WO2016113821A1 - Temperature sensor and method for manufacturing same - Google Patents

Temperature sensor and method for manufacturing same Download PDF

Info

Publication number
WO2016113821A1
WO2016113821A1 PCT/JP2015/006416 JP2015006416W WO2016113821A1 WO 2016113821 A1 WO2016113821 A1 WO 2016113821A1 JP 2015006416 W JP2015006416 W JP 2015006416W WO 2016113821 A1 WO2016113821 A1 WO 2016113821A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal lead
lead wire
reference direction
linear expansion
expansion coefficient
Prior art date
Application number
PCT/JP2015/006416
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 福島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580073331.0A priority Critical patent/CN107209067B/en
Publication of WO2016113821A1 publication Critical patent/WO2016113821A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Definitions

  • the present disclosure relates to a temperature sensor and a manufacturing method thereof.
  • a temperature sensor in which a metal lead wire electrically connected to a temperature sensing element that senses temperature is inserted into a resin casing by insert molding has been conventionally known.
  • Patent Document 1 discloses a technique in which a primary mold resin is interposed between a resin casing as a secondary mold resin and a metal lead wire in a sensor device used as a temperature sensor or the like.
  • the primary expansion resin and the secondary mold resin have different linear expansion coefficients in the flow direction and the flow direction perpendicular to the molten resin material at the time of molding.
  • the thermal expansion amount of the primary mold resin is larger than the thermal expansion amount of the metal lead wire in the extending direction of the metal lead wire. Therefore, if the linear expansion coefficient is not properly set, the metal lead wire that is pulled in the extending direction by the primary mold resin that has undergone large thermal expansion may cause a disconnection due to the occurrence of stress, thereby reducing the yield.
  • An object of the present disclosure is to provide a temperature sensor with a high yield and a manufacturing method thereof.
  • the temperature sensor includes a temperature-sensitive element that senses temperature and an extending portion that is formed of a metal material and extends along the reference direction, and is electrically connected to the temperature-sensitive element.
  • a metal lead wire formed from a resin material, and a resin casing in which the metal lead wire is inserted by molding, and a specific material that gives a linear expansion coefficient larger than the metal lead wire and smaller than the resin casing in the reference direction,
  • An intermediate cover that is formed and interposed between the resin casing and the metal lead wire, and the difference in the linear expansion coefficient between the metal lead wire and the intermediate cover in the reference direction depends on the difference in the linear expansion coefficient. It is set within a specific range that limits the generated stress to be smaller than the tensile strength of the metal lead wire.
  • an intermediate cover is interposed between the metal lead wire inserted into the resin casing by molding and the resin casing.
  • the linear expansion coefficient of the intermediate cover is given larger than the metal lead wire and smaller than the resin casing by the specific material forming the intermediate cover. Therefore, even under use in a high temperature environment, in the reference direction, the thermal expansion amount of the intermediate cover can be as close as possible to the thermal expansion amount of the metal lead wire rather than the thermal expansion amount of the resin casing.
  • the generated stress generated in the metal lead wire according to the set value is smaller than the tensile strength of the metal lead wire. Limited. Thereby, in the metal lead wire, it is possible to suppress a situation in which the generated stress exceeds the tensile strength and causes disconnection, and thus it is possible to achieve a high yield.
  • the resin casing is formed by molding from a resin material containing a fibrous filler, and the linear expansion coefficient of the intermediate cover in the reference direction is greater than the minimum linear expansion coefficient of the resin casing. small.
  • the linear expansion coefficient in each part of the resin casing may vary depending on the gate formation position in the molding die. is there. Therefore, in the reference direction, as long as the difference between the linear expansion coefficients of the intermediate cover formed of a specific material and the metal lead wire having a smaller linear expansion coefficient is within a specific range, It is given smaller than the linear expansion coefficient. According to this, since the thermal expansion amount of the intermediate cover surely approaches the thermal expansion amount of the metal lead wire rather than the thermal expansion amount at an arbitrary location of the resin casing, the generated stress is higher than the tensile strength in the metal lead wire. The wire breakage can be suppressed by being limited to a small size. Therefore, it is possible to contribute to achieving a high yield.
  • the third aspect is a method of manufacturing the temperature sensor according to the second aspect, wherein the pair of metal leads are covered with an intermediate cover, and the pair of metal leads covered with the intermediate cover in the covering step.
  • Lines are arranged in a direction orthogonal to the reference direction and set together with the temperature sensing element in the molding cavity of the molding die, and a pair of metal lead wires set by the setting step in the molding die are orthogonal
  • An injection process for injecting molten resin material into the molding cavity from one of the two sides sandwiched in the direction toward one side and the other side of the both sides, and a molding cavity in the injection process A solidifying step of forming a resin casing by solidifying the resin material injected therein.
  • the pair of metal lead wires covered with the intermediate cover are arranged in a direction orthogonal to the reference direction and set together with the temperature sensitive element into the molding cavity of the molding die.
  • a molten resin material is formed from a gate provided on one side of both sides sandwiching a pair of set metal lead wires in an orthogonal direction toward one side and the other side of the both sides. Will be injected into the molding cavity.
  • the linear expansion coefficient of the intermediate cover is as long as the linear expansion coefficient difference with the smaller linear expansion coefficient of each metal lead wire is within a specific range. Thus, it is given smaller than the minimum linear expansion coefficient of the resin casing. According to this, since the thermal expansion amount of the intermediate cover surely approaches the thermal expansion amount of each metal lead wire rather than the thermal expansion amount at an arbitrary position of the resin casing, the generated stress is tensile in each of the metal lead wires. The disconnection can be suppressed by being limited to be smaller than the strength. Therefore, it is possible to contribute to achieving a high yield.
  • FIG. 1 is a diagram illustrating a structure of a temperature sensor according to an embodiment, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 2 is a view showing a structure of a temperature sensor according to an embodiment, and is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a physical property table for explaining physical properties of the temperature sensor according to an embodiment.
  • FIG. 4 is a top view (a), a side view (b), and a perspective view (c) showing a temperature sensing element, a metal lead wire, and a metal terminal as components of a temperature sensor according to an embodiment
  • FIG. 5 is a top view (a), a side view (b), and a perspective view (c) showing a metal terminal and an intermediate cover as components of a temperature sensor according to an embodiment
  • FIG. 6 is a top view (a), a side view (b), and a perspective view (c) showing an appearance of a temperature sensor according to an embodiment
  • FIG. 7 is a flowchart illustrating a method for manufacturing a temperature sensor according to an embodiment.
  • FIG. 8 is a cross-sectional view illustrating S101 in FIG. FIG.
  • FIG. 9 is a cross-sectional view showing S102 of FIG.
  • FIG. 10 is a cross-sectional view illustrating S103 of FIG.
  • FIG. 11 is a cross-sectional view illustrating S104 in FIG.
  • FIG. 12 is a cross-sectional view showing a modification of FIG.
  • the temperature sensor 1 shown in FIGS. 1 and 2 is mounted inside the front grill in the engine room of the vehicle.
  • the temperature sensor 1 senses the temperature of the outside air of the vehicle.
  • the temperature sensor 1 has a difference between the lowest temperature reached by the vehicle outside air in a cold environment and the highest temperature reached by radiant heat from the engine in a vehicle that is stopped or traveling at a low speed,
  • An operating temperature range ⁇ T is defined.
  • a wide-range operating temperature range ⁇ T of 110 ° C. is assumed in advance as the difference between the lowest temperature of ⁇ 30 ° C. and the highest temperature of 80 ° C.
  • the temperature sensor 1 includes a temperature sensitive element 10, a metal lead wire 20, a metal terminal 30, a resin casing 40, and an intermediate cover 50.
  • the temperature sensing element 10 shown in FIGS. 1, 2, and 4 is a thermistor that generates a sensing signal having a voltage corresponding to the sensed temperature in order to sense the temperature of the outside air of the vehicle.
  • the temperature sensitive element 10 is formed by sealing the entire element body 11 with a sealing material 12.
  • the sealing material 12 is formed from a material that exhibits heat resistance in the operating temperature range ⁇ T, such as an epoxy resin, glass, or the like. In the present embodiment, the sealing material 12 is oblate, but may be, for example, a rectangular or circular flat plate.
  • the element body 11 has a rectangular chip shape in the present embodiment, but may be, for example, a circular chip shape.
  • a pair of metal lead wires 20 shown in FIGS. 1, 2 and 4 are provided to output a sensing signal generated by the temperature sensing element 10.
  • Each metal lead wire 20 has an extending portion 21 extending linearly along a predetermined reference direction Db.
  • the metal lead wires 20 are arranged at intervals in an orthogonal direction Do orthogonal to the reference direction Db, thereby extending the extending portions 21 substantially parallel to each other along the reference direction Db.
  • each metal lead wire 20 is integrally provided with an inclined portion 22 that is inclined toward each other with respect to the reference direction Db by extending from the extending portion 21 toward the common temperature-sensitive element 10. Yes.
  • each metal lead wire 20 is electrically connected to the common temperature sensing element 10 by being joined to the common temperature sensing element 10 by, for example, welding.
  • Each metal lead wire 20 having such a configuration is formed of a conductive metal material such as copper, iron, stainless steel, or the like.
  • Each metal lead wire 20 has an elongated round bar shape as a whole in the present embodiment, but may be, for example, an elongated flat plate shape.
  • the metal lead wires 20 are given substantially the same linear expansion coefficient ⁇ l and substantially the same Young's modulus Yl with respect to the reference direction Db.
  • ⁇ l linear expansion coefficient defined in the reference direction Db of the metal lead wire 20 formed of annealed copper wire.
  • 152.0 GPa (kN / mm 2 ) is given as the Young's modulus Yl defined in the reference direction Db of the metal lead wire 20 formed from an annealed copper wire.
  • a pair of metal terminals 30 shown in FIGS. 1, 2, 4, and 5 are provided corresponding to the metal lead wires 20 individually in order to transmit a sensing signal output through each metal lead wire 20 to an external circuit. Yes.
  • Each metal terminal 30 is electrically connected to the corresponding metal lead wire 20 by being joined to the extending portion 21 of the corresponding metal lead wire 20 by welding or the like, for example.
  • the metal terminals 30 are linearly extended along the reference direction Db from the joints with the corresponding metal lead wires 20, and are arranged in the orthogonal direction Do orthogonal to the reference direction Db.
  • Each metal terminal 30 is formed of a conductive metal material, such as copper, iron, or dumet wire (a material in which an iron-nickel alloy is coated with copper).
  • Each metal terminal 30 has an elongated rectangular flat plate shape in the present embodiment, but may have an elongated round bar shape, for example.
  • Each of the metal terminals 30 is given a tensile strength of, for example, about 390 to 500 N / mm 2 so that the tensile strength in the reference direction Db is higher than that of the corresponding metal lead wire 20.
  • the resin casing 40 is formed by inserting the entire temperature sensing element 10, the entire metal lead wires 20, and a part of each metal terminal 30 by molding.
  • the resin casing 40 exposes the remainder of the metal terminals 30 to the outside so that the metal terminals 30 can be electrically connected to an external circuit.
  • the resin casing 40 is formed from a resin material exhibiting heat resistance in the use temperature range ⁇ T, such as polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, or the like.
  • the resin casing 40 of the present embodiment is formed of a resin material containing a fibrous filler such as a glass filler, for example, in order to increase the impact strength in the vehicle.
  • a one-side gate type is adopted as mold forming in this embodiment.
  • the resin casing 40 is given a linear expansion coefficient ⁇ c larger than that of the metal lead wire 20 and a Young's modulus Yc smaller than that of the metal lead wire 20 with respect to the reference direction Db.
  • ⁇ c linear expansion coefficient
  • Yc Young's modulus
  • the other-side metal lead wire 20b (see FIG. 1) is provided around the one-side metal lead wire 20a (see FIG. 1).
  • a linear expansion coefficient ⁇ c smaller than the periphery of (see FIG. 1) is given in the reference direction Db.
