WO2016114025A1 - 過給システム及び過給システムの運転方法 - Google Patents

過給システム及び過給システムの運転方法 Download PDF

Info

Publication number
WO2016114025A1
WO2016114025A1 PCT/JP2015/083698 JP2015083698W WO2016114025A1 WO 2016114025 A1 WO2016114025 A1 WO 2016114025A1 JP 2015083698 W JP2015083698 W JP 2015083698W WO 2016114025 A1 WO2016114025 A1 WO 2016114025A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
supercharger
internal combustion
combustion engine
pipe
Prior art date
Application number
PCT/JP2015/083698
Other languages
English (en)
French (fr)
Inventor
白石 啓一
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167020313A priority Critical patent/KR101759045B1/ko
Priority to CN201580005956.3A priority patent/CN105980684B/zh
Publication of WO2016114025A1 publication Critical patent/WO2016114025A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a supercharging system including a plurality of superchargers applied to an internal combustion engine and a method for operating the supercharging system.
  • a so-called deceleration operation in which a main engine (for example, a diesel engine) is continuously operated at a low load may be performed.
  • a main engine for example, a diesel engine
  • the supercharger is applied over all the loads of the wide range main engine. It is difficult to make the efficiency appropriate.
  • the turbocharger efficiency can be made appropriate over a wide range of loads on the main engine. ing.
  • This is known as a sequential supercharging system.
  • at least one of a plurality of superchargers is used as a main supercharger, and one is a load of the main engine. It is used as a sub-supercharger that operates or stops depending on
  • the turbine of the primary turbocharger is a variable nozzle type.
  • the variable nozzle of the primary turbocharger is throttled, the exhaust gas flows more to the secondary turbocharger, and eventually the exhaust gas does not flow much to the primary turbocharger and the scavenging pressure can be raised. Can not.
  • An object of the present invention is to provide a supercharging system and a method for operating the supercharging system that can prevent deterioration in fuel consumption of an internal combustion engine while preventing the deterioration.
  • a supercharging system is driven by exhaust gas supplied from an internal combustion engine, and is driven by at least one main turbine section that is always operated during operation of the internal combustion engine, and the main turbine section.
  • a main turbocharger having a main compressor section that sends compressed gas to the internal combustion engine, and at least one sub turbine section that is driven by exhaust gas supplied from the internal combustion engine and that is operated or stopped according to the load of the internal combustion engine
  • a sub-compressor unit that is driven by the sub-turbine unit and sends compressed gas to the internal combustion engine, includes a sub-supercharger different from the main supercharger, and is connected to the sub-turbine unit, and An exhaust pipe through which exhaust gas supplied from an internal combustion engine flows, a gas inlet valve provided in the exhaust pipe for adjusting the flow rate of the exhaust gas, and the sub-compressor And an air supply pipe through which the compressed gas flows, and an air supply pipe through which the compressed gas flows, and the pressure of the outlet gas of the sub-compressor section is
  • the sub-compressor part of the sub-supercharger starts to send compressed air, the compressed gas is returned to the exhaust pipe via the bypass pipe, and the sub-turbine part has the exhaust gas from the exhaust manifold and the compressed gas from the sub-compressor part. Rotate by. Therefore, after opening the gas inlet valve, the rotation speed of the sub-supercharger increases quickly in a short period.
  • the valve is closed when the pressure of the outlet gas of the auxiliary compressor section is less than the pressure of the supply manifold. Thereafter, when the pressure of the outlet gas of the auxiliary compressor section becomes equal to or higher than the pressure of the supply manifold, the valve is opened. As a result, the compressed gas from the sub compressor section is sent to the air supply manifold via the air supply pipe, and the gas is supplied from the main supercharger and the subsupercharger to the internal combustion engine.
  • the bypass valve is first opened and then the gas inlet valve is closed. Thereby, the sub-turbine part of the sub-supercharger starts to stop rotating, and the rotation speed of the sub-supercharger decreases. At this time, the valve is closed when the pressure of the outlet gas of the sub-compressor section becomes lower than the pressure of the supply manifold. Since the compressed gas sent by the sub compressor section is returned to the exhaust pipe via the bypass pipe, surging does not occur in the sub compressor section even after the valve is closed.
  • the amount of exhaust gas sent from the exhaust manifold to the sub supercharger via the exhaust pipe is smaller than that during operation of the sub supercharger. Decrease. Then, the amount of exhaust gas sent from the exhaust manifold to the main supercharger increases, and the rotation speed of the main supercharger increases. Therefore, the air sent from the main supercharger to the air supply manifold increases.
  • the gas inlet valve when starting the sub-supercharger from a stopped state, the gas inlet valve is gradually or partially opened with the bypass valve opened, and the rotation speed of the sub-supercharger After the gas is stabilized, the gas inlet valve may be fully opened and the bypass valve may be fully closed.
  • the sub-turbine section of the sub-supercharger starts to rotate, and the rotation speed of the sub-supercharger increases. Then, the sub-compressor part of the sub-supercharger sends compressed gas, the compressed gas is returned to the exhaust pipe via the bypass pipe, and the sub-turbine part receives the exhaust gas from the exhaust manifold and the sub-compressor part. Rotated by compressed air.
  • the gas inlet valve when the sub-supercharger is stopped from the operating state, the gas inlet valve is gradually or partially closed while the bypass valve is opened, and the rotation speed of the sub-supercharger is After stabilization, the gas inlet valve may be fully closed.
