WO2016114187A1 - レンズユニット - Google Patents

レンズユニット Download PDF

Info

Publication number
WO2016114187A1
WO2016114187A1 PCT/JP2016/050215 JP2016050215W WO2016114187A1 WO 2016114187 A1 WO2016114187 A1 WO 2016114187A1 JP 2016050215 W JP2016050215 W JP 2016050215W WO 2016114187 A1 WO2016114187 A1 WO 2016114187A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding frame
optical axis
movement guide
fixed cylinder
axis direction
Prior art date
Application number
PCT/JP2016/050215
Other languages
English (en)
French (fr)
Inventor
啓樹 北村
農 松浦
啓介 九良
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016569316A priority Critical patent/JP6627780B2/ja
Priority to US15/541,218 priority patent/US10120157B2/en
Publication of WO2016114187A1 publication Critical patent/WO2016114187A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/53Means for automatic focusing, e.g. to compensate thermal effects

Definitions

  • FIG. 3 is a top view of the lens unit according to Embodiment 1.
  • FIG. FIG. 2 is a schematic sectional view taken along line II-II shown in FIG. It is a top view of the focal distance correction means shown in FIG. It is a side view of the focal distance correction
  • the optical system 4 has an optical axis C, and is configured such that a plurality of lenses are arranged along the optical axis C direction.
  • the optical system 4 includes a correction lens 3 and at least one lens 2.
  • the correction lens 3 corrects the movement of the focal position of the optical system 4 caused by the temperature change.
  • the correction lens 3 is positioned closer to the image side than the lens 2.
  • the correction lens 3 constitutes a part of a plurality of lenses included in the optical system 4.
  • the movement guide unit 60 is provided between the fixed cylinder 10 and the holding frame 20 in the radial direction of the fixed cylinder 10.
  • the movement guide unit 60 has a cylindrical shape.
  • the movement guide unit 60 is provided separately from the fixed cylinder 10.
  • the movement guide portion 60 and the holding frame 20 can be reliably brought into contact with each other.
  • the radial forces acting on the fixed tube and F y, the function of the inclination d of f (d) with respect to a plane perpendicular to the optical axis C that is acceptable for the holding frame, the holding frame 20 and the correction lens 3 and the mg by weight of the moving portion composed of a temperature change required to the holding frame 20 starts moving as a [Delta] T a, the elastic coefficient of the bimetal 32 and E, the width of the bimetal 32 in the lateral direction Is b, t is the thickness of the bimetal 32, l is the length of the bimetal 32 in the longitudinal direction, K is the curvature coefficient of the bimetal 32, and the friction coefficient ⁇ when the holding frame 20 moves in the optical axis C direction is ⁇ .
  • the urging forces of the first urging means 70 and the second urging means 50 are adjusted so that the force F y acting on the fixed cylinder 10 satisfies the following formula (1).
  • the minimum force (minimum value) in the direction of the optical axis C acting on the bimetal 32 required for F is set to F zmin and the allowable stress ⁇ a of the bimetal 32 is set.
  • the urging forces of the urging means 70 and the second urging means 50 are adjusted.
  • Fz min is the elastic coefficient E of the bimetal 32, the width b of the bimetal 32, the plate thickness t of the bimetal 32, the length l of the bimetal 32, the bending coefficient K of the bimetal 32, and the elastic member 52 of the second urging means 50.
  • the spring constant k the amount of deflection of the bimetal when all contacts the holder frame 20 of a plurality of bimetal 32 xb, is defined by the maximum temperature change [Delta] T max of environmental temperature.
  • F zmin is expressed by, for example, the following formula (2a).
  • the movement distance D falls within the range where D min and D max satisfy the following formula (4), and the temperature range of ⁇ T is
  • the expression (5) is satisfied
  • the movement distance D is within the range where D min and D max satisfy the following expression (6)
  • the temperature range of ⁇ T satisfies the following expression (7)
  • the amount of temperature change from the reference temperature ⁇ T indicates the absolute value of the temperature change from the reference temperature.
  • the case where the second urging means 50 is provided has been described as an example.
  • the present invention is not limited to this, and as long as the holding frame 20 is maintained in a posture in which it does not move due to its own weight, The two urging means 50 may not be provided.
  • the holding frame 20 can be pulled toward the fixed cylinder 10 even when the lens unit 1 is used in a posture facing the ground side. Therefore, it can be used stably.
  • FIG. 7 is a top view of the lens unit according to the present embodiment.
  • the lens unit according to the present embodiment will be described with reference to FIG.
  • the radial force F y acting on the fixed cylinder 10 and the force Fz acting on the bimetal 32 in the optical axis C direction satisfy the predetermined condition according to the first embodiment.
  • the urging forces of the first urging means 70 and the second urging means 50 are determined.
  • the movement guide unit 60 is pressed against the holding frame 20 in the radial direction of the fixed cylinder 10, and the holding frame 20 is moved to the movement guide unit. By moving it in contact with 60, substantially the same effect as in the first embodiment can be obtained.
  • FIG. 8 is a top view of the lens unit according to the present embodiment.
  • FIG. 9 is a schematic cross-sectional view along the line IX-IX shown in FIG.
  • the lens unit 1B according to the present embodiment will be described with reference to FIGS.
  • the movement guide unit 60A is configured by two spheres aligned along the optical axis C direction. Each of the two spheres makes point contact with the inner peripheral surface of the holding frame 20.
  • the movement guide unit 60 comes into line contact with the holding frame 20 by rotating in the direction of the optical axis C while the sphere is in contact with the holding frame 20.
  • the number of spheres is not limited to two, but may be one or three or more.
  • the radial force F y acting on the fixed cylinder 10 and the force F z acting on the bimetal 32 in the optical axis C direction satisfy the predetermined condition according to the first embodiment.
  • the urging forces of the first urging means 70 and the second urging means 50 are determined.
  • the movement guide portion 60 is pressed against the holding frame 20 in the radial direction of the fixed cylinder 10 by the deformation due to the temperature change of the bimetal 32, and the holding frame 20 is moved and guided.
  • the holding frame 20 is moved and guided.
  • FIG. 10 is a top view of the lens unit according to the present embodiment.
  • FIG. 11 is a schematic cross-sectional view along the line XI-XI shown in FIG.
  • a lens unit 1C according to the present embodiment will be described with reference to FIGS.
  • the lens unit 1 ⁇ / b> C according to the present embodiment has a holding frame 20 that is thicker than the lens unit 1 according to the first embodiment.
  • the portion 60 is different from the configuration of the first urging means 70 ⁇ / b> C in that the portion 60 is provided in the recess 24 provided on the inner peripheral surface of the cylindrical portion 21 of the holding frame 20.
  • Other configurations are almost the same.
  • the concave portion 24 is provided on the inner peripheral surface of the cylindrical portion 21.
  • the recessed part 24 is formed by the inner peripheral surface of the cylindrical part 21 being recessed toward the radially outer side.
  • the recess 24 is provided between the front end 21a and the rear end 21b of the cylindrical portion 21.
  • the bottom 25 of the recess 24 is provided to be a plane parallel to the optical axis C.
  • the bottom 25 of the recess 24 corresponds to a movement reference plane.
  • the radial force F y acting on the fixed cylinder 10 and the force F z acting on the bimetal 32 in the optical axis C direction satisfy the predetermined condition according to the first embodiment.
  • the urging forces of the first urging means 70C and the second urging means 50 are determined.
  • the movement guide portion 60 is pressed against the holding frame 20 in the radial direction of the fixed cylinder 10 by the deformation due to the temperature change of the bimetal 32, and the holding frame 20 is moved and guided.
  • the holding frame 20 is moved and guided.
  • the flat tube is provided between the fixed tube and the holding frame in the radial direction of the fixed tube, and is brought into contact with at least one of the fixed tube and the holding frame so as to be perpendicular to the optical axis.
  • the thermal deformation member that restricts the rotation of the holding frame in the direction intersecting the guide and guides the movement of the holding frame in the optical axis direction is illustrated as an example, it is not limited thereto.
  • the member may be made of a material having a linear expansion coefficient of 8 ⁇ 10 ⁇ 5 (1 / K) or more and 15 ⁇ 10 ⁇ 5 (1 / K) or less.
  • a material suitable for a thermally deformable member having a linear expansion coefficient in this range a material having a relatively high thermal expansion property such as polyacetal resin (POM) or polybutylene terephthalate (PBT) can be suitably used.
  • POM polyacetal resin
  • PBT polybutylene terephthalate
  • the lens unit based on this invention demonstrated above is a lens unit provided with the optical system comprised by several lens, Comprising: It has an optical axis while comprising a part of several said lens, The said optical axis direction
  • the correction lens that corrects the movement of the focal position of the optical system caused by the temperature change, the holding frame that holds the correction lens, and the holding frame that is movably supported along the optical axis direction.
  • a fixed cylinder that is provided between the fixed cylinder and the holding frame in a radial direction of the fixed cylinder, and is brought into contact with at least one of the fixed cylinder and the holding frame, thereby forming a plane perpendicular to the optical axis.
  • a movement guide portion for restricting the rotation of the holding frame in the direction intersecting the guide and guiding the movement of the holding frame in the optical axis direction, and the fixed cylinder and the upper side in the optical axis direction.
  • a bimetal provided between the holding frame, arranged in the circumferential direction of the fixed cylinder, and changing a distance along the optical axis direction between the holding frame and the fixed cylinder by deformation caused by a temperature change; and First urging means for urging the holding frame relative to the fixed cylinder via the movement guide portion in the radial direction of the fixed cylinder.
  • the lens unit according to the present invention preferably further includes second urging means for urging the holding frame against the bimetal in the optical axis direction.
  • the bimetal has a plate-like shape having a short side direction and a long side direction and having a plate thickness in a direction sandwiched between the fixed cylinder and the holding frame,
  • the radial force acting on the fixed cylinder is Fy
  • the function of the inclination ⁇ d with respect to the plane perpendicular to the optical axis allowed by the holding frame is f (d)
  • the holding frame and the correction lens The weight of the configured moving part is mg
  • the temperature change necessary for the holding frame to start moving is ⁇ Ta
  • the bimetal elastic coefficient is E
  • the bimetal width in the short direction is b
  • the bimetal plate thickness is t
  • the bimetal length in the longitudinal direction is l
  • the bimetal bending coefficient is K
  • the friction coefficient ⁇ when the holding frame moves in the optical axis direction If the it is preferred that defines the biasing force of the first biasing means and the second biasing means so as to satisfy the following formula (1).
  • the second urging means includes an elastic member that expands and contracts along the optical axis direction.
  • the force in the optical axis direction acting on the bimetal is Fz
  • the optical axis acting on the bimetal necessary for all of the plurality of bimetals to contact the holding frame in the operating temperature range.
  • the urging forces of the first urging means and the second urging means are determined so as to satisfy the following formula (2). It is preferable.
  • the spring constant of the elastic member is k
  • the amount of temperature change from the reference temperature is ⁇ T
  • the temperature after the temperature change from the reference position of the holding frame at the reference temperature is D
  • the movement distance along the direction parallel to the optical axis direction to the position of the holding frame is D
  • the minimum value of the movement distance D is Dmin
  • the maximum value of the movement distance D is Dmax
  • the temperature change amount is preferably within the range in which the Dmin and the Dmax satisfy the following formula (4). .
  • the moving distance D falls within a range where the Dmin and the Dmax satisfy the following formula (6). Further, when the temperature range of ⁇ T satisfies the following formula (7), the moving distance D is preferably within a range where the Dmin and the Dmax satisfy the following formula (8).
  • a plurality of the second urging means are preferably provided.
  • the urging force generated by each of the plurality of second urging means is It is preferable that the position of the holding frame with respect to the fixed cylinder is adjusted in the optical axis direction.
  • a plurality of the movement guide portions are provided so as to be arranged at intervals in the circumferential direction when viewed from the optical axis direction.
  • a line connecting the first movement guide part and the center of the fixed cylinder is a first virtual line
  • a line connecting the second movement guide part and the center of the fixed cylinder is a second virtual line
  • the second movement guide is located on the opposite side of the first movement guide portion when viewed, and the intersection of the first imaginary line and the outer peripheral surface of the fixed cylinder is the first intersection, and when viewed from the center.
  • At least one of the movement guides is the movement guide in the circumferential direction. It is preferred that first moving guide unit and the second moving guide part is provided between the first intersection and the second intersection on the side not located. Moreover, it is preferable that the first urging means is provided so as to urge the fixed cylinder in the radial direction with respect to at least one of the other movement guides.
  • the first urging means is configured to urge the fixed cylinder in the radial direction with respect to at least one of the first movement guide part and the second movement guide part. Is preferably further provided.
  • the movement guide portion is provided separately from the fixed cylinder.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