  • the linear expansion coefficient ⁇ c shows a minimum value around the metal lead wire 20a on one side. Therefore, in the numerical example of FIG. 3, 2.0 ⁇ 10 ⁇ 5 / ° C. is presented as the minimum linear expansion coefficient ⁇ c around the metal lead wire 20a on one side.
  • the Young's modulus is larger around the metal lead wire 20a on the one side than around the metal lead wire 20b on the other side.
  • Yc is given in the reference direction Db.
  • the Young's modulus Yc shows the maximum value around the metal lead wire 20a on one side. Therefore, in the numerical example of FIG. 3, 9.0 GPa is presented as the maximum Young's modulus Yc around the metal lead wire 20a on one side.
  • the intermediate cover 50 is formed by coating the entire temperature sensing element 10, the entire metal lead wires 20, and a part of each metal terminal 30 by a coating process.
  • the intermediate cover 50 is inserted into the resin casing 40 by molding so that the intermediate cover 50 is interposed between the inner elements 10, 20, 30 and the outer resin casing 40 in a thin film shape.
  • the intermediate cover 50 is formed from a specific material exhibiting heat resistance in the use temperature range ⁇ T, for example, PPS resin, epoxy resin, silicone resin, or the like.
  • the intermediate cover 50 of the present embodiment is formed from a specific material containing a fibrous filler such as a glass filler, for example, in order to increase the impact strength in the vehicle.
  • the coating process for forming the intermediate cover 50 from such a specific material for example, a coating process or a spraying process of the liquid specific material, an immersion process in the liquid specific material, or the like can be employed.
  • a film thickness of about 0.2 to 2 mm is employed as the formation thickness of the intermediate cover 50 by the coating process.
  • the intermediate cover 50 has a linear expansion coefficient ⁇ m larger than the metal lead wire 20 and smaller than the resin casing 40, and a Young's modulus Ym smaller than the metal lead wire 20 and larger than the resin casing 40.
  • ⁇ m the linear expansion coefficient defined in the reference direction Db of the intermediate cover 50 formed from the glass filler-containing PPS resin by the coating process
  • ⁇ c the minimum linear expansion coefficient ⁇ c of the resin casing 40
  • the Young's modulus Ym defined in the reference direction Db of the intermediate cover 50 formed from the glass filler-containing PPS resin by the coating process is larger than the maximum Young's modulus Yc of the resin casing 40. 2 kN / mm 2 GPa is given.
  • the linear expansion coefficient difference ⁇ is expressed by the following formula 1. That is, the linear expansion coefficient difference ⁇ is obtained by a subtraction value obtained by subtracting the linear expansion coefficient ⁇ l of the metal lead wire 20 in the reference direction Db from the linear expansion coefficient ⁇ m of the intermediate cover 50 in the reference direction Db. Specifically, the linear expansion coefficient difference ⁇ obtained by substituting the numerical example of FIG. 3 into Equation 1 is 0.4 ⁇ 10 ⁇ 5 / ° C.
  • the generated stress ⁇ is expressed by the following formula 2. That is, the generated stress ⁇ is estimated by a multiplication value obtained by multiplying the linear expansion coefficient difference ⁇ in the reference direction Db, the Young's modulus Yl of the metal lead wire 20 in the reference direction Db, and the operating temperature range ⁇ T. Specifically, the generated stress ⁇ estimated by substituting the numerical example of FIG. 3 into Equation 2 is 66.88 N / mm 2 .
  • the temperature sensor 1 satisfies the relationship of the following formula 3 between the generated stress ⁇ and the tensile strength Sl in the metal lead wire 20. That is, in the metal lead wire 20, the generated stress ⁇ in the metal lead wire 20 is limited to be smaller than the tensile strength S1. Specifically, in the numerical example of FIG. 3, since the tensile strength S1 of the metal lead wire 20 formed of annealed copper wire is 120 N / mm 2 , the generated stress ⁇ in the metal lead wire 20 is 66.88 N as described above. / Mm 2 .
  • the tensile strength S1 can be measured by a method such as JIS Z2241 (metal material tensile test method).
  • ⁇ ⁇ Sl (Formula 3) From the above, when formulas 2 and 3 are arranged, the following formula 4 is obtained. Therefore, in the temperature sensor 1, when the minimum linear expansion coefficient ⁇ m of the intermediate cover 50 is given smaller than the linear expansion coefficient ⁇ l of the metal lead wire 20, a line obtained by substituting these coefficients ⁇ l and ⁇ m into Equation 1 is obtained.
  • the expansion coefficient difference ⁇ is set in advance in a specific range that satisfies the relationship of Equation 4.
  • the common temperature sensing element 10 joined to each metal lead wire 20 and a part of the individual metal terminal 30 are also covered by the intermediate cover 50. Therefore, in the covering step, for example, the liquid specific material is applied to the whole of the metal lead wires 20, the temperature sensing element 10, and a part of each of the metal terminals 30. A coating process such as a dipping process is performed.
  • the pair of metal lead wires 20 covered with the intermediate cover 50 in the previous covering step is formed of the mold 100 that has been opened. Set in molding cavity 101.
  • the temperature sensitive element 10 and the pair of metal terminals 30 covered by the intermediate cover 50 in the previous covering process are also set in the molding cavity 101 of the mold 100 that has been opened. To do.
  • the pair of metal lead wires 20 and the pair of metal terminals 30 are set together with the temperature sensing element 10 in a direction Do perpendicular to the reference direction Db.
  • the mold 100 having the pair of metal lead wires 20 and the like set in the molding cavity 101 by the previous setting step is closed and In a state where the mold is clamped, the molten resin material is injected into the molding cavity 101.
  • the setting step of the present embodiment only the gate 102 provided on the metal lead wire 20a side as one side among the both sides sandwiching the pair of metal lead wires 20 in the orthogonal direction Do in the molding die 100, Molten resin material is injected.
  • the injected molten resin material is obtained from the metal lead wire 20a as one side of the both sides sandwiching the pair of metal lead wires 20 in the orthogonal direction Do, and the metal lead as the other side. It flows toward the line 20b side.
  • a fibrous filler is included in the molten resin material.
  • the fiber orientation of the fibrous filler is easily along the reference direction Db around the metal lead wire 20 a on one side close to the gate 102.
  • the fiber orientation of the fibrous filler does not follow along the reference direction Db around the metal lead wire 20b on the other side far from the gate 102, for example, easily along the orthogonal direction Do.
  • the molten resin material is solidified by cooling the molten resin material injected into the molding cavity 101 in the previous injection step, and the resin casing. 40 is formed.
  • the circumference of the metal lead wire 20a on one side is smaller than the circumference of the metal lead wire 20b on the other side due to the difference in fiber orientation with respect to the fibrous filler in the injection process described above.
  • a linear expansion coefficient ⁇ c is given in the reference direction Db. As a result, the temperature sensor 1 is completed.
  • the intermediate cover 50 is interposed between the metal lead wire 20 inserted into the resin casing 40 by molding and the resin casing 40.
  • the linear expansion coefficient ⁇ m of the intermediate cover 50 is larger than that of the metal lead wire 20 and from the resin casing 40 due to the specific material forming the intermediate cover 50. Is also given small. Therefore, even under use in a high temperature environment, the thermal expansion amount of the intermediate cover 50 can be as close as possible to the thermal expansion amount of the metal lead wire 20 rather than the thermal expansion amount of the resin casing 40 in the reference direction Db. .
  • the generated stress ⁇ generated in the metal lead wire 20 according to the set value is the metal lead wire.
  • the tensile strength S1 is limited to be smaller than 20. As a result, in the metal lead wire 20, it is possible to suppress a situation in which the generated stress ⁇ exceeds the tensile strength S 1 and causes disconnection, so that a high yield can be achieved.
  • the generated stress ⁇ generated according to the linear expansion coefficient difference ⁇ in the reference direction Db with respect to the intermediate cover 50 is the linear expansion coefficient difference ⁇ and the Young's modulus Yl in the reference direction Db. It can be estimated by a multiplication value ( ⁇ ⁇ Yl ⁇ ⁇ T) with the operating temperature range ⁇ T. Therefore, by setting the linear expansion coefficient difference ⁇ within a specific range that satisfies the relationship ⁇ ⁇ Sl / (Yl ⁇ ⁇ T) in Equation 4, the generated stress ⁇ is more reliably set than the tensile strength S1 in the metal lead wire 20. The wire breakage can be suppressed by limiting to a small value. Therefore, the reliability for achieving a high yield can be improved.
  • the Young's modulus Ym of the intermediate cover 50 in the reference direction Db in which the extending portion 21 of the metal lead wire 20 extends is smaller than that of the metal lead wire 20 due to the specific material forming the intermediate cover 50 and It is given larger than the resin casing 40. Therefore, even under use in a high temperature environment, the tensile action in the reference direction Db by the resin casing 40 having a large thermal expansion amount is absorbed by the intermediate cover 50, and the metal lead wire 20 is caused to be in the same reference direction Db by the tensile action. Can be reduced. According to this, since the generated stress ⁇ generated in the metal lead wire 20 can be reduced and the disconnection can be suppressed, it is possible to contribute to the achievement of a high yield.
  • the linear expansion coefficient at each location of the resin casing 40 according to the formation position of the gate 102 in the molding die 100. ⁇ c may vary. Therefore, in the reference direction Db, as long as the linear expansion coefficient difference ⁇ with the metal lead wire 20 having a smaller linear expansion coefficient ⁇ l is within a specific range with respect to the linear expansion coefficient ⁇ m of the intermediate cover 50 formed of the specific material, the resin It is smaller than the minimum linear expansion coefficient ⁇ c of the casing 40.
  • the amount of thermal expansion of the intermediate cover 50 surely approaches the amount of thermal expansion of the metal lead wire 20 rather than the amount of thermal expansion at an arbitrary location of the resin casing 40, the generated stress ⁇ is generated in the metal lead wire 20. Is limited to be smaller than the tensile strength S1 and disconnection can be suppressed. Therefore, it is possible to contribute to achieving a high yield.
  • the pair of metal lead wires 20 covered with the intermediate cover 50 are arranged in the direction Do perpendicular to the reference direction Db, and together with the temperature sensing element 10, the molding cavity 101 of the molding die 100.
  • the molding cavity 101 Set in.
  • the gate 102 provided on one side of both sides sandwiching the set pair of metal lead wires 20 in the orthogonal direction Do, toward one side and the other side of the both sides,
  • the molten resin material is injected into the molding cavity 101.
  • the resin casing 40 formed by solidification of the molten resin material injected into the molding cavity 101 the metal on the other side far from the gate 102 around the metal lead wire 20 a on one side near the gate 102.
  • a linear expansion coefficient ⁇ c higher than that around the lead wire 20b is given in the reference direction Db. This is because the molten resin material flows along the reference direction Db around the metal lead wire 20a on one side, but does not follow the reference direction Db around the metal lead wire 20b on the other side. For example, when the molten resin material flows along the orthogonal direction Do, a difference occurs in the fiber orientation of the fibrous filler.
  • the linear expansion coefficient ⁇ m of the intermediate cover 50 is linearly expanded with the linear expansion coefficient ⁇ l of each metal lead wire 20 (20a, 20b) smaller than that.
  • the coefficient difference ⁇ is within the specific range, the coefficient is given smaller than the minimum linear expansion coefficient ⁇ c of the resin casing 40.
  • the generated stress ⁇ is limited to be smaller than the tensile strength Sl, and disconnection can be suppressed. Therefore, it can contribute to the achievement of a high yield.
  • the temperature sensor 1 may be used in vehicles other than a vehicle such as an outside air temperature sensing around a bridge (for displaying an outside air temperature in order to alert a freezing winter).
  • the Young's modulus Ym of the intermediate cover 50 may be set smaller than the Young's modulus Yc of the resin casing 40.
  • the specific material which forms the resin casing 40 does not need to contain a fibrous filler.
  • the specific material forming the intermediate cover 50 may not contain a fibrous filler.
  • the metal lead wire 20 may be configured only from the substantially extending portion 21 without providing the inclined portion 22. Further, as a sixth modified example, the metal lead wire 20 may be electrically connected to an external circuit without providing the metal terminal 30.
  • a molten resin material is injected into a molding cavity 101 from gates 102 provided on both sides sandwiching a pair of metal lead wires 20 in the orthogonal direction Do, thereby forming a resin casing.
  • 40 may be molded.
  • the resin casing 40 may be molded by the molding die 100 provided with the gate 102 in a positional relationship different from that of the above-described embodiment and the seventh modification.
  • the temperature sensitive element 10 may not be covered with the intermediate cover 50 in the covering step S101 and may be exposed in the molding cavity 101 in the setting step S102.
  • the metal terminal 30 may not be covered with the intermediate cover 50 in the covering step S101 and may be exposed in the molding cavity 101 in the setting step S102.
  • the intermediate cover 50 and the resin casing 40 may be sequentially formed by double molding of a resin material.

