WO2016115821A1 - 一种镍基合金耐压壳及其实施方法 - Google Patents

一种镍基合金耐压壳及其实施方法 Download PDF

Info

Publication number
WO2016115821A1
WO2016115821A1 PCT/CN2015/082059 CN2015082059W WO2016115821A1 WO 2016115821 A1 WO2016115821 A1 WO 2016115821A1 CN 2015082059 W CN2015082059 W CN 2015082059W WO 2016115821 A1 WO2016115821 A1 WO 2016115821A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
blind hole
hole structure
deep blind
stroke sleeve
Prior art date
Application number
PCT/CN2015/082059
Other languages
English (en)
French (fr)
Inventor
李泽文
喻杰
Original Assignee
李泽文
喻杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李泽文, 喻杰 filed Critical 李泽文
Publication of WO2016115821A1 publication Critical patent/WO2016115821A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • G21C7/14Mechanical drive arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/06Sealing-plugs
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/087Metallic vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/18Manufacture of control elements covered by group G21C7/00
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of a control rod driving mechanism of a pressurized water reactor nuclear power plant, in particular to a nickel base alloy pressure resistant shell and an implementation method thereof.
  • the PWR control rod drive mechanism is mounted on the top of the reactor pressure vessel, and can drive the control rod assembly to move up and down in the core according to the command to keep the control rod assembly at the command height; or the power release control assembly can be Quickly insert the core under the action of gravity to complete the functions of reactor start-up, power regulation, power maintenance, normal shutdown and accident shutdown.
  • the pressure shell of the control rod drive is part of the reactor pressure boundary.
  • the second generation (including the second generation of improved) pressurized water reactor nuclear power plants in service in the world mostly adopt the control rod drive mechanism of L-106A type and its derivative model (hereinafter referred to as type A), and the third generation pressurized water reactor nuclear power plant under construction
  • type A the control rod drive mechanism of L-106A type and its derivative model
  • B type the third generation pressurized water reactor nuclear power plant under construction
  • the control rod drive mechanism of the L-106B type and its derivative model (hereinafter referred to as B type) is often used.
  • the control rod drive mechanism 6 of type A and type B is fixed on the top of the stack, and the metal penetration member 5 is inserted into the top cover of the reactor pressure vessel 7 and welded, and is integrally formed with the top cover of the reactor pressure vessel 7.
  • the position of the control rod drive mechanism 6 in the reactor is as shown in FIG.
  • the pressure-resistant casing of the control rod drive mechanism 6 belongs to the reactor primary circuit pressure boundary and serves to support the drive mechanism and the working load.
  • the pressure boundaries of the control rod drive mechanism can also be collectively referred to as pressure housings, and typically include a seal housing assembly and a drive rod stroke sleeve assembly.
  • the pressure-resistant casing of the A-type control rod drive mechanism is composed of an exhaust valve 1, an end plug 2, a stroke sleeve 3, a sealing shell 4, a T-threaded joint 8, and a penetrating member 5.
  • the T-threaded joint 8 and the sealing shell 4 are connected by a T-shaped thread and sealed by an omega weld, and the stroke sleeve 3 and the seal shell 4, the end plug 2 and the stroke sleeve 3 are similarly connected and sealed.
  • the T-threaded joint 8 is connected to the penetrating member 5 by a butt weld.
  • the A-type control rod drive mechanism is formed by welding the upper, middle and lower ⁇ welds and one butt weld. The structure is shown in Fig. 2, Fig. 3, Fig. 4, and Fig. 5.
  • the sealing shell 4 of the B-type control rod drive mechanism is directly butt welded to the penetrating member 5 as a whole (ie, the sealing shell penetration piece is integrally formed), and the lower ⁇ weld seam is eliminated; the stroke sleeve 3 is processed into a deep blind hole by using a forging piece.
  • the upper ⁇ weld is eliminated (ie: integrated deep blind hole structure stroke sleeve).
  • the sealing shell 4 and the stroke sleeve 3 are still connected by a type A threaded joint and sealed by an omega weld.
  • the pressure-resistant shell structure of the B-type drive mechanism is shown in Fig. 6 and Fig. 7, and includes one ⁇ weld and one butt weld.
  • the operating environment of the PWR control rod drive mechanism is high temperature, high pressure and irradiation. Therefore, the pressure-resistant shell of the control rod drive mechanism which is one of the pressure boundaries must meet the requirements of high temperature resistance, high pressure and stress corrosion resistance. Less welds and a firm and reliable structure.
  • the pressure-resistant casing of the A-type control rod drive mechanism is composed of an exhaust valve 1, an end plug 2, a stroke sleeve 3, a sealing shell 4, a T-shaped threaded joint 8, and a penetrating member 5 through three upper, middle and lower ⁇ welds and a joint Dissimilar metal butt welds are welded together. These three ⁇ welds are the weak link of the entire pressure-resistant shell, and there is a risk of cracks caused by stress corrosion.
  • the exhaust valve 1 and the end plug 2 are mechanically hard sealed, and the hardness of the hard sealing cone surface matched with the two is high, the manufacturing difficulty is improved, and the mechanical connection reliability is not high, and the sealing surface wear or the cock thread is present. The tightening force is not sufficient, and the risk of reactor coolant leakage under high temperature and high pressure.
  • the sealing shell 4 of the B-type control rod drive mechanism is austenitic stainless steel, and the penetrating member 5 is a nickel-based alloy.
  • the sealing shell 4 and the penetrating member 5 are welded integrally by means of dissimilar welding of the dissimilar metal in the structure to cancel the original
  • the lower ⁇ weld in the A-type structure; the stroke sleeve 3 is made of austenitic stainless steel and is designed as a deep blind hole structure to eliminate the upper ⁇ weld.
  • the B-type Because of the pressure-resistant shell of the A-type control rod drive mechanism, the B-type has two less ⁇ welds, and the safety is greatly improved. However, there is still a risk of leakage in the middle ⁇ weld, and a dissimilar steel butt weld between the seal shell 4 and the penetrating member 5 is difficult to manufacture and has high inspection cost, and there is still a risk of weld cracking.
  • a more safe and reliable pressure-resistant shell structure is designed to reduce the leakage risk of the pressure-resistant shell and the difficulty of processing and manufacturing, and has practical value for engineering application.
  • the technical problem to be solved by the present invention is to provide a nickel-base alloy pressure-resistant shell which improves safety, reduces maintenance difficulty, and reduces manufacturing cost, and an implementation method thereof.
  • the utility model relates to a nickel-base alloy pressure-resistant shell, which is composed of a sealed shell penetrating piece integrally manufactured by a nickel-base alloy forging machine and an integrated deep blind hole structure stroke sleeve, and the sealed shell penetrating piece is integrally formed by the integrally formed sealing shell part And the penetration part is formed, the integrated deep blind hole structure stroke sleeve is a blind tube structure with an integral upper end blocked, and the integrated deep blind hole structure stroke sleeve and the sealing shell penetration piece are sealed between the sealing shell parts Connected and sealed with a nickel-based alloy weld, the integrated deep blind hole structure stroke sleeve is made of nickel-base alloy forgings or austenitic stainless steel forgings, when the integrated deep blind hole structure stroke sleeve is used When the austenitic stainless steel forging machine is manufactured, the integrated deep blind hole structure stroke sleeve is pre-welded with a nickel-based alloy ring at a position welded to the sealing shell portion of the sealed cas
  • the sealing shell of the pressure-resistant shell of the invention is processed by the integral nickel-base alloy forging, completely eliminating the butt weld of the sealing shell and the penetrating member, completely eliminating the risk of weld leakage and improving the entire sealing shell.