 レンズユニット(1)は、光学系(4)の焦点位置の移動を補正する補正レンズ(3)と、補正レンズ(3)を保持する保持枠(20)と、保持枠(20)を光軸(C)方向に沿って移動可能に支持する固定筒(10)と、固定筒(10)の径方向において固定筒(10)と保持枠(20)との間に設けられ、光軸(C)に直交する平面に対して交差する方向への保持枠(20)の回動を規制するとともに保持枠(20)の光軸(C)方向への移動を案内する移動案内部(60)と、光軸(C)方向において固定筒(10)と保持枠(20)との間に設けられ、保持枠(20)と固定筒(10)との光軸(C)方向に沿った距離を変化させるバイメタルと、固定筒(10)の径方向において移動案内部(60)を介して保持枠(20)を固定筒(10)に対して相対的に付勢する第1付勢手段(70)と、を備える。

Description

レンズユニット
 本発明は、プロジェクターやカメラ等に用いられるレンズユニットに関する。
 プロジェクターやカメラ等に具備される複数のレンズによって構成される光学系は、周辺の環境温度が変化することによって、レンズの屈折率が変化したり、レンズを保持する鏡胴が伸縮したりする。このため、光学系の焦点位置が変動し、光学性能が劣化する。
 このような光学性能の劣化を抑制するために、温度変化に伴って変形する温度補正部材を用いて焦点位置を補正するレンズ保持装置およびレンズユニットが開示された文献として、特許文献1および特許文献2が挙げられる。
 特許文献1に開示のレンズ保持装置は、温度補正部材としてバイメタルを用い、レンズをバイメタルによって直接支持する構成を有する。温度変化に伴うバイメタルの変形により、レンズを光軸方向に移動させることにより、焦点位置を補正する。
 特許文献2に開示のレンズユニットは、焦点位置を補正するための補正レンズを保持する保持枠を温度補正部材によって光軸方向に移動させる構成を有する。温度補正部材としては、樹脂、合金など様々な材料が用いることができる。そのような材料のなかでもバイメタルは、温度変化に対して大きく変形するため、他の材料を用いた場合に比べ、小さなスペースで大きな移動量を実現できる。
特公昭61-60406号公報 特開平11-337798号公報
 しかしながら、特許文献1および特許文献2において、温度補正部材としてバイメタルを用いる場合には、複数のバイメタルを光軸の周方向に互いに間隔をあけて配置する。また、保持枠を移動させる場合には、保持枠を嵌合によって固定する固定筒と保持枠との間に嵌合ガタによる隙間が設けられるため、当該隙間によって保持枠は、光軸に対して傾斜することが許容されてしまう。
 このため、環境温度の変化時において、バイメタルの個体差や温度ムラにより個々のバイメタルの変形量がばらつき、レンズ自体が傾斜したり、保持枠が傾斜したりする。これにより、光学性能の劣化が発生する問題があった。
 また、保持枠を他のレンズを保持する固定筒との嵌合ガタを詰める設計にすると、精密な加工が必要となり加工コストが増大したり、固定筒と保持枠とで熱膨張係数が異なる材料を用いた場合に噛み込みが発生したりする問題が生じる。
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、光軸に垂直な平面に対する傾きを抑制しつつ、環境温度変化に起因した焦点距離の変動を補正可能なレンズユニットを提供することにある。
 本発明に基づくレンズユニットは、複数のレンズによって構成される光学系を備えたレンズユニットであって、複数の上記レンズの一部を構成するとともに光軸を有し、上記光軸方向に移動させることにより、温度変化により生じる上記光学系の焦点位置の移動を補正する補正レンズと、上記補正レンズを保持する保持枠と、上記保持枠を上記光軸方向に沿って移動可能に支持する固定筒と、上記固定筒の径方向において上記固定筒と上記保持枠との間に設けられ、上記固定筒および上記保持枠の少なくとも一方に接触することにより、上記光軸に直交する平面に対して交差する方向への上記保持枠の回動を規制するとともに上記保持枠の上記光軸方向への移動を案内する移動案内部と、上記光軸方向において上記固定筒と上記保持枠との間に設けられ、上記固定筒の周方向に複数配置され、温度変化に伴う変形により上記保持枠と上記固定筒との上記光軸方向に沿った距離を変化させるバイメタルと、上記固定筒の上記径方向において、上記移動案内部を介して上記保持枠を上記固定筒に対して相対的に付勢する第1付勢手段と、を備える。
 本発明によれば、光軸に垂直な平面に対する傾きを抑制しつつ、環境温度変化に起因した焦点距離の変動を補正可能なレンズユニットを提供することができる。
実施の形態1に係るレンズユニットの上面図である。 図1に示すII-II線に沿った概略断面図である。 図1に示す焦点距離補正手段の上面図である。 図1に示す焦点距離補正手段の側面図である。 固定筒に作用する径方向の力Fyと光軸に垂直な平面に対する保持枠の傾きdとの関係を示す図である。 基準温度からの温度変化量ΔTと、基準温度における保持枠の基準位置から温度変化後の保持枠の位置までの前記光軸方向に平行な方向に沿った移動距離Dとの関係を示す図である。 実施の形態2に係るレンズユニットの上面図である。 実施の形態3に係るレンズユニットの上面図である。 図8に示すIX-IX線に沿った概略断面図である。 実施の形態4に係るレンズユニットの上面図である。 図10に示すXI-XI線に沿った概略断面図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態1)
 図1は、本実施の形態に係るレンズユニットの上面図である。図2は、図1に示すII-II線に沿った概略断面図である。図1および図2を参照して、本実施の形態に係るレンズユニット1について説明する。
 図1および図2に示すように、本実施の形態に係るレンズユニット1は、複数のレンズによって構成される光学系4、固定筒10、保持枠20、焦点距離補正手段30、移動案内部60、第1付勢手段70、および第2付勢手段50を備える。
 光学系4は、光軸Cを有し、光軸C方向に沿って複数のレンズが並ぶように構成されている。光学系4は、補正レンズ3と、少なくとも1つ以上のレンズ2とを含む。補正レンズ3は、温度変化により生じる光学系4の焦点位置の移動を補正する。補正レンズ3は、レンズ2よりも像側に位置する。補正レンズ3は、光学系4に含まれる複数のレンズの一部を構成する。
 固定筒10は、保持枠20を光軸C方向に沿って移動可能に支持する。固定筒10は、筒状形状を有する。固定筒10は、筒状部11、凹部12、フランジ部14、収容部15およびレンズ保持部16を含む。
 筒状部11の先端11a側から保持枠20が嵌め込まれる。凹部12は、筒状部11の外周面に設けられている。凹部12は、筒状部11の外周面が径方向内側に向けて凹むことにより形成されている。凹部12は、筒状部11の先端11aとフランジ部14との間に設けられている。凹部12の底部13は、光軸Cと平行な平面となるように設けられている。凹部12の底部13は、移動基準面に相当する。
 フランジ部14は、筒状部11の途中領域において筒状部11の外周面から径方向外側へ突出するように設けられている。フランジ部14の内部には、後述する第2付勢手段50のネジ51を収容する収容部15が設けられている。
