WO2016112695A1 - 一种实现harq-ack检测的方法及装置 - Google Patents

一种实现harq-ack检测的方法及装置 Download PDF

Info

Publication number
WO2016112695A1
WO2016112695A1 PCT/CN2015/088270 CN2015088270W WO2016112695A1 WO 2016112695 A1 WO2016112695 A1 WO 2016112695A1 CN 2015088270 W CN2015088270 W CN 2015088270W WO 2016112695 A1 WO2016112695 A1 WO 2016112695A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
ack
signal
qpsk
64qam
Prior art date
Application number
PCT/CN2015/088270
Other languages
English (en)
French (fr)
Inventor
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016112695A1 publication Critical patent/WO2016112695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Embodiments of the present invention relate to, but are not limited to, a wireless communication technology, and in particular, a method for implementing hybrid automatic repeat request response (HARQ-ACK) detection by using physical uplink shared channel (PUSCH) multiplexing in an orthogonal frequency division multiplexing system. And equipment.
  • HARQ-ACK hybrid automatic repeat request response
  • PUSCH physical uplink shared channel
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multi-Input & Multi-Output
  • UE measurement information and feedback information such as an acknowledgment character (ACK), a channel quality indicator (CQI), a rank indication (RI), or a precoding matrix indication (PMI), are multiplexed on a physical uplink shared channel during aperiodic reporting ( On PUSCH), the channel occupying the PUSCH is transmitted to the base station. Due to the error in channel transmission, if the UE does not receive the downlink downlink control information (DCI) scheduling request, the downlink related physical downlink shared channel (PDSCH) will not be demodulated, and the hybrid automatic repeat request will not be sent in the uplink. Reply (HARQ-ACK) decision information.
  • DCI downlink downlink control information
  • the base station needs to determine whether the UE transmits an acknowledgment character/negative acknowledgment (ACK/NACK), that is, performs discontinuous transmission (DTX) detection of the uplink HARQ-ACK.
  • ACK/NACK acknowledgment character/negative acknowledgment
  • the simulation is generally performed according to ACK_METRIC, and the second threshold Threshold 2 is obtained .
  • the detection algorithm of the commonly used PUSCH multiplexed HARQ-ACK when the signal to noise ratio is low, the accuracy of the ACK_METRIC is deteriorated.
  • the performance of detecting DTX according to ACK_METRIC will be seriously degraded.
  • the embodiments of the present invention provide a method and a device for implementing HARQ-ACK detection, which can improve DTX detection performance when the signal-to-noise ratio of the HARQ-ACK detection algorithm of the PUSCH multiplex is low.
  • An embodiment of the present invention provides a method for implementing HARQ-ACK detection, including:
  • the detection result of the hybrid automatic repeat request response HARQ-ACK is obtained according to the ACK_METRIC and the ratio; wherein the ACK_METRIC is used to identify the metric value of the ACK.
  • the method before the converting the least square LS channel estimation of the physical uplink shared channel PUSCH pilot position to the time domain, the method further includes:
  • O ACK is the acknowledgement character ACK information
  • Q ACK is the number of coded bits
  • x is the received data
  • b k is the received k-th coded bit soft information.
  • LLR represents a log likelihood ratio
  • O ACK i indicates that the ACK information is i.
  • the LS channel of the PUSCH pilot position is estimated as:
  • the received data of the PUSCH pilot position is multiplied by a pilot transmission sequence to obtain an LS channel estimate of the PUSCH pilot position.
  • the determining, by the modulation mode, the location of the signal window and the noise window of the time domain channel estimation includes:
  • the determining the location of the signal window and the location of the noise window of the time domain channel estimation according to the PUSCH modulation mode and the front window coefficient and the back window coefficient of the signal window include:
  • the position of the noise window is:
  • the position of the noise window is:
  • the position of the noise window is:
  • the PUSCH includes: three modulation modes: QPSK, 16QAM, and 64QAM.
  • L FORE_QPSK represents the length of the front window QPSK debug mode
  • L POST_QPSK debug mode QPSK represents the length of the rear window
  • L FORE_16QAM represents the length of the front window 16QAM debug mode
  • L POST_16QAM rear window represents the length 16QAM debug mode
  • L FORE_64QAM represents 64QAM debug mode The length of the lower front window
  • L POST_64QAM indicates the length of the rear window in the 64QAM debugging mode
  • ⁇ POST_QPSK rear window coefficients of the window signal is a QPSK modulation system; ⁇ POST_16QAM 16QAM modulation signal to a rear window coefficient of the window; ⁇ POST_64QAM 64QAM modulation signal to the window coefficients rear window;
  • FORE_QPSK window coefficients of the window for the signal of QPSK modulation ⁇ FORE_16QAM 16QAM modulation signal to the window the window coefficients; ⁇ FORE_64QAM 64QAM modulation signal to the window coefficient of the window;
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • calculating a ratio of the sum of squares of all data in the signal window to the sum of squares of all data in the noise window comprises:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • L FORE_QPSK represents the length of the front window QPSK debug mode
  • L POST_QPSK debug mode QPSK represents the length of the rear window
  • L FORE_16QAM represents the length of the front window 16QAM debug mode
  • L POST_16QAM rear window represents the length 16QAM debug mode
  • L FORE_64QAM represents 64QAM The length of the front window in the debug mode
  • L POST_64QAM indicates the length of the back window in the 64QAM debug mode
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • the detection result of the HARQ-ACK according to the ACK_METRIC and the ratio includes:
  • ACK_METRIC obtain a second threshold value Threshold 2; simulate a first threshold value Threshold 1 obtained according to the square of all the data in all of the data within the window and the ACK_METRIC and the signal-to-noise ratio and the square windows ,
  • the HARQ-ACK detection result is set to discontinuously transmit DTX
  • the HARQ-ACK detection result is set to an acknowledgement character ACK or a negative acknowledgement NACK;
  • the HARQ-ACK detection result is set to DTX.
  • the method before transforming the LS channel estimate to the time domain, the method further comprises: activating a zero sequence of a preset length at a tail of the LS channel estimation.
  • An embodiment of the present invention further provides an apparatus for implementing HARQ-ACK detection, including: a first calculating unit, a determining location unit, and a detecting result unit, where
  • Determining a location unit set to transform the LS channel estimate of the PUSCH pilot position to the time domain, Determining a position of a signal window of the time domain channel estimation and a position of the noise window according to a modulation mode;
  • a first calculating unit configured to calculate a ratio of a sum of squares of all data in the signal window to a sum of squares of all data in the noise window according to the position of the signal window determined by the determined position unit and the position of the noise window;
  • the detection result unit is configured to obtain a detection result of the hybrid automatic repeat request response HARQ-ACK according to the ACK_METRIC and the ratio; wherein the ACK_METRIC is used to identify the metric value of the ACK.
  • the apparatus further comprises a second computing unit configured to calculate the ACK_METRIC according to the following formula:
  • O ACK is the acknowledgement character ACK information
  • Q ACK is the number of coded bits
  • x is the received data
  • b k is the received k-th coded bit soft information.
  • LLR represents a log likelihood ratio
  • O ACK i indicates that the ACK information is i.
  • determining the location unit is set to
  • the determining the location unit is configured to: after transforming the LS channel estimation of the PUSCH pilot position into a time domain, according to the PUSCH modulation mode and a front window coefficient and a back window coefficient of the signal window, The location of the signal window of the time domain channel estimate and the location of the noise window are determined.
  • the determining the location unit determines the location of the signal window of the time domain channel estimation and the location of the noise window according to the PUSCH modulation mode and the front window coefficient and the back window coefficient of the signal window, including:
  • the position of the noise window is:
  • the position of the noise window is:
  • the position of the noise window is:
  • the PUSCH includes: three modulation modes: QPSK, 16QAM, and 64QAM.
  • L FORE_QPSK represents the length of the front window QPSK debug mode
  • L POST_QPSK debug mode QPSK represents the length of the rear window
  • L FORE_16QAM represents the length of the front window 16QAM debug mode
  • L POST_16QAM rear window represents the length 16QAM debug mode
  • L FORE_64QAM represents 64QAM debug mode The length of the lower front window
  • L POST_64QAM indicates the length of the rear window in the 64QAM debugging mode
  • ⁇ POST_QPSK rear window coefficients of the window signal is a QPSK modulation system; ⁇ POST_16QAM 16QAM modulation signal to a rear window coefficient of the window; ⁇ POST_64QAM 64QAM modulation signal to the window coefficients rear window;
  • FORE_QPSK window coefficients of the window for the signal of QPSK modulation ⁇ FORE_16QAM 16QAM modulation signal to the window the window coefficients; ⁇ FORE_64QAM 64QAM modulation signal to the window coefficient of the window;
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • the first calculating unit calculates a ratio of a sum of squares of all data in the signal window to a sum of squares of all data in the noise window, including:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • the ratio of the sum of the squares of all data in the signal window to the sum of the squares of all the data in the noise window is:
  • L FORE_QPSK represents the length of the front window QPSK debug mode
  • L POST_QPSK debug mode QPSK represents the length of the rear window
  • L FORE_16QAM represents the length of the front window 16QAM debug mode
  • L POST_16QAM rear window represents the length 16QAM debug mode
  • L FORE_64QAM represents 64QAM The length of the front window in the debug mode
  • L POST_64QAM indicates the length of the back window in the 64QAM debug mode
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • the detection result unit is set to,
  • ACK_METRIC obtain a second threshold value Threshold 2; simulate a first threshold value Threshold 1 obtained according to the square of all the data in all of the data within the window and the ACK_METRIC and the signal-to-noise ratio and the square windows ,
  • the HARQ-ACK detection result is set to discontinuously transmit DTX
  • the HARQ-ACK detection result is set as an acknowledgement character ACK or a negative acknowledgement NACK;
  • the HARQ-ACK detection result is set to DTX.
  • the apparatus further comprises an expansion unit configured to augment the zero sequence of the preset length at the end of the LS channel estimate before transforming the LS channel estimate to the time domain.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • the technical solution of the embodiment of the present invention includes: after transforming a least squares (LS) channel estimation of a physical uplink shared channel (PUSCH) pilot position into a time domain, determining a time domain channel estimation signal according to a modulation mode. a position of the window and a position of the noise window; calculating a ratio of a sum of squares of all data in the signal window to a sum of squares of all data in the noise window; obtaining a detection result of the hybrid automatic repeat request response (HARQ-ACK) according to the ACK_METRIC and the ratio; Where ACK_METRIC is used to identify the metric of the ACK.
  • HARQ-ACK hybrid automatic repeat request response
  • a HARQ-ACK detection algorithm for PUSCH multiplexing is obtained by obtaining a hybrid automatic repeat request response HARQ-ACK detection result according to a ratio of a square sum of all data in the ACK_METRIC and the signal window to a sum of squares of all data in the noise window.
  • DTX detection performance is improved.
  • FIG. 1 is a flowchart of a method for implementing HARQ-ACK detection according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an apparatus for implementing HARQ-ACK detection according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for implementing HARQ-ACK detection according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 100 After transforming a least squares (LS) channel estimation of a PUSCH pilot position into a time domain, determine a position of a signal window and a position of a noise window of the LS channel estimation according to a modulation manner;
  • LS least squares
  • the LS channel estimate of the PUSCH pilot position is transformed to the time domain by an inverse discrete Fourier transform (IDFT).
  • IDFT inverse discrete Fourier transform
  • the LS channel of the PUSCH pilot position is estimated as:
  • the received data of the PUSCH pilot position is multiplied by the pilot transmission sequence to obtain an LS channel estimate of the PUSCH pilot position.
  • Determining the position of the signal window and the noise window of the time domain channel estimation according to the modulation mode includes:
  • the position of the signal window of the time domain channel estimation and the position of the noise window are determined according to the PUSCH modulation mode and the front window coefficient and the back window coefficient of the signal window.
  • determining the location of the signal window and the location of the noise window of the time domain channel estimation according to the PUSCH modulation mode and the front window coefficient and the back window coefficient of the signal window include:
  • QPSK Quadrature Phase Shift Keying
  • L FORE_QPSK indicates the length of the front window in the QPSK debugging mode
  • L POST_QPSK indicates the length of the rear window in the QPSK debugging mode.
  • h(n) 1 ⁇ n ⁇ L FORE_QPSK , ML POST_QPSK +1 ⁇ n ⁇ M, indicating that when n is at positions of 1 ⁇ n ⁇ L FORE_QPSK and ML POST_QPSK +1 ⁇ n ⁇ M, h(n) is Signal window
  • the position of the noise window is:
  • h (n) L FORE_QPSK + 1 ⁇ n ⁇ ML POST_QPSK, when n represents the time in L FORE_QPSK + 1 ⁇ n ⁇ ML POST_QPSK these positions, h (n) is the noise window;
  • L FORE_16QAM indicates the length of the front window in the 16QAM debugging mode
  • L POST_16QAM indicates the length of the rear window in the 16QAM debugging mode.
  • the position of the noise window is:
  • L FORE_64QAM indicates the length of the front window in the 64QAM debugging mode
  • L POST_64QAM indicates the length of the rear window in the 64QAM debugging mode.
  • the position of the noise window is:
  • the PUSCH includes: three modulation modes: QPSK, 16QAM, and 64QAM.
  • ⁇ POST_QPSK rear window coefficients of the window signal is a QPSK modulation system; ⁇ POST_16QAM 16QAM modulation signal to a rear window coefficient of the window; ⁇ POST_64QAM 64QAM modulation signal to the window coefficients rear window;