  • the operation method of the supercharging system according to the second aspect of the present invention is driven by the exhaust gas supplied from the internal combustion engine, and at least one main turbine section that is always operated during the operation of the internal combustion engine, and the main turbine A main turbocharger comprising a main compressor section that is driven by a section and sends compressed air to the internal combustion engine; and at least one that is driven by exhaust gas supplied from the internal combustion engine and that is operated or stopped according to a load of the internal combustion engine A sub-turbine unit, and a sub-compressor unit that is driven by the sub-turbine unit and sends compressed gas to the internal combustion engine, and includes a sub-supercharger different from the main supercharger, and is connected to the sub-turbine unit And an exhaust pipe through which exhaust gas supplied from the internal combustion engine flows, the sub-compressor section, and an air supply manifold of the internal combustion engine And a method of operating a supercharging system comprising a supply pipe through which the compressed gas flows, the step of starting the flow of the exhaust gas to the
  • the auxiliary compressor in the supply pipe And the step of stopping the supply of compressed gas from the outlet of the section to the supply manifold and sending the compressed gas from the outlet of the sub compressor section to the inlet of the sub turbine section.
  • compressed air is supplied to the outside of the supercharging system while preventing the sub-supercharger from surging.
  • the reduction of the amount of air sent to the internal combustion engine is suppressed, and the increase in the exhaust gas temperature generated in the internal combustion engine is suppressed. It is possible to suppress the deterioration of the fuel consumption of the internal combustion engine and the increase of the heat load accompanying the start or stop of the supercharger.
  • the supercharging system 1 which concerns on one Embodiment of this invention is demonstrated.
  • the supercharging system 1 is applied to an internal combustion engine (not shown; hereinafter referred to as “engine”) such as a marine diesel engine, for example, a low-speed two-cycle diesel engine.
  • engine such as a marine diesel engine, for example, a low-speed two-cycle diesel engine.
  • the internal combustion engine is not limited to the example described above.
  • the supercharging system 1 includes at least one main supercharger 2 and one subsupercharger 3.
  • the main supercharger 2 is assumed to always operate while the engine is in operation, and depending on the engine load, the subsupercharger 3 is started to start operation or the subsupercharger 3 is started. Or stop.
  • the supercharger efficiency is appropriate over a wide range of engine loads. For example, the supercharger efficiency can be optimized both when the deceleration operation is continuously performed in the operation of the ship and when the rated operation is performed.
  • the engine is provided with a crankshaft, and in the case of a ship, a screw propeller is directly or indirectly attached to the crankshaft via the propeller shaft. Further, the engine is provided with a cylinder portion (not shown) including a cylinder liner, a cylinder cover, and the like, and a piston connected to a crankshaft via a crosshead (not shown) is disposed in each cylinder portion. Is done.
  • each cylinder part is connected to the exhaust manifold 11 shown in FIG. 1, and the exhaust manifold 11 is connected to the turbine 2a of the main supercharger 2 via the first exhaust pipe L1. Is connected to the inlet side of the turbine 3a of the sub-supercharger 3 via the second exhaust pipe L5.
  • An air supply port (not shown) of each cylinder portion is connected to an air supply manifold 12, and the air supply manifold 12 is connected to the compressor 2b of the main supercharger 2 via a first air supply pipe L4. Then, it is connected to the compressor 3b of the auxiliary supercharger 3 through the second air supply pipe L8.
  • the main supercharger 2 includes a turbine 2a, a compressor 2b, and a rotating shaft 2c.
  • the turbine 2a is driven by exhaust gas that is combustion gas supplied from the engine via the first exhaust pipe L1.
  • the compressor 2b is driven by the turbine 2a to compress outside air (including not only air outside the engine but also EGR (Exhaust Gas Recirculation) gas or a mixed gas of EGR gas and air. The same applies hereinafter) to the engine. send.
  • the rotary shaft 2c has one end projecting toward the turbine 2a and the other end projecting toward the compressor 2b.
  • the main supercharger 2 is a supercharger that is always operated during the operation of the engine. In the present embodiment, only one main supercharger 2 is provided, but a plurality of main superchargers may be provided according to the scale of the supercharging system.
  • the sub-supercharger 3 is provided separately from the main supercharger 2, and includes a turbine 3a, a compressor 3b, and a rotating shaft 3c.
  • the turbine 3a is driven by exhaust gas that is combustion gas supplied from the engine via the second exhaust pipe L5.
  • the compressor 3b is driven by the turbine 3a to compress and send outside air to the engine.
  • the rotary shaft 3c has one end protruding toward the turbine 3a and the other end protruding toward the compressor 3b.
  • One end of the rotating shaft 3c is attached to a turbine disk of a turbine rotor that constitutes the turbine 3a, and the other end of the rotating shaft 3c is attached to a hub of a compressor impeller that constitutes the compressor 3b.
  • the sub-supercharger 3 is a supercharger that operates or stops according to the engine load. In the present embodiment, only one sub-supercharger 3 is provided, but a plurality of sub-superchargers may be provided according to the scale of the supercharging system.
  • the exhaust gas that has passed through the turbines 2a and 3a is led to the funnel via the exhaust pipes L2 and L6 connected to the outlet sides of the turbines 2a and 3a, respectively, and then discharged out of the ship.
  • Silencers are disposed in the supply pipes L3 and L7 connected to the inlet sides of the compressors 2b and 3b, respectively, and outside air that has passed through the silencers is guided to the compressors 2b and 3b, respectively. It is burned.
  • An air cooler 13, a surge tank (not shown), and the like are provided in the middle of the first air supply pipe L4 and the second air supply pipe L8 respectively connected to the outlet sides of the compressors 2b and 3b.