Abstract

A temperature sensor (1) is provided with: a temperature-sensitive element (10) for sensing a temperature; metal lead wires (20, 20a, 20b) formed from a metal material and having an extension part (21) extending along a reference direction (Db), the metal lead wires (20, 20a, 20b) being electrically connected to the temperature-sensitive element; a resin casing (40) formed from a resin material, the metal lead wires being inserted into the resin casing (40) by molding in a mold; and a middle cover (50) formed from a specific material having a coefficient of linear expansion in the reference direction greater than that of the metal lead wires and less than that of the resin casing, the middle cover (50) being interposed between the resin casing and the metal lead wires. The difference in coefficient of linear expansion between the metal lead wires and the middle cover in the reference direction is set in a specific range whereby stress that occurs in the metal lead wires in response to the difference in coefficient of linear expansion is limited so as to be less than the tensile strength of the metal lead wires.

Description

温度センサ及びその製造方法Temperature sensor and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年1月15日に出願された日本特許出願番号2015-6180号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-6180 filed on January 15, 2015, the contents of which are incorporated herein by reference.
 本開示は、温度センサ及びその製造方法に関するものである。 The present disclosure relates to a temperature sensor and a manufacturing method thereof.
 温度を感知する感温素子に対して電気的に接続される金属リード線を、インサート成形により樹脂ケーシングにインサートしてなる温度センサは、従来より知られている。 A temperature sensor in which a metal lead wire electrically connected to a temperature sensing element that senses temperature is inserted into a resin casing by insert molding has been conventionally known.
 例えば特許文献1には、温度センサ等として利用されるセンサ装置において、二次モールド樹脂としての樹脂ケーシングと金属リード線との間に、一次モールド樹脂を介在させる技術が開示されている。かかる技術では、一次モールド樹脂と二次モールド樹脂とについて、モールド成形時の溶融樹脂材料の流れ方向と流れ直角方向とで、線膨張係数の大小関係が異ならされている。 For example, Patent Document 1 discloses a technique in which a primary mold resin is interposed between a resin casing as a secondary mold resin and a metal lead wire in a sensor device used as a temperature sensor or the like. In such a technique, the primary expansion resin and the secondary mold resin have different linear expansion coefficients in the flow direction and the flow direction perpendicular to the molten resin material at the time of molding.
特開2004-198240号公報Japanese Patent Laid-Open No. 2004-198240
 さて、特許文献1に開示される技術のように金属リード線が直線状に延伸する構成下、モールド成形金型において成形キャビティ内の金属リード線がゲートに近い箇所では、溶融樹脂材料の流れ方向が当該延伸方向に沿い易くなる。しかし、モールド成形金型において成形キャビティ内の金属リード線がゲートから遠い箇所では、溶融樹脂材料の流れ方向が金属リード線の延伸方向には沿い難くなる。そのため、特許文献1に開示される技術では、一次モールド樹脂の線膨張係数と金属リード線の線膨張係数との大小関係を、金属リード線の延伸方向において適切に設定することは難しい。ここで特に、高温環境での使用も想定される温度センサとしてのセンサ装置では、金属リード線の延伸方向において金属リード線の熱膨張量よりも一次モールド樹脂の熱膨張量が大きくなる。故に、線膨張係数の設定が適切でないと、大きく熱膨張した一次モールド樹脂により延伸方向に引っ張られる金属リード線では、応力の発生により断線を招くことで、歩留まりを低下させるおそれがあった。 Now, under the configuration in which the metal lead wire is linearly stretched as in the technique disclosed in Patent Document 1, the flow direction of the molten resin material at a location where the metal lead wire in the molding cavity is close to the gate in the molding die. Becomes easy to follow along the said extending | stretching direction. However, in the molding die, at the location where the metal lead wire in the molding cavity is far from the gate, the flow direction of the molten resin material becomes difficult to follow the extending direction of the metal lead wire. Therefore, with the technique disclosed in Patent Document 1, it is difficult to appropriately set the magnitude relationship between the linear expansion coefficient of the primary mold resin and the linear expansion coefficient of the metal lead wire in the extending direction of the metal lead wire. In particular, in a sensor device as a temperature sensor assumed to be used in a high-temperature environment, the thermal expansion amount of the primary mold resin is larger than the thermal expansion amount of the metal lead wire in the extending direction of the metal lead wire. Therefore, if the linear expansion coefficient is not properly set, the metal lead wire that is pulled in the extending direction by the primary mold resin that has undergone large thermal expansion may cause a disconnection due to the occurrence of stress, thereby reducing the yield.
 本開示の目的は、歩留まりの高い温度センサ及びその製造方法を提供することにある。 An object of the present disclosure is to provide a temperature sensor with a high yield and a manufacturing method thereof.
 本開示の一態様において、温度センサは、温度を感知する感温素子と、金属材料から形成され、基準方向に沿って延伸する延伸部を有し、感温素子に対して電気的に接続される金属リード線と、樹脂材料から形成され、モールド成形により金属リード線がインサートされた樹脂ケーシングと、基準方向において線膨張係数を金属リード線よりも大きく且つ樹脂ケーシングよりも小さく与える特定材料から、形成され、樹脂ケーシングと金属リード線との間に介在する中間カバーとを、備え、金属リード線と中間カバーとの基準方向の線膨張係数差は、線膨張係数差に応じて金属リード線に発生する発生応力を金属リード線の引張強度よりも小さく制限する特定範囲に、設定される。 In one embodiment of the present disclosure, the temperature sensor includes a temperature-sensitive element that senses temperature and an extending portion that is formed of a metal material and extends along the reference direction, and is electrically connected to the temperature-sensitive element. A metal lead wire formed from a resin material, and a resin casing in which the metal lead wire is inserted by molding, and a specific material that gives a linear expansion coefficient larger than the metal lead wire and smaller than the resin casing in the reference direction, An intermediate cover that is formed and interposed between the resin casing and the metal lead wire, and the difference in the linear expansion coefficient between the metal lead wire and the intermediate cover in the reference direction depends on the difference in the linear expansion coefficient. It is set within a specific range that limits the generated stress to be smaller than the tensile strength of the metal lead wire.
 第一の態様では、モールド成形により樹脂ケーシングにインサートされる金属リード線と、樹脂ケーシングとの間には、中間カバーが介在した状態となる。ここで、金属リード線の延伸部が延伸する基準方向において中間カバーの線膨張係数は、中間カバーを形成する特定材料により、金属リード線よりも大きく且つ樹脂ケーシングよりも小さく与えられる。故に、高温環境での使用下にあっても、基準方向では中間カバーの熱膨張量を、樹脂ケーシングの熱膨張量よりも金属リード線の熱膨張量に可及的に近づけ得る。しかも、金属リード線と中間カバーとの基準方向の線膨張係数差が特定範囲に設定されるので、設定値に応じて金属リード線に発生する発生応力は、金属リード線の引張強度よりも小さく制限される。これにより金属リード線では、発生応力が引張強度を超えて断線を招く事態を抑制できるので、高い歩留まりを達成することが可能となる。 In the first aspect, an intermediate cover is interposed between the metal lead wire inserted into the resin casing by molding and the resin casing. Here, in the reference direction in which the extending portion of the metal lead wire extends, the linear expansion coefficient of the intermediate cover is given larger than the metal lead wire and smaller than the resin casing by the specific material forming the intermediate cover. Therefore, even under use in a high temperature environment, in the reference direction, the thermal expansion amount of the intermediate cover can be as close as possible to the thermal expansion amount of the metal lead wire rather than the thermal expansion amount of the resin casing. Moreover, since the difference in linear expansion coefficient between the metal lead wire and the intermediate cover in the reference direction is set within a specific range, the generated stress generated in the metal lead wire according to the set value is smaller than the tensile strength of the metal lead wire. Limited. Thereby, in the metal lead wire, it is possible to suppress a situation in which the generated stress exceeds the tensile strength and causes disconnection, and thus it is possible to achieve a high yield.
 また、第二の態様によると、樹脂ケーシングは、繊維状フィラーを含有する樹脂材料から、モールド成形により形成され、基準方向において中間カバーの線膨張係数は、樹脂ケーシングの最小の線膨張係数よりも小さい。 According to the second aspect, the resin casing is formed by molding from a resin material containing a fibrous filler, and the linear expansion coefficient of the intermediate cover in the reference direction is greater than the minimum linear expansion coefficient of the resin casing. small.
 第二の態様のように、繊維状フィラー含有の樹脂材料から樹脂ケーシングをモールド成形すると、モールド成形金型におけるゲートの形成位置に応じて、樹脂ケーシングの各箇所における線膨張係数は変動する場合がある。そこで基準方向では、特定材料により形成される中間カバーの線膨張係数につき、それよりも小さな線膨張係数の金属リード線との線膨張係数差が特定範囲に収まる限りにて、樹脂ケーシングの最小の線膨張係数よりも小さく与えられる。これによれば、樹脂ケーシングの任意箇所での熱膨張量よりも中間カバーの熱膨張量が金属リード線の熱膨張量に確実に近づくことで、金属リード線では、発生応力が引張強度よりも小さく制限されて断線が抑制され得る。故に、高い歩留まりの達成に貢献可能となる。 When the resin casing is molded from a resin material containing a fibrous filler as in the second aspect, the linear expansion coefficient in each part of the resin casing may vary depending on the gate formation position in the molding die. is there. Therefore, in the reference direction, as long as the difference between the linear expansion coefficients of the intermediate cover formed of a specific material and the metal lead wire having a smaller linear expansion coefficient is within a specific range, It is given smaller than the linear expansion coefficient. According to this, since the thermal expansion amount of the intermediate cover surely approaches the thermal expansion amount of the metal lead wire rather than the thermal expansion amount at an arbitrary location of the resin casing, the generated stress is higher than the tensile strength in the metal lead wire. The wire breakage can be suppressed by being limited to a small size. Therefore, it is possible to contribute to achieving a high yield.
 さらに第三の態様は、第二の態様の温度センサの製造方法であって、一対の金属リード線を中間カバーにより被覆する被覆工程と、被覆工程にて中間カバーにより被覆された一対の金属リード線を、基準方向に対する直交方向に並べて、感温素子と共に、モールド成形金型の成形キャビティ内にセットするセット工程と、モールド成形金型において、セット工程によりセットされた一対の金属リード線を直交方向に挟む両側のうち一方側に設けられたゲートから、当該両側のうち一方側と他方側とへ向かって、溶融した樹脂材料を成形キャビティ内に注入する注入工程と、注入工程にて成形キャビティ内に注入された樹脂材料を固化させることにより、樹脂ケーシングを形成する固化工程とを、含む。 The third aspect is a method of manufacturing the temperature sensor according to the second aspect, wherein the pair of metal leads are covered with an intermediate cover, and the pair of metal leads covered with the intermediate cover in the covering step. Lines are arranged in a direction orthogonal to the reference direction and set together with the temperature sensing element in the molding cavity of the molding die, and a pair of metal lead wires set by the setting step in the molding die are orthogonal An injection process for injecting molten resin material into the molding cavity from one of the two sides sandwiched in the direction toward one side and the other side of the both sides, and a molding cavity in the injection process A solidifying step of forming a resin casing by solidifying the resin material injected therein.
 第三の態様では、中間カバーにより被覆された一対の金属リード線を、基準方向に対する直交方向に並べて、感温素子と共に、モールド成形金型の成形キャビティ内へとセットする。こうしたモールド成形金型においては、セットされた一対の金属リード線を直交方向に挟む両側のうち一方側に設けられたゲートから、当該両側のうち一方側と他方側とへ向かって、溶融樹脂材料を成形キャビティ内へと注入することになる。その結果、成形キャビティ内に注入された溶融樹脂材料の固化により形成される樹脂ケーシングでは、ゲートに近い一方側の金属リード線の周囲にて、同ゲートから遠い他方側の金属リード線の周囲よりも高い線膨張係数が、基準方向に与えられる。これは、一方側の金属リード線の周囲では、基準方向に沿って溶融樹脂材料が流動するのに対して、他方側の金属リード線の周囲では、同基準方向には沿わずに溶融樹脂材料が流動することで、繊維状フィラーの繊維配向に違いが生じることによる。 In the third aspect, the pair of metal lead wires covered with the intermediate cover are arranged in a direction orthogonal to the reference direction and set together with the temperature sensitive element into the molding cavity of the molding die. In such a molding die, a molten resin material is formed from a gate provided on one side of both sides sandwiching a pair of set metal lead wires in an orthogonal direction toward one side and the other side of the both sides. Will be injected into the molding cavity. As a result, in the resin casing formed by solidification of the molten resin material injected into the molding cavity, around the metal lead wire on one side close to the gate, than around the metal lead wire on the other side far from the gate A higher coefficient of linear expansion is given in the reference direction. This is because the molten resin material flows along the reference direction around the metal lead wire on one side, whereas the molten resin material does not follow the reference direction around the metal lead wire on the other side. This is because a difference occurs in the fiber orientation of the fibrous filler.