  • FORE_QPSK window coefficients of the window for the signal of QPSK modulation ⁇ FORE_16QAM 16QAM modulation signal to the window the window coefficients; ⁇ FORE_64QAM 64QAM modulation signal to the window the window coefficients;
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • the method further includes: calculating ACK_METRIC according to the PUSCH demodulated soft information; where ACK_METRIC is used to identify the metric of the ACK.
  • calculating ACK_METRIC according to the soft information after PUSCH demodulation includes:
  • O ACK is the acknowledgement character ACK information
  • Q ACK is the number of coded bits
  • x is the received data
  • b k is the received k-th coded bit soft information.
  • LLR represents a log likelihood ratio
  • Step 101 Calculate a ratio of sums of squares of all data in the signal window and the noise window, that is, calculate a ratio of a sum of squares of all data in the signal window to a sum of squares of all data in the noise window;
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • Step 102 Obtain a HARQ-ACK detection result according to a ratio of ACK_METRIC and a sum of squares of all data in the signal window and the noise window.
  • simulation is performed according to ACK_METRIC to obtain a second threshold Threshold 2 ; and the first threshold Threshold 1 is obtained according to the ratio of ACK_METRIC and the ratio of the sum of squares of all data in the signal window and the noise window.
  • the HARQ-ACK detection result is set to discontinuous transmission (DTX);
  • the HARQ-ACK detection result is set to DTX.
  • the method of the embodiment of the present invention performs simulation according to ACK_METRIC, and obtains a second threshold Threshold 2 , and obtains a first threshold Threshold 1 by performing simulation according to the ratio of ACK_METRIC and the sum of squares of all data in the signal window and the noise window.
  • the first threshold value is increased by the embodiment of the present invention, so that the detection algorithm of the HARQ-ACK for PUSCH multiplexing has improved DTX detection performance when the signal to noise ratio is low.
  • the method of the embodiment of the present invention further includes: activating a zero sequence of a preset length at the tail of the LS channel estimation.
  • the extension length at the end of the LS channel estimation sequence can be The zero sequence, wherein the length of the extended zero sequence can be determined by other calculations well known to those skilled in the art.
  • FIG. 2 is a structural block diagram of an apparatus for implementing HARQ-ACK detection according to an embodiment of the present invention. As shown in FIG. 2, the method includes: a determining location unit 201, a first calculating unit 202, and a detecting result unit 203;
  • Determining the location unit 201 after setting the LS channel estimation of the PUSCH pilot position to the time domain, determining the location of the signal window of the time domain channel estimation and the location of the noise window according to the modulation mode;
  • the first calculating unit 202 is configured to calculate a ratio of a sum of squares of all data in the signal window and a sum of squares of all data in the noise window according to the position of the signal window determined by the determining position unit 201 and the position of the noise window;
  • the detection result unit 203 is configured to obtain a detection result of the hybrid automatic repeat request response HARQ-ACK according to the ratio calculated by the ACK_METRIC and the second calculation unit 202.
  • the apparatus of the embodiment of the present invention further includes a second calculating unit 204 configured to calculate ACK_METRIC according to the following formula:
  • O ACK is the acknowledgement character ACK information
  • Q ACK is the number of coded bits
  • x is the received data
  • b k is the received k-th coded bit soft information
  • O ACK i indicates that the ACK information is i.
  • LLR represents the log likelihood ratio
  • the determining location unit 201 is set to:
  • the LS channel estimation of the PUSCH pilot position is obtained by multiplying the received data of the PUSCH pilot position by the pilot transmission sequence, and after transforming to the time domain, determining the position of the signal window of the time domain channel estimation and the noise window according to the modulation mode position.
  • the determining the location unit 201 is configured to: after transforming the LS channel estimation of the PUSCH pilot position into the time domain, determining the time domain according to the PUSCH modulation mode and the front window coefficient and the back window coefficient of the signal window. The position of the signal window of the channel estimate and the location of the noise window.
  • the determining location unit 201 is set to:
  • the position of the noise window is:
  • the position of the noise window is:
  • the position of the noise window is:
  • PUSCH includes: QPSK, 16QAM and 64QAM three modulation methods.
  • L FORE_QPSK represents the length of the front window QPSK debug mode
  • L POST_QPSK debug mode QPSK represents the length of the rear window
  • L FORE_16QAM represents the length of the front window 16QAM debug mode
  • L POST_16QAM rear window represents the length 16QAM debug mode
  • L FORE_64QAM represents 64QAM debug mode The length of the lower front window
  • L POST_64QAM indicates the length of the rear window in the 64QAM debugging mode
  • ⁇ POST_QPSK rear window coefficients of the window signal is a QPSK modulation system; ⁇ POST_16QAM 16QAM modulation signal to a rear window coefficient of the window; ⁇ POST_64QAM 64QAM modulation signal to the window coefficients rear window;
  • FORE_QPSK window coefficients of the window for the signal of QPSK modulation ⁇ FORE_16QAM 16QAM modulation signal to the window the window coefficients; ⁇ FORE_64QAM 64QAM modulation signal to the window coefficient of the window;
  • M is the length of the time domain channel estimate
  • n is the index of the time domain channel estimate
  • the first calculating unit 202 calculates a ratio of a sum of squares of all data in the signal window to a sum of squares of all data in the noise window, including:
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • the ratio of the sum of squares of all data in the signal window and the noise window is:
  • the detection result unit 203 is set to:
  • the second threshold Threshold 2 is obtained; the first threshold Threshold 1 is obtained according to the ratio of the ACK_METRIC and the ratio of the sum of the squares of all the data in the signal window and the noise window.
  • the HARQ-ACK detection result is set to discontinuously transmit DTX
  • the HARQ-ACK detection result is set as an acknowledgement character ACK or a negative acknowledgement NACK;
  • the HARQ-ACK detection result is set to DTX.
  • the apparatus of the embodiment of the present invention further includes an extension unit 205 configured to augment the zero sequence of the preset length at the end of the LS channel estimation before transforming the LS channel estimate to the time domain.
  • an extension unit 205 configured to augment the zero sequence of the preset length at the end of the LS channel estimation before transforming the LS channel estimate to the time domain.
  • the detection result of the HARQ-ACK is obtained according to the ratio of the square sum of all the data in the ACK_METRIC and the signal window to the sum of the squares of all the data in the noise window, so that the detection algorithm of the HARQ-ACK of the PUSCH multiplexing is low in the signal to noise ratio. In the case of DTX detection performance is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例公开了一种实现HARQ-ACK检测的方法及装置,所述方法包括:将物理上行共享信道(PUSCH)导频位置的最小二乘(LS)信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;根据ACK_METRIC和所述比值得到混合自动重传请求应答(HARQ-ACK)的检测结果;其中,ACK_METRIC用于标识ACK的度量值。