  • Safety further reducing the difficulty of nuclear power plant maintenance, reducing manufacturing costs and maintenance costs, simplifying the workload of the control rod drive mechanism during in-service inspection, and improving the high temperature and corrosion resistance.
  • the weld seam in the middle of the pressure-resistant shell is made of nickel-based alloy.
  • the seal shell penetration piece and the integrated deep blind hole structure stroke sleeve are also in contact with the nickel-base alloy welding material.
  • the nickel base alloy is also used.
  • the corrosion resistance of alloy welds is greatly improved, reducing the risk of weld leakage.
  • the integrated deep blind hole structure stroke sleeve and the sealing shell penetration part of the sealing shell portion are provided with an ⁇ welding groove for forming an omega weld, when the integrated deep blind hole structure stroke
  • the ⁇ welding groove on the integrated deep blind hole structure stroke sleeve is welded by the nickel base alloy ring machine on the integrated deep blind hole structure stroke sleeve.
  • the ⁇ welding groove for forming the ⁇ weld is made of nickel-based alloy.
  • the stroke sleeve is made of nickel-base alloy forging machine.
  • the groove is naturally made of nickel-based alloy.
  • the integrated deep blind hole structure is designed by the austenitic stainless steel forging machine.
  • the ⁇ welding groove is welded to the integrated deep blind hole structure.
  • the nickel-based alloy ring is formed by machining, so the ⁇ welding groove is also made of nickel-based alloy), the sealing shell penetration piece is made of nickel-based alloy material, and the welding material is nickel-based alloy welding material, so the ⁇ weld is Nickel-based alloy ⁇ weld; its stress corrosion resistance is significantly higher than the austenitic stainless steel ⁇ weld of B-type pressure shell High; if the ⁇ weld here increases the thickness of the weld ear portion, the risk of weld leakage can be greatly reduced, and it will not adversely affect the ⁇ weld cut that may be required in the future.
  • the integrated deep blind hole structure stroke sleeve and the sealing shell penetration piece are not provided with an ⁇ welding groove on the sealing shell part, and the integrated deep blind hole structure stroke sleeve and the sealing shell penetration piece are integrated
  • the sealing shells of the pieces are connected by fillet welds to replace the omega welds between the original seal shell and the stroke sleeve, thereby further reducing the risk of weld seam leakage of the pressure shell.
  • the mechanical properties of nickel-based alloys such as Inconel 690
  • austenitic stainless steels such as 00Cr18Ni10N
  • the mechanical properties of Inconel 690 nickel-based alloys at room temperature and 350 ° C are higher than 00Cr18Ni10N, while the temperature of the pressure shell is At around 310 °C, it can be seen that the pressure-resistant shell of the all-nickel-based alloy is superior to the conventional austenitic stainless steel pressure-resistant shell in mechanical properties and stress corrosion resistance.
  • the method for implementing the nickel-based pressure-resistant shell comprises the following steps:
  • the sealed shell penetration piece is processed and formed by using the qualified nickel-base alloy forgings;
  • the seal shell penetration piece and the integrated deep blind hole structure stroke sleeve can be directly welded with the nickel base alloy welding material.
  • the seal shell penetration piece is made of nickel-based alloy, which improves the high temperature resistance and corrosion resistance.
  • the sealing shell penetration part directly machined the sealing shell and the penetrating piece as a complete part, eliminating the weld seam between the pressure-resistant shell sealing shell and the penetrating member of the conventional control rod driving mechanism, which not only reduces the B-type pressure resistance
  • the butt welding process of the sealing shell and the penetrating member in the shell and the welding difficulty between the dissimilar alloys completely eliminate the risk of weld seam leakage, improve the safety of the entire sealing shell, further reduce the difficulty of repairing the nuclear power plant, reduce the manufacturing cost and the maintenance cost. It simplifies the workload of the control rod drive mechanism during in-service inspection; at the same time, the manufacturing difficulty of the seal shell is greatly reduced, and the economic benefit is obvious.
  • the pressure-resistant casing of the present invention is superior to the aforementioned A-type and B-type pressure-resistant casings in terms of cost, safety, and ease of inspection.
  • nickel-based alloys such as Inconel 690
  • stainless steel such as 00Cr18Ni10N
  • nickel-based alloys have higher durability in nuclear power plant conditions, which is the future nuclear power equipment with higher life requirements. (such as the control rod drive mechanism) is an optimal choice.
  • the ⁇ ring weld is the weakest area, and it is most likely to leak due to corrosion.
  • the ⁇ ring weld or fillet weld in the middle of the pressure-resistant shell is a nickel-based alloy, and the seal shell penetrates into one. Parts and integrated deep blind hole structure stroke sleeve and nickel-base alloy welding material are also in contact with the nickel base Gold, therefore, the resistance to stress corrosion of the nickel-based alloy weld is greatly improved, reducing the risk of weld leakage.
  • the pressure-resistant shell of the present invention is welded by a sealed shell penetration piece and an integrated deep blind hole structure stroke sleeve, and one weld seam ( ⁇ ring weld or corner weld), the seal shell and The penetration piece is machined as a whole and then welded to the stroke sleeve, the number of welds is reduced, and the risk of failure due to weld corrosion leakage is reduced.
  • the stroke sleeve is made of austenitic stainless steel (such as 00Cr18Ni10N) and the seal shell is made of a nickel-based alloy such as Inconel 690
  • the ⁇ weld between the two is the ⁇ ring seal welding of the dissimilar alloy, which is difficult to weld and performance. It is difficult to get a guarantee.
  • the present invention proposes welding a nickel-based alloy ring at the ⁇ -ring welding of the stroke sleeve, and then processing it into an ⁇ groove, and then performing ⁇ -ring welding with the sealing shell, and the sealing welding of the ⁇ ring belongs to the welding between the same alloys.
  • the welding difficulty of the dissimilar alloys in the B-type pressure-resistant shell is avoided, the quality of the ⁇ -ring weld is improved, and the ⁇ -ring weld material is a nickel-based alloy, and the mechanical and corrosion resistance are higher than that of the A-type and B-type.
  • Stainless steel ⁇ ring welds in the shell are higher than that of the A-type and B-type.
  • the angle welding can be directly adopted between the stroke sleeve and the sealing shell, which avoids the difficulty of welding the ⁇ ring.
  • Figure 1 is a schematic view showing the positional structure of a control rod drive mechanism in a reactor
  • Figure 2 is a pressure-resistant shell structure of the A-type control rod drive mechanism
  • Figure 3 is a partial enlarged view of a portion A of Figure 2;
  • Figure 4 is a partial enlarged view of a portion B of Figure 2;
  • Figure 5 is a partial enlarged view of a portion C of Figure 2;
  • Figure 6 is a pressure-resistant shell structure of the B-type control rod drive mechanism
  • Figure 7 is a partial enlarged view of a portion D of Figure 6;
  • Figure 8 is a schematic structural view of the present invention.
  • FIG. 9 is a schematic view showing a connection structure of a nickel-based alloy ring and an integrated deep blind hole structure stroke sleeve base;
  • Figure 10 is a schematic view showing another structure of the present invention.
  • Figure 11 is a schematic structural view of the sealing case penetration piece of the present invention.
  • Figure 12 is a schematic view showing the structure of the integrated deep blind hole structure stroke sleeve of the present invention.
  • a nickel-base alloy pressure-resistant shell is composed of a sealed shell penetration piece 9 and an integrated deep blind hole structure stroke sleeve 10 which are manufactured by using a nickel-base alloy forging machine, and the sealing shell is integrally formed.