 しかし、第三の態様により製造される温度センサの基準方向では、中間カバーの線膨張係数は、それよりも小さな各金属リード線の線膨張係数との線膨張係数差が特定範囲に収まる限りにて、樹脂ケーシングの最小の線膨張係数よりも小さく与えられる。これによれば、樹脂ケーシングの任意箇所での熱膨張量よりも中間カバーの熱膨張量が各金属リード線の熱膨張量に確実に近づくことで、それら各金属リード線では、発生応力が引張強度よりも小さく制限されて断線が抑制され得る。故に、高い歩留まりの達成に貢献可能となる。 However, in the reference direction of the temperature sensor manufactured according to the third aspect, the linear expansion coefficient of the intermediate cover is as long as the linear expansion coefficient difference with the smaller linear expansion coefficient of each metal lead wire is within a specific range. Thus, it is given smaller than the minimum linear expansion coefficient of the resin casing. According to this, since the thermal expansion amount of the intermediate cover surely approaches the thermal expansion amount of each metal lead wire rather than the thermal expansion amount at an arbitrary position of the resin casing, the generated stress is tensile in each of the metal lead wires. The disconnection can be suppressed by being limited to be smaller than the strength. Therefore, it is possible to contribute to achieving a high yield.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態による温度センサの構造を示す図であって、図2のI-I線断面図であり、 図2は、一実施形態による温度センサの構造を示す図であって、図1のII-II線断面図であり、 図3は、一実施形態による温度センサの物性について説明するための物性表であり、 図4は、一実施形態による温度センサの構成要素として、感温素子と金属リード線と金属ターミナルとを示す上面図(a)、側面図(b)及び斜視図(c)であり、 図5は、一実施形態による温度センサの構成要素として、金属ターミナルと中間カバーとを示す上面図(a)、側面図(b)及び斜視図(c)であり、 図6は、一実施形態による温度センサの外観を示す上面図(a)、側面図(b)及び斜視図(c)であり、 図7は、一実施形態による温度センサの製造方法を示すフローチャートであり、 図8は、図7のS101について示す断面図であり、 図9は、図7のS102について示す断面図であり、 図10は、図7のS103について示す断面図であり、 図11は、図7のS104について示す断面図であり、 図12は、図10の変形例を示す断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a structure of a temperature sensor according to an embodiment, and is a cross-sectional view taken along the line II of FIG. FIG. 2 is a view showing a structure of a temperature sensor according to an embodiment, and is a cross-sectional view taken along the line II-II of FIG. FIG. 3 is a physical property table for explaining physical properties of the temperature sensor according to an embodiment. FIG. 4 is a top view (a), a side view (b), and a perspective view (c) showing a temperature sensing element, a metal lead wire, and a metal terminal as components of a temperature sensor according to an embodiment, FIG. 5 is a top view (a), a side view (b), and a perspective view (c) showing a metal terminal and an intermediate cover as components of a temperature sensor according to an embodiment, FIG. 6 is a top view (a), a side view (b), and a perspective view (c) showing an appearance of a temperature sensor according to an embodiment, FIG. 7 is a flowchart illustrating a method for manufacturing a temperature sensor according to an embodiment. FIG. 8 is a cross-sectional view illustrating S101 in FIG. FIG. 9 is a cross-sectional view showing S102 of FIG. FIG. 10 is a cross-sectional view illustrating S103 of FIG. FIG. 11 is a cross-sectional view illustrating S104 in FIG. FIG. 12 is a cross-sectional view showing a modification of FIG.
 以下、本開示の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings.
 本開示の一実施形態として図1,2に示す温度センサ1は、車両のエンジンルームのうちフロントグリルの内側に搭載される。温度センサ1は、車両外気の温度を感知する。こうした温度センサ1には、図3に示すように、寒冷環境下において車両外気が到達する最低温度と、停止中又は低速走行中の車両においてエンジンからの輻射熱により到達する最高温度との差として、使用温度範囲ΔTが定義されている。ここで、図3の数値例では、-30℃である最低温度と、80℃である最高温度との差として、110℃となるワイドレンジの使用温度範囲ΔTが予め想定されている。 As an embodiment of the present disclosure, the temperature sensor 1 shown in FIGS. 1 and 2 is mounted inside the front grill in the engine room of the vehicle. The temperature sensor 1 senses the temperature of the outside air of the vehicle. As shown in FIG. 3, the temperature sensor 1 has a difference between the lowest temperature reached by the vehicle outside air in a cold environment and the highest temperature reached by radiant heat from the engine in a vehicle that is stopped or traveling at a low speed, An operating temperature range ΔT is defined. Here, in the numerical example shown in FIG. 3, a wide-range operating temperature range ΔT of 110 ° C. is assumed in advance as the difference between the lowest temperature of −30 ° C. and the highest temperature of 80 ° C.
 まず、温度センサ1の構成につき、詳細に説明する。図1,2に示すように温度センサ1は、感温素子10、金属リード線20、金属ターミナル30、樹脂ケーシング40及び中間カバー50を備えている。 First, the configuration of the temperature sensor 1 will be described in detail. As shown in FIGS. 1 and 2, the temperature sensor 1 includes a temperature sensitive element 10, a metal lead wire 20, a metal terminal 30, a resin casing 40, and an intermediate cover 50.
 図1,2,4に示す感温素子10は、車両外気の温度を感知するために、当該感知温度に応じた電圧の感知信号を生成するサーミスタである。感温素子10は、封止材12により素子本体11の全体を封止してなる。封止材12は、使用温度範囲ΔTにおいて耐熱性を示す材料、例えばエポキシ樹脂、ガラス等から、形成されている。封止材12は、本実施形態では扁球状であるが、例えば矩形又は円形の平板状等であってもよい。図1,2に示す素子本体11は、温度の変化に従って電気抵抗の変化する材料、例えばセラミックス材料、金属酸化物材料、導電性粒子含有の樹脂材料等から、形成されている。素子本体11は、本実施形態では矩形のチップ状であるが、例えば円形のチップ状であってもよい。 The temperature sensing element 10 shown in FIGS. 1, 2, and 4 is a thermistor that generates a sensing signal having a voltage corresponding to the sensed temperature in order to sense the temperature of the outside air of the vehicle. The temperature sensitive element 10 is formed by sealing the entire element body 11 with a sealing material 12. The sealing material 12 is formed from a material that exhibits heat resistance in the operating temperature range ΔT, such as an epoxy resin, glass, or the like. In the present embodiment, the sealing material 12 is oblate, but may be, for example, a rectangular or circular flat plate. The element body 11 shown in FIGS. 1 and 2 is formed of a material whose electrical resistance changes according to a change in temperature, such as a ceramic material, a metal oxide material, or a resin material containing conductive particles. The element body 11 has a rectangular chip shape in the present embodiment, but may be, for example, a circular chip shape.
 図1,2,4に示す金属リード線20は、感温素子10の生成する感知信号を出力するために、一対設けられている。各金属リード線20は、所定の基準方向Dbに沿って直線状に延伸する延伸部21を、それぞれ有している。各金属リード線20は、基準方向Dbとは直交する直交方向Doに間隔をあけて並ぶことで、延伸部21同士を基準方向Dbに沿って実質平行に延伸させている。さらに各金属リード線20は、それぞれ延伸部21から共通の感温素子10へと向かって延伸することで、基準方向Dbに対して互いの側へ傾斜する傾斜部22も、一体に有している。各金属リード線20の傾斜部22は、共通の感温素子10に対して例えば溶着等により接合されることで、共通の感温素子10と電気的に接続されている。このような構成の各金属リード線20は、導電性の金属材料、例えば銅、鉄、ステンレス鋼等から、形成されている。各金属リード線20は、本実施形態では全体として細長の丸棒状であるが、例えば細長の平板状等であってもよい。 A pair of metal lead wires 20 shown in FIGS. 1, 2 and 4 are provided to output a sensing signal generated by the temperature sensing element 10. Each metal lead wire 20 has an extending portion 21 extending linearly along a predetermined reference direction Db. The metal lead wires 20 are arranged at intervals in an orthogonal direction Do orthogonal to the reference direction Db, thereby extending the extending portions 21 substantially parallel to each other along the reference direction Db. Furthermore, each metal lead wire 20 is integrally provided with an inclined portion 22 that is inclined toward each other with respect to the reference direction Db by extending from the extending portion 21 toward the common temperature-sensitive element 10. Yes. The inclined portion 22 of each metal lead wire 20 is electrically connected to the common temperature sensing element 10 by being joined to the common temperature sensing element 10 by, for example, welding. Each metal lead wire 20 having such a configuration is formed of a conductive metal material such as copper, iron, stainless steel, or the like. Each metal lead wire 20 has an elongated round bar shape as a whole in the present embodiment, but may be, for example, an elongated flat plate shape.
 図3に示すように各金属リード線20には、互いに実質同一の線膨張係数αlと、互いに実質同一のヤング率Ylとが、基準方向Dbに関して与えられている。具体的に図3の数値例では、軟銅線から形成される金属リード線20の基準方向Dbに定義される線膨張係数αlとして、1.2×10-5/℃が与えられている。また、図3の数値例では、軟銅線から形成される金属リード線20の基準方向Dbに定義されるヤング率Ylとして、152.0GPa(kN/mm)が与えられている。 As shown in FIG. 3, the metal lead wires 20 are given substantially the same linear expansion coefficient αl and substantially the same Young's modulus Yl with respect to the reference direction Db. Specifically, in the numerical example of FIG. 3, 1.2 × 10 −5 / ° C. is given as the linear expansion coefficient αl defined in the reference direction Db of the metal lead wire 20 formed of annealed copper wire. In the numerical example of FIG. 3, 152.0 GPa (kN / mm 2 ) is given as the Young's modulus Yl defined in the reference direction Db of the metal lead wire 20 formed from an annealed copper wire.
 図1,2,4,5に示す金属ターミナル30は、各金属リード線20を通して出力される感知信号を外部回路へ送信するために、それら金属リード線20に個別に対応して一対設けられている。各金属ターミナル30は、それぞれ対応する金属リード線20の延伸部21に対して例えば溶着等により接合されることで、対応する金属リード線20と電気的に接続されている。各金属ターミナル30は、それぞれ対応する金属リード線20との接合箇所から基準方向Dbに沿って直線状に延伸することで、同基準方向Dbとは直交する直交方向Doに並んでいる。各金属ターミナル30は、導電性の金属材料、例えば銅、鉄、ジュメット線(鉄-ニッケル合金のまわりを銅でコーティングした材料)等から、形成されている。各金属ターミナル30は、本実施形態では細長の矩形平板状であるが、例えば細長の丸棒状等であってもよい。このような各金属ターミナル30については、それぞれ対応する金属リード線20よりも基準方向Dbの引張強度が高くなるように、引張強度として例えば390~500N/mm程度の強度が与えられている。 A pair of metal terminals 30 shown in FIGS. 1, 2, 4, and 5 are provided corresponding to the metal lead wires 20 individually in order to transmit a sensing signal output through each metal lead wire 20 to an external circuit. Yes. Each metal terminal 30 is electrically connected to the corresponding metal lead wire 20 by being joined to the extending portion 21 of the corresponding metal lead wire 20 by welding or the like, for example. The metal terminals 30 are linearly extended along the reference direction Db from the joints with the corresponding metal lead wires 20, and are arranged in the orthogonal direction Do orthogonal to the reference direction Db. Each metal terminal 30 is formed of a conductive metal material, such as copper, iron, or dumet wire (a material in which an iron-nickel alloy is coated with copper). Each metal terminal 30 has an elongated rectangular flat plate shape in the present embodiment, but may have an elongated round bar shape, for example. Each of the metal terminals 30 is given a tensile strength of, for example, about 390 to 500 N / mm 2 so that the tensile strength in the reference direction Db is higher than that of the corresponding metal lead wire 20.
 図1,2,6に示すように樹脂ケーシング40は、感温素子10の全体と、各金属リード線20の全体と、各金属ターミナル30の一部とを、モールド成形によりインサートしてなる。樹脂ケーシング40は、各金属ターミナル30を外部回路に対して電気的に接続可能とするために、それら金属ターミナル30の残部を外部に対して露出させている。樹脂ケーシング40は、使用温度範囲ΔTにおいて耐熱性を示す樹脂材料、例えばポリブチレンテレフタレート(PBT)樹脂、ポリフェニレンサルファイド(PPS)樹脂等から、形成されている。ここで、本実施形態の樹脂ケーシング40は、車両における衝撃強度を高めるために、例えばガラスフィラー等の繊維状フィラーを含有した樹脂材料から、形成されている。こうした樹脂材料からの樹脂ケーシング40を形成するために、モールド成形として本実施形態では、片側ゲート式が採用される。 As shown in FIGS. 1, 2, and 6, the resin casing 40 is formed by inserting the entire temperature sensing element 10, the entire metal lead wires 20, and a part of each metal terminal 30 by molding. The resin casing 40 exposes the remainder of the metal terminals 30 to the outside so that the metal terminals 30 can be electrically connected to an external circuit. The resin casing 40 is formed from a resin material exhibiting heat resistance in the use temperature range ΔT, such as polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, or the like. Here, the resin casing 40 of the present embodiment is formed of a resin material containing a fibrous filler such as a glass filler, for example, in order to increase the impact strength in the vehicle. In order to form the resin casing 40 made of such a resin material, a one-side gate type is adopted as mold forming in this embodiment.
 図3に示すように樹脂ケーシング40には、金属リード線20よりも大きな線膨張係数αcと、金属リード線20よりも小さなヤング率Ycとが、基準方向Dbに関して与えられている。具体的に図3の数値例では、ガラスフィラー含有PBT樹脂から形成される樹脂ケーシング40の基準方向Dbに定義される線膨張係数αcとして、2.0×10-5/℃が与えられている。また、ガラスフィラー含有PBT樹脂から形成される樹脂ケーシング40の基準方向Dbに定義されるヤング率Ycとして、9.0GPaが与えられている。 As shown in FIG. 3, the resin casing 40 is given a linear expansion coefficient αc larger than that of the metal lead wire 20 and a Young's modulus Yc smaller than that of the metal lead wire 20 with respect to the reference direction Db. Specifically, in the numerical example of FIG. 3, 2.0 × 10 −5 / ° C. is given as the linear expansion coefficient αc defined in the reference direction Db of the resin casing 40 formed from the glass filler-containing PBT resin. . Moreover, 9.0 GPa is given as the Young's modulus Yc defined in the reference direction Db of the resin casing 40 formed from the glass filler-containing PBT resin.
 ここで、片側ゲート式のモールド成形によりガラスフィラー含有の特定材料から形成される樹脂ケーシング40では、一方側の金属リード線20a(図1参照)の周囲にて、他方側の金属リード線20b(図1参照)の周囲よりも小さな線膨張係数αcが基準方向Dbに与えられる。その結果、一方側の金属リード線20aの周囲では、線膨張係数αcが最小値を示す。そこで図3の数値例では、一方側の金属リード線20aの周囲における最小の線膨張係数αcとして、2.0×10-5/℃が提示されている。 Here, in the resin casing 40 formed from a glass filler-containing specific material by one-side gate type molding, the other-side metal lead wire 20b (see FIG. 1) is provided around the one-side metal lead wire 20a (see FIG. 1). A linear expansion coefficient αc smaller than the periphery of (see FIG. 1) is given in the reference direction Db. As a result, the linear expansion coefficient αc shows a minimum value around the metal lead wire 20a on one side. Therefore, in the numerical example of FIG. 3, 2.0 × 10 −5 / ° C. is presented as the minimum linear expansion coefficient αc around the metal lead wire 20a on one side.