Description

一种实现HARQ-ACK检测的方法及装置 技术领域
本发明实施例涉及但不限于无线通信技术,尤指一种正交频分复用系统中的物理上行共享信道(PUSCH)复用的实现混合自动重传请求应答(HARQ-ACK)检测的方法及装置。
背景技术
长期演进(LTE,Long Term Evolution)是由第三代合作伙伴计划(3GPP,The 3rd Generation Partnership Project)组织制定的通用移动通信系统(UMTS,Universal Mobile Telecommunications System)技术标准的长期演进。LTE系统引入了正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)和多输入多输出(MIMO,Multi-Input&Multi-Output)等关键传输技术,显著增加了频谱效率和数据传输速率。
UE测量信息和反馈信息,例如确认字符(ACK)、信道质量指示符(CQI)、秩指示(RI)或预编码矩阵指示(PMI),在非周期上报时通过复用在物理上行共享信道(PUSCH)上,占用PUSCH的信道发送给基站。由于信道传输存在误差,如果UE没有收到下行的下行控制信息(DCI)调度请求,就不会进行下行相关物理下行共享信道(PDSCH)的解调,同时不会在上行发送混合自动重传请求应答(HARQ-ACK)判决信息。基站需要判断UE是否发送了确认字符/否定应答(ACK/NACK),即进行上行HARQ-ACK的不连续发送(DTX)检测。但是,相关技术的方法中,通常根据ACK_METRIC进行仿真,获得第二门限值Threshold2,常用PUSCH复用的HARQ-ACK的检测算法,当信噪比很低时,ACK_METRIC的准确度恶化会很严重,根据ACK_METRIC进行检测DTX的性能会严重恶化。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本发明实施例提供一种实现HARQ-ACK检测的方法及装置,能够在PUSCH复用的HARQ-ACK的检测算法信噪比很低情况下,提高DTX检测性能。
本发明实施例提供了一种实现HARQ-ACK检测的方法,包括:
将物理上行共享信道PUSCH导频位置的最小二乘LS信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;
计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
根据ACK_METRIC和所述比值得到混合自动重传请求应答HARQ-ACK的检测结果;其中,所述ACK_METRIC用于标识ACK的度量值。
可选地,所述将物理上行共享信道PUSCH导频位置的最小二乘LS信道估计变换到时域之前,所述方法还包括:
根据下述公式计算所述ACK_METRIC:
Figure PCTCN2015088270-appb-000001
其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,
OACK=i时,
Figure PCTCN2015088270-appb-000002
是其第k个编码比特,
Figure PCTCN2015088270-appb-000003
LLR表示对数似然比;
OACK=i表示ACK信息是i。
可选地,其中,PUSCH导频位置的LS信道估计为:
将所述PUSCH导频位置的接收数据与导频发送序列共轭相乘得到所述PUSCH导频位置的LS信道估计。
可选地,其中,根据调制方式确定时域信道估计的信号窗和噪声窗的位置包括:
根据所述PUSCH调制方式及所述信号窗的前窗系数和后窗系数,确定所述时域信道估计的信号窗的位置和噪声窗的位置。
可选地,其中,根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数确定时域信道估计的信号窗的位置和噪声窗的位置包括:
当所述PUSCH调制方式为正交相移键控QPSK时,设置
Figure PCTCN2015088270-appb-000004
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK
当所述PUSCH调制方式为16正交幅度调制QAM时,设置
Figure PCTCN2015088270-appb-000005
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
当所述PUSCH调制方式为64QAM时,设置
Figure PCTCN2015088270-appb-000006
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
其中,当系统为常规循环前缀CP时,LCP=144;当系统为扩展CP时,LCP=512;
所述PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;
βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
M是时域信道估计的长度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,其中,计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值包括:
当调制方式为QPSK时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000007
当调制方式为16QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000008
当调制方式为64QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000009
其中,LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;M是时域信道估计的长度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,其中,根据ACK_METRIC和所述比值得到HARQ-ACK的检测结果包括:
根据所述ACK_METRIC进行仿真,获得第二门限值Threshold2;根据所述ACK_METRIC和所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为Threshold1时,设置HARQ-ACK检测结果为不连续发送DTX;
当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
当信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
可选地,在将所述LS信道估计变换到时域之前,该方法还包括:在LS信道估计的尾部扩充预设长度的零序列。
本发明实施例还提供了一种实现HARQ-ACK检测的装置,包括:第一计算单元、确定位置单元和检测结果单元,其中,
确定位置单元,设置为将PUSCH导频位置的LS信道估计变换到时域后, 根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;
第一计算单元,设置为根据所述确定位置单元确定的信号窗的位置和噪声窗的位置,计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
检测结果单元,设置为根据ACK_METRIC和所述比值,得到混合自动重传请求应答HARQ-ACK的检测结果;其中,所述ACK_METRIC用于标识ACK的度量值。
可选地,该装置还包括第二计算单元,设置为根据下述公式计算所述ACK_METRIC:
Figure PCTCN2015088270-appb-000010
其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,
OACK=i时候,
Figure PCTCN2015088270-appb-000011
是其第k个编码比特,
Figure PCTCN2015088270-appb-000012
LLR表示对数似然比;
OACK=i表示ACK信息是i。
可选地,其中,所述确定位置单元是设置为,
将所述PUSCH导频位置的接收数据与导频发送序列共轭相乘得到所述PUSCH导频位置的LS信道估计,变换到时域后,根据调制方式确定所述时域信道估计的信号窗的位置和噪声窗的位置。
可选地,其中,所述确定位置单元是设置为,将所述PUSCH导频位置的LS信道估计变换到时域后,根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数,确定所述时域信道估计的信号窗的位置和噪声窗的位置。
