938328A (zh) * 2017-05-17 2017-07-11 安徽中鑫压铸技术研发有限公司 全自动封闭式半固态制浆机
CN108188359A (zh) * 2018-02-01 2018-06-22 南昌大学 一种金属液体除气除渣装置
CN108188359B (zh) * 2018-02-01 2024-03-29 南昌大学 一种金属液体除气除渣装置
CN110153386A (zh) * 2019-06-20 2019-08-23 西安建筑科技大学 一种用于制备半固态坯料的旋转振动搅拌装置
CN111468688A (zh) * 2020-05-12 2020-07-31 安徽圣尔沃智能装备有限公司 一种半固态制浆设备
CN111468688B (zh) * 2020-05-12 2024-04-09 安徽圣尔沃智能装备有限公司 一种半固态制浆设备
CN113648873A (zh) * 2021-08-31 2021-11-16 重庆顺多利机车有限责任公司 半固态模锻制浆机搅拌器

Also Published As

Publication number Publication date
CN105855498A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2016115954A1 (zh) 半固态金属浆料制备装置及方法
CN104988343B (zh) 一种气冷多管搅拌制备轻合金半固态浆料的装置及方法
CN104232953B (zh) 一种轻金属合金半固态浆料制备方法
CN103031463B (zh) 一种制备纳米陶瓷颗粒增强铝基复合材料的装置及方法
CN101007342A (zh) 一种半固态合金浆料的制备和流变成型的设备
CN111001779B (zh) 一种无需半固态浆料转移直接制浆与成形的系统和工艺
CN101875105A (zh) 一种半固态浆料制备方法和装置
CN111036862B (zh) 强冷和复合搅拌工艺制备大体积半固态浆料的方法和装置
CN101130203A (zh) 半固态金属浆料的制备和流变成型方法
CN103586427B (zh) 激冷机械搅拌制备镁合金液态/半固态熔体的方法及装置
CN108746540A (zh) 一种电磁系统制备半固态成型方法
CN104028722A (zh) 一种锌合金铸造工艺
US6681836B1 (en) Method and apparatus for manufacturing semi-solidified metal
CN108067600A (zh) 一种高效低成本制造半固态Al-Si系铝合金铸件的流变成形方法
CN101003862A (zh) 半固态合金浆料的制备和成型方法
JP2006519704A5 (zh)
CN100574939C (zh) 一种半固态合金浆料的制备与成型装置
CN105983670B (zh) 一种复合干预改善铸坯内部质量的方法
CN107498010B (zh) 一种轻合金半固态浆料的制备工艺
JP6514237B2 (ja) 低過熱温度からゼロ過熱温度における鋳込みのための溶融金属を調製するプロセス
CN207952565U (zh) 一种半固态金属浆料的制备装置
Zhou et al. Forced convection rheomoulding process for semisolid slurry preparation and microstructure evolution of 7075 aluminum alloy
CN202779647U (zh) 一种半固态的有色金属连铸装置
CN103639374B (zh) 一种制备半固态金属的振动倒锥形通道方法及装置
Blazek et al. The development of a continuous rheocaster for ferrous and high melting point alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878622

Country of ref document: EP

Kind code of ref document: A1