 また、片側ゲート式のモールド成形によりガラスフィラー含有の特定材料から形成される樹脂ケーシング40では、一方側の金属リード線20aの周囲にて、他方側の金属リード線20bの周囲よりも大きなヤング率Ycが基準方向Dbに与えられる。その結果、一方側の金属リード線20aの周囲では、ヤング率Ycが最大値を示す。そこで図3の数値例では、一方側の金属リード線20aの周囲における最大のヤング率Ycとして、9.0GPaが提示されている。 Further, in the resin casing 40 formed from a glass filler-containing specific material by one-side gate type molding, the Young's modulus is larger around the metal lead wire 20a on the one side than around the metal lead wire 20b on the other side. Yc is given in the reference direction Db. As a result, the Young's modulus Yc shows the maximum value around the metal lead wire 20a on one side. Therefore, in the numerical example of FIG. 3, 9.0 GPa is presented as the maximum Young's modulus Yc around the metal lead wire 20a on one side.
 図1,2,5に示すように中間カバー50は、感温素子10の全体と、各金属リード線20の全体と、各金属ターミナル30の一部とを、コーティング処理により被覆してなる。中間カバー50は、モールド成形により樹脂ケーシング40にインサートされることで、内側の要素10,20,30と外側の樹脂ケーシング40との間に薄膜状に介在させられている。中間カバー50は、使用温度範囲ΔTにおいて耐熱性を示す特定材料、例えばPPS樹脂、エポキシ樹脂、シリコーン樹脂等から、形成されている。ここで、本実施形態の中間カバー50は、車両における衝撃強度を高めるために、例えばガラスフィラー等の繊維状フィラーを含有した特定材料から、形成されている。こうした特定材料から中間カバー50を形成するコーティング処理としては、例えば液状特定材料の塗布処理や吹付け処理、液状特定材料への浸漬処理等を採用可能である。また、コーティング処理による中間カバー50の形成厚さとしては、例えば0.2~2mm程度の膜厚が採用される。 As shown in FIGS. 1, 2, and 5, the intermediate cover 50 is formed by coating the entire temperature sensing element 10, the entire metal lead wires 20, and a part of each metal terminal 30 by a coating process. The intermediate cover 50 is inserted into the resin casing 40 by molding so that the intermediate cover 50 is interposed between the inner elements 10, 20, 30 and the outer resin casing 40 in a thin film shape. The intermediate cover 50 is formed from a specific material exhibiting heat resistance in the use temperature range ΔT, for example, PPS resin, epoxy resin, silicone resin, or the like. Here, the intermediate cover 50 of the present embodiment is formed from a specific material containing a fibrous filler such as a glass filler, for example, in order to increase the impact strength in the vehicle. As the coating process for forming the intermediate cover 50 from such a specific material, for example, a coating process or a spraying process of the liquid specific material, an immersion process in the liquid specific material, or the like can be employed. In addition, as the formation thickness of the intermediate cover 50 by the coating process, for example, a film thickness of about 0.2 to 2 mm is employed.
 図3に示すように中間カバー50には、金属リード線20よりも大きく且つ樹脂ケーシング40よりも小さな線膨張係数αmと、金属リード線20よりも小さく且つ樹脂ケーシング40よりも大きなヤング率Ymとが、基準方向Dbに関して与えられている。具体的に図3の数値例では、ガラスフィラー含有PPS樹脂からコーティング処理により形成される中間カバー50の基準方向Dbに定義される線膨張係数αmとして、樹脂ケーシング40の最小の線膨張係数αcより小さな1.6×10-5/℃が与えられている。また、図3の数値例では、ガラスフィラー含有PPS樹脂からコーティング処理により形成される中間カバー50の基準方向Dbに定義されるヤング率Ymとして、樹脂ケーシング40の最大のヤング率Ycより大きな19.2kN/mmGPaが与えられている。 As shown in FIG. 3, the intermediate cover 50 has a linear expansion coefficient αm larger than the metal lead wire 20 and smaller than the resin casing 40, and a Young's modulus Ym smaller than the metal lead wire 20 and larger than the resin casing 40. Is given for the reference direction Db. Specifically, in the numerical example of FIG. 3, as the linear expansion coefficient αm defined in the reference direction Db of the intermediate cover 50 formed from the glass filler-containing PPS resin by the coating process, from the minimum linear expansion coefficient αc of the resin casing 40 A small 1.6 × 10 −5 / ° C. is given. Further, in the numerical example of FIG. 3, the Young's modulus Ym defined in the reference direction Db of the intermediate cover 50 formed from the glass filler-containing PPS resin by the coating process is larger than the maximum Young's modulus Yc of the resin casing 40. 2 kN / mm 2 GPa is given.
 このような温度センサ1の構成下、金属リード線20と中間カバー50との基準方向Dbの線膨張係数差をΔαと定義すると、線膨張係数差Δαは、下記式1により表される。即ち、線膨張係数差Δαは、中間カバー50の基準方向Dbの線膨張係数αmから、金属リード線20の同基準方向Dbの線膨張係数αlを差し引いた減算値により、求められる。具体的に、図3の数値例を式1に代入することで求められる線膨張係数差Δαは、0.4×10-5/℃となる。
Δα=αm-αl …(式1)
 また、中間カバー50との線膨張係数差Δαに応じて金属リード線20に発生する発生応力をσと定義すると、発生応力σは、下記式2により表される。即ち、発生応力σは、基準方向Dbの線膨張係数差Δαと、金属リード線20の同基準方向Dbのヤング率Ylと、使用温度範囲ΔTとを掛け合わせた乗算値により、推定される。具体的に、図3の数値例を式2に代入することで推定される発生応力σは、66.88N/mmとなる。
σ=Δα×Yl×ΔT …(式2)
 さらに、基準方向Dbにおける金属リード線20の引張強度をSlと定義すると、金属リード線20での発生応力σと引張強度Slとの間において温度センサ1は、下記式3の関係を満たす。即ち、金属リード線20では、金属リード線20での発生応力σが引張強度Slよりも小さく制限される。具体的に図3の数値例では、軟銅線から形成される金属リード線20の引張強度Slが120N/mmであることから、金属リード線20での発生応力σが上述の如き66.88N/mmに制限されている。尚、引張強度Slについては、例えばJIS Z2241(金属材料引張試験方法)等といった方法により、測定可能である。
σ<Sl …(式3)
 以上より、式2,3を整理すると、下記式4が得られる。そこで、温度センサ1では、金属リード線20の線膨張係数αlよりも中間カバー50の最小の線膨張係数αmが小さく与えられることで、それら係数αl,αmを式1に代入して求められる線膨張係数差Δαは、式4の関係を満たす特定範囲に予め設定されている。このような温度センサ1では、線膨張係数αmの中間カバー50を形成する特定材料の選定により、式4の関係を成立させておけば、金属リード線20や樹脂ケーシング40を形成する樹脂材料の選定自由度を、高めることが可能となる。
Δα<Sl/(Yl×ΔT) …(式4)
 次に、温度センサ1を製造するために図7のフローチャートに従って実行される製造方法につき、詳細に説明する。製造方法の第一段階としてS101の被覆工程では、図8に示すように一対の金属リード線20を、中間カバー50により被覆する。このとき本実施形態の被覆工程では、各金属リード線20に接合された共通の感温素子10及び個別の金属ターミナル30の一部も、中間カバー50により被覆する。そこで被覆工程では、各金属リード線20の全体と、感温素子10の全体と、各金属ターミナル30の一部とに対して、例えば液状特定材料の塗布処理や吹付け処理、液状特定材料への浸漬処理等のコーティング処理を施すことになる。
Under such a configuration of the temperature sensor 1, if the linear expansion coefficient difference in the reference direction Db between the metal lead wire 20 and the intermediate cover 50 is defined as Δα, the linear expansion coefficient difference Δα is expressed by the following formula 1. That is, the linear expansion coefficient difference Δα is obtained by a subtraction value obtained by subtracting the linear expansion coefficient αl of the metal lead wire 20 in the reference direction Db from the linear expansion coefficient αm of the intermediate cover 50 in the reference direction Db. Specifically, the linear expansion coefficient difference Δα obtained by substituting the numerical example of FIG. 3 into Equation 1 is 0.4 × 10 −5 / ° C.
Δα = αm−αl (Formula 1)
Further, when the generated stress generated in the metal lead wire 20 in accordance with the linear expansion coefficient difference Δα with the intermediate cover 50 is defined as σ, the generated stress σ is expressed by the following formula 2. That is, the generated stress σ is estimated by a multiplication value obtained by multiplying the linear expansion coefficient difference Δα in the reference direction Db, the Young's modulus Yl of the metal lead wire 20 in the reference direction Db, and the operating temperature range ΔT. Specifically, the generated stress σ estimated by substituting the numerical example of FIG. 3 into Equation 2 is 66.88 N / mm 2 .
σ = Δα × Yl × ΔT (Expression 2)
Furthermore, if the tensile strength of the metal lead wire 20 in the reference direction Db is defined as Sl, the temperature sensor 1 satisfies the relationship of the following formula 3 between the generated stress σ and the tensile strength Sl in the metal lead wire 20. That is, in the metal lead wire 20, the generated stress σ in the metal lead wire 20 is limited to be smaller than the tensile strength S1. Specifically, in the numerical example of FIG. 3, since the tensile strength S1 of the metal lead wire 20 formed of annealed copper wire is 120 N / mm 2 , the generated stress σ in the metal lead wire 20 is 66.88 N as described above. / Mm 2 . The tensile strength S1 can be measured by a method such as JIS Z2241 (metal material tensile test method).
σ <Sl (Formula 3)
From the above, when formulas 2 and 3 are arranged, the following formula 4 is obtained. Therefore, in the temperature sensor 1, when the minimum linear expansion coefficient αm of the intermediate cover 50 is given smaller than the linear expansion coefficient αl of the metal lead wire 20, a line obtained by substituting these coefficients αl and αm into Equation 1 is obtained. The expansion coefficient difference Δα is set in advance in a specific range that satisfies the relationship of Equation 4. In such a temperature sensor 1, if the relationship of Formula 4 is established by selecting a specific material for forming the intermediate cover 50 having a linear expansion coefficient αm, the resin material for forming the metal lead wire 20 and the resin casing 40 can be obtained. It becomes possible to increase the degree of freedom of selection.
Δα <Sl / (Yl × ΔT) (Formula 4)
Next, a manufacturing method executed in accordance with the flowchart of FIG. 7 in order to manufacture the temperature sensor 1 will be described in detail. As a first step of the manufacturing method, in the covering step of S101, a pair of metal lead wires 20 are covered with an intermediate cover 50 as shown in FIG. At this time, in the covering step of this embodiment, the common temperature sensing element 10 joined to each metal lead wire 20 and a part of the individual metal terminal 30 are also covered by the intermediate cover 50. Therefore, in the covering step, for example, the liquid specific material is applied to the whole of the metal lead wires 20, the temperature sensing element 10, and a part of each of the metal terminals 30. A coating process such as a dipping process is performed.
 製造方法の第二段階としてS102のセット工程では、図9に示すように、先の被覆工程にて中間カバー50により被覆された一対の金属リード線20を、型開したモールド成形金型100の成形キャビティ101内にセットする。このとき本実施形態のセット工程では、先の被覆工程にて中間カバー50により被覆された感温素子10及び一対の金属ターミナル30も、型開したモールド成形金型100の成形キャビティ101内にセットする。このようなセット工程では、一対の金属リード線20及び一対の金属ターミナル30は、基準方向Dbに対する直交方向Doに並んで、感温素子10と共にセットされる。 In the setting step of S102 as the second stage of the manufacturing method, as shown in FIG. 9, the pair of metal lead wires 20 covered with the intermediate cover 50 in the previous covering step is formed of the mold 100 that has been opened. Set in molding cavity 101. At this time, in the setting process of the present embodiment, the temperature sensitive element 10 and the pair of metal terminals 30 covered by the intermediate cover 50 in the previous covering process are also set in the molding cavity 101 of the mold 100 that has been opened. To do. In such a setting process, the pair of metal lead wires 20 and the pair of metal terminals 30 are set together with the temperature sensing element 10 in a direction Do perpendicular to the reference direction Db.
 製造方法の第三段階としてS103の注入工程では、図10に示すように、先のセット工程により一対の金属リード線20等が成形キャビティ101内にセットされたモールド成形金型100を型閉且つ型締した状態下、溶融させた樹脂材料を成形キャビティ101内に注入する。このとき本実施形態のセット工程では、モールド成形金型100において一対の金属リード線20を直交方向Doに挟む両側のうち、一方側としての金属リード線20a側に設けられたゲート102のみから、溶融樹脂材料が注入される。こうした片側ゲート式でのモールド成形では、注入された溶融樹脂材料は、一対の金属リード線20を直交方向Doに挟む両側のうち一方側としての金属リード線20a側から、他方側としての金属リード線20b側へ向かって流動する。 In the injection step of S103 as the third step of the manufacturing method, as shown in FIG. 10, the mold 100 having the pair of metal lead wires 20 and the like set in the molding cavity 101 by the previous setting step is closed and In a state where the mold is clamped, the molten resin material is injected into the molding cavity 101. At this time, in the setting step of the present embodiment, only the gate 102 provided on the metal lead wire 20a side as one side among the both sides sandwiching the pair of metal lead wires 20 in the orthogonal direction Do in the molding die 100, Molten resin material is injected. In such a one-sided gate type molding, the injected molten resin material is obtained from the metal lead wire 20a as one side of the both sides sandwiching the pair of metal lead wires 20 in the orthogonal direction Do, and the metal lead as the other side. It flows toward the line 20b side.
 ここで本実施形態の注入工程では、モールド成形後の樹脂ケーシング40を強化するために、繊維状フィラーを溶融樹脂材料に含有させている。その結果、樹脂ケーシング40の外形を補完する成形キャビティ101内では、ゲート102に近い一方側の金属リード線20aの周囲にて、繊維状フィラーの繊維配向が基準方向Dbに沿い易くなる。一方、そうした成形キャビティ101内では、ゲート102から遠い他方側の金属リード線20bの周囲にて、繊維状フィラーの繊維配向が基準方向Dbには沿わずに、例えば直交方向Doに沿い易くなる。 Here, in the injection step of this embodiment, in order to reinforce the resin casing 40 after molding, a fibrous filler is included in the molten resin material. As a result, in the molding cavity 101 that complements the outer shape of the resin casing 40, the fiber orientation of the fibrous filler is easily along the reference direction Db around the metal lead wire 20 a on one side close to the gate 102. On the other hand, in such a molding cavity 101, the fiber orientation of the fibrous filler does not follow along the reference direction Db around the metal lead wire 20b on the other side far from the gate 102, for example, easily along the orthogonal direction Do.