可选地,其中,所述确定位置单元根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数,确定时域信道估计的信号窗的位置和噪声窗的位置,包括:
当所述PUSCH调制方式为正交相移键控QPSK时,设置
Figure PCTCN2015088270-appb-000013
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK
当所述PUSCH调制方式为16正交幅度调制QAM时,设置
Figure PCTCN2015088270-appb-000014
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
当所述PUSCH调制方式为64QAM时,设置
Figure PCTCN2015088270-appb-000015
确定,所述信号窗的位置为:
h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M
所述噪声窗的位置为:
h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
其中,当系统为常规CP时,LCP=144;当系统为扩展CP时,LCP=512;
所述PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;
βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
M是时域信道估计的长度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,其中,第一计算单元计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值包括:
当调制方式为QPSK时,所述信号窗内所有数据平方和与和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000016
当调制方式为16QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000017
当调制方式为64QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000018
其中,LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;M是时域信道估计的长 度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,其中,检测结果单元是设置为,
根据所述ACK_METRIC进行仿真,获得第二门限值Threshold2;根据所述ACK_METRIC和所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值Threshold1时,设置HARQ-ACK检测结果为不连续发送DTX;
当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,所述ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
当所述信号窗内所有数据平方和与和噪声窗内所有数据平方和的比值大于Threshold1,所述ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
可选地,该装置还包括扩充单元,设置为在将LS信道估计变换到时域之前,在LS信道估计的尾部扩充预设长度的零序列。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
与相关技术相比,本发明实施例技术方案包括:将物理上行共享信道(PUSCH)导频位置的最小二乘(LS)信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;根据ACK_METRIC和所述比值得到混合自动重传请求应答(HARQ-ACK)的检测结果;其中,ACK_METRIC用于标识ACK的度量值。本发明实施例通过根据ACK_METRIC和信号窗内所有数据平方和与噪声窗内所有数据平方和的比值得到混合自动重传请求应答HARQ-ACK的检测结果,使PUSCH复用的HARQ-ACK的检测算法在信噪比很低的情况下,DTX检测性能得到提高。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例实现HARQ-ACK检测的方法的流程图;
图2为本发明实施例实现HARQ-ACK检测的装置的结构框图。
本发明的实施方式
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本发明实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例实现HARQ-ACK检测的方法的流程图,如图1所示,包括:
步骤100、将PUSCH导频位置的最小二乘(LS)信道估计变换到时域后,根据调制方式确定LS信道估计的信号窗的位置和噪声窗的位置;
可选的,通过离散傅里叶逆变换(IDFT)将PUSCH导频位置的LS信道估计变换到时域。
本步骤中,PUSCH导频位置的LS信道估计为:
将PUSCH导频位置的接收数据与导频发送序列共轭相乘得到PUSCH导频位置的LS信道估计。
根据调制方式确定时域信道估计的信号窗和噪声窗的位置包括:
根据PUSCH调制方式及信号窗的前窗系数和后窗系数,确定时域信道估计的信号窗的位置和噪声窗的位置。
可选的,根据PUSCH调制方式及信号窗的前窗系数和后窗系数确定时域信道估计的信号窗的位置和噪声窗的位置包括:
当PUSCH调制方式为正交相移键控(QPSK)时,设置:
Figure PCTCN2015088270-appb-000019
其中,LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度。
确定信号窗的位置为:
h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M,表示当n处于1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M这些位置的时候,h(n)是信号窗;
噪声窗的位置为:
h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK,表示当n处于LFORE_QPSK+1≤n≤M-LPOST_QPSK这些位置的时候,h(n)是噪声窗;
当PUSCH调制方式为16正交幅度调制(QAM)时,设置:
Figure PCTCN2015088270-appb-000020
其中,LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度。
确定,信号窗的位置为:
h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M;
噪声窗的位置为:
h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
当PUSCH调制方式为64QAM时,设置:
Figure PCTCN2015088270-appb-000021
其中,LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度。
确定,信号窗的位置为:
h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M;
噪声窗的位置为:
h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
其中,当系统为常规循环前缀(CP)时,LCP=144;当系统为扩展CP时,LCP=512;
所述PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
M是时域信道估计的长度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,本步骤之前还包括:根据PUSCH解调后的软信息计算ACK_METRIC;这里,ACK_METRIC用于标识ACK的度量值。
本步骤中,根据PUSCH解调后的软信息计算ACK_METRIC包括:
根据下述公式计算ACK_METRIC:
Figure PCTCN2015088270-appb-000022
其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,