  • the outside air that has passed through the compressors 2b and 3b passes through the air cooler 13, the surge tank, and the like, and is then supplied to the air supply manifold 12 of the engine.
  • the gas inlet valve 5 is connected to the second exhaust pipe L5.
  • the gas inlet valve 5 can adjust the opening, and can adjust the flow rate of exhaust gas.
  • exhaust gas is supplied from the exhaust manifold 11 to the turbine 3a of the sub-supercharger 3, and when the gas inlet valve 5 is closed, supply of the exhaust gas is stopped.
  • a check valve 6 is provided in the second air supply pipe L8.
  • the check valve 6 is opened when the pressure of the outlet air of the compressor 3 b of the sub-supercharger 3 is equal to or higher than the pressure of the air supply manifold 12, and is closed when the pressure is lower than the pressure of the air supply manifold 12.
  • the check valve 6 is provided in the second air supply pipe L8 has been described, but the present invention is not limited to this example. For example, if there is a valve that opens only with a pressure difference in one direction, a control valve that operates with a pressure sensor may be used.
  • the bypass pipe L9 includes an upstream portion of the check valve 6 in the second air supply pipe L8 (more specifically, a portion from the outlet of the compressor 3b to the inlet of the check valve 6), and a second exhaust pipe L5. Is connected to a downstream portion of the gas inlet valve 5 (more specifically, a portion from the outlet of the gas inlet valve 5 to the inlet of the turbine 3a).
  • the bypass pipe L9 is provided with a bypass valve 7. When the bypass valve 7 is opened, the compressed air flows from the second air supply pipe L8 to the second exhaust pipe L5. When the bypass valve 7 is closed, the compressed air flows. Stops.
  • the bypass valve 7 is opened beforehand. As a result, as soon as the compressed air is sent from the compressor 3b of the sub-supercharger 3, the compressed air can be returned to the exhaust pipe L5 to which the bypass pipe L9 is connected.
  • the gas inlet valve 5 of the sub-supercharger 3 is gradually opened.
  • the amount of exhaust gas flowing through the second exhaust pipe L5 gradually increases, the turbine 3a of the subsupercharger 3 begins to rotate, and the rotational speed of the subsupercharger 3 increases.
  • the rotation speed of the sub-supercharger 3 rises sufficiently high, for example, the rotation speed of the sub-supercharger 3 assumed while both the main supercharger 2 and the sub-supercharger 3 are operating.
  • the rotational speed becomes 5 to 10% higher (not shown in FIG. 2), the opening operation of the gas inlet valve 5 is temporarily interrupted.
  • the gas inlet valve 5 is not fully opened in a short time, but is partially opened.
  • the compressor 3b of the sub-supercharger 3 sends compressed air, and the compressed air is returned to the exhaust pipe L5 via the bypass pipe L9.
  • the turbine 3a receives the exhaust gas from the exhaust manifold 11 and the compressor 3b. Rotated by compressed air from. Therefore, the rotation speed of the sub supercharger 3 increases quickly in a short period.
  • the amount of exhaust gas sent from the exhaust manifold 11 to the main supercharger 2 can be reduced as compared with the prior art, and the reduction in the rotational speed of the main supercharger 2 can be suppressed. Therefore, a large amount of air sent from the main supercharger 2 to the air supply manifold 12 can be maintained.
  • the bypass valve 7 is gradually fully closed while the gas inlet valve 5 is gradually fully opened. .
  • the pressure P1 of the outlet air of the compressor 3b of the sub supercharger 3 further increases.
  • the check valve 6 is opened. Thereby, the compressed air from the compressor 3b is sent to the air supply manifold 12 through the air supply pipe L8, and air is supplied from the main supercharger 2 and the sub supercharger 3 to the main engine.
  • the check valve 6 since the check valve 6 is in a closed state from when the gas inlet valve 5 of the auxiliary supercharger 3 starts to open until the check valve 6 is opened, the auxiliary supercharger 3 to the compressor 3b is closed. The backflow of air can be prevented, and the occurrence of surging in the sub-supercharger 3 can be prevented. Moreover, in the process of starting the subsupercharger 3, the period during which the compressed air is bypassed is short. Then, the amount of exhaust gas sent from the exhaust manifold 11 to the sub-supercharger 3 is reduced by using the compressed air to boost the operation of the sub-supercharger 3 without releasing the compressed air to the outside of the supercharging system 1.
  • the bypass valve 7 is opened. Further, after the opening of the bypass valve 7 is started, the gas inlet valve 5 of the auxiliary supercharger 3 is started to close as shown in FIG. Then, the gas inlet valve 5 is gradually closed while the bypass valve 7 is gradually opened. As a result, the amount of exhaust gas flowing through the second exhaust pipe L5 gradually decreases, the turbine 3a of the sub-supercharger 3 starts to stop rotating, and the rotation speed of the sub-supercharger 3 decreases.
  • the gas inlet valve 5 is gradually fully closed. Since the compressed air is not released to the outside, even if the check valve 6 is closed, the rotation speed of the sub-supercharger 3 does not increase. Further, since the compressed air is returned, the amount of exhaust gas sent from the exhaust manifold 11 to the sub-supercharger 3 via the exhaust pipe L5 is reduced as compared with the operation of the sub-supercharger 3. And the amount of exhaust gas sent from the exhaust manifold 11 to the main supercharger 2 increases, and the rotation speed of the main supercharger 2 increases. Therefore, the air sent from the main supercharger 2 to the air supply manifold 12 increases.
  • the air sent from the main supercharger 2 to the air supply manifold 12 increases in the process of stopping the sub-supercharger 3, the scavenging air pressure P2 is lowered and sent to the main engine as in the prior art.
  • the amount of air does not decrease. As a result, it becomes difficult for the temperature of the exhaust gas generated in the main engine to rise, and the increase in the heat load of the main engine and the deterioration of fuel consumption can be suppressed.