  • the piece 9 is composed of an integrally formed sealing shell portion and a penetrating member portion, and the weld-free sealing shell penetrating piece integral member 9 is processed by using a whole nickel-based alloy (such as Inconel 690) forging, that is, a conventional sealing shell.
  • the integrated deep blind hole structure stroke sleeve 10 is an integral upper end blocked blind tube structure, and the integrated deep blind hole structure stroke sleeve 10 and the sealing shell penetration piece integral part 9 are screwed and used with nickel Base alloy material weld seal, the integrated deep blind hole structure stroke sleeve 10 is made of nickel base alloy forging or austenitic stainless steel forging machine, that is, using integral nickel base alloy forging or austenitic stainless steel forging It is processed into a deep blind hole structure; when the integrated deep blind hole structure stroke sleeve 10 is manufactured by using an austenitic stainless steel forging machine, the integrated deep blind hole structure stroke sleeve 10 is integrated with the seal shell penetration piece.
  • a nickel-based alloy ring 11 is pre-welded at a position where the sealing shell portion of the piece 9 is welded, as shown in FIG. 9, the sealing sleeve 10 and the sealing shell penetration piece for sealing the integrated deep blind hole structure.
  • a nickel-base alloy weld bead of 9 gaps is provided between the nickel-based alloy ring 11 and the sealed casing portion of the seal-shell penetration unitary member 9.
  • the integrated deep blind hole structure stroke sleeve 10 and the sealing shell penetration member 9 are provided with an ⁇ welding groove for forming an ⁇ weld, as shown in FIG. 8 , FIG. 11 and FIG. 12 . It is shown that when the integrated deep blind hole structure stroke sleeve 10 is manufactured by a nickel base alloy forging machine, the ⁇ welding groove is formed by the integrated deep blind hole structure stroke sleeve 10 directly; When the blind hole structure stroke sleeve 10 is manufactured by using an austenitic stainless steel forging machine, the ⁇ welding groove on the integrated deep blind hole structure stroke sleeve 10 is welded to the integrated deep blind hole structure stroke sleeve 10 The nickel-based alloy ring 11 is machined, as shown in Fig.
  • Integrated deep blind hole structure with ⁇ welding groove The shape of the stroke sleeve 10 is the same as that of the integrated deep blind hole structure of the B-type control rod drive mechanism, and its integration with the B-type control rod drive mechanism The difference between the deep blind hole structure stroke sleeve is that the integrated deep blind hole structure stroke sleeve 10 has an ⁇ welding groove of a nickel base alloy material, and an integrated deep blind hole structure stroke sleeve 10 with an omega welding groove is processed.
  • a T-threaded connection is made between the sealing shell portion of the sealed casing penetration piece 9 and sealed with a nickel-base alloy material ⁇ weld.
  • the ⁇ welding groove is made of nickel base alloy (the integrated deep blind hole structure stroke sleeve 10 is made of nickel base alloy forging machine)
  • the ⁇ welding groove is naturally made of a nickel-based alloy material, and the integrated deep blind hole structure stroke sleeve 10 is manufactured by adding an austenitic stainless steel forging machine when the ⁇ welding groove is welded to the integrated deep blind hole structure.
  • the nickel-based alloy ring 11 on the sleeve 10 is machined, so the ⁇ welding groove is also made of a nickel-based alloy.
  • the sealing shell penetration piece 9 is made of a nickel-based alloy material, and the welding material is a nickel-based alloy welding material.
  • the ⁇ weld is a nickel-based alloy ⁇ weld; its stress corrosion resistance is significantly higher than that of the B-type austenitic stainless steel ⁇ weld; if the ⁇ weld here is further enlarged the weld ear portion
  • the thickness of the weld can greatly reduce the risk of weld leakage and does not adversely affect the ⁇ weld cut that may be required in the future.
  • the integrated deep blind hole structure stroke sleeve 10 is manufactured by using a nickel base alloy forging machine, which is formed by processing a whole nickel base alloy forging into a deep blind hole structure, and then processing the ⁇ welding slope. mouth.
  • the integrated deep blind hole structure stroke sleeve 10 is manufactured by using an austenitic stainless steel forging machine.
  • the stroke sleeve 10 is connected to the seal shell through piece by the ⁇ weld seam 9
  • a ring of a nickel-based alloy (such as Inconel 690) is welded to the position of the sealed casing portion, and then an ⁇ welding groove is machined on the 11-ring of the nickel-based alloy ring. That is, a ring of a nickel-based alloy (such as Inconel 690) is welded to the appropriate position of the conventional austenitic stainless steel stroke sleeve, and then The ⁇ welding groove is machined on this loop, as shown in FIG.
  • a nickel-based alloy such as Inconel 690
  • austenitic stainless steel such as 00Cr18Ni10N
  • the integrated deep blind hole structure is formed on the base of the casing 10, and then the nickel-base alloy ring 11 and the welded area are combined to form a nickel-base alloy ⁇ welding groove of the integrated deep blind hole structure stroke sleeve 10 by machining.
  • the deep blind hole structure stroke sleeve 10 and the sealing shell penetration piece integral part 9 without the omega welding groove on the sealing shell portion, the integrated deep blind hole structure stroke sleeve 10 and the sealing shell penetration piece one piece
  • the sealing shells of 9 are connected by fillet welds, as shown in Fig. 10, to replace the ⁇ weld between the original sealing shell and the stroke sleeve, thereby further reducing the risk of weld seam leakage of the pressure resistant shell.
  • the nickel-based alloy may be an Inconel 690 alloy or other nickel-based alloy.
  • the mechanical properties of nickel-based alloys such as Inconel 690
  • austenitic stainless steels such as 00Cr18Ni10N
  • the mechanical properties of Inconel 690 nickel-based alloys at room temperature and 350 ° C are higher than 00Cr18Ni10N
  • the working temperature of the pressure shell At about 310 °C, it can be seen that the pressure-resistant shell of the all-nickel-based alloy is superior to the conventional austenitic stainless steel pressure-resistant shell in mechanical properties and stress corrosion resistance.
  • the novel pressure-resistant shell of the invention is formed by processing the integral Inconel 690 nickel-base alloy forging, completely eliminating the butt weld of the sealing shell and the penetration.
  • the method for implementing the nickel-based pressure-resistant shell comprises the following steps:
  • the sealed shell penetration piece 9 is processed and formed by using the qualified nickel-base alloy forgings;
  • the integrated deep blind hole structure stroke sleeve 10 is completely processed and formed by using the qualified nickel-base alloy forgings;
  • the integrated deep blind hole structure stroke sleeve 10 is rough-formed by using the qualified stainless steel forgings, and the nickel-based alloy wire 11 is welded to the integrated deep blind hole structure stroke sleeve which has been roughed by using the nickel-based alloy welding wire.
  • the tube 10 is subjected to liquid permeation inspection, ultrasonic inspection, radiographic inspection and dimensional stabilization treatment according to domestic and international or international standards, and then the integral processing of the integrated deep blind hole structure stroke sleeve 10 is completed;
  • the dimensional stabilization treatment is a general technical means in the art, specifically refers to a dimensional stabilization heat treatment, and specific parameters are modulated according to the actual material and the machining residual stress during the specific operation, and an example parameter is given here: at about 1 ° C /
  • the temperature of min is raised to 300-500 ° C, the temperature is kept for 9-14 h, and then the furnace is cooled to 120-170 ° C and then air-cooled;
  • the seal shell penetration piece 9 and the integrated deep blind hole structure stroke sleeve 10 may be directly welded with the nickel base alloy welding material.
  • the nickel-based alloy used in the above-mentioned nickel-based pressure-resistant shell may be an Inconel 690 alloy or other nickel-based alloy, and the stainless steel may be 00Cr18Ni10N or other stainless steel.
  • the present invention can be preferably implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Forging (AREA)