OACK=i时候,
Figure PCTCN2015088270-appb-000023
是其第k个编码比特,
Figure PCTCN2015088270-appb-000024
LLR表示对数似然比;OACK=i表示ACK信息是i。
步骤101、计算信号窗内和噪声窗内所有数据平方和的比值,即计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
本步骤中,计算信号窗内和噪声窗内所有数据平方和的比值包括:
当调制方式为QPSK时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000025
当调制方式为16QAM时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000026
当调制方式为64QAM时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000027
步骤102、根据ACK_METRIC和信号窗内和噪声窗内所有数据平方和的比值得到HARQ-ACK的检测结果。
本步骤中,根据ACK_METRIC进行仿真,获得第二门限值Threshold2;根据ACK_METRIC和信号窗内和噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
当信号窗内和噪声窗内所有数据平方和的比值Threshold1时,设置HARQ-ACK检测结果为不连续发送(DTX);
当所述信号窗内和噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
当信号窗内和噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
本发明实施例方法根据ACK_METRIC进行仿真,获得第二门限值Threshold2,采用根据ACK_METRIC和信号窗内和噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1。与相关技术相比,当信噪比很低情况下,ACK_METRIC的准确度恶化会很严重,导致单独根据ACK_METRIC进行检测DTX的性能会很差。通过本发明实施例增加第一门限值,使PUSCH复用的HARQ-ACK的检测算法在信噪比很低的情况下,DTX检测性能得到提高。
在将LS信道估计变换到时域之前,本发明实施例方法还包括:在LS信道估计的尾部扩充预设长度的零序列。
通过扩充预设长度的零序列可以大大降低计算量,提高检测的工作效率。如果假设LS信道估计序列长度为N,则可以在LS信道估计序列的尾部扩充长度为
Figure PCTCN2015088270-appb-000028
的零序列,其中扩充零序列的长度可以通过其他本领域技术人员熟知的计算方式进行计算确定。
图2为本发明实施例实现HARQ-ACK检测的装置的结构框图,如图2所示,包括:确定位置单元201、第一计算单元202和检测结果单元203;其中,
确定位置单元201,设置为将PUSCH导频位置的LS信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;
第一计算单元202,设置为根据所述确定位置单元201确定的信号窗的位置和噪声窗的位置,计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
检测结果单元203,设置为根据ACK_METRIC和第二计算单元202计算的所述比值,得到混合自动重传请求应答HARQ-ACK的检测结果。
可选地,本发明实施例装置还包括第二计算单元204,设置为根据下述公式计算ACK_METRIC:
Figure PCTCN2015088270-appb-000029
其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,OACK=i表示ACK信息是i。
OACK=i时候,
Figure PCTCN2015088270-appb-000030
是其第k个编码比特,
Figure PCTCN2015088270-appb-000031
LLR表示对数似然比。
可选地,其中,所述确定位置单元201是设置为:
将PUSCH导频位置的接收数据与导频发送序列共轭相乘得到PUSCH导频位置的LS信道估计,变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置。
可选地,其中,所述确定位置单元201是设置为:将PUSCH导频位置的LS信道估计变换到时域后,根据PUSCH调制方式及信号窗的前窗系数和后窗系数,确定时域信道估计的信号窗的位置和噪声窗的位置。
可选地,其中,所述确定位置单元201是设置为:
将PUSCH导频位置的LS信道估计变换到时域后,
当PUSCH调制方式为正交相移键控QPSK时,设置
Figure PCTCN2015088270-appb-000032
确定,信号窗的位置为:
h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M
噪声窗的位置为:
h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK
当PUSCH调制方式为16正交幅度调制QAM时,设置
Figure PCTCN2015088270-appb-000033
确定,信号窗的位置为:
h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M
噪声窗的位置为:
h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
当PUSCH调制方式为64QAM时,设置
Figure PCTCN2015088270-appb-000034
确定,信号窗的位置为:
h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M
噪声窗的位置为:
h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
其中,当系统为常规CP时,LCP=144;当系统为扩展CP时,LCP=512;
PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;
βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
M是时域信道估计的长度;n为时域信道估计的索引;
所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
可选地,其中,所述第一计算单元202计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值包括:
当调制方式为QPSK时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000035
当调制方式为16QAM时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000036
当调制方式为64QAM时,信号窗内和噪声窗内所有数据平方和的比值为:
Figure PCTCN2015088270-appb-000037
可选地,其中,所述检测结果单元203是设置为:
根据ACK_METRIC进行仿真,获得第二门限值Threshold2;根据ACK_METRIC和信号窗内和噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
当信号窗内和噪声窗内所有数据平方和的比值Threshold1时,设置HARQ-ACK检测结果为不连续发送DTX;
当信号窗内和噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
当信号窗内和噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
可选地,本发明实施例装置还包括扩充单元205,其设置为在将LS信道估计变换到时域之前,在LS信道估计的尾部扩充预设长度的零序列。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明实施例不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例通过根据ACK_METRIC和信号窗内所有数据平方和与噪声窗内所有数据平方和的比值得到HARQ-ACK的检测结果,使PUSCH复用的HARQ-ACK的检测算法在信噪比很低的情况下,DTX检测性能得到提高。