Abstract

主過給機が運転している状態で、副過給機を起動又は停止するとき、副過給機のサージングを防止しつつ、内燃機関の燃費悪化を抑制することが可能な過給システム及び過給システムの運転方法を提供することを目的とする。過給システム(1)は、主過給機(2)と、副過給機(3)と、タービン(3a)へ排ガスが流れる排気管(L5)と、排気管(L5)に設けられ排ガスの流量を調整するガス入口弁(5)と、コンプレッサ(3b)から給気マニホールド(12)に圧縮空気が流れる給気管(L8)と、給気管(L8)に設けられ、コンプレッサ(3b)の出口空気の圧力が給気マニホールド(12)の圧力以上のときに開状態となる逆止弁(6)と、給気管(L8)と排気管(L5)に接続されるバイパス管(L9)と、バイパス管(L9)に設けられ、給気管(L8)から排気管(L5)へバイパス管(L9)を流れる圧縮空気の流量を調整するバイパス弁(7)とを備える。

Description

過給システム及び過給システムの運転方法
 本発明は、内燃機関に適用される複数の過給機を備える過給システム及び過給システムの運転方法に関するものである。
 船舶の運航では、燃料消費量を低減するため、主機関(例えばディーゼル機関)を連続的に低負荷で運転させる、いわゆる減速運転が行われる場合がある。この場合、主機関の負荷範囲が広くなるため、1台又は複数台の過給機(主過給機)を常時運転させるという制御では、この広範囲の主機関の負荷の全てにわたって、過給機効率を適切にすることは困難である。
 そこで、複数台の過給機を備え、主機関の負荷に応じて、過給機の運転台数を制御することによって、主機関の負荷の広い範囲で、過給機効率が適切になるようにしている。これは、シーケンシャル過給システムとして知られており、主機関の運転の間、複数台の過給機のうち少なくとも1台が常時運転する主過給機として用いられ、1台が主機関の負荷に応じて運転又は停止する副過給機として用いられる。
特許第4950082号公報 特開2005-155356号公報
 主機関の運転中、1台の副過給機を運転開始(起動)、又は、停止するとき、主機関には、別の主過給機から圧縮空気が送られているため、機関掃気室は加圧された状態にある。そのため、特許文献1に記載のように副過給機を起動する際には、副過給機におけるサージングの発生を防ぐために、副過給機のコンプレッサ出口空気の圧力が、掃気室内の圧力(掃気圧)に到達するまで、副過給機のコンプレッサから送られる圧縮空気を外部に放出する必要がある。また、副過給機を停止する際にも同様に、副過給機におけるサージングの発生を防ぐために、副過給機のコンプレッサから送られる圧縮空気を外部に放出する必要がある。
 しかし、空気放出弁から圧縮空気を外部へ放出する場合、排ガスによって得たエネルギーを利用することなく放出することになるため、エネルギー損失が発生してしまう。また、主機関へ送られる空気の量も一時的に減少することになるため、主機関で発生する排ガスの温度が上昇し、主機関の熱負荷上昇を招く問題があった。
 上記の特許文献2の機関過給装置では、プライマリターボ過給機のタービンが可変ノズル型とされている。しかし、プライマリターボ過給機の可変ノズルを絞っても、排ガスは、セカンダリターボ過給機のほうに多く流れてしまい、結局プライマリターボ過給機に排ガスが多く流れず、掃気圧を上げることができない。
 本発明は、このような事情に鑑みてなされたものであって、主過給機が運転している状態で、別の副過給機を起動又は停止するとき、副過給機のサージングを防止しつつ、内燃機関の燃費悪化を抑制することが可能な過給システム及び過給システムの運転方法を提供することを目的とする。
 本発明の第1態様に係る過給システムは、内燃機関から供給される排ガスによって駆動され、前記内燃機関の運転の間、常時運転する少なくとも一つの主タービン部、及び、前記主タービン部によって駆動され前記内燃機関に圧縮気体を送る主コンプレッサ部を備える主過給機と、前記内燃機関から供給される排ガスによって駆動され、前記内燃機関の負荷に応じて運転又は停止する少なくとも一つの副タービン部、及び、前記副タービン部によって駆動され前記内燃機関に圧縮気体を送る副コンプレッサ部を備え、前記主過給機と異なる副過給機とを備え、前記副タービン部に接続されるとともに、前記内燃機関から供給される排ガスが流れる排気管と、前記排気管に設けられ、前記排ガスの流量を調整するガス入口弁と、前記副コンプレッサ部、及び、前記内燃機関の給気マニホールドに接続されるとともに、前記圧縮気体が流れる給気管と、前記給気管に設けられ、前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力以上のときに開状態となる弁と、前記給気管における前記弁の上流側部分と、前記排気管における前記ガス入口弁の下流側部分に接続されるバイパス管と、前記バイパス管に設けられ、前記給気管から前記排気管へ前記バイパス管を流れる前記圧縮気体の流量を調整するバイパス弁とを備える。
 この構成によれば、主過給機が運転しているとき、副過給機が停止しており、バイパス弁が開いている状態から、ガス入口弁を開くことにより、副過給機の副タービン部が回転を始め、副過給機の回転数が上昇する。
 副過給機の副コンプレッサ部が圧縮空気を送るようになり、パイパス管を介して、排気管へ圧縮気体が戻され、副タービン部は、排気マニホールドからの排ガスと副コンプレッサ部からの圧縮気体によって回転する。したがって、ガス入口弁を開いた後、副過給機の回転数は、短期間で早く上昇する。副コンプレッサ部の出口気体の圧力が、給気マニホールドの圧力未満であるとき、弁は閉状態である。
 その後、副コンプレッサ部の出口気体の圧力が、給気マニホールドの圧力以上となったとき、弁が開状態となる。これにより、給気管を介して、副コンプレッサ部からの圧縮気体が給気マニホールドへ送られ、主過給機と副過給機から内燃機関へ気体が供給されるようになる。
 また、副過給機が運転している状態から、副過給機を停止するとき、まずバイパス弁を開いた後、ガス入口弁を閉じる。これにより、副過給機の副タービン部が回転を停止し始め、副過給機の回転数が下降していく。このとき、副コンプレッサ部の出口気体の圧力が、給気マニホールドの圧力未満になったとき、弁が閉状態となる。副コンプレッサ部が送る圧縮気体は、バイパス管を介して排気管へ戻されるので、副コンプレッサ部では、弁が閉じた後でもサージングが発生しない。
 さらに、圧縮空気が、パイパス管を介して、排気管へ圧縮空気が戻されるため、排気マニホールドから排気管を介して副過給機へ送られる排ガス量は、副過給機の運転時に比べて減少する。そして、排気マニホールドから主過給機へ送られる排ガス量が増加し、主過給機の回転数が増加する。そのため、主過給機から給気マニホールドへ送られる空気が増加する。
 上記第1態様において、前記副過給機を停止状態から起動するとき、前記バイパス弁が開いた状態で前記ガス入口弁が徐々に又は部分的に開かれて、前記副過給機の回転数が安定した後、前記ガス入口弁を全開し、かつ、前記バイパス弁を全閉してもよい。