 製造方法の第四段階としてS104の固化工程では、図11に示すように、先の注入工程にて成形キャビティ101内に注入された溶融樹脂材料の冷却により、溶融樹脂材料を固化させて樹脂ケーシング40を形成する。このとき本実施形態の固化工程では、上述した注入工程での繊維状フィラーに関する繊維配向の違いにより、一方側の金属リード線20aの周囲にて、他方側の金属リード線20bの周囲よりも小さな線膨張係数αcが基準方向Dbに与えられる。以上の結果、温度センサ1が完成することになる。 In the solidification step of S104 as the fourth stage of the manufacturing method, as shown in FIG. 11, the molten resin material is solidified by cooling the molten resin material injected into the molding cavity 101 in the previous injection step, and the resin casing. 40 is formed. At this time, in the solidification process of the present embodiment, the circumference of the metal lead wire 20a on one side is smaller than the circumference of the metal lead wire 20b on the other side due to the difference in fiber orientation with respect to the fibrous filler in the injection process described above. A linear expansion coefficient αc is given in the reference direction Db. As a result, the temperature sensor 1 is completed.
 ここまで説明した温度センサ1の作用効果を、以下に説明する。 The operation and effect of the temperature sensor 1 described so far will be described below.
 温度センサ1では、モールド成形により樹脂ケーシング40にインサートされる金属リード線20と、樹脂ケーシング40との間には、中間カバー50が介在した状態となる。ここで、金属リード線20の延伸部21が延伸する基準方向Dbにおいて中間カバー50の線膨張係数αmは、中間カバー50を形成する特定材料により、金属リード線20よりも大きく且つ樹脂ケーシング40よりも小さく与えられる。故に、高温環境での使用下にあっても、基準方向Dbでは中間カバー50の熱膨張量を、樹脂ケーシング40の熱膨張量よりも金属リード線20の熱膨張量に可及的に近づけ得る。しかも、金属リード線20と中間カバー50との基準方向Dbの線膨張係数差Δαが特定範囲に設定されるので、設定値に応じて金属リード線20に発生する発生応力σは、金属リード線20の引張強度Slより小さく制限される。これにより金属リード線20では、発生応力σが引張強度Slを超えて断線を招く事態を抑制できるので、高い歩留まりを達成することが可能となる。 In the temperature sensor 1, the intermediate cover 50 is interposed between the metal lead wire 20 inserted into the resin casing 40 by molding and the resin casing 40. Here, in the reference direction Db in which the extending portion 21 of the metal lead wire 20 extends, the linear expansion coefficient αm of the intermediate cover 50 is larger than that of the metal lead wire 20 and from the resin casing 40 due to the specific material forming the intermediate cover 50. Is also given small. Therefore, even under use in a high temperature environment, the thermal expansion amount of the intermediate cover 50 can be as close as possible to the thermal expansion amount of the metal lead wire 20 rather than the thermal expansion amount of the resin casing 40 in the reference direction Db. . Moreover, since the linear expansion coefficient difference Δα in the reference direction Db between the metal lead wire 20 and the intermediate cover 50 is set in a specific range, the generated stress σ generated in the metal lead wire 20 according to the set value is the metal lead wire. The tensile strength S1 is limited to be smaller than 20. As a result, in the metal lead wire 20, it is possible to suppress a situation in which the generated stress σ exceeds the tensile strength S 1 and causes disconnection, so that a high yield can be achieved.
 また、温度センサ1の金属リード線20において、中間カバー50との基準方向Dbの線膨張係数差Δαに応じて発生する発生応力σは、線膨張係数差Δαと基準方向Dbのヤング率Ylと使用温度範囲ΔTとの乗算値(Δα×Yl×ΔT)により、推定し得る。そこで、式4の関係Δα<Sl/(Yl×ΔT)を満たす特定範囲に線膨張係数差Δαを設定することによれば、金属リード線20では、発生応力σを引張強度Slよりも確実に小さく制限して断線を抑制できる。故に、高い歩留まりの達成に対する信頼度を、向上させることが可能となる。 Further, in the metal lead wire 20 of the temperature sensor 1, the generated stress σ generated according to the linear expansion coefficient difference Δα in the reference direction Db with respect to the intermediate cover 50 is the linear expansion coefficient difference Δα and the Young's modulus Yl in the reference direction Db. It can be estimated by a multiplication value (Δα × Yl × ΔT) with the operating temperature range ΔT. Therefore, by setting the linear expansion coefficient difference Δα within a specific range that satisfies the relationship Δα <Sl / (Yl × ΔT) in Equation 4, the generated stress σ is more reliably set than the tensile strength S1 in the metal lead wire 20. The wire breakage can be suppressed by limiting to a small value. Therefore, the reliability for achieving a high yield can be improved.
 さらに、温度センサ1によると、金属リード線20の延伸部21が延伸する基準方向Dbにおいて中間カバー50のヤング率Ymは、中間カバー50を形成する特定材料により、金属リード線20よりも小さく且つ樹脂ケーシング40よりも大きく与えられる。故に、高温環境での使用下にあっても、熱膨張量の大きな樹脂ケーシング40による基準方向Dbへの引張作用を中間カバー50により吸収して、引張作用により金属リード線20が同基準方向Dbへ引張られるのを軽減し得る。これによれば、金属リード線20に発生する発生応力σを低減させて断線を抑制できるので、高い歩留まりの達成に貢献可能となる。 Furthermore, according to the temperature sensor 1, the Young's modulus Ym of the intermediate cover 50 in the reference direction Db in which the extending portion 21 of the metal lead wire 20 extends is smaller than that of the metal lead wire 20 due to the specific material forming the intermediate cover 50 and It is given larger than the resin casing 40. Therefore, even under use in a high temperature environment, the tensile action in the reference direction Db by the resin casing 40 having a large thermal expansion amount is absorbed by the intermediate cover 50, and the metal lead wire 20 is caused to be in the same reference direction Db by the tensile action. Can be reduced. According to this, since the generated stress σ generated in the metal lead wire 20 can be reduced and the disconnection can be suppressed, it is possible to contribute to the achievement of a high yield.
 さらに、温度センサ1のように、繊維状フィラー含有の樹脂材料から樹脂ケーシング40をモールド成形すると、モールド成形金型100におけるゲート102の形成位置に応じて、樹脂ケーシング40の各箇所における線膨張係数αcは変動する場合がある。そこで基準方向Dbでは、特定材料により形成される中間カバー50の線膨張係数αmにつき、それより小さな線膨張係数αlの金属リード線20との線膨張係数差Δαが特定範囲に収まる限りで、樹脂ケーシング40の最小の線膨張係数αcより小さく与えられる。これによれば、樹脂ケーシング40の任意箇所での熱膨張量よりも中間カバー50の熱膨張量が金属リード線20の熱膨張量に確実に近づくことで、金属リード線20では、発生応力σが引張強度Slよりも小さく制限されて断線が抑制され得る。故に、高い歩留まりの達成に貢献可能となる。 Further, when the resin casing 40 is molded from a resin material containing a fibrous filler as in the temperature sensor 1, the linear expansion coefficient at each location of the resin casing 40 according to the formation position of the gate 102 in the molding die 100. αc may vary. Therefore, in the reference direction Db, as long as the linear expansion coefficient difference Δα with the metal lead wire 20 having a smaller linear expansion coefficient αl is within a specific range with respect to the linear expansion coefficient αm of the intermediate cover 50 formed of the specific material, the resin It is smaller than the minimum linear expansion coefficient αc of the casing 40. According to this, since the amount of thermal expansion of the intermediate cover 50 surely approaches the amount of thermal expansion of the metal lead wire 20 rather than the amount of thermal expansion at an arbitrary location of the resin casing 40, the generated stress σ is generated in the metal lead wire 20. Is limited to be smaller than the tensile strength S1 and disconnection can be suppressed. Therefore, it is possible to contribute to achieving a high yield.
 さらに、温度センサ1の製造方法では、中間カバー50により被覆された一対の金属リード線20を、基準方向Dbに対する直交方向Doに並べて、感温素子10と共に、モールド成形金型100の成形キャビティ101内へとセットする。こうしたモールド成形金型100では、セットされた一対の金属リード線20を直交方向Doに挟む両側のうち一方側に設けられたゲート102から、当該両側のうち一方側と他方側とへ向かって、溶融樹脂材料を成形キャビティ101内へと注入することになる。その結果、成形キャビティ101内に注入された溶融樹脂材料の固化により形成される樹脂ケーシング40では、ゲート102に近い一方側の金属リード線20aの周囲にて、同ゲート102から遠い他方側の金属リード線20bの周囲よりも高い線膨張係数αcが、基準方向Dbに与えられる。これは、一方側の金属リード線20aの周囲では、基準方向Dbに沿って溶融樹脂材料が流動するのに対して、他方側の金属リード線20bの周囲では、同基準方向Dbには沿わずに例えば直交方向Doに沿って溶融樹脂材料が流動することで、繊維状フィラーの繊維配向に違いが生じることによる。 Further, in the manufacturing method of the temperature sensor 1, the pair of metal lead wires 20 covered with the intermediate cover 50 are arranged in the direction Do perpendicular to the reference direction Db, and together with the temperature sensing element 10, the molding cavity 101 of the molding die 100. Set in. In such a molding die 100, from the gate 102 provided on one side of both sides sandwiching the set pair of metal lead wires 20 in the orthogonal direction Do, toward one side and the other side of the both sides, The molten resin material is injected into the molding cavity 101. As a result, in the resin casing 40 formed by solidification of the molten resin material injected into the molding cavity 101, the metal on the other side far from the gate 102 around the metal lead wire 20 a on one side near the gate 102. A linear expansion coefficient αc higher than that around the lead wire 20b is given in the reference direction Db. This is because the molten resin material flows along the reference direction Db around the metal lead wire 20a on one side, but does not follow the reference direction Db around the metal lead wire 20b on the other side. For example, when the molten resin material flows along the orthogonal direction Do, a difference occurs in the fiber orientation of the fibrous filler.
 しかし、本実施形態により製造される温度センサ1の基準方向Dbでは、中間カバー50の線膨張係数αmは、それより小さな各金属リード線20(20a,20b)の線膨張係数αlとの線膨張係数差Δαが特定範囲に収まる限りで、樹脂ケーシング40の最小の線膨張係数αcより小さく与えられる。これによれば、樹脂ケーシング40の任意箇所での熱膨張量よりも中間カバー50の熱膨張量が各金属リード線20の熱膨張量に確実に近づくことで、それら各金属リード線20では、発生応力σが引張強度Slよりも小さく制限されて断線が抑制され得る。故に、高い歩留まりの達成に貢献可能となるのである。 However, in the reference direction Db of the temperature sensor 1 manufactured according to the present embodiment, the linear expansion coefficient αm of the intermediate cover 50 is linearly expanded with the linear expansion coefficient αl of each metal lead wire 20 (20a, 20b) smaller than that. As long as the coefficient difference Δα is within the specific range, the coefficient is given smaller than the minimum linear expansion coefficient αc of the resin casing 40. According to this, since the amount of thermal expansion of the intermediate cover 50 surely approaches the amount of thermal expansion of each metal lead wire 20 rather than the amount of thermal expansion at an arbitrary location of the resin casing 40, The generated stress σ is limited to be smaller than the tensile strength Sl, and disconnection can be suppressed. Therefore, it can contribute to the achievement of a high yield.
 (他の実施形態)
 以上、本開示の一実施形態について説明したが、本開示は、当該実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although one embodiment of the present disclosure has been described above, the present disclosure is not construed as being limited to the embodiment, and can be applied to various embodiments without departing from the gist of the present disclosure. it can.
 具体的に変形例1としては、例えば橋梁周辺の外気温度センシング(冬凍結注意喚起の外気温度表示用)等の車両以外において、温度センサ1を使用してもよい。 Specifically, as a first modification, for example, the temperature sensor 1 may be used in vehicles other than a vehicle such as an outside air temperature sensing around a bridge (for displaying an outside air temperature in order to alert a freezing winter).
 変形例2としては中間カバー50のヤング率Ymを、樹脂ケーシング40のヤング率Ycよりも小さく設定してもよい。また、変形例3としては、樹脂ケーシング40を形成する特定材料に、繊維状フィラーを含有させなくてもよい。さらに、変形例4としては、中間カバー50を形成する特定材料に、繊維状フィラーを含有させなくてもよい。 As a second modification, the Young's modulus Ym of the intermediate cover 50 may be set smaller than the Young's modulus Yc of the resin casing 40. Moreover, as the modification 3, the specific material which forms the resin casing 40 does not need to contain a fibrous filler. Furthermore, as a fourth modification, the specific material forming the intermediate cover 50 may not contain a fibrous filler.
 変形例5としては傾斜部22を設けないで、実質延伸部21のみから金属リード線20を構成してもよい。また、変形例6としては金属ターミナル30を設けないで、金属リード線20を外部回路に対して電気的に接続可能としてもよい。 As a fifth modified example, the metal lead wire 20 may be configured only from the substantially extending portion 21 without providing the inclined portion 22. Further, as a sixth modified example, the metal lead wire 20 may be electrically connected to an external circuit without providing the metal terminal 30.
 変形例7としては図12に示すように、一対の金属リード線20を直交方向Doに挟む両側にそれぞれ設けられたゲート102から、溶融樹脂材料を成形キャビティ101内に注入することで、樹脂ケーシング40をモールド成形してもよい。また、変形例8としては、上述の実施形態及び変形例7とは異なる位置関係にてゲート102を設けたモールド成形金型100により、樹脂ケーシング40をモールド成形してもよい。 As a modified example 7, as shown in FIG. 12, a molten resin material is injected into a molding cavity 101 from gates 102 provided on both sides sandwiching a pair of metal lead wires 20 in the orthogonal direction Do, thereby forming a resin casing. 40 may be molded. Further, as the eighth modification, the resin casing 40 may be molded by the molding die 100 provided with the gate 102 in a positional relationship different from that of the above-described embodiment and the seventh modification.
 変形例9としては感温素子10を、被覆工程S101では中間カバー50により被覆しないで、セット工程S102では成形キャビティ101内に露出させてもよい。また、変形例10としては金属ターミナル30を、被覆工程S101では中間カバー50により被覆しないで、セット工程S102では成形キャビティ101内に露出させてもよい。さらに、変形例11としては樹脂材料のダブルモールド成形により、中間カバー50及び樹脂ケーシング40を順次形成してもよい。 As a ninth modification, the temperature sensitive element 10 may not be covered with the intermediate cover 50 in the covering step S101 and may be exposed in the molding cavity 101 in the setting step S102. Further, as a tenth modification, the metal terminal 30 may not be covered with the intermediate cover 50 in the covering step S101 and may be exposed in the molding cavity 101 in the setting step S102. Furthermore, as a modified example 11, the intermediate cover 50 and the resin casing 40 may be sequentially formed by double molding of a resin material.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (5)