Claims (17)

  1. 一种实现HARQ-ACK检测的方法,包括:
    将物理上行共享信道PUSCH导频位置的最小二乘LS信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;
    计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
    根据ACK_METRIC和所述比值得到混合自动重传请求应答HARQ-ACK的检测结果;其中,所述ACK_METRIC用于标识ACK的度量值。
  2. 根据权利要求1所述的方法,所述将物理上行共享信道PUSCH导频位置的最小二乘LS信道估计变换到时域之前,所述方法还包括:
    根据下述公式计算所述ACK_METRIC:
    Figure PCTCN2015088270-appb-100001
    其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,
    OACK=i时,
    Figure PCTCN2015088270-appb-100002
    是其第k个编码比特,
    Figure PCTCN2015088270-appb-100003
    LLR表示对数似然比;
    OACK=i表示ACK信息是i。
  3. 根据权利要求1所述的方法,其中,所述PUSCH导频位置的LS信道估计为:
    将所述PUSCH导频位置的接收数据与导频发送序列共轭相乘得到所述PUSCH导频位置的LS信道估计。
  4. 根据权利要求1所述的方法,其中,所述根据调制方式确定时域信道估计的信号窗和噪声窗的位置包括:
    根据所述PUSCH调制方式及所述信号窗的前窗系数和后窗系数,确定所述时域信道估计的信号窗的位置和噪声窗的位置。
  5. 根据权利要求4所述的方法,其中,所述根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数确定时域信道估计的信号窗的位置和噪声窗的位置包括:
    当所述PUSCH调制方式为正交相移键控QPSK时,设置
    Figure PCTCN2015088270-appb-100004
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK
    当所述PUSCH调制方式为16正交幅度调制QAM时,设置
    Figure PCTCN2015088270-appb-100005
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
    当所述PUSCH调制方式为64QAM时,设置
    Figure PCTCN2015088270-appb-100006
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
    其中,当系统为常规循环前缀CP时,LCP=144;当系统为扩展CP时,LCP=512;
    所述PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
    LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;
    βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
    βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
    M是时域信道估计的长度;n为时域信道估计的索引;
    所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
  6. 根据权利要求1所述的方法,其中,所述计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值包括:
    当调制方式为QPSK时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100007
    当调制方式为16QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100008
    当调制方式为64QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100009
    其中,LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;M是时域信道估计的长度;n为时域信道估计的索引;
    所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
  7. 根据权利要求1所述的方法,其中,所述根据ACK_METRIC和所述比值得到HARQ-ACK的检测结果包括:
    根据所述ACK_METRIC进行仿真,获得第二门限值Threshold2;根据所述ACK_METRIC和所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
    当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为Threshold1时,设置HARQ-ACK检测结果为不连续发送DTX;
    当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
    当信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
  8. 根据权利要求1~7任一项所述的方法,在将所述LS信道估计变换到时域之前,该方法还包括:在LS信道估计的尾部扩充预设长度的零序列。
  9. 一种实现HARQ-ACK检测的装置,包括:第一计算单元、确定位置单元和检测结果单元,其中,
    确定位置单元,设置为将物理上行共享信道PUSCH导频位置的最小二乘LS信道估计变换到时域后,根据调制方式确定时域信道估计的信号窗的位置和噪声窗的位置;
    第一计算单元,设置为根据所述确定位置单元确定的信号窗的位置和噪声窗的位置,计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值;
    检测结果单元,设置为根据ACK_METRIC和所述比值,得到混合自动重传请求应答HARQ-ACK的检测结果;其中,所述ACK_METRIC用于标识ACK的度量值。
  10. 根据权利要求9所述的装置,该装置还包括第二计算单元,设置为根据下述公式计算所述ACK_METRIC:
    Figure PCTCN2015088270-appb-100010
    其中,OACK是确认字符ACK信息,QACK是编码比特数目,x是接收到的数据,bk是接收到的第k个编码比特软信息,
    OACK=i时候,
    Figure PCTCN2015088270-appb-100011
    是其第k个编码比特,
    Figure PCTCN2015088270-appb-100012
    LLR表示对数似然比;
    OACK=i表示ACK信息是i。
  11. 根据权利要求9所述的装置,其中,所述确定位置单元是设置为,
    将所述PUSCH导频位置的接收数据与导频发送序列共轭相乘得到所述PUSCH导频位置的LS信道估计,变换到时域后,根据调制方式确定所述时域信道估计的信号窗的位置和噪声窗的位置。
  12. 根据权利要求9所述的装置,其中,所述确定位置单元是设置为,将所述PUSCH导频位置的LS信道估计变换到时域后,根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数,确定所述时域信道估计的信号窗的位置和噪声窗的位置。
  13. 根据权利要求9所述的装置,其中,所述确定位置单元根据所述PUSCH调制方式及信号窗的前窗系数和后窗系数,确定时域信道估计的信号窗的位置和噪声窗的位置,包括:
    当所述PUSCH调制方式为正交相移键控QPSK时,设置
    Figure PCTCN2015088270-appb-100013
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_QPSK,M-LPOST_QPSK+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_QPSK+1≤n≤M-LPOST_QPSK
    当所述PUSCH调制方式为16正交幅度调制QAM时,设置
    Figure PCTCN2015088270-appb-100014
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_16QAM,M-LPOST_16QAM+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_16QAM+1≤n≤M-LPOST_16QAM
    当所述PUSCH调制方式为64QAM时,设置
    Figure PCTCN2015088270-appb-100015
    确定,所述信号窗的位置为:
    h(n),1≤n≤LFORE_64QAM,M-LPOST_64QAM+1≤n≤M
    所述噪声窗的位置为:
    h(n),LFORE_64QAM+1≤n≤M-LPOST_64QAM
    其中,当系统为常规CP时,LCP=144;当系统为扩展CP时,LCP=512;
    所述PUSCH包含:QPSK、16QAM和64QAM三种调制方式,
    LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;
    βPOST_QPSK为QPSK调制方式的信号窗后窗系数;βPOST_16QAM为16QAM调制方式的信号窗后窗系数;βPOST_64QAM为64QAM调制方式的信号窗后窗系数;
    βFORE_QPSK为QPSK调制方式的信号窗前窗系数;βFORE_16QAM为16QAM调 制方式的信号窗前窗系数;βFORE_64QAM为64QAM调制方式的信号窗前窗系数;
    M是时域信道估计的长度;n为时域信道估计的索引;
    所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
  14. 根据权利要求9所述的装置,其中,所述第一计算单元计算信号窗内所有数据平方和与噪声窗内所有数据平方和的比值包括:
    当调制方式为QPSK时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100016
    当调制方式为16QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100017
    当调制方式为64QAM时,所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值为:
    Figure PCTCN2015088270-appb-100018
    其中,LFORE_QPSK表示QPSK调试方式下前窗长度;LPOST_QPSK表示QPSK调试方式下后窗长度;LFORE_16QAM表示16QAM调试方式下前窗长度;LPOST_16QAM表示16QAM调试方式下后窗长度;LFORE_64QAM表示64QAM调试方式下前窗长度;LPOST_64QAM表示64QAM调试方式下后窗长度;M是时域信道估计的长度;n为时域信道估计的索引;
    所述h(n)为LS信道估计变换到时域之后获得的序列,其中n=1,2,3,…,M。
  15. 根据权利要求9所述的装置,其中,所述检测结果单元是设置为,
    根据所述ACK_METRIC进行仿真,获得第二门限值Threshold2;根据所述ACK_METRIC和所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值进行仿真获得第一门限值Threshold1
    当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值Threshold1时,设置HARQ-ACK检测结果为不连续发送DTX;
    当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,所述ACK_METRIC小于Threshold2时,设置HARQ-ACK检测结果为确认字符ACK或否定应答NACK;
    当所述信号窗内所有数据平方和与噪声窗内所有数据平方和的比值大于Threshold1,所述ACK_METRIC大于Threshold2时,设置HARQ-ACK检测结果为DTX。
  16. 根据权利要求9~15任一项所述的装置,该装置还包括扩充单元,设置为在将LS信道估计变换到时域之前,在LS信道估计的尾部扩充预设长度的零序列。
  17. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-8任一项所述的方法。
PCT/CN2015/088270 2015-01-13 2015-08-27 一种实现harq-ack检测的方法及装置 WO2016112695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510015921.X 2015-01-13
CN201510015921.XA CN105846948B (zh) 2015-01-13 2015-01-13 一种实现harq-ack检测的方法及装置