 この構成によれば、ガス入口弁が徐々に又は部分的に開かれた場合でも、副過給機の副タービン部が回転を始め、副過給機の回転数が上昇する。そして、副過給機の副コンプレッサ部が圧縮気体を送るようになり、パイパス管を介して、排気管へ圧縮気体が戻され、副タービン部は、排気マニホールドからの排ガスと副コンプレッサ部からの圧縮空気によって回転する。
 上記第1態様において、前記副過給機を運転状態から停止するとき、前記バイパス弁を開きつつ、前記ガス入口弁が徐々に又は部分的に閉められて、前記副過給機の回転数が安定した後、前記ガス入口弁を全閉してもよい。
 この構成によれば、ガス入口弁が部分的に閉められた場合でも、副過給機の副タービン部が回転を停止し始め、副過給機の回転数が下降していく。このとき、副過給機の副コンプレッサ部が送る圧縮気体は、パイパス管を介して、排気管へ圧縮気体が戻される。副コンプレッサ部の出口気体の圧力が、給気マニホールドの圧力未満になったとき、弁が閉状態となる。
 本発明の第2態様に係る過給システムの運転方法は、内燃機関から供給される排ガスによって駆動され、前記内燃機関の運転の間、常時運転する少なくとも一つの主タービン部、及び、前記主タービン部によって駆動され前記内燃機関に圧縮空気を送る主コンプレッサ部を備える主過給機と、前記内燃機関から供給される排ガスによって駆動され、前記内燃機関の負荷に応じて運転又は停止する少なくとも一つの副タービン部、及び、前記副タービン部によって駆動され前記内燃機関に圧縮気体を送る副コンプレッサ部を備え、前記主過給機と異なる副過給機とを備え、前記副タービン部に接続されるとともに、前記内燃機関から供給される排ガスが流れる排気管と、前記副コンプレッサ部、及び、前記内燃機関の給気マニホールドに接続されるとともに、前記圧縮気体が流れる給気管とを備える過給システムの運転方法であって、前記排気管への前記排ガスの流通を開始するステップと、前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力未満の間、前記副コンプレッサ部の出口から前記副タービン部の入口へ圧縮空気を送るステップと、前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力以上となったとき、前記給気管を介して、前記副コンプレッサ部の出口から前記給気マニホールドへ圧縮気体を送るステップとを備える。
 上記第2態様において、前記排気管への前記排ガスの流通を停止するステップと、前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力未満となったとき、前記給気管において前記副コンプレッサ部の出口から前記給気マニホールドへ圧縮気体の供給を停止し、前記副コンプレッサ部の出口から前記副タービン部の入口へ圧縮気体を送るステップとを備えてもよい。
 本発明によれば、主過給機が運転している状態で、別の副過給機を起動又は停止するとき、副過給機のサージングを防止しつつ、過給システム外部に圧縮空気を放出させず、その圧縮空気を副過給機の運転の加勢に使用することで、内燃機関へ送られる空気量の低減を抑制し、内燃機関で発生する排ガス温度の上昇を抑えることで、副過給機の起動又は停止に伴う内燃機関の燃費悪化と熱負荷の上昇を抑制することができる。
本発明の一実施形態に係る過給システムを示す構成図である。 本発明の一実施形態に係る過給システムの動作を示す、横軸を時間で表したグラフである。
 以下、本発明の一実施形態に係る過給システム1について説明する。
 過給システム1は、舶用ディーゼル機関、例えば低速2サイクルディーゼル機関等の内燃機関(図示せず。以下「機関」という。)に適用される。なお、内燃機関は、上述した例に限定されない。
 過給システム1は、少なくとも1台の主過給機2と、1台の副過給機3を備える。主過給機2は、機関が運転している間、常時運転することを前提とし、機関の負荷に応じて、副過給機3を起動して運転を開始したり、副過給機3を停止したりする。これにより、機関の負荷の広い範囲で、過給機効率が適切になる。たとえば、船舶の運航で減速運転を連続的に行う場合、及び、定格運転を行う場合のいずれにも、過給機効率を最適にすることができる。
 機関はクランク軸を備え、船舶の場合、クランク軸には、プロペラ軸を介してスクリュープロペラが直接的又は間接的に取り付けられる。また、機関には、シリンダライナ、シリンダカバー等からなるシリンダ部(図示せず。)が設けられており、各シリンダ部内には、図示しないクロスヘッドを介してクランク軸と連結されたピストンが配置される。
 各シリンダ部の排気ポート(図示せず。)は、図1に示す、排気マニホールド11と接続されており、排気マニホールド11は、第1の排気管L1を介して主過給機2のタービン2aの入口側と接続され、第2の排気管L5を介して副過給機3のタービン3aの入口側と接続される。各シリンダ部の給気ポート(図示せず。)は、給気マニホールド12と接続されており、給気マニホールド12は、第1の給気管L4を介して主過給機2のコンプレッサ2bと接続され、第2の給気管L8を介して副過給機3のコンプレッサ3bと接続される。
 主過給機2は、タービン2aと、コンプレッサ2bと、回転軸2cを備える。タービン2aは、第1の排気管L1を介して機関から供給される燃焼ガスである排ガスによって駆動される。コンプレッサ2bは、タービン2aにより駆動されて、機関に外気(機関外部の空気のみならず、EGR(Exhaust Gas Recirculation)ガスやEGRガスと空気の混合気体を含む。以下、同じ。)を圧縮して送る。回転軸2cは、一端部をタービン2a側に突出させ、他端部をコンプレッサ2bに突出させる。回転軸2cの一端部は、タービン2aを構成するタービン・ロータのタービン・ディスクに取り付けられ、回転軸2cの他端部は、コンプレッサ2bを構成するコンプレッサ羽根車のハブに取り付けられる。主過給機2は、機関の運転の間、常時運転する過給機である。本実施形態では、主過給機2は1台のみであるが、過給システムの規模に応じて、主過給機を複数台設けてもよい。
 副過給機3は、主過給機2と別に設けられ、タービン3aと、コンプレッサ3bと、回転軸3cを備える。タービン3aは、第2の排気管L5を介して機関から供給される燃焼ガスである排ガスによって駆動される。コンプレッサ3bは、タービン3aにより駆動されて、機関に外気を圧縮して送る。回転軸3cは、一端部をタービン3a側に突出させ、他端部をコンプレッサ3bに突出させる。回転軸3cの一端部は、タービン3aを構成するタービン・ロータのタービン・ディスクに取り付けられ、回転軸3cの他端部は、コンプレッサ3bを構成するコンプレッサ羽根車のハブに取り付けられる。副過給機3は、機関の負荷に応じて運転又は停止する過給機である。本実施形態では、副過給機3は1台のみであるが、過給システムの規模に応じて、副過給機を複数台設けてもよい。
 タービン2a,3aを通過した排ガスは、それぞれ、タービン2a,3aの出口側に接続された排気管L2,L6を介してファンネルに導かれた後、船外に排出される。