 収容部15は、たとえば3つ設けられている。3つの収容部15は、周方向に互いに離間して設けられている。収容部15は、保持枠20が位置するフランジ部14の一端(後端)側の一部が他端(先端)側に向けて窪むことで形成されている。収容部15の略中央部には、後述するネジ51の軸を挿通可能に孔部15aが設けられている。
 保持枠20は、補正レンズ3を保持する。保持枠20は、光軸C方向に沿って移動可能となるように固定筒10に組み付けられている。換言すると、保持枠20は、移動基準面である凹部12の底部13に平行に移動可能に固定筒10に組み付けられている。
 保持枠20は、筒状部21、鍔部22を含む。筒状部21の先端21a側には、レンズ保持部26が設けられており、レンズ保持部26によって補正レンズ3が保持されている。鍔部22は、筒状部21の後端側に設けられている。鍔部22は、筒状部21の外周面から径方向外側に突出するように設けられている。
 鍔部22は、光軸C方向に平行な方向に貫通する貫通孔23を有する。貫通孔23には、第2付勢手段50を構成する後述のネジ51の先端51aが挿通される。貫通孔23は、たとえば3つ設けられている。3つの貫通孔23は、周方向に間隔を空けて設けられている。
 焦点距離補正手段30は、環状形状を有する。焦点距離補正手段30は、保持枠20を光軸C方向に沿って移動させるためのものである。焦点距離補正手段30は、光軸C方向に沿って固定筒10と保持枠20との間に設けられている。具体的には、焦点距離補正手段30は、固定筒10のフランジ部14と保持枠20の鍔部22とによって挟み込まれるように設けられている。なお、焦点距離補正手段30な詳細については、図3および図4を用いて後述する。
 第2付勢手段50は、光軸C方向においてバイメタル32(図3参照)を介して保持枠20を固定筒10に対して付勢する。第2付勢手段50は、複数設けられることが好ましい。第2付勢手段50は、たとえば3つ設けられている。3つの第2付勢手段50は、周方向に間隔をあけて配置されている。
 第2付勢手段50は、ネジ51および弾性部材52を含む。ネジ51の先端部に設けられたネジ溝が、保持枠20の鍔部22の貫通孔23に螺合することにより、ネジ51は、保持枠20に固定されている。
 弾性部材52は、光軸C方向に沿って伸縮する。弾性部材52は、弾性力を発現させることにより、焦点距離補正手段30を介して保持枠20を固定筒10に付勢する。たとえば、後述する焦点距離補正手段30のバイメタル32が温度変化に起因して変形することにより、保持枠20が光軸C方向に沿って遠ざかる方向に移動する場合には、弾性部材52が圧縮されることにより、保持枠20の移動方向に抗するように作用する弾性部材52の弾性力が発現する。
 この弾性力は、ネジ51の頭51bからネジ51の軸を介してネジ51の先端51aに固定された保持枠20に作用する。これにより、保持枠20は、焦点距離補正手段30側に引っ張れることとなり、その結果、保持枠20が焦点距離補正手段30を介して固定筒に付勢される。
 複数の第2付勢手段50を設けた場合には、複数の第2付勢手段50のそれぞれが発生する付勢力により、光軸C方向において固定筒10に対する保持枠20の位置が調整される。また、組立時に、各第2付勢手段50の付勢力を調整することにより、複数のバイメタル32の光軸C方向の高さのばらつきに起因する保持枠20の傾きを低減することができる。
 移動案内部60は、固定筒10の径方向において固定筒10と保持枠20との間に設けられている。移動案内部60は、円柱形状を有する。移動案内部60は、固定筒10と別体に設けられている。
 移動案内部60は、その一部が固定筒10の径方向外側に凹部12から食み出すように凹部12に収容されている。移動案内部60は、保持枠20の内周面に接触する。より具体的には、移動案内部60は、保持枠20の内周面と光軸Cに平行な方向に線接触する。移動案内部60は、保持枠20に線接触することにより、保持枠20の光軸C方向への移動を案内する。また、移動案内部60が保持枠20に線接触することにより、当該移動案内部60と固定筒10の中心Oを結ぶ方向に力が作用したとしても、光軸Cに直交する平面に対して交差する方向への保持枠20の回動を規制することができる。
 移動案内部60は、光軸方向から見た場合に固定筒10の周方向に互いに間隔をあけて並ぶように複数設けられている。移動案内部60は、たとえば3つ設けられている。3つの移動案内部60は、周方向において3つの第2付勢手段50と交互に並ぶように設けられている。
 移動案内部60を周方向に間隔を空けて3つ以上設けることにより、保持枠20の光軸方向への移動をより安定させることができるとともに、光軸Cに直交する平面に対して交差する方向への保持枠20の回動をより抑制することができる。
 複数の移動案内部60のうち固定筒10の周方向において互いに隣り合う2つの移動案内部60を第1移動案内部60aおよび第2移動案内部60bとし、光軸C方向から見た場合に、第1移動案内部60aと固定筒10の中心Oとを結ぶ線を第1仮想線L1とし、第2移動案内部60bと固定筒10の中心Oとを結ぶ線を第2仮想線L2とし、中心Oから見た場合に第1移動案内部60aの反対側に位置し、第1仮想線L1と固定筒10の外周面との交点を第1交点P1とし、中心Oから見た場合に第2移動案内部60bの反対側に位置し、第2仮想線L2と固定筒10の外周面との交点を第2交点P2とした場合に、第1移動案内部60aおよび第2移動案内部60bを除く他の移動案内部60のうち少なくとも1つの移動案内部60cが、固定筒10の周方向において第1移動案内部60aおよび第2移動案内部60bが位置していない側にある第1交点P1と第2交点P2との間の領域R1に設けられることが好ましい。
 第1付勢手段70は、固定筒10の径方向において、移動案内部60を介して保持枠20を固定筒10に対して相対的に付勢する。第1付勢手段70は、固定部71および弾性部材72を含む。固定部71は、弾性部材72を固定筒10に固定する。固定部71は、ビス等によって構成される。
 弾性部材72は、固定筒10の径方向において、固定筒10と保持枠20との間に設けられる。弾性部材72としては、板バネを用いることができる。弾性部材72は、移動案内部60を保持枠20の内周面に押し当てる。
 これにより、固定筒10と保持枠20とが間にわずかな隙間を形成するように嵌め合いされた場合であっても、移動案内部60と保持枠20とを確実に接触させることができる。この結果、光軸に垂直な平面に対する傾きを抑制しつつ、光軸C方向に沿って保持枠20を移動させることができ、環境温度変化に起因した焦点距離の変動を補正することができる。
 図3は、図1に示す焦点距離補正手段の上面図である。図4は、図1に示す焦点距離補正手段の側面図である。図3および図4を参照して、焦点距離補正手段30の構成について説明する。
 図3および図4に示すように、焦点距離補正手段30は、環状の台板31と熱変形部材としての複数のバイメタル32を含む。環状の台板31の内径は、筒状部11の外径よりもわずかに大きくなっている。これにより、台板31は、筒状部11に嵌り込み、フランジ部14に載置される。
 バイメタル32は、短手方向および長手方向を有する板状形状を有する。バイメタル32は、たとえば3つ設けられている。3つのバイメタル32は、固定筒10の周方向に間隔をあけて配置されている。