Abstract

一种镍基合金耐压壳,由采用镍基合金锻件机加制造的密封壳贯穿件一体件(9)和一体化深盲孔结构行程套管(10)构成,密封壳贯穿件一体件(9)由一体成型的密封壳部和贯穿件部构成,一体化深盲孔结构行程套管(10)为整体式上端堵死的盲管结构,一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部之间采用螺纹连接并用镍基合金材质焊缝密封。本发明的有益效果是:提高了耐高温与耐腐蚀性能,提升了整个密封壳的安全性,进一步减少核电站检修难度、降低制造成本和检修成本,简化了控制棒驱动机构在役检查时的工作量;同时使密封壳制造难度大幅降低,经济效益明显。

Description

一种镍基合金耐压壳及其实施方法 技术领域
本发明涉及压水堆核电站控制棒驱动机构技术领域,具体地,涉及一种镍基合金耐压壳及其实施方法。
背景技术
压水堆控制棒驱动机构安装在反应堆压力容器顶盖上,它能够按照指令带动控制棒组件在堆芯内上下运动,保持控制棒组件在指令高度;也可以通过断电释放控制组件,使其在重力作用下快速插入堆芯,完成反应堆的启动、调节功率、保持功率、正常停堆和事故停堆等功能。同时,控制棒驱动机构的耐压壳是反应堆压力边界的组成部分。
目前国际上在役的二代(含二代改进型)压水堆核电站多采用L-106A型及其衍生型号(以下简称A型)的控制棒驱动机构,而正在建设的三代压水堆核电站则多采用L-106B型及其衍生型号(以下简称B型)的控制棒驱动机构。A型和B型的控制棒驱动机构6在堆顶上的固定方式,均为金属贯穿件5插入反应堆压力容器7顶盖并焊接后,与反应堆压力容器7顶盖形成整体。控制棒驱动机构6在反应堆中的位置如图1所示。控制棒驱动机构6的耐压壳属于反应堆一回路压力边界,同时起到支承驱动机构和工作载荷的作用。因而,控制棒驱动机构的压力边界也可以统称为耐压壳,一般包含密封壳组件与驱动杆行程套管组件。
A型控制棒驱动机构的耐压壳结构:
A型控制棒驱动机构耐压壳由排气阀1、端塞2、行程套管3、密封壳4、T型螺纹接头8、贯穿件5等部分组成。T型螺纹接头8与密封壳4通过T型螺纹连接,并用Ω焊缝密封,行程套管3与密封壳4、端塞2与行程套管3之间,均通过类似的连接方式和密封方式,T型螺纹接头8与贯穿件5之间通过对接焊缝连接。这样,A型控制棒驱动机构由上、中、下三道Ω焊缝和1条对接焊缝组焊而成。其结构如图2、图3、图4、图5所显示。
B型控制棒驱动机构的耐压壳结构:
B型控制棒驱动机构的密封壳4与贯穿件5直接对接焊为整体(即:密封壳贯穿件一体件),取消了下部Ω焊缝;行程套管3则用锻件加工成深盲孔,取消了上部Ω焊缝(即:一体化深盲孔结构行程套管)。密封壳4与行程套管3之间仍然沿用A型的螺纹连接并用Ω焊缝密封的方式。B型驱动机构的耐压壳结构如图6、图7所显示,包含1条Ω焊缝和1条对接焊缝。
压水堆控制棒驱动机构所处的运行环境为高温、高压、有辐照,因此作为压力边界之一的控制棒驱动机构耐压壳必须满足耐高温、高压、耐应力腐蚀等要求,所以希望焊缝少、结构牢固可靠。
A型控制棒驱动机构耐压壳由排气阀1、端塞2、行程套管3、密封壳4、T型螺纹接头8、贯穿件5通过上、中、下三道Ω焊缝和一道异种金属对接焊缝组焊而成,这三道Ω焊缝是整个耐压壳的薄弱环节,存在应力腐蚀产生裂纹导致泄漏的风险。此外,排气阀1和端塞2采用的为机械硬密封,对两者相配的硬密封锥面精度要求很高,提高了制造难度,且机械连接可靠性不高存在密封面磨损或旋塞螺纹拧紧力不够,在高温高压下反应堆冷却剂泄漏的风险。
B型控制棒驱动机构的密封壳4为奥氏体不锈钢,贯穿件5则为镍基合金,在结构上采用异种金属对接焊的方式将密封壳4和贯穿件5焊接成整体,以取消原A型结构中的下部Ω焊缝;行程套管3采用奥氏体不锈钢材料,设计成深盲孔结构,以取消上部Ω焊缝。
由于较之A型控制棒驱动机构的耐压壳,B型则少了两条Ω焊缝,安全性有较大提高。但中部Ω焊缝仍存在泄露风险,且密封壳4与贯穿件5之间的一条异种钢对接焊缝制造难度大、检查成本高,仍然存在焊缝裂纹等风险。
因此设计出更加安全可靠的耐压壳结构,以减少耐压壳的泄漏风险和加工制造难度,具有工程应用的实际价值。
发明内容
本发明所要解决的技术问题是提供一种提升安全性、减少检修难度、降低制造成本的镍基合金耐压壳及其实施方法。
本发明解决上述问题所采用的技术方案是:
一种镍基合金耐压壳,由采用镍基合金锻件机加制造的密封壳贯穿件一体件和一体化深盲孔结构行程套管构成,密封壳贯穿件一体件由一体成型的密封壳部和贯穿件部构成,一体化深盲孔结构行程套管为整体式上端堵死的盲管结构,一体化深盲孔结构行程套管与密封壳贯穿件一体件的密封壳部之间采用螺纹连接并用镍基合金材质焊缝密封,所述一体化深盲孔结构行程套管为采用镍基合金锻件或奥氏体不锈钢锻件机加制造而成,当一体化深盲孔结构行程套管采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管在与密封壳贯穿件一体件的密封壳部焊接连接的位置处预焊接有一个镍基合金环,所述的用于密封一体化深盲孔结构行程套管与密封壳贯穿件一 体件之间间隙的镍基合金材质焊缝设置于镍基合金环与密封壳贯穿件一体件的密封壳部之间。
本发明耐压壳的密封壳贯穿件一体件采用整体镍基合金锻件加工而成,完全取消了密封壳与贯穿件的对接焊缝,彻底消除了焊缝泄漏的风险,提升了整个密封壳的安全性,进一步减少核电站检修难度、降低制造成本和检修成本,简化了控制棒驱动机构在役检查时的工作量,且提高了耐高温与耐腐蚀性能。耐压壳中部的焊缝为镍基合金材质,密封壳贯穿件一体件和一体化深盲孔结构行程套管与镍基合金焊材焊接接触的部分也均为镍基合金,因此该镍基合金焊缝抗应力腐蚀能力大幅提高,降低了焊缝泄漏的风险。
可选的,所述的一体化深盲孔结构行程套管与密封壳贯穿件一体件的密封壳部上均设置有用于形成Ω焊缝的Ω焊接坡口,当一体化深盲孔结构行程套管采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管上的Ω焊接坡口由焊接于一体化深盲孔结构行程套管上的镍基合金环经机加工形成,加工有Ω焊接坡口的一体化深盲孔结构行程套管与密封壳贯穿件一体件的密封壳部之间采用螺纹连接并用镍基合金材质Ω焊缝密封。