  1.  温度を感知する感温素子(10)と、
     金属材料から形成され、基準方向(Db)に沿って延伸する延伸部(21)を有し、前記感温素子に対して電気的に接続される金属リード線(20,20a,20b)と、
     樹脂材料から形成され、モールド成形により前記金属リード線がインサートされた樹脂ケーシング(40)と、
     前記基準方向において線膨張係数を前記金属リード線よりも大きく且つ前記樹脂ケーシングよりも小さく与える特定材料から、形成され、前記樹脂ケーシングと前記金属リード線との間に介在する中間カバー(50)とを、備え、
     前記金属リード線と前記中間カバーとの前記基準方向の線膨張係数差は、前記線膨張係数差に応じて前記金属リード線に発生する発生応力を前記金属リード線の引張強度よりも小さく制限する特定範囲に、設定される温度センサ。
    A temperature sensing element (10) for sensing temperature;
    A metal lead wire (20, 20a, 20b) that is formed of a metal material, has an extending portion (21) extending along the reference direction (Db), and is electrically connected to the temperature sensitive element;
    A resin casing (40) formed of a resin material and inserted with the metal lead wire by molding;
    An intermediate cover (50) formed from a specific material that gives a linear expansion coefficient larger than the metal lead wire and smaller than the resin casing in the reference direction and interposed between the resin casing and the metal lead wire; With
    The difference in linear expansion coefficient between the metal lead wire and the intermediate cover in the reference direction limits the generated stress generated in the metal lead wire in accordance with the difference in linear expansion coefficient to be smaller than the tensile strength of the metal lead wire. Temperature sensor set to a specific range.
  2.  前記基準方向の前記線膨張係数差をΔαと定義し、
     前記金属リード線の前記引張強度をSlと定義し、
     前記金属リード線の前記基準方向のヤング率をYlと定義し、
     想定される使用温度範囲をΔTと定義すると、
     前記線膨張係数差は、Δα<Sl/(Yl×ΔT)の関係を満たす前記特定範囲に、設定される請求項1に記載の温度センサ。
    Define the linear expansion coefficient difference in the reference direction as Δα,
    The tensile strength of the metal lead wire is defined as Sl,
    The Young's modulus in the reference direction of the metal lead wire is defined as Yl,
    If the assumed operating temperature range is defined as ΔT,
    The temperature sensor according to claim 1, wherein the difference in linear expansion coefficient is set in the specific range that satisfies a relationship of Δα <Sl / (Yl × ΔT).
  3.  前記中間カバーは、前記基準方向においてヤング率を前記金属リード線よりも小さく且つ前記樹脂ケーシングよりも大きく与える前記特定材料から、形成される請求項1又は2に記載の温度センサ。 3. The temperature sensor according to claim 1, wherein the intermediate cover is formed from the specific material that gives Young's modulus smaller than the metal lead wire and larger than the resin casing in the reference direction.
  4.  前記樹脂ケーシングは、繊維状フィラーを含有する前記樹脂材料から、前記モールド成形により形成され、
     前記基準方向において前記中間カバーの線膨張係数は、前記樹脂ケーシングの最小の線膨張係数よりも小さい請求項1~3のいずれか一項に記載の温度センサ。
    The resin casing is formed from the resin material containing a fibrous filler by the molding,
    The temperature sensor according to any one of claims 1 to 3, wherein a linear expansion coefficient of the intermediate cover in the reference direction is smaller than a minimum linear expansion coefficient of the resin casing.
  5.  請求項4に記載の温度センサの製造方法であって、
     一対の前記金属リード線を前記中間カバーにより被覆する被覆工程(S101)と、
     前記被覆工程にて前記中間カバーにより被覆された一対の前記金属リード線を、前記基準方向に対する直交方向(Do)に並べて、前記感温素子と共に、モールド成形金型(100)の成形キャビティ(101)内にセットするセット工程(S102)と、
     前記モールド成形金型において、前記セット工程によりセットされた一対の前記金属リード線を前記直交方向に挟む両側のうち一方側に設けられたゲート(102)から、当該両側のうち前記一方側と他方側とへ向かって、溶融した前記樹脂材料を前記成形キャビティ内に注入する注入工程(S103)と、
     前記注入工程にて前記成形キャビティ内に注入された前記樹脂材料を固化させることにより、前記樹脂ケーシングを形成する固化工程(S104)とを、含む温度センサの製造方法。