 コンプレッサ2b,3bの入口側に接続された給気管L3,L7には、それぞれ消音器(図示せず。)が配置されており、この消音器を通過した外気が、コンプレッサ2b,3bにそれぞれ導かれる。また、コンプレッサ2b,3bの出口側にそれぞれ接続された第1の給気管L4、第2の給気管L8の途中には、空気冷却器13やサージタンク(図示せず。)等が設けられる。コンプレッサ2b,3bを通過した外気は、空気冷却器13やサージタンク等を通過した後、機関の給気マニホールド12に供給される。
 第2の排気管L5には、ガス入口弁5が接続される。ガス入口弁5は、開度の調整が可能であり、排ガスの流量を調整できる。ガス入口弁5が開くと、排気マニホールド11から副過給機3のタービン3aに排ガスが供給され、ガス入口弁5が閉じると、排ガスの供給が停止する。
 第2の給気管L8には、逆止弁6が設けられる。逆止弁6は、副過給機3のコンプレッサ3bの出口空気の圧力が給気マニホールド12の圧力以上のときに開状態となり、給気マニホールド12の圧力未満のときに閉状態となる。なお、本実施形態では、第2の給気管L8に逆止弁6を設ける場合について説明したが、本発明はこの例に限定されない。例えば、一方向の圧力差でのみ開く弁があれば、圧力センサで作動する制御弁でもよい。
 バイパス管L9は、第2の給気管L8における逆止弁6の上流側部分(より具体的には、コンプレッサ3bの出口から逆止弁6の入口までの部分)と、第2の排気管L5におけるガス入口弁5の下流側部分(より具体的には、ガス入口弁5の出口からタービン3aの入口までの部分)に接続される。バイパス管L9には、バイパス弁7が設けられ、バイパス弁7が開くと、第2の給気管L8から第2の排気管L5へ圧縮空気が流れ、バイパス弁7が閉じると、圧縮空気の流れが停止する。
 以下、本実施形態に係る過給システム1の動作について説明する。下記の説明では、主過給機2は、常時、運転状態にあることを前提とする。
 初めに、副過給機3を起動する場合について説明する。
 まず、副過給機3を起動する前に、バイパス弁7を予め開放しておく。これにより、副過給機3のコンプレッサ3bから圧縮空気が送られるとすぐに、パイパス管L9の接続先である排気管L5へ圧縮空気が戻すことが可能になる。
 そして、副過給機3を起動するため、図2に示すように、副過給機3のガス入口弁5を徐々に開き始める。これにより、第2の排気管L5を流れる排ガスの量が徐々に増加し、副過給機3のタービン3aが回転を始めて、副過給機3の回転数が上昇していく。そして、副過給機3の回転数が十分高く上昇したとき、例えば、主過給機2及び副過給機3共に運転している間に想定される副過給機3の回転数よりも5~10%高い回転数になった時(図2では不図示)、ガス入口弁5の開動作を一旦中断する。ガス入口弁5は、短時間に全開とされるのではなく、部分的に開かれた状態である。このとき、副過給機3のコンプレッサ3bが圧縮空気を送るようになり、パイパス管L9を介して、排気管L5へ圧縮空気が戻され、タービン3aは、排気マニホールド11からの排ガスとコンプレッサ3bからの圧縮空気によって回転する。したがって、副過給機3の回転数は、短期間で早く上昇する。
 圧縮空気をバイパスさせている期間、排気マニホールド11から副過給機3へ排ガスが送られるが、パイパス管L9を介して圧縮空気が戻されるため、バイパス管L9を設けない場合と比較して、排気マニホールド11から副過給機3へ送られる排ガス量を少なくすることができる。
 そのため、排気マニホールド11から主過給機2へ送られる排ガス量の減少が、従来よりも少なくて済み、主過給機2の回転数の低減を抑制できる。そのため、主過給機2から給気マニホールド12へ送られる空気を多く維持できる。
 その後、図2に示すように、副過給機3の回転数が上述の回転数まで上昇し安定した後、ガス入口弁5を徐々に全開にしながら、バイパス弁7を徐々に全閉にする。その結果、副過給機3のコンプレッサ3bの出口空気の圧力P1が更に上昇する。そして、出口空気の圧力P1が、給気マニホールド12の圧力P2(=主機関の掃気圧P2)以上となったとき、逆止弁6が開状態となる。これにより、給気管L8を介して、コンプレッサ3bからの圧縮空気が給気マニホールド12へ送られ、主過給機2と副過給機3から主機関へ空気が供給されるようになる。
 すなわち、副過給機3のガス入口弁5を開き始めてから逆止弁6が開状態となるまでの間、逆止弁6は閉状態であるため、副過給機3のコンプレッサ3bへの空気の逆流を防止でき、副過給機3におけるサージングの発生を防ぐことができる。
 また、副過給機3を起動する過程において、圧縮空気をバイパスさせている期間が短い。そして、過給システム1の外部に圧縮空気を放出させず、その圧縮空気を副過給機3の運転の加勢に使用することで、排気マニホールド11から副過給機3へ送られる排ガス量を少なくできることから、排気マニホールド11から主過給機2へ送られる排ガス量の減少量を抑えられる。その結果、主機関で発生する排ガスの温度が上昇しにくくなり、主機関の熱負荷上昇や、燃料消費の悪化を抑制できる。
 次に、副過給機3を停止する場合について説明する。
 まず、コンプレッサ3bからの出口空気を減らすため、バイパス弁7を開放する。また、パイパス弁7の開放を開始した後に、図2に示すように、副過給機3のガス入口弁5を閉じ始める。そして、バイパス弁7を徐々に開放しながら、ガス入口弁5を徐々に閉じる。これにより、第2の排気管L5を流れる排ガスの量が徐々に減少し、副過給機3のタービン3aが回転を停止し始め、副過給機3の回転数が下降していく。
 そして、コンプレッサ3bの出口空気の圧力P1が、給気マニホールド12の圧力P2(=主機関の掃気圧P2)未満になったとき、逆止弁6が閉状態となる。副過給機3のコンプレッサ3bが送る圧縮空気は、パイパス管L9を介して、排気管L5へ圧縮空気が戻される。これにより、副過給機3のコンプレッサ3bへの空気の逆流を防止でき、副過給機3におけるサージングの発生を防ぐことができる。
 そして、副過給機3の回転数が安定した後、ガス入口弁5を徐々に全閉にする。圧縮空気が外部へ放出されないため、逆止弁6が閉ざされても、副過給機3の回転数が上昇しない。また、圧縮空気が戻されるため、排気マニホールド11から排気管L5を介して副過給機3へ送られる排ガス量が、副過給機3の運転時に比べて減少する。そして、排気マニホールド11から主過給機2へ送られる排ガス量が増加し、主過給機2の回転数が増加する。そのため、主過給機2から給気マニホールド12へ送られる空気が増加する。
 すなわち、副過給機3を停止する過程において、主過給機2から給気マニホールド12へ送られる空気が増加することから、従来のように、掃気圧P2が低下して主機関へ送られる空気の量が減少することがない。その結果、主機関で発生する排ガスの温度が上昇しにくくなり、主機関の熱負荷上昇や、燃料消費の悪化を抑制できる。
1 過給システム
2 主過給機
2a タービン(主タービン部)
2b コンプレッサ(主コンプレッサ部)
3 副過給機
3a タービン(副タービン部)
3b コンプレッサ(副コンプレッサ部)
5 ガス入口弁
6 逆止弁(弁)
7 バイパス弁
11 排気マニホールド
12 給気マニホールド
13 空気冷却器
L1 第1の排気管
L2,L6 排気管
L3,L7 給気管
L4 第1の給気管
L5 第2の排気管(排気管)
L8 第2の給気管(給気管)
L9 バイパス管