由于一体化深盲孔结构行程套管用于形成Ω焊缝的Ω焊接坡口为镍基合金材质(一体化深盲孔结构行程套管为采用镍基合金锻件机加制造而成时该Ω焊接坡口自然为镍基合金材质,一体化深盲孔结构行程套管为采用奥氏体不锈钢锻件机加制造而成时该Ω焊接坡口由焊接于一体化深盲孔结构行程套管上的镍基合金环经机加工形成,故该Ω焊接坡口也为镍基合金材质)、密封壳贯穿件一体件为镍基合金材质、焊材为镍基合金焊材,故该Ω焊缝为镍基合金Ω焊缝;其抗应力腐蚀能力比B型耐压壳的奥氏体不锈钢Ω焊缝明显提 高;如果此处的Ω焊缝再适当加大焊耳部分的厚度,则可以大大减少焊缝泄漏的风险,同时并不会对以后可能需要进行的Ω焊缝切割造成不利影响。
可选的,也可一体化深盲孔结构行程套管与密封壳贯穿件一体件的密封壳部上均不设置Ω焊接坡口,一体化深盲孔结构行程套管与密封壳贯穿件一体件的密封壳部间采用角焊缝的方式连接,以替代原密封壳与行程套管之间的Ω焊缝,从而进一步减少耐压壳的焊缝泄漏风险。
通过对比镍基合金(如Inconel690)与奥氏体不锈钢(如00Cr18Ni10N)力学性能,Inconel690镍基合金在常温以及350℃高温下的力学性能指标均高于00Cr18Ni10N,而耐压壳的工况温度为310℃左右,可见全镍基合金的耐压壳在力学性能和抗应力腐蚀性能上都优于传统的奥氏体不锈钢耐压壳。
所述的镍基耐压壳的实施方法,包括以下步骤:
S1、采用经过检验合格的镍基合金锻件将密封壳贯穿件一体件加工成型;
S2、采用经过检验合格的镍基合金锻件将一体化深盲孔结构行程套管完全加工成型;
或者采用经过检验合格的不锈钢锻件将一体化深盲孔结构行程套管粗加工成型,再采用镍基合金焊丝将镍基合金环焊接于已完成粗加工的一体化深盲孔结构行程套管基体上,然后完成一体化深盲孔结构行程套管的整体加工;
S3、在核电站现场安装控制棒驱动机构时,先将钩爪组件安装在密封壳贯穿件一体件中,再用密封壳贯穿件一体件和一体化深盲孔结构行程套管的定位端和连接螺纹完成两者的组对;
S4、采用镍基合金焊丝或者镍基合金材料填充环完成密封壳贯穿件一体 件和一体化深盲孔结构行程套管之间的Ω焊接;
或者如采用无Ω焊缝的结构,则直接用镍基合金焊材焊接密封壳贯穿件一体件和一体化深盲孔结构行程套管即可。
综上,本发明的有益效果是:
1、密封壳贯穿件一体件采用镍基合金,提高了耐高温与耐腐蚀性能。
2、密封壳贯穿件一体将密封壳和贯穿件作为一个完整部分直接机加工,取消了以往控制棒驱动机构耐压壳密封壳与贯穿件之间存在的焊缝,不但减少了B型耐压壳中密封壳与贯穿件的对接焊工序和异种合金间焊接难度,同时彻底消除了焊缝泄漏的风险,提升了整个密封壳的安全性,进一步减少核电站检修难度、降低制造成本和检修成本,简化了控制棒驱动机构在役检查时的工作量;同时使密封壳制造难度大幅降低,经济效益明显。当密封壳贯穿件一体件和一体化深盲孔结构行程套管选用价格稍高的镍基合金(如Inconel690)部分或全部代替00Cr18Ni10N奥氏体不锈钢时,虽然材料成本有所提高,但降低的制造成本和检修成本远高于材料成本,整体来说本发明中耐压壳在成本、安全性和检修难易程度上更优于前述的A型和B型耐压壳。此外镍基合金(如Inconel690)材料高温性能、抗腐蚀性能优于不锈钢(如00Cr18Ni10N)材料,说明镍基合金具有在核电站工况下更高持久稳定性,这对于未来更高寿命要求的核电装备(如其中的控制棒驱动机构)来说,是一个最优选择。
3、在核电站中Ω环焊缝是最薄弱区域,最易因腐蚀而发生泄漏,而本发明中耐压壳中部的Ω环焊缝或角焊缝均为镍基合金,密封壳贯穿件一体件和一体化深盲孔结构行程套管与镍基合金焊材焊接接触的部分也均为镍基合 金,因此该镍基合金焊缝抗应力腐蚀能力大幅提高,降低了焊缝泄漏的风险。
4、本发明耐压壳由密封壳贯穿件一体件和一体化深盲孔结构行程套管两部分焊接而成,1条焊缝(Ω环焊缝或角接焊缝),将密封壳及其贯穿件作为一个整体进行加工,然后与行程套管焊接,焊缝数量减少,因焊缝腐蚀泄漏引发的失效风险降低。
5、由于行程套管与密封壳之间连接用T型螺纹和Ω环焊缝焊接方式相连,对于控制棒驱动机构而言Ω环的弹性是极好的,而Ω环密封焊接难度大,异种合金的Ω环密封焊接难度更大,故,由于异种合金的Ω环密封焊接难度大的技术难题的存在,人们难以想象更换耐压壳部件的材质。例如,当行程套管选用奥氏体不锈钢(如00Cr18Ni10N),密封壳选用诸如Inconel690的镍基合金时,两者之间的Ω焊缝即为异种合金的Ω环密封焊接,焊接难度大,性能难以得到保证。而本发明提出在行程套管Ω环焊接处现焊接一个镍基合金环,然后将其加工成Ω坡口后与密封壳进行Ω环焊接,Ω环的密封焊接属于同种合金间的焊接,从而避免了B型耐压壳中存在的异种合金焊接难度,提高了Ω环焊缝质量,同时Ω环焊缝材料为镍基合金,其力学和抗腐蚀性能均高于A型和B型耐压壳中的不锈钢Ω环焊缝。
6、当行程套管和密封壳均为镍基合金时,行程套管和密封壳间可以直接采用角焊接方式,避免了Ω环焊接的难度。
附图说明
图1是控制棒驱动机构在反应堆中的位置结构示意图;
图2是A型控制棒驱动机构的耐压壳结构;
图3是图2中A部局部放大图;
图4是图2中B部局部放大图;
图5是图2中C部局部放大图;
图6是B型控制棒驱动机构的耐压壳结构;
图7是图6中D部局部放大图;
图8是本发明的结构示意图;
图9是镍基合金环与一体化深盲孔结构行程套管基体的连接结构示意图;
图10是本发明的另一种结构示意图;
图11是本发明的密封壳贯穿件一体件的结构示意图;
图12是本发明的一体化深盲孔结构行程套管的结构示意图。
附图中标记及相应的零部件名称:
1-排气阀,2-端塞,3-行程套管,4-密封壳,5-贯穿件,6-控制棒驱动机构,7-反应堆压力容器,8-T型螺纹接头,9-密封壳贯穿件一体件,10-一体化深盲孔结构行程套管,11-镍基合金环。
具体实施方式
下面结合实施例及附图,对本发明作进一步地的详细说明,但本发明的实施方式不限于此。
实施例:
如图8所示,一种镍基合金耐压壳,由采用镍基合金锻件机加制造的密封壳贯穿件一体件9和一体化深盲孔结构行程套管10构成,密封壳贯穿件一体件9由一体成型的密封壳部和贯穿件部构成,无焊缝的密封壳贯穿件一体件9采用整体镍基合金(如Inconel690)锻件加工而成,即把传统的密封壳 与贯穿件两个部件采用整体镍基合金锻件一体机加工制造,完全取消了密封壳与贯穿件的对接焊缝,如B型密封壳的异种钢对接焊缝,提高了结构的完整性和安全性,大幅度降低了制造难度。
一体化深盲孔结构行程套管10为整体式上端堵死的盲管结构,一体化深盲孔结构行程套管10与密封壳贯穿件一体件9的密封壳部之间采用螺纹连接并用镍基合金材质焊缝密封,所述一体化深盲孔结构行程套管10为采用镍基合金锻件或奥氏体不锈钢锻件机加制造而成,即采用整体镍基合金锻件或奥氏体不锈钢锻件加工成深盲孔结构而成;当一体化深盲孔结构行程套管10采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管10在与密封壳贯穿件一体件9的密封壳部焊接连接的位置处预焊接有一个镍基合金环11,如图9所示,所述的用于密封一体化深盲孔结构行程套管10与密封壳贯穿件一体件9之间间隙的镍基合金材质焊缝设置于镍基合金环11与密封壳贯穿件一体件9的密封壳部之间。
所述的一体化深盲孔结构行程套管10与密封壳贯穿件一体件9的密封壳部上均设置有用于形成Ω焊缝的Ω焊接坡口,如图8、图11、图12所示,当一体化深盲孔结构行程套管10采用镍基合金锻件机加制造而成时该Ω焊接坡口由一体化深盲孔结构行程套管10直接经机加工形成;当一体化深盲孔结构行程套管10采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管10上的Ω焊接坡口由焊接于一体化深盲孔结构行程套管10上的镍基合金环11经机加工形成,如图9所示,虚线为加工后Ω焊接坡口的结构。加工有Ω焊接坡口的一体化深盲孔结构行程套管10的形状与B型控制棒驱动机构的一体化深盲孔结构行程套管相同,其与B型控制棒驱动机构的一体化 深盲孔结构行程套管的区别在于,该一体化深盲孔结构行程套管10的Ω焊接坡口为镍基合金材质,加工有Ω焊接坡口的一体化深盲孔结构行程套管10与密封壳贯穿件一体件9的密封壳部之间采用T型螺纹连接并用镍基合金材质Ω焊缝密封。
由于一体化深盲孔结构行程套管10用于形成Ω焊缝的Ω焊接坡口为镍基合金材质(一体化深盲孔结构行程套管10为采用镍基合金锻件机加制造而成时该Ω焊接坡口自然为镍基合金材质,一体化深盲孔结构行程套管10为采用奥氏体不锈钢锻件机加制造而成时该Ω焊接坡口由焊接于一体化深盲孔结构行程套管10上的镍基合金环11经机加工形成,故该Ω焊接坡口也为镍基合金材质)、密封壳贯穿件一体件9为镍基合金材质、焊材为镍基合金焊材,故该Ω焊缝为镍基合金Ω焊缝;其抗应力腐蚀能力比B型耐压壳的奥氏体不锈钢Ω焊缝明显提高;如果此处的Ω焊缝再适当加大焊耳部分的厚度,则可以大大减少焊缝泄漏的风险,同时并不会对以后可能需要进行的Ω焊缝切割造成不利影响。
所述的一体化深盲孔结构行程套管10为采用镍基合金锻件机加制造而成时,其是采用整体镍基合金锻件加工成深盲孔结构而成,然后再加工出Ω焊接坡口。
所述的一体化深盲孔结构行程套管10为采用奥氏体不锈钢锻件机加制造而成时,在一体化深盲孔结构行程套管10通过Ω焊缝连接密封壳贯穿件一体件9的密封壳部的位置处焊接上一个镍基合金(如Inconel690)的环行圈,然后在此镍基合金环11行圈上加工出Ω焊接坡口。即在传统的奥氏体不锈钢行程套管的适当位置焊接上一个镍基合金(如Inconel690)的环行圈,再在 此环行圈上加工出Ω焊接坡口,如图9所示。具体地,在奥氏体不锈钢材质的一体化深盲孔结构行程套管10Ω焊接坡口加工前先用镍基合金焊材将镍基合金(如Inconel690)环焊接至奥氏体不锈钢(如00Cr18Ni10N)一体化深盲孔结构行程套管10基体上,然后通过机加工方式使镍基合金环11和焊接区域共同构成一体化深盲孔结构行程套管10的镍基合金Ω焊接坡口。
也可一体化深盲孔结构行程套管10与密封壳贯穿件一体件9的密封壳部上均不设置Ω焊接坡口,一体化深盲孔结构行程套管10与密封壳贯穿件一体件9的密封壳部间采用角焊缝的方式连接,如图10所示,以替代原密封壳与行程套管之间的Ω焊缝,从而进一步减少耐压壳的焊缝泄漏风险。
所述的镍基合金可为Inconel690合金或其他镍基合金。
通过镍基合金(如Inconel690)与奥氏体不锈钢(如00Cr18Ni10N)力学性能对比可见,Inconel690镍基合金在常温以及350℃高温下的力学性能指标均高于00Cr18Ni10N,而耐压壳的工况温度为310℃左右,可见全镍基合金的耐压壳在力学性能和抗应力腐蚀性能上都优于传统的奥氏体不锈钢耐压壳。
本发明的新型的耐压壳,其中的密封壳采用整体Inconel690镍基合金锻件加工而成,完全取消了密封壳与贯穿件的对接焊缝。
所述的镍基耐压壳的实施方法,包括以下步骤:
S1、采用经过检验合格的镍基合金锻件将密封壳贯穿件一体件9加工成型;
S2、采用经过检验合格的镍基合金锻件将一体化深盲孔结构行程套管10完全加工成型;
或者采用经过检验合格的不锈钢锻件将一体化深盲孔结构行程套管10粗加工成型,再采用镍基合金焊丝将镍基合金环11焊接于已完成粗加工的一体化深盲孔结构行程套管10基体上,并按国内外或国际标准进行液体渗透检查、超声波检查、射线检查及尺寸稳定化处理,然后完成一体化深盲孔结构行程套管10的整体加工;
所述尺寸稳定化处理是本领域通用技术手段,具体指尺寸稳定化热处理,具体操作时会根据实际材料和机加工残余应力调制出具体参数,在此给出一个示例参数:以约1℃/min速度升温到300~500℃,保温9~14h,然后炉冷到120~170℃后空冷;
S3、在核电站现场安装控制棒驱动机构时,先将钩爪组件安装在密封壳贯穿件一体件9中,再用密封壳贯穿件一体件9和一体化深盲孔结构行程套管10的定位端和连接螺纹完成两者的组对;
S4、采用镍基合金焊丝或者镍基合金材料填充环完成密封壳贯穿件一体件9和一体化深盲孔结构行程套管10之间的Ω焊接;
或者如采用无Ω焊缝的结构,则直接用镍基合金焊材焊接密封壳贯穿件一体件9和一体化深盲孔结构行程套管10即可。
上述的镍基耐压壳的实施方法中采用的镍基合金可为Inconel690合金或其他镍基合金,采用的不锈钢可为00Cr18Ni10N或其他不锈钢。
如上所述,可较好的实现本发明。