 バイメタル32は、熱膨張率が異なる2枚の金属板を貼り合せたものであり、温度変化に伴って形状が変形する。バイメタル32の一端側は、台板31に固定され、バイメタル32の他端側は自由端となっている。
 本実施の形態においては、短手方向のバイメタル32の幅寸法をbとし、長手方向のバイメタル32の長さ寸法をlとし、バイメタル32の板厚(厚さ寸法)をtとする。これらバイメタル32の寸法は、固定筒10およびバイメタル32に作用する力を規定するパラメーターである。
 再び図2に示すように、固定筒10に作用する力としては、その径方向に作用する力Fがある。また、バイメタル32に作用する力としては、保持枠20とバイメタル32とを接触させるように作用する第2付勢手段50の付勢力に基づく力であり、光軸C方向に作用する力Fがある。
 固定筒10に作用する径方向の力Fは、大きすぎる場合には、保持枠20が光軸C方向に沿って動かなくなる。また、固定筒10に作用する径方向の力Fが、小さすぎる場合には、レンズユニット1を搭載するカメラやプロジェクター等に相当程度の衝撃が加わったときに、保持枠20が傾きやすくなる。このため、固定筒10に作用する径方向の力Fは、後述する下限値よりも大きく上限値よりも小さくなることが好ましい。
 保持枠20の移動は、環境温度変化に伴うバイメタル32の変形によって生じるため、温度変化をΔTaとした場合には、Fの上限は、ΔTによって決定される。また、Fの下限は、保持枠20の傾きを抑制するように算出されるため、保持枠20に許容される傾きΔdによって決定される。
 本実施の形態において、固定筒に作用する径方向の力をFとし、保持枠に許容される光軸Cに垂直な平面に対する傾きdの関数をf(d)とし、保持枠20と補正レンズ3とによって構成される移動部の重量をmgとし、保持枠20が移動開始するために必要な温度変化をΔTとし、バイメタル32の弾性係数をEとし、短手方向におけるバイメタル32の幅をbとし、バイメタル32の板厚をtとし、長手方向におけるバイメタル32の長さをlとし、バイメタル32の湾曲係数をKとし、保持枠20が光軸C方向に移動する際の摩擦係数μとした場合に、固定筒10に作用する力Fは、下記式(1)を満たすように、第1付勢手段70および第2付勢手段50の付勢力が調整されている。
Figure JPOXMLDOC01-appb-M000009
 このように調整した場合には、図1および図2に図示されるレンズユニット1を上下反転させた状態、すなわち第1付勢手段70に固定筒10の自重が負荷される状態から第1付勢手段70に保持枠20の自重が負荷され保持枠20をシャフト60に押し付ける力が弱くなる状態にレンズユニット1の姿勢を変えた場合であっても、保持枠20の傾斜を抑制することができる。
 図5は、固定筒10に作用する径方向の力Fと光軸Cに垂直な平面に対する保持枠20の傾きdとの関係を示す図である。図5を参照して、固定筒10に作用する径方向の力Fの下限を規定する、光軸Cに垂直な平面に対する保持枠20の傾きdの関数f(d)の一例について説明する。なお、図5は、固定筒10に作用する径方向の力Fを測定毎に変更し、保持枠20の傾きdをプロットしたものである。
 図5に示すように、固定筒10に作用する径方向の力Fが小さくなるにつれて光軸Cに垂直な平面に対する保持枠20の傾きdが大きくなる傾向が見られる。図5の破線に示すように、上述の複数のプロットから算出される光軸Cに垂直な平面に対する保持枠20の傾きdの関数f(d)の一例は、下記式(1a)によって示される。
Figure JPOXMLDOC01-appb-M000010
 式(1a)に示す関数f(d)において、たとえば保持枠20に許容される光軸Cに垂直な平面に対する傾きdを1.0分とする場合には、d=1.0を式(1a)に代入することにより、f(1)=3.4となる。この結果と上記式(1)に基づいて、移動部(保持枠20と補正レンズ3)の重量mgの3.4倍の力が固定筒10の径方向に作用するように第1付勢手段70および第2付勢手段50の付勢力を定めれば、衝撃時の保持枠20の傾きを抑制することができることとなる。
 さらに、保持枠20の光軸C方向への移動は、バイメタル32に作用する光軸C方向の力Fによっても影響を受ける。このため、バイメタル32に作用する光軸C方向の力Fを調整することにより、保持枠20を傾斜させることなく光軸C方向に移動させることができる。
 バイメタル32に作用する光軸C方向の力Fが大きすぎる場合には、バイメタル32の変形を許容することができなくなる。また、バイメタル32に作用する光軸C方向の力Fが小さすぎる場合には、光軸C方向に沿って保持枠20が固定筒10に近づくようにバイメタル32が変形した場合に、保持枠20をバイメタル32に対して十分に押し付けることができなくなる。これにより、保持枠20が傾斜してしまう。このため、バイメタル32に作用する光軸C方向の力Fは、後述する最小値以上上限値より小さくなることが好ましい。
 本実施の形態において、バイメタルに作用する前記光軸方向の力をFとし、弾性部材52のはね定数をkとし、使用温度範囲において複数のバイメタル32の全てが保持枠20に接触するために必要となるバイメタル32に作用する光軸C方向の最小の力(最小値)をFzminとし、バイメタル32の許容応力σとした場合に下記式(2)を満たすように、第1付勢手段70および第2付勢手段50の付勢力が調整されている。
Figure JPOXMLDOC01-appb-M000011
 ここで、Fzminは、バイメタル32の弾性係数E、バイメタル32の幅b、バイメタル32の板厚t、バイメタルの長さl、バイメタル32の湾曲係数K、第2付勢手段50の弾性部材52のバネ定数k、複数のバイメタル32の全てが保持枠20に接触する場合のバイメタルの撓み量xb、環境温度の最大温度変化ΔTmaxによって規定される。Fzminは、たとえば、下記式(2a)によって示される。
Figure JPOXMLDOC01-appb-M000012
 図6は、基準温度からの温度変化量ΔTと、基準温度における保持枠の基準位置から温度変化後の保持枠の位置までの前記光軸方向に平行な方向に沿った移動距離Dとの関係を示す図である。
 本実施の形態においては、弾性部材のはね定数をkとし、基準温度からの温度変化量をΔTとし、基準温度における保持枠の基準位置から温度変化後の保持枠の位置までの光軸方向に平行な方向に沿った移動距離をDとし、移動距離Dの最小値をDminとし、移動距離Dの最大値をDmaxとし、温度変化量の最大をΔTmaxとした場合に、基準温度からの温度変化量ΔTと保持枠20の移動距離Dとの関係が図5のような関係であることが好ましい。
 具体的には、領域Rに示すような底辺および上辺の長さが8μlF/EbtKであり、斜辺の傾きがEbtK/(Ebt+4lk)とする略平行四辺形形状を有するヒステリシスループの範囲内に収まることが好ましく、たとえば温度変化量をΔT1とする場合には、破線で示す範囲に示すような直線状の範囲に移動距離Dが収まることが好ましい。