Claims (5)

  1.  内燃機関から供給される排ガスによって駆動され、前記内燃機関の運転の間、常時運転する少なくとも一つの主タービン部、及び、前記主タービン部によって駆動され前記内燃機関に圧縮気体を送る主コンプレッサ部を備える主過給機と、
     前記内燃機関から供給される排ガスによって駆動され、前記内燃機関の負荷に応じて運転又は停止する少なくとも一つの副タービン部、及び、前記副タービン部によって駆動され前記内燃機関に圧縮気体を送る副コンプレッサ部を備え、前記主過給機と異なる副過給機と、
    を備え、
     前記副タービン部に接続されるとともに、前記内燃機関から供給される排ガスが流れる排気管と、
     前記排気管に設けられ、前記排ガスの流量を調整するガス入口弁と、
     前記副コンプレッサ部、及び、前記内燃機関の給気マニホールドに接続されるとともに、前記圧縮気体が流れる給気管と、
     前記給気管に設けられ、前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力以上のときに開状態となる弁と、
     前記給気管における前記弁の上流側部分と、前記排気管における前記ガス入口弁の下流側部分に接続されるバイパス管と、
     前記バイパス管に設けられ、前記給気管から前記排気管へ前記バイパス管を流れる前記圧縮気体の流量を調整するバイパス弁と、
    を備える過給システム。
  2.  前記副過給機を停止状態から起動するとき、前記バイパス弁が開いた状態で前記ガス入口弁が徐々に又は部分的に開かれて、前記副過給機の回転数が安定した後、前記ガス入口弁を全開し、かつ、前記バイパス弁を全閉する請求項1に記載の過給システム。
  3.  前記副過給機を運転状態から停止するとき、前記バイパス弁を開きつつ、前記ガス入口弁が徐々に又は部分的に閉められて、前記副過給機の回転数が安定した後、前記ガス入口弁を全閉する請求項1又は2に記載の過給システム。
  4.  内燃機関から供給される排ガスによって駆動され、前記内燃機関の運転の間、常時運転する少なくとも一つの主タービン部、及び、前記主タービン部によって駆動され前記内燃機関に圧縮空気を送る主コンプレッサ部を備える主過給機と、前記内燃機関から供給される排ガスによって駆動され、前記内燃機関の負荷に応じて運転又は停止する少なくとも一つの副タービン部、及び、前記副タービン部によって駆動され前記内燃機関に圧縮気体を送る副コンプレッサ部を備え、前記主過給機と異なる副過給機とを備え、前記副タービン部に接続されるとともに、前記内燃機関から供給される排ガスが流れる排気管と、前記副コンプレッサ部、及び、前記内燃機関の給気マニホールドに接続されるとともに、前記圧縮気体が流れる給気管とを備える過給システムの運転方法であって、
     前記排気管への前記排ガスの流通を開始するステップと、
     前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力未満の間、前記副コンプレッサ部の出口から前記副タービン部の入口へ圧縮空気を送るステップと、
     前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力以上となったとき、前記給気管を介して、前記副コンプレッサ部の出口から前記給気マニホールドへ圧縮気体を送るステップと、
    を備える過給システムの運転方法。
  5.  前記排気管への前記排ガスの流通を停止するステップと、
     前記副コンプレッサ部の出口気体の圧力が前記給気マニホールドの圧力未満となったとき、前記給気管において前記副コンプレッサ部の出口から前記給気マニホールドへ圧縮気体の供給を停止し、前記副コンプレッサ部の出口から前記副タービン部の入口へ圧縮気体を送るステップと、
    を備える請求項4に記載の過給システムの運転方法。
PCT/JP2015/083698 2015-01-14 2015-12-01 過給システム及び過給システムの運転方法 WO2016114025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167020313A KR101759045B1 (ko) 2015-01-14 2015-12-01 과급 시스템 및 과급 시스템의 운전 방법
CN201580005956.3A CN105980684B (zh) 2015-01-14 2015-12-01 增压系统及增压系统的运行方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004951 2015-01-14
JP2015004951A JP6370716B2 (ja) 2015-01-14 2015-01-14 過給システム及び過給システムの運転方法