Publications (1)

Publication Number Publication Date
WO2016112695A1 true WO2016112695A1 (zh) 2016-07-21

Family

ID=56405205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088270 WO2016112695A1 (zh) 2015-01-13 2015-08-27 一种实现harq-ack检测的方法及装置

Country Status (2)

Country Link
CN (1) CN105846948B (zh)
WO (1) WO2016112695A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090571A1 (zh) * 2016-11-16 2018-05-24 深圳市中兴微电子技术有限公司 确认/非确认信息的检测方法、装置及存储介质
US10645609B2 (en) * 2017-06-16 2020-05-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting TCP ACK in communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983723B (zh) * 2019-01-23 2021-11-16 香港应用科技研究院有限公司 用于改进无线通信系统中的harq-ack信息的确定的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316227A (zh) * 2007-06-01 2008-12-03 鼎桥通信技术有限公司 高速分组接入中检测ack/nack信息的方法和装置
CN101729465A (zh) * 2008-10-15 2010-06-09 大唐移动通信设备有限公司 信噪比测量方法、装置及其应用
CN102340386A (zh) * 2010-07-20 2012-02-01 北京海兰德维通信技术有限公司 物理混合自动重传请求指示信道的传输方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100555414C (zh) * 2007-11-02 2009-10-28 华为技术有限公司 一种dtx判决方法和装置
CN101335000B (zh) * 2008-03-26 2010-04-21 华为技术有限公司 编码的方法及装置
CN101997638B (zh) * 2009-08-19 2013-04-24 华为技术有限公司 确定用于检测harq-ack信号的参数的方法和装置
CN102315901B (zh) * 2010-07-02 2015-06-24 中兴通讯股份有限公司 不连续发射dtx的判决方法和装置
WO2013127057A1 (en) * 2012-02-27 2013-09-06 Qualcomm Incorporated Ack channel design for early termination of r99 downlink traffic
CN104168591B (zh) * 2013-05-16 2017-12-22 普天信息技术研究院有限公司 一种物理上行共享信道上不连续发送的检测方法和装置
CN104168094B (zh) * 2013-05-20 2017-08-11 普天信息技术研究院有限公司 非连续传输检测方法
CN103369655B (zh) * 2013-07-18 2016-08-24 西安科技大学 一种提高lte pucch dtx检测性能的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316227A (zh) * 2007-06-01 2008-12-03 鼎桥通信技术有限公司 高速分组接入中检测ack/nack信息的方法和装置
CN101729465A (zh) * 2008-10-15 2010-06-09 大唐移动通信设备有限公司 信噪比测量方法、装置及其应用
CN102340386A (zh) * 2010-07-20 2012-02-01 北京海兰德维通信技术有限公司 物理混合自动重传请求指示信道的传输方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090571A1 (zh) * 2016-11-16 2018-05-24 深圳市中兴微电子技术有限公司 确认/非确认信息的检测方法、装置及存储介质
US10645609B2 (en) * 2017-06-16 2020-05-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting TCP ACK in communication system

Also Published As

Publication number Publication date
CN105846948A (zh) 2016-08-10
CN105846948B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
US9888462B2 (en) Uplink control information transmission method, user equipment, and base station
JP6377681B2 (ja) 時分割二重化システムにおける受信確認情報生成及び電力制御のための方法及び装置
TWI499318B (zh) 無線通訊系統中用於無線電鏈結問題及回復偵測之技術
KR101570461B1 (ko) Sc- fdma 통신 시스템에서 채널 품질 지시자 및 응답 신호들의 전송을 위한 장치 및 방법
Blumenstein et al. Simulating the long term evolution uplink physical layer
US9319185B2 (en) Method, arrangement and detector for detecting hybrid automatic repeat request acknowledgement information
KR20120038464A (ko) 무선통신시스템에서 에이알큐 제어를 위한 방법 및 장치
WO2010064695A1 (ja) 通信装置、無線通信システム、フィードバック情報演算時の近似方法および記録媒体
CN103402249B (zh) 用于lte系统pucch信道的信噪比估计方法
US20150229427A1 (en) Noise power estimation method and apparatus
US20150171941A1 (en) Communication system, communication method, base station device, and mobile station device
WO2016112695A1 (zh) 一种实现harq-ack检测的方法及装置
CN102315904B (zh) 一种优化物理上行链路控制信道检测与测量的方法
WO2018103014A1 (zh) 混合自动重传请求反馈方法及装置
CN104393955A (zh) Ack/nack信号检测方法及装置
WO2016150148A1 (zh) 一种基站实现小区参考信号发射的方法、装置及基站
US9634807B2 (en) Joint user detection apparatus
KR20110038592A (ko) 무선 통신 시스템에서 상향링크 제어 신호 전송 방법 및 장치
JP6065100B2 (ja) 無線通信システムにおける受信装置およびチャネル推定制御方法
KR101582392B1 (ko) 신뢰할 수 있는 제어 채널 성능을 위한 방법 및 장치
CN109150386B (zh) 用户终端、服务小区解调方法及存储介质、电子设备
EP2741441B1 (en) Method and apparatus for transmitting downlink hybrid automatic repeat request information in wireless communication system
KR101524850B1 (ko) 신호 수신방법 및 장치
CN114650122B (zh) 物理上行共享信道不连续传输检测方法、装置及存储介质
CN116827490A (zh) 一种信号检测方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877608

Country of ref document: EP

Kind code of ref document: A1