 より具体的には、ΔTの温度範囲が下記式(3)を満たす場合に、移動距離Dは、DminおよびDmaxが下記式(4)を満たす範囲内に収まり、ΔTの温度範囲が下記式(5)を満たす場合に、移動距離Dは、DminおよびDmaxが下記式(6)を満たす範囲内に収まり、ΔTの温度範囲が下記式(7)を満たす場合に、移動距離Dは、DminおよびDmaxが下記式(8)を満たす範囲内に収まることが好ましい。なお、基準温度からの温度変化量をΔTとは、基準温度からの温度変化の絶対値を指す。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 以上のように、光軸Cに平行に延在する移動案内部60を設け、バイメタル32の温度変化による変形によって、固定筒10の径方向に移動案内部60を保持枠20に押し当て、保持枠20を移動案内部60に接触させながら移動させることにより、本実施の形態に係るレンズユニット1は、光軸に垂直な平面に対する傾きを抑制しつつ、環境温度変化に起因した焦点距離の変動を補正することができる。
 上述した本実施の形態においては、移動案内部60が、保持枠20と別体で設けられる場合を例示して説明したが、これに限定されず、保持枠20と移動案内部60とが射出成型等によって一体に成形されていてもよい。この場合には、保持枠20に凹部12を設ける必要がなく、移動案内部60は、外周側に曲面を有する略半円柱形状を有する。
 上述した本実施の形態においては、保持枠20が固定筒10の外側において光軸C方向に移動可能に固定筒10に支持される場合を例示して説明したが、これに限定されず、固定筒10の内側において光軸C方向に移動可能に固定筒10に支持されてもよい。
 上述した本実施の形態においては、第2付勢手段50が設けられている場合を例示して説明したがこれに限定されず、保持枠20が自重によって移動しない姿勢が維持される限り、第2付勢手段50が設けられていなくてもよい。第2付勢手段50が設けられている場合には、レンズユニット1を地面側に向くような姿勢で使用した場合であっても、保持枠20を固定筒10側に向けて引っ張ることができるため、安定して使用することができる。
 (実施の形態2)
 図7は、本実施の形態に係るレンズユニットの上面図である。図7を参照して、本実施の形態に係るレンズユニットについて説明する。
 図7に示すように、本実施の形態に係るレンズユニット1Aは、実施の形態1に係るレンズユニット1と比較した場合に、移動案内部60の位置および第1付勢手段70の個数が相違する。その他の構成については、ほぼ同様である。
 移動案内部60は、固定筒10の周方向にほぼ均等の間隔をあけて配置されている。このような場合においても、第1移動案内部60aおよび第2移動案内部60bを除く他の移動案内部60のうち少なくとも1つの移動案内部60cが、固定筒10の周方向において第1移動案内部60aおよび第2移動案内部60bが位置していない側にある第1交点P1と第2交点P2との間に設けられる。
 第1付勢手段70は、2つ設けられている。2つの第1付勢手段70のうち一方は、移動案内部60cに対して固定筒10の径方向に付勢する。2つの第1付勢手段70のうち他方は、第1移動案内部60aおよび第2移動案内部60bの少なくとも一方に対して固定筒10の径方向に付勢するように設けられている。具体的には、2つの第1付勢手段70のうち他方は、第2移動案内部60bに対して固定筒10の径方向に付勢するように設けられている。
 また、本実施の形態においても、固定筒10に作用する径方向の力Fおよびバイメタル32に作用する光軸C方向の力Fzが実施の形態1に準じた所定の条件を満たすように第1付勢手段70および第2付勢手段50の付勢力が定められている。
 このような構成を有することにより、本実施の形態においてもバイメタル32の温度変化による変形によって、固定筒10の径方向に移動案内部60を保持枠20に押し当て、保持枠20を移動案内部60に接触させながら移動させることにより、実施の形態1とほぼ同様の効果が得られる。
 (実施の形態3)
 図8は、本実施の形態に係るレンズユニットの上面図である。図9は、図8に示すIX-IX線に沿った概略断面図である。図8および図9を参照して、本実施の形態に係るレンズユニット1Bについて説明する。
 図8および図9に示すように、本実施の形態に係るレンズユニット1Bは、実施の形態1に係るレンズユニット1と比較した場合に、2つの移動案内部60に代えて構成の異なる2つの移動案内部60Aが用いられている点において相違する。その他の構成については、ほぼ同様である。
 移動案内部60Aは、光軸C方向に沿って2つの球体が並ぶことにより構成されている。2つの球体のそれぞれは、保持枠20の内周面に点接触する。バイメタル32の温度変化による変形により保持枠20が移動する場合には、球体が保持枠20に接触した状態で光軸C方向に回転することにより、移動案内部60が保持枠20に線接触する場合と比較して、保持枠20と移動案内部60Aとの摩擦力を低減させることができる。なお、球体の数は2つに限定されず、1つであってもよく、3つ以上であってもよい。
 また、本実施の形態においても、固定筒10に作用する径方向の力Fおよびバイメタル32に作用する光軸C方向の力Fが実施の形態1に準じた所定の条件を満たすように第1付勢手段70および第2付勢手段50の付勢力が定められている。
 このような構成とすることにより、本実施の形態においても、バイメタル32の温度変化による変形によって、固定筒10の径方向に移動案内部60を保持枠20に押し当て、保持枠20を移動案内部60に接触させながら移動させることにより、実施の形態1とほぼ同様の効果が得られる。
 (実施の形態4)
 図10は、本実施の形態に係るレンズユニットの上面図である。図11は、図10に示すXI-XI線に沿った概略断面図である。図10および図11を参照して、本実施の形態に係るレンズユニット1Cについて説明する。
 図10および図11に示すように、本実施の形態に係るレンズユニット1Cは、実施の形態1に係るレンズユニット1と比較した場合に、保持枠20が厚肉で構成されており、移動案内部60が、保持枠20の筒状部21の内周面に設けられた凹部24内に設けられている点および第1付勢手段70Cの構成において相違する。その他の構成については、ほぼ同様である。
 凹部24は、筒状部21の内周面に設けられている。凹部24は、筒状部21の内周面が径方向外側に向けて凹むことにより形成されている。凹部24は、筒状部21の先端21aと後端21bとの間に設けられている。凹部24の底部25は、光軸Cと平行な平面となるように設けられている。凹部24の底部25は、移動基準面に相当する。
 第1付勢手段70Cは、弾性部材72Cが固定部71Cによって保持枠20に固定されている。弾性部材72Cは、固定筒10の径方向において、固定筒10と保持枠20との間に設けられる。弾性部材72Cは、移動案内部60を固定筒10の外周面に押し当てる。
 また、本実施の形態においても、固定筒10に作用する径方向の力Fおよびバイメタル32に作用する光軸C方向の力Fが実施の形態1に準じた所定の条件を満たすように第1付勢手段70Cおよび第2付勢手段50の付勢力が定められている。
 このような構成とすることにより、本実施の形態においても、バイメタル32の温度変化による変形によって、固定筒10の径方向に移動案内部60を保持枠20に押し当て、保持枠20を移動案内部60に接触させながら移動させることにより、実施の形態1とほぼ同様の効果が得られる。