Publications (1)

Publication Number Publication Date
WO2016114025A1 true WO2016114025A1 (ja) 2016-07-21

Family

ID=56405581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083698 WO2016114025A1 (ja) 2015-01-14 2015-12-01 過給システム及び過給システムの運転方法

Country Status (4)

Country Link
JP (1) JP6370716B2 (ja)
KR (1) KR101759045B1 (ja)
CN (1) CN105980684B (ja)
WO (1) WO2016114025A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746089B2 (en) * 2018-01-25 2020-08-18 Caterpillar Inc. Inline turbocharger arrangement and method
CN108757241A (zh) * 2018-07-04 2018-11-06 李桂江 稳压进气发动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109023A (en) * 1976-03-06 1977-09-12 Maschf Augsburg Nuernberg Ag Exhaust gas turbo supercharger
JP4950082B2 (ja) * 2008-01-10 2012-06-13 三菱重工業株式会社 舶用ディーゼル機関
JP2012202315A (ja) * 2011-03-25 2012-10-22 Toyota Motor Corp Egr装置付き過給エンジンの制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2105561U (zh) * 1991-10-14 1992-05-27 方彩琴 机动车涡轮增压器
JPH0614443U (ja) * 1992-07-24 1994-02-25 石川島播磨重工業株式会社 シーケンシャルターボの排ガス切替バルブ
JP2005155356A (ja) 2003-11-21 2005-06-16 Toyota Motor Corp 並列2連ターボ過給機による機関過給装置
JP4662155B2 (ja) * 2006-01-10 2011-03-30 株式会社Ihi 電動機付過給機の回転バランス修正方法および回転バランス試験装置
JP5035097B2 (ja) * 2008-05-06 2012-09-26 トヨタ自動車株式会社 多段式ターボ過給システムのサージ回避制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109023A (en) * 1976-03-06 1977-09-12 Maschf Augsburg Nuernberg Ag Exhaust gas turbo supercharger
JP4950082B2 (ja) * 2008-01-10 2012-06-13 三菱重工業株式会社 舶用ディーゼル機関
JP2012202315A (ja) * 2011-03-25 2012-10-22 Toyota Motor Corp Egr装置付き過給エンジンの制御装置

Also Published As

Publication number Publication date
JP6370716B2 (ja) 2018-08-08
JP2016130474A (ja) 2016-07-21
CN105980684B (zh) 2017-10-03
KR20160094450A (ko) 2016-08-09
CN105980684A (zh) 2016-09-28
KR101759045B1 (ko) 2017-07-17

Similar Documents

Publication Publication Date Title
JP4950082B2 (ja) 舶用ディーゼル機関
US10526955B2 (en) Supercharging device for an internal combustion engine, and operating method for the supercharging device
JP6059299B2 (ja) 燃焼機関用強制導入装置、燃焼機関及び燃焼機関の動作方法
US10563572B2 (en) Charging device for an internal combustion engine and operating method for the charging device
US10513972B2 (en) Supercharger device for an internal combustion engine, and a method for operating said supercharger device
JP5155980B2 (ja) ターボコンパウンドシステムおよびその運転方法
JP5506567B2 (ja) 内燃機関
KR101734250B1 (ko) 엔진 시스템
CN108612583B (zh) 发动机系统
GB2156429A (en) Control of i.c. engine plural turbocharger systems
US9394855B2 (en) Supercharged internal combustion engine with exhaust-gas turbochargers arranged in series and method for operating an internal combustion engine of said type
GB2425332A (en) Providing swirl to the compressor of a turbocharger
JP2009115089A (ja) 過給機付エンジン及びその運転方法
EP2466092A1 (en) Turbocharger System
JP5448703B2 (ja) 舶用ディーゼル機関
US20140130494A1 (en) Air compressing device of engine
EP2341225A1 (en) Method for controlling a turbocompound engine apparatus
JP6370716B2 (ja) 過給システム及び過給システムの運転方法
JP2012136957A (ja) 内燃機関、及びそのegr方法
WO2014102236A1 (en) Method and apparatus for controlling a twin scroll turbocharger with variable geometry depending on the exhaust gas recirculation
JP2007024010A (ja) 助燃式ターボ過給装置
WO2012063801A1 (ja) 低圧ループegr装置
JP2010138759A (ja) 内燃機関の過給システム及びその制御方法
JP2005188359A (ja) 過給機付内燃機関
JP6537271B2 (ja) 内燃機関

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167020313

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877976

Country of ref document: EP

Kind code of ref document: A1