WO2016111491A1 - 고흡수성 수지 제조 방법 - Google Patents

고흡수성 수지 제조 방법 Download PDF

Info

Publication number
WO2016111491A1
WO2016111491A1 PCT/KR2015/014325 KR2015014325W WO2016111491A1 WO 2016111491 A1 WO2016111491 A1 WO 2016111491A1 KR 2015014325 W KR2015014325 W KR 2015014325W WO 2016111491 A1 WO2016111491 A1 WO 2016111491A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymerization reactor
super absorbent
absorbent polymer
aqueous solution
Prior art date
Application number
PCT/KR2015/014325
Other languages
English (en)
French (fr)
Inventor
심유진
김의덕
김재헌
김지연
오석헌
이민호
이혜연
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2016111491A1 publication Critical patent/WO2016111491A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/24Treatment of polymer suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/242Applying crosslinking or accelerating agent onto compounding ingredients such as fillers, reinforcements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications

Definitions

  • the present invention relates to a method for producing a super absorbent polymer.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM) and absorbent gel material (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and nowadays, in addition to hygiene products such as children's paper diapers, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness-retaining agents, and steaming in the food distribution sector. It is widely used as a material for articles.
  • the problem to be solved by the present invention is to provide a super absorbent polymer having excellent physical properties.
  • Method for producing a super absorbent polymer according to an embodiment of the present invention for solving the above problems is the step of polymerizing the monomer composition in the suspension polymerization reactor and aqueous solution polymerization reactor, respectively, the polymerization in each of the suspension polymerization reactor and the aqueous solution polymerization reactor Drying the polymer, and mixing the dried polymer.
  • the aqueous solution polymerization reactor may be a belt type reactor or a kneader reactor.
  • the polymer polymerized in the aqueous polymerization reactor may further include grinding and drying.
  • the polymer polymerized in the aqueous polymerization reactor may further include cutting the polymer before the grinding step.
  • the pulverization of the polymer may be performed by any one of a cutter type cutter, a chopper type cutter, a kneader type cutter, a vibratory grinder, an impact grinder, and a friction grinder.
  • the polymer polymerized in the aqueous polymerization reactor may further include a surface crosslinking step.
  • the polymer polymerized in the suspension polymerization reactor may further comprise a surface crosslinking step.
  • the mixing ratio of the polymer polymerized in the suspension polymerization reactor and the polymer polymerized in the aqueous solution polymerization reactor may range from 1: 9 to 6: 4 by weight.
  • the mixing step may include at least one or more of an additive composed of a silica, a filler, and a wear resistant polymer.
  • the mixed polymer may further include a surface crosslinking step.
  • the manufacturing method of this invention can provide the superabsorbent polymer which has the outstanding physical property.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • Method for producing a super absorbent polymer comprises the steps of polymerizing a monomer composition in a suspension polymerization reactor and an aqueous solution polymerization reactor, respectively, drying the polymer polymerized in each of the suspension polymerization reactor and the aqueous solution polymerization reactor, And mixing the dried polymer.
  • the suspension polymerization is a method of dispersing a monomer insoluble in water as an oil droplet having a small particle diameter and polymerizing it in water or dispersing a hydrophilic monomer in water as a droplet having a small particle diameter in a hydrophobic solvent to polymerize it.
  • the size of the polymer can be controlled by controlling the temperature, polymerization time and the like.
  • the solvent may be further removed after the filtering and washing step, but not limited thereto. In some cases, other processes may be added or some processes may be omitted. .
  • the aqueous solution polymerization may be carried out by a thermal polymerization method for applying polymerization to an aqueous solution, a photopolymerization method for polymerization by irradiating ultraviolet rays, and the like, and a method of mixing them.
  • a thermal polymerization method for applying polymerization to an aqueous solution a photopolymerization method for polymerization by irradiating ultraviolet rays, and the like, and a method of mixing them.
  • it can superpose
  • the polymerization can be carried out continuously using a continuous polymerization reactor.
  • the monomer for suspension polymerization and the monomer for aqueous solution polymerization may be the same.
  • it may be a monomer having the same properties, for example, hydrophilicity, in order to efficiently proceed the pretreatment step such as neutralization before the polymerization, but is not limited thereto.
  • Examples of the monomer included in the monomer composition include water-soluble ethylenically unsaturated monomers, and any of the water-soluble ethylenically unsaturated monomers can be used without limitation as long as it is a monomer generally used in the production of superabsorbent polymers.
  • the monomer can be used at least one selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be determined by polymerization time and reaction conditions (stirring rate, temperature, time, type and amount of dispersant in suspension polymerization, feed rate of monomer composition in aqueous polymerization, heat and / or light irradiation time). , Irradiation range, irradiation strength, belt width, length, and moving speed, etc.) may be appropriately selected and used.
  • the monomer composition may further comprise a crosslinking agent.
  • the crosslinking agent includes at least one functional group capable of reacting with the substituent of the monomer and at least one ethylenically unsaturated group, or two or more functional groups capable of reacting with the substituent of the monomer and / or with the substituent formed by hydrolyzing the monomer.
  • Crosslinking agents can be used.
  • the crosslinking agent is a poly (meth) acrylate of a polyol having 8 to 12 carbon atoms, a bismethacrylamide having 8 to 12 carbon atoms, a polyol having 2 to 10 carbon atoms or a poly (poly) having a polyol having 2 to 10 carbon atoms.
  • Meta) allyl ether, and the like, and more specific examples thereof include N, N'-methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, and propyleneoxy (meth) acryl.
  • the crosslinking agent in the monomer composition, if the crosslinking agent can exhibit a crosslinking effect, its content can be selected and used.
  • the crosslinking agent may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto.