 上述した実施の形態1から4においては、固定筒の径方向において固定筒と保持枠との間に設けられ、固定筒および保持枠の少なくとも一方に接触することにより、光軸に直交する平面に対して交差する方向への保持枠の回動を規制するとともに保持枠の光軸方向への移動を案内する熱変形部材が、バイメタルである場合を例示して説明したが、これに限定されず、線膨張係数が8×10-5(1/K)以上15×10-5(1/K)以下の材料から成る部材であってもよい。この範囲の線膨張係数を有する熱変形部材に適した材料としては、たとえばポリアセタール樹脂(POM),ポリブチレンテレフタレート(PBT)等の比較的高い熱膨張性を有する材料を好適に用いることができる。
 以上説明した本発明に基づくレンズユニットは、複数のレンズによって構成される光学系を備えたレンズユニットであって、複数の上記レンズの一部を構成するとともに光軸を有し、上記光軸方向に移動させることにより、温度変化により生じる上記光学系の焦点位置の移動を補正する補正レンズと、上記補正レンズを保持する保持枠と、上記保持枠を上記光軸方向に沿って移動可能に支持する固定筒と、上記固定筒の径方向において上記固定筒と上記保持枠との間に設けられ、上記固定筒および上記保持枠の少なくとも一方に接触することにより、上記光軸に直交する平面に対して交差する方向への上記保持枠の回動を規制するとともに上記保持枠の上記光軸方向への移動を案内する移動案内部と、上記光軸方向において上記固定筒と上記保持枠との間に設けられ、上記固定筒の周方向に複数配置され、温度変化に伴う変形により上記保持枠と上記固定筒との上記光軸方向に沿った距離を変化させるバイメタルと、上記固定筒の上記径方向において、上記移動案内部を介して上記保持枠を上記固定筒に対して相対的に付勢する第1付勢手段と、を備える。
 上記本発明に基づくレンズユニットは、上記光軸方向において上記保持枠を上記バイメタルに対して付勢する第2付勢手段を、さらに備えることが好ましい。
 上記本発明に基づくレンズユニットにあっては、上記バイメタルは、短手方向および長手方向を有しかつ上記固定筒と上記保持枠とに挟み込まれる方向に板厚を有する板状形状を有し、上記固定筒に作用する上記径方向の力をFyとし、上記保持枠に許容される上記光軸に垂直な平面に対する傾きΔdの関数をf(d)とし、上記保持枠と上記補正レンズとによって構成される移動部の重量をmgとし、上記保持枠が移動開始するために必要な温度変化をΔTaとし、上記バイメタルの弾性係数をEとし、上記短手方向における上記バイメタルの幅をbとし、上記バイメタルの板厚をtとし、上記長手方向における上記バイメタルの長さをlとし、上記バイメタルの湾曲係数をKとし、上記保持枠が上記光軸方向に移動する際の摩擦係数μとした場合に、下記式(1)を満たすように上記第1付勢手段および上記第2付勢手段の付勢力を定めていることが好ましい。
Figure JPOXMLDOC01-appb-M000019
 上記本発明に基づくレンズユニットにあっては、上記第2付勢手段は、上記光軸方向に沿って伸縮する弾性部材を含むことが好ましい。この場合には、上記バイメタルに作用する上記光軸方向の力をFzとし、使用温度範囲において複数の上記バイメタルの全てが上記保持枠に接触するために必要となる上記バイメタルに作用する上記光軸方向の最小の力をFzminとし、上記バイメタルの許容応力σaとした場合に、下記式(2)を満たすように、上記第1付勢手段および上記第2付勢手段の付勢力を定めていることが好ましい。
Figure JPOXMLDOC01-appb-M000020
 上記本発明に基づくレンズユニットにあっては、上記弾性部材のはね定数をkとし、基準温度からの温度変化量をΔTとし、上記基準温度における上記保持枠の基準位置から温度変化後の上記保持枠の位置までの上記光軸方向に平行な方向に沿った移動距離をDとし、上記移動距離Dの最小値をDminとし、上記移動距離Dの最大値をDmaxとし、上記温度変化量の最大をΔTmaxとした場合に、上記ΔTの温度範囲が下記式(3)を満たす場合に、上記移動距離Dは、上記Dminおよび上記Dmaxが下記式(4)を満たす範囲内に収まることが好ましい。また、上記ΔTの温度範囲が下記式(5)を満たす場合に、上記移動距離Dは、上記Dminおよび上記Dmaxが下記式(6)を満たす範囲内に収まることが好ましい。さらに、上記ΔTの温度範囲が下記式(7)を満たす場合に、上記移動距離Dは、上記Dminおよび上記Dmaxが下記式(8)を満たす範囲内に収まることが好ましい。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 上記本発明に基づくレンズユニットにあっては、上記第2付勢手段は、複数設けられることが好ましく、この場合には、複数の上記第2付勢手段のそれぞれが発生する付勢力により、上記光軸方向において上記固定筒に対する上記保持枠の位置が調整されることが好ましい。
 上記本発明に基づくレンズユニットにあっては、上記移動案内部は、上記光軸方向から見た場合に周方向に互い間隔をあけて並ぶように複数設けられることが好ましい。この場合には、複数の上記移動案内部のうち上記周方向において互いに隣り合う2つの上記移動案内部を第1移動案内部および第2移動案内部とし、上記光軸方向から見た場合に、上記第1移動案内部と上記固定筒の中心とを結ぶ線を第1仮想線とし、上記第2移動案内部と上記固定筒の上記中心とを結ぶ線を第2仮想線とし、上記中心から見た場合に上記第1移動案内部の反対側に位置し、上記第1仮想線と上記固定筒の外周面との交点を第1交点とし、上記中心から見た場合に上記第2移動案内部の反対側に位置し、上記第2仮想線と上記固定筒の上記外周面との交点を第2交点とした場合に、上記第1移動案内部および上記第2移動案内部を除く他の上記移動案内部のうち少なくとも1つの上記移動案内部が、上記周方向において上記第1移動案内部および上記第2移動案内部が位置していない側にある上記第1交点と上記第2交点との間に設けられることが好ましい。また、他の上記移動案内部のうち少なくとも1つの上記移動案内部に対して上記固定筒の上記径方向に付勢するように上記第1付勢手段が設けられていることが好ましい。
 上記本発明に基づくレンズユニットにあっては、上記第1移動案内部および上記第2移動案内部の少なくとも一方に対して上記固定筒の上記径方向に付勢するように上記第1付勢手段がさらに設けられていることが好ましい。
 上記本発明に基づくレンズユニットにあっては、上記移動案内部は、上記固定筒と別体に設けられていることが好ましい。
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1,1A,1B,1C レンズユニット、2 レンズ、3 補正レンズ、4 光学系、10 固定筒、11 筒状部、11a 先端、12 凹部、13 底部、14 フランジ部、15 収容部、15a 孔部、16 レンズ保持部、20 保持枠、21 筒状部、21a 先端、21b 後端、22 鍔部、23 貫通孔、24 凹部、25 底部、26 レンズ保持部、30 焦点距離補正手段、31 台板、32 バイメタル、50 第2付勢手段、51 ネジ、51a 先端、52 弾性部材60,60A,60c 移動案内部、60a 第1移動案内部、60b 第2移動案内部、70,70C 第1付勢手段、71,71C 固定部、72,72C 弾性部材。