Claims (4)

  1. 一种镍基合金耐压壳,其特征在于,由采用镍基合金锻件机加制造的密封壳贯穿件一体件(9)和一体化深盲孔结构行程套管(10)构成,密封壳贯穿件一体件(9)由一体成型的密封壳部和贯穿件部构成,一体化深盲孔结构行程套管(10)为整体式上端堵死的盲管结构,一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部之间采用螺纹连接并用镍基合金材质焊缝密封,所述一体化深盲孔结构行程套管(10)为采用镍基合金锻件或奥氏体不锈钢锻件机加制造而成,当一体化深盲孔结构行程套管(10)采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管(10)在与密封壳贯穿件一体件(9)的密封壳部焊接连接的位置处预焊接有一个镍基合金环(11),所述的用于密封一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)之间间隙的镍基合金材质焊缝设置于镍基合金环(11)与密封壳贯穿件一体件(9)的密封壳部之间。
  2. 根据权利要求1所述的一种镍基合金耐压壳,其特征在于,所述的一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部上均设置有用于形成Ω焊缝的Ω焊接坡口,当一体化深盲孔结构行程套管(10)采用奥氏体不锈钢锻件机加制造而成时,一体化深盲孔结构行程套管(10)上的Ω焊接坡口由焊接于一体化深盲孔结构行程套管(10)上的镍基合金环(11)经机加工形成,加工有Ω焊接坡口的一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部之间采用螺纹连接并用镍基合金材质Ω焊缝密封。
  3. 根据权利要求1所述的一种镍基合金耐压壳,其特征在于,也可一 体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部上均不设置Ω焊接坡口,一体化深盲孔结构行程套管(10)与密封壳贯穿件一体件(9)的密封壳部间采用角焊缝的方式连接。
  4. 如权利要求1~3中任意一项所述的一种镍基合金耐压壳的实施方法,其特征在于,包括以下步骤:
    S1、采用经过检验合格的镍基合金锻件将密封壳贯穿件一体件(9)加工成型;
    S2、采用经过检验合格的镍基合金锻件将一体化深盲孔结构行程套管(10)完全加工成型;
    或者采用经过检验合格的不锈钢锻件将一体化深盲孔结构行程套管(10)粗加工成型,再采用镍基合金焊丝将镍基合金环(11)焊接于已完成粗加工的一体化深盲孔结构行程套管(10)基体上,然后完成一体化深盲孔结构行程套管(10)的整体加工;
    S3、在核电站现场安装控制棒驱动机构时,先将钩爪组件安装在密封壳贯穿件一体件(9)中,再用密封壳贯穿件一体件(9)和一体化深盲孔结构行程套管(10)的定位端和连接螺纹完成两者的组对;
    S4、采用镍基合金焊丝或者镍基合金材料填充环完成密封壳贯穿件一体件(9)和一体化深盲孔结构行程套管(10)之间的Ω焊接;
    或者如采用无Ω焊缝的结构,则直接用镍基合金焊材焊接密封壳贯穿件一体件(9)和一体化深盲孔结构行程套管(10)即可。
PCT/CN2015/082059 2015-01-23 2015-06-23 一种镍基合金耐压壳及其实施方法 WO2016115821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510033421.9A CN104658618B (zh) 2015-01-23 2015-01-23 一种镍基合金耐压壳及其实施方法
CN201510033421.9 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016115821A1 true WO2016115821A1 (zh) 2016-07-28

Family

ID=53249637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082059 WO2016115821A1 (zh) 2015-01-23 2015-06-23 一种镍基合金耐压壳及其实施方法

Country Status (3)