  • the monomer composition may further comprise one or more additives selected from the group consisting of a photopolymerization initiator, a thermal polymerization initiator and a crosslinking agent.
  • a polymerization initiator can be used, selecting the kind appropriately according to whether thermal polymerization, photopolymerization, or thermal polymerization and photopolymerization are selected in a process process.
  • the photopolymerization initiator is not particularly limited, but for example, diethoxy acetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4- (2-hydroxy ethoxy) phenyl- (2 Acetophenone derivatives such as -hydroxy) -2-propyl ketone and 1-hydroxycyclohexylphenyl ketone; Benzoin alkyl ether compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone derivatives such as methyl o-benzoyl benzoate, 4-phenyl benzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, and (4-benzoyl benzyl) trimethylammonium chloride; Thioxanthone compounds; Acyl phosphine oxide derivatives such as bis (2,4,6-trimethylbenzoyl) -
  • the thermal polymerization initiator is not particularly limited, but for example, an azo initiator, a peroxide initiator, a redox initiator or an organic halide initiator may be used alone or in combination of two or more thereof. .
  • sodium persulfate (Na 2 S 2 O 8 ) or potassium persulfate (Potassium persulfate, K 2 S 2 O 8 ) among the thermal polymerization initiators may be mentioned, but is not limited thereto.
  • the content of the photopolymerization initiator and the thermal polymerization initiator can be selected as long as it can exhibit the polymerization initiation effect. That is, the amount of the photopolymerization initiator and / or the thermal polymerization initiator may be included in the range of 0.005 to 1 mole parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer in each polymerization step. If it is less than 0.005 parts by weight, very much time may be required for the polymerization reaction, and if it is larger than 1 part by weight, there is a fear that a rapid polymerization reaction may occur and cause product defects.
  • the photopolymerization initiator may be included in the range of 0.005 to 0.1 parts by weight based on 100 parts by weight of the monomer, and the thermal polymerization initiator may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto. no.
  • crosslinking agent is the same as the content described in the suspension polymerization, the overlapping description is omitted.
  • the polymer having been polymerized may be introduced into a cutting device, and the polymer may be cut by a cutter.
  • the cleaved polymer may further include pulverizing, drying and further pulverizing the dried polymer.
  • a temporary drying step may be further included to prevent agglomeration and the like in the milling step.
  • the apparatus which cuts and extrudes a rubbery elastic body can be used.
  • cutter type cutters, chopper type cutters, kneader type cutters, vibratory grinders, impact grinders, friction grinders, and the like can be cited, but not limited thereto.
  • a dryer and a heating furnace can be used normally.
  • hot air dryers fluidized bed dryers, airflow dryers, infrared dryers, dielectric heating dryers, and the like may be mentioned, but are not limited thereto.
  • the drying temperature is not particularly limited, but may be in the range of 100 to 200 ° C. for preventing thermal degradation and for efficient drying.
  • the polymer polymerized in an aqueous polymerization reactor may further perform surface crosslinking.
  • Surface crosslinking can be accomplished using, for example, ethylene glycol diglycidyl ether, water and ethanol, but is not limited thereto.
  • surface crosslinking can be performed after forming particle
  • the mixing of the polymer may be performed in a dried state after the surface crosslinking if the polymer polymerized in the aqueous polymerization reactor is completely dried and then surface crosslinking is added.
  • the polymer polymerized in the suspension polymerization reactor may also be mixed after all drying has taken place.
  • silica, filler, wear-resistant polymer and the like can be added as an additive, but is not limited thereto.
  • the monomer aqueous solution was added to the cylindrical reactor with the rotation speed of the stirrer at 250 rpm, and maintained at 35 ° C. for 30 minutes while replacing the system with nitrogen. Thereafter, the reactor was heated to 70 ° C, and polymerization was performed for 60 minutes.
  • the rotation speed of the stirrer was changed to 1000 rpm, the temperature was raised to 125 ° C, and 125.7 g of water was taken out of the system while refluxing cyclohexane by azeotropic distillation of water and cyclohexane.
  • the surface treated high absorbent resin prepared in Comparative Example 1 and the surface treated high absorbent resin particles prepared in Comparative Example 2 were added to a mixer in a weight ratio of 9: 1 by weight, and 0.5 parts of silica (Evonik sipernet 22S) were added and mixed together. To prepare a super absorbent polymer.
  • the surface treated super absorbent polymer prepared in Comparative Example 1 and the surface treated super absorbent polymer particles prepared in Comparative Example 2 were added to a mixer in a weight ratio of 7: 3, and 0.5 parts of silica (Evonik sipernet 22S) were added and mixed together. To prepare a super absorbent polymer.
  • the surface treated super absorbent polymer prepared in Comparative Example 1 and the surface treated super absorbent polymer particles prepared in Comparative Example 2 were added to a mixer in a weight ratio of 5: 5, and 0.5 parts of silica (Evonik sipernet 22S) were added and mixed together. To prepare a super absorbent polymer.
  • Comparative Example 1 the CRC is relatively low, AUP and EC are relatively high, and in Comparative Example 2, the CRC is relatively high and AUP and EC are relatively low.
  • the superabsorbent polymers of Examples 1 to 3 may have excellent absorbing ability and may not cause gel blocking phenomenon.
  • FSR is a numerical value of the amount of physiological saline absorbed by 1 g of the super absorbent polymer in one second, the higher the value, the faster the absorption rate.
  • FSR is a numerical value of the amount of physiological saline absorbed by 1 g of the super absorbent polymer in one second, the higher the value, the faster the absorption rate.
  • the superabsorbent polymer obtained in suspension polymerization a very high value is observed in the absorption rate.
  • Example 4 which simultaneously surface-crosslinks the base polymer by aqueous solution polymerization and the superabsorbent polymer by suspension polymerization, it can be seen that EC exhibits decreased physical properties as AUP increases compared to other embodiments. It can be seen that even if the surface cross-linking at the same time shows excellent overall properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 본 발명의 고흡수성 수지의 제조 방법은 현탁 중합 반응기 및 수용액 중합 반응기에서 각각 모노머 조성물을 중합하는 단계, 상기 현탁 중합 반응기 및 상기 수용액 중합 반응기 각각에서 중합된 중합체를 건조하는 단계, 및 상기 건조된 중합체를 혼합하는 단계를 포함한다.