Claims (9)

  1.  複数のレンズによって構成される光学系を備えたレンズユニットであって、
     複数の前記レンズの一部を構成するとともに光軸を有し、前記光軸方向に移動させることにより、温度変化により生じる前記光学系の焦点位置の移動を補正する補正レンズと、
     前記補正レンズを保持する保持枠と、
     前記保持枠を前記光軸方向に沿って移動可能に支持する固定筒と、
     前記固定筒の径方向において前記固定筒と前記保持枠との間に設けられ、前記固定筒および前記保持枠の少なくとも一方に接触することにより、前記光軸に直交する平面に対して交差する方向への前記保持枠の回動を規制するとともに前記保持枠の前記光軸方向への移動を案内する移動案内部と、
     前記光軸方向において前記固定筒と前記保持枠との間に設けられ、前記固定筒の周方向に複数配置され、温度変化に伴う変形により前記保持枠と前記固定筒との前記光軸方向に沿った距離を変化させる熱変形部材と、
     前記固定筒の前記径方向において、前記移動案内部を介して前記保持枠を前記固定筒に対して相対的に付勢する第1付勢手段と、を備えたレンズユニット。
  2.  前記光軸方向において前記熱変形部材を介して前記保持枠を前記固定筒に対して付勢する第2付勢手段を、さらに備えた請求項1に記載のレンズユニット。
  3.  前記熱変形部材は、短手方向および長手方向を有しかつ前記固定筒と前記保持枠とに挟み込まれる方向に板厚を有する板状形状を有し、
     前記固定筒に作用する前記径方向の力をFとし、
     前記保持枠に許容される前記光軸に垂直な平面に対する傾きdの関数をf(d)とし、
     前記保持枠と前記補正レンズとによって構成される移動部の重量をmgとし、
     前記保持枠が移動開始するために必要な温度変化をΔTとし、
     前記熱変形部材の弾性係数をEとし、
     前記短手方向における前記熱変形部材の幅をbとし、
     前記熱変形部材の板厚をtとし、
     前記長手方向における前記熱変形部材の長さをlとし、
     前記熱変形部材の湾曲係数をKとし、
     前記保持枠が前記光軸方向に移動する際の摩擦係数μとした場合に、
     下記式(1)を満たすように前記第1付勢手段および前記第2付勢手段の付勢力を定めた、請求項2に記載のレンズユニット。
    Figure JPOXMLDOC01-appb-M000001
  4.  前記第2付勢手段は、前記光軸方向に沿って伸縮する弾性部材を含み、
     前記熱変形部材に作用する前記光軸方向の力をFとし、
     使用温度範囲において複数の前記熱変形部材の全てが前記保持枠に接触するために必要となる前記熱変形部材に作用する前記光軸方向の最小の力をFzminとし、
     前記熱変形部材の許容応力σとした場合に下記式(2)を満たすように、前記第1付勢手段および前記第2付勢手段の付勢力を定めた請求項3に記載のレンズユニット。
    Figure JPOXMLDOC01-appb-M000002
  5.  前記弾性部材のはね定数をkとし、基準温度からの温度変化量をΔTとし、前記基準温度における前記保持枠の基準位置から温度変化後の前記保持枠の位置までの前記光軸方向に平行な方向に沿った移動距離をDとし、前記移動距離Dの最小値をDminとし、前記移動距離Dの最大値をDmaxとし、前記温度変化量の最大をΔTmaxとした場合に、前記ΔTの温度範囲が下記式(3)を満たす場合に、前記移動距離Dは、前記Dminおよび前記Dmaxが下記式(4)を満たす範囲内に収まり、前記ΔTの温度範囲が下記式(5)を満たす場合に、前記移動距離Dは、前記Dminおよび前記Dmaxが下記式(6)を満たす範囲内に収まり、前記ΔTの温度範囲が下記式(7)を満たす場合に、前記移動距離Dは、前記Dminおよび前記Dmaxが下記式(8)を満たす範囲内に収まる、請求項4に記載のレンズユニット。
    Figure JPOXMLDOC01-appb-M000003