Country Link
CN (1) CN104658618B (zh)
FR (1) FR3032058B1 (zh)
WO (1) WO2016115821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922637A (zh) * 2018-07-25 2018-11-30 中广核研究院有限公司 一种核电厂用控制棒驱动机构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658618B (zh) * 2015-01-23 2017-02-22 李泽文 一种镍基合金耐压壳及其实施方法
CN107649765A (zh) * 2017-09-20 2018-02-02 上海第机床厂有限公司 带嵌入环的密封焊自动焊接方法
CN107767970A (zh) * 2017-10-20 2018-03-06 中国核动力研究设计院 一种长寿命耐高温磁力提升式反应堆控制棒驱动机构
WO2019113927A1 (zh) * 2017-12-15 2019-06-20 中广核工程有限公司 核电站反应堆控制棒驱动机构
CN108386442B (zh) * 2018-02-01 2019-07-26 西安航天动力研究所 一种深盲孔内花键轴及其加工方法
US11049622B2 (en) * 2018-02-13 2021-06-29 Westinghouse Electric Company Llc Method to pressurize sic fuel cladding tube before end plug sealing by pressurization pushing spring loaded end plug
CN110293280B (zh) * 2018-03-23 2021-08-17 中国核动力研究设计院 涉及驱动机构ω密封焊缝镍基合金堆焊ddc裂纹控制方法
CN108682463B (zh) * 2018-06-22 2024-04-09 中核核电运行管理有限公司 一种重水堆主管道支管接头套管修补结构
CN110405279B (zh) * 2019-08-07 2024-07-09 四川华都核设备制造有限公司 一种耐压壳原料棒材及该棒材的获取方法
FR3121543B1 (fr) * 2021-03-31 2023-03-10 Framatome Sa Méthode de maintenance d’un réacteur nucléaire
CN113500532B (zh) * 2021-05-30 2022-08-05 湖北米开罗那机电技术有限公司 一种手套箱快速插拔高压贯穿件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297187A (en) * 1991-03-18 1994-03-22 Combustion Engineering, Inc. Pressure vessel penetration sealing device
US6152183A (en) * 1998-03-13 2000-11-28 Ce Nuclear Power Llc Nozzle cap for sealing a nozzle by welding with a flexible element and method therefor
CN101178946A (zh) * 2007-12-11 2008-05-14 中国核动力研究设计院 步进式磁力提升型反应堆控制棒驱动机构
CN101745759A (zh) * 2009-12-21 2010-06-23 中国船舶重工集团公司第七二五研究所 一种镍基焊条
CN201950378U (zh) * 2011-01-12 2011-08-31 哈电集团(秦皇岛)重型装备有限公司 异种钢换热管对接焊用熔化环
CN102275030A (zh) * 2011-07-25 2011-12-14 上海第一机床厂有限公司 奥氏体不锈钢与镍基合金的对接焊方法
CN202411681U (zh) * 2011-12-21 2012-09-05 哈电集团(秦皇岛)重型装备有限公司 小口径直管对接焊装置
CN103695809A (zh) * 2013-12-15 2014-04-02 中广核工程有限公司 核电站控制棒驱动机构行程套管及其制备方法
CN104658618A (zh) * 2015-01-23 2015-05-27 李泽文 一种镍基合金耐压壳及其实施方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435584A1 (de) * 1984-09-27 1986-04-03 Kraftwerk Union AG, 4330 Mülheim Kernreaktor mit einem durch steuerstaebe regelbaren reaktorkern

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297187A (en) * 1991-03-18 1994-03-22 Combustion Engineering, Inc. Pressure vessel penetration sealing device
US6152183A (en) * 1998-03-13 2000-11-28 Ce Nuclear Power Llc Nozzle cap for sealing a nozzle by welding with a flexible element and method therefor
CN101178946A (zh) * 2007-12-11 2008-05-14 中国核动力研究设计院 步进式磁力提升型反应堆控制棒驱动机构
CN101745759A (zh) * 2009-12-21 2010-06-23 中国船舶重工集团公司第七二五研究所 一种镍基焊条
CN201950378U (zh) * 2011-01-12 2011-08-31 哈电集团(秦皇岛)重型装备有限公司 异种钢换热管对接焊用熔化环
CN102275030A (zh) * 2011-07-25 2011-12-14 上海第一机床厂有限公司 奥氏体不锈钢与镍基合金的对接焊方法
CN202411681U (zh) * 2011-12-21 2012-09-05 哈电集团(秦皇岛)重型装备有限公司 小口径直管对接焊装置
CN103695809A (zh) * 2013-12-15 2014-04-02 中广核工程有限公司 核电站控制棒驱动机构行程套管及其制备方法
CN104658618A (zh) * 2015-01-23 2015-05-27 李泽文 一种镍基合金耐压壳及其实施方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922637A (zh) * 2018-07-25 2018-11-30 中广核研究院有限公司 一种核电厂用控制棒驱动机构

Also Published As

Publication number Publication date
FR3032058A1 (fr) 2016-07-29
CN104658618A (zh) 2015-05-27
CN104658618B (zh) 2017-02-22
FR3032058B1 (fr) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2016115821A1 (zh) 一种镍基合金耐压壳及其实施方法
CN104616706B (zh) 一种一体化耐压壳组件
KR101207147B1 (ko) Ni기 합금-고크롬강 구조물 및 그 제조 방법
KR101518155B1 (ko) 용접 구조 및 용접 공법
JP2011075453A (ja) 管台溶接方法、管台部補修方法および管台溶接構造
JP2010091174A (ja) 管寄せ管台の溶接構造
US8217295B2 (en) Method for producing a welded connection for use in a corrosive environment
CN106098113A (zh) 一种压水堆反应堆压力容器上封头
CN106001825A (zh) 耐腐蚀高温合金管-管板连接方法及换热器
CN111360441A (zh) 厚壁封闭环的焊接方法
JP2004170413A (ja) 一体型ノズルを有する原子炉ヘッド
CN110701310A (zh) 核级电动波纹管钠截止阀
CN102284772B (zh) 第三代核电汽轮机低压给水加热器壳体氩弧封底焊接方法
RU2456146C1 (ru) Способ изготовления сложно-комбинированных осесимметричных сварных конструкций
JP6037621B2 (ja) 栓部材の取付構造
CN114918633B (zh) 修复铜管与铜冷却壁根部处漏水的方法
KR20060051542A (ko) 금속 접합 방법
CN112548277A (zh) 一种火电厂异种钢焊接接头的焊缝界面结构优化方法
CN210637513U (zh) 一种核级电动波纹管钠截止阀
CN102632326A (zh) 提高小支管承插焊疲劳寿命的焊接工艺
CN112191999A (zh) 镍基小管与合金钢集箱角焊缝结构及焊接工艺
CN116994780A (zh) 一种整体式反应堆压力容器顶盖
CN104439741A (zh) 压力容器环缝接头的焊接成型工艺
CN111724918B (zh) 一种弱刚性包壳管带顶锻力旋转摩擦焊接的接头
JP5300440B2 (ja) 沸騰水型原子炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878493

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 31/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15878493

Country of ref document: EP

Kind code of ref document: A1