     
    It is a manufacturing method of the temperature sensor according to claim 4,
    A covering step (S101) for covering the pair of metal lead wires with the intermediate cover;
    A pair of the metal lead wires covered with the intermediate cover in the covering step are arranged in a direction orthogonal to the reference direction (Do), and together with the temperature sensitive element, a molding cavity (101) of the molding die (100). ) In the setting step (S102),
    In the molding die, from the gate (102) provided on one side of both sides sandwiching the pair of metal lead wires set in the setting step in the orthogonal direction, the one side and the other of the both sides An injection step (S103) for injecting the molten resin material into the molding cavity toward the side;
    A method of manufacturing a temperature sensor, comprising: a solidifying step (S104) of forming the resin casing by solidifying the resin material injected into the molding cavity in the injection step.

PCT/JP2015/006416 2015-01-15 2015-12-23 Temperature sensor and method for manufacturing same WO2016113821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580073331.0A CN107209067B (en) 2015-01-15 2015-12-23 Temperature sensor and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015006180A JP6384337B2 (en) 2015-01-15 2015-01-15 Temperature sensor and manufacturing method thereof
JP2015-006180 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016113821A1 true WO2016113821A1 (en) 2016-07-21

Family

ID=56405389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006416 WO2016113821A1 (en) 2015-01-15 2015-12-23 Temperature sensor and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6384337B2 (en)
CN (1) CN107209067B (en)
WO (1) WO2016113821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628615A (en) * 2019-02-27 2020-09-04 株式会社电装 Rotating electric machine, temperature detector therefor, method of manufacturing the same, and method of protecting the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109073480B (en) * 2018-02-13 2022-07-05 株式会社芝浦电子 Temperature sensor, sensor element, and method for manufacturing temperature sensor
DE102019117865A1 (en) * 2018-07-13 2020-01-16 Ngk Spark Plug Co., Ltd. TEMPERATURE SENSOR
JP7276061B2 (en) 2019-10-09 2023-05-18 株式会社デンソー temperature sensor
US11808634B2 (en) * 2019-11-15 2023-11-07 Shibaura Electronics Co., Ltd. Temperature sensor, temperature sensor element, and method for manufacturing temperature sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137222A (en) * 2013-01-15 2014-07-28 Panasonic Corp Manufacturing method of temperature sensor
JP2014226862A (en) * 2013-05-23 2014-12-08 株式会社デンソー Die for production of temperature sensor, production method, and temperature sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2450551C2 (en) * 1974-10-24 1977-01-13 Heraeus Gmbh W C ELECTRICAL RESISTOR FOR A RESISTANCE THERMOMETER AND PROCESS FOR ITS PRODUCTION
JPS649601A (en) * 1987-07-01 1989-01-12 Matsushita Electric Ind Co Ltd Manufacture of thin film platinum temperature sensor
JP3339182B2 (en) * 1994-05-31 2002-10-28 株式会社デンソー Temperature detection sensor
JP2004137222A (en) * 2002-10-18 2004-05-13 Asahi Denka Kogyo Kk New compound, raw material for chemical vapor growth containing the same, and method for producing thin film
JP2004198240A (en) * 2002-12-18 2004-07-15 Denso Corp Sensor device
JP2011221006A (en) * 2010-03-23 2011-11-04 Tokyo Electron Ltd Wafer type temperature detection sensor and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137222A (en) * 2013-01-15 2014-07-28 Panasonic Corp Manufacturing method of temperature sensor
JP2014226862A (en) * 2013-05-23 2014-12-08 株式会社デンソー Die for production of temperature sensor, production method, and temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628615A (en) * 2019-02-27 2020-09-04 株式会社电装 Rotating electric machine, temperature detector therefor, method of manufacturing the same, and method of protecting the same
CN111628615B (en) * 2019-02-27 2023-10-03 株式会社电装 Rotary electric machine, temperature detector thereof, and method of manufacturing and protecting the same

Also Published As

Publication number Publication date
JP2016133317A (en) 2016-07-25
JP6384337B2 (en) 2018-09-05
CN107209067B (en) 2019-08-20
CN107209067A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2016113821A1 (en) Temperature sensor and method for manufacturing same
JP6606308B2 (en) Temperature sensor and device with temperature sensor
JP6360273B1 (en) Temperature sensor, sensor element, and method of manufacturing temperature sensor
JP5183683B2 (en) Flow measuring device
US10156483B2 (en) Temperature sensor and temperature sensor manufacturing method
KR20160067415A (en) Temperature sensor and Method for manufacturing the same
CN110337702A (en) The manufacturing method of capacitor
JP4755578B2 (en) Element and insulating resin same-diameter platinum resistance thermometer and method for manufacturing the same
US11808634B2 (en) Temperature sensor, temperature sensor element, and method for manufacturing temperature sensor
US6437680B1 (en) Process for manufacture of sensors, and sensor so made, particularly a temperature sensor
JP6465347B2 (en) Resin-sealed electronic components
KR101789654B1 (en) Temperature sensor and method for manufacturing the temperature sensor
JP6805739B2 (en) Temperature sensor device
JP6760408B2 (en) Resin-sealed electronic components
JP7190609B1 (en) temperature sensor
CN210774410U (en) Temperature sensor and electronic device
JP6623889B2 (en) Lead wire encapsulated electronic component and method of manufacturing the same
KR200481937Y1 (en) Fuse resistor
CN106024548A (en) Fuse resistor and manufacturing method thereof
JP2016157756A (en) Electronic component and method of manufacturing the same
JP2013211437A (en) Thermistor element and manufacturing method of the same
JPWO2023062787A5 (en)
FR3058517B1 (en) METHOD FOR MANUFACTURING A SENSOR FOR A MOTOR VEHICLE
JPH09159546A (en) Temperature sensor
KR20120042217A (en) Protection cap for film type thermister

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877776

Country of ref document: EP

Kind code of ref document: A1