    Figure JPOXMLDOC01-appb-M000004

    Figure JPOXMLDOC01-appb-M000005

    Figure JPOXMLDOC01-appb-M000006

    Figure JPOXMLDOC01-appb-M000007

    Figure JPOXMLDOC01-appb-M000008
  6.  前記第2付勢手段は、複数設けられ、
     複数の前記第2付勢手段のそれぞれが発生する付勢力により、前記光軸方向において前記固定筒に対する前記保持枠の位置が調整される、請求項2から5のいずれか1項に記載のレンズユニット。
  7.  前記移動案内部は、前記光軸方向から見た場合に周方向に互い間隔をあけて並ぶように複数設けられ、
     複数の前記移動案内部のうち前記周方向において互いに隣り合う2つの前記移動案内部を第1移動案内部および第2移動案内部とし、
     前記光軸方向から見た場合に、前記第1移動案内部と前記固定筒の中心とを結ぶ線を第1仮想線とし、前記第2移動案内部と前記固定筒の前記中心とを結ぶ線を第2仮想線とし、
     前記中心から見た場合に前記第1移動案内部の反対側に位置し、前記第1仮想線と前記固定筒の外周面との交点を第1交点とし、
     前記中心から見た場合に前記第2移動案内部の反対側に位置し、前記第2仮想線と前記固定筒の前記外周面との交点を第2交点とした場合に、
     前記第1移動案内部および前記第2移動案内部を除く他の前記移動案内部のうち少なくとも1つの前記移動案内部が、前記周方向において前記第1移動案内部および前記第2移動案内部が位置していない側にある前記第1交点と前記第2交点との間に設けられ、
     他の前記移動案内部のうち少なくとも1つの前記移動案内部に対して前記固定筒の前記径方向に付勢するように前記第1付勢手段が設けられている、請求項1から6のいずれか1項に記載のレンズユニット。
  8.  前記第1移動案内部および前記第2移動案内部の少なくとも一方に対して前記固定筒の前記径方向に付勢するように前記第1付勢手段がさらに設けられている、請求項7に記載のレンズユニット。
  9.  前記移動案内部は、前記固定筒と別体に設けられている、請求項1から8のいずれか1項に記載のレンズユニット。
PCT/JP2016/050215 2015-01-14 2016-01-06 レンズユニット WO2016114187A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016569316A JP6627780B2 (ja) 2015-01-14 2016-01-06 レンズユニット
US15/541,218 US10120157B2 (en) 2015-01-14 2016-01-06 Lens unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005251 2015-01-14
JP2015-005251 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016114187A1 true WO2016114187A1 (ja) 2016-07-21

Family

ID=56405734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050215 WO2016114187A1 (ja) 2015-01-14 2016-01-06 レンズユニット

Country Status (3)

Country Link
US (1) US10120157B2 (ja)
JP (1) JP6627780B2 (ja)
WO (1) WO2016114187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116506A (zh) * 2018-09-13 2019-01-01 襄阳市雄狮光电科技有限公司 一种投影镜头
CN113391512A (zh) * 2020-12-23 2021-09-14 深圳市安华光电技术有限公司 具有自动调焦功能的投影仪的调焦机构、镜头及投影仪
TWI753935B (zh) * 2016-08-18 2022-02-01 德商卡爾蔡司Smt有限公司 光學系統、微影裝置與方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685748B2 (ja) * 2016-02-10 2020-04-22 キヤノン株式会社 光学機器
CN112099175B (zh) * 2020-08-31 2022-07-29 西安空间无线电技术研究所 一种光学天线离焦弓形双金属热补偿装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231192A (ja) * 1998-02-13 1999-08-27 Nikon Corp 光学素子支持装置及び鏡筒並びに投影露光装置
JP2008026864A (ja) * 2006-03-24 2008-02-07 Konica Minolta Opto Inc 投射レンズユニット
WO2011158643A1 (ja) * 2010-06-16 2011-12-22 コニカミノルタオプト株式会社 焦点補正装置
JP2012141536A (ja) * 2011-01-06 2012-07-26 Nikon Corp 光学装置及び光学機器
JP2012242728A (ja) * 2011-05-23 2012-12-10 Konica Minolta Advanced Layers Inc 温度補償機能を有するレンズユニット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202508A (en) * 1981-06-08 1982-12-11 Olympus Optical Co Ltd Lens holder of interlens space changing with temperature
JPH11337798A (ja) * 1998-05-27 1999-12-10 Fuji Photo Film Co Ltd レンズ付きフイルムユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231192A (ja) * 1998-02-13 1999-08-27 Nikon Corp 光学素子支持装置及び鏡筒並びに投影露光装置
JP2008026864A (ja) * 2006-03-24 2008-02-07 Konica Minolta Opto Inc 投射レンズユニット
WO2011158643A1 (ja) * 2010-06-16 2011-12-22 コニカミノルタオプト株式会社 焦点補正装置
JP2012141536A (ja) * 2011-01-06 2012-07-26 Nikon Corp 光学装置及び光学機器
JP2012242728A (ja) * 2011-05-23 2012-12-10 Konica Minolta Advanced Layers Inc 温度補償機能を有するレンズユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753935B (zh) * 2016-08-18 2022-02-01 德商卡爾蔡司Smt有限公司 光學系統、微影裝置與方法
CN109116506A (zh) * 2018-09-13 2019-01-01 襄阳市雄狮光电科技有限公司 一种投影镜头
CN113391512A (zh) * 2020-12-23 2021-09-14 深圳市安华光电技术有限公司 具有自动调焦功能的投影仪的调焦机构、镜头及投影仪

Also Published As

Publication number Publication date
JP6627780B2 (ja) 2020-01-08
JPWO2016114187A1 (ja) 2017-10-19
US20170363834A1 (en) 2017-12-21
US10120157B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2016114187A1 (ja) レンズユニット
JP5802401B2 (ja) レンズ鏡枠およびレンズ組立体
US4861137A (en) Mounting device for a resin lens
US9854120B2 (en) Optical scanning device and image forming apparatus
US8270053B2 (en) Holding mechanism for long length optical element, optical scanning device, and image forming device
JP2008090257A (ja) 投射ユニット
US20160313554A1 (en) Optical scanning device, and image forming apparatus equipped with the same
JP2009053378A (ja) 光走査装置及び画像形成装置
KR100901213B1 (ko) 화각 조절이 가능한 렌즈튜브 어셈블리
US8229323B2 (en) Scanning optical apparatus and image forming apparatus using the same, which are capable of reducing a change of an irradiation position of a light flux on a deflection unit
US20110222148A1 (en) Holding apparatus and optical apparatus
JP5273065B2 (ja) 光走査装置及び画像形成装置
US7937983B2 (en) Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
US11841498B2 (en) Optical scanner and electrophotographic image forming apparatus
JP4869633B2 (ja) 顕微鏡対物レンズ及び顕微鏡
JP2007148020A (ja) 撮像素子の位置調整装置及びカメラ
EP3147717B1 (en) Light source device, optical scanning apparatus, and image forming apparatus
JP2010276860A (ja) 画像形成装置における走査光学系
JP2009128442A (ja) 撮像装置
JP4672278B2 (ja) 光学レンズ装置及びレーザ装置、光学レンズの位置決め方法
US20070047604A1 (en) Optical apparatus having a laser light source unit, and image recording apparatus
JP5381880B2 (ja) 光走査光学装置
WO2011158643A1 (ja) 焦点補正装置
JP2021092742A (ja) レンズ保持機構
JP2024085767A (ja) レンズ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569316

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737258

Country of ref document: EP

Kind code of ref document: A1