Description

고흡수성 수지 제조 방법
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 500 내지 1,000 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생 용품 이외에 원예용 토양 보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제, 찜질 용품 등의 재료로 널리 사용되고 있다.
본 발명이 해결하고자 하는 과제는, 물성이 뛰어난 고흡수성 수지를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 고흡수성 수지의 제조 방법은 현탁 중합 반응기 및 수용액 중합 반응기에서 각각 모노머 조성물을 중합하는 단계, 상기 현탁 중합 반응기 및 상기 수용액 중합 반응기 각각에서 중합된 중합체를 건조하는 단계, 및 상기 건조된 중합체를 혼합하는 단계를 포함할 수 있다.
상기 수용액 중합 반응기는 벨트형 반응기 또는 니더(kneader) 반응기일 수 있다.
상기 수용액 중합 반응기에서 중합된 중합체는 분쇄 및 건조하는 단계를 추가로 포함할 수 있다.
상기 수용액 중합 반응기에서 중합된 중합체는 상기 분쇄 단계 이전에 상기 중합체를 절단하는 단계를 추가로 포함할 수 있다.
상기 중합체의 상기 분쇄는 커터형 절단기, 쵸퍼형 절단기, 니더형 절단기, 진동식 분쇄기, 충격식 분쇄기 및 마찰형 분쇄기 중 어느 하나의 방법으로 수행될 수 있다.
상기 수용액 중합 반응기에서 중합된 중합체는 표면 가교 단계를 추가로 포함할 수 있다.
상기 현탁 중합 반응기에서 중합된 중합체는 표면 가교 단계를 추가로 포함할 수 있다.
상기 혼합 단계에서, 상기 현탁 중합 반응기에서 중합된 중합체와 상기 수용액 중합 반응기에서 중합된 중합체의 혼합 비율은 중량비로 1 : 9 내지 6 : 4 범위일 수 있다.
상기 혼합하는 단계는 실리카, 필러 및 내마모성 폴리머로 구성되는 첨가제 중 적어도 하나 이상을 포함할 수 있다.
상기 혼합하는 단계 이후에 혼합된 중합체를 표면 가교 단계를 추가로 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
본 발명의 제조 방법으로 뛰어난 물성을 가지는 고흡수성 수지를 제공할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
고흡수성 수지의 제조 방법
본 발명의 일 실시예에 따른 고흡수성 수지의 제조 방법은 현탁 중합 반응기 및 수용액 중합 반응기에서 각각 모노머 조성물을 중합하는 단계, 상기 현탁 중합 반응기 및 상기 수용액 중합 반응기 각각에서 중합된 중합체를 건조하는 단계, 및 상기 건조된 중합체를 혼합하는 단계를 포함한다.
상기 현탁 중합은 물에 녹지 않는 단량체를 작은 입경의 기름 방울로 하여 수중에 분산시켜 중합시키거나, 물에 녹는 친수성 단량체를 작은 입경의 방울로 하여 소수성 용매에 분산시켜 중합시키는 방법으로, 교반 속도, 온도, 중합 시간 등을 조절하여 중합체의 크기를 조절할 수 있다. 중합이 완료되면, 필터링 및 세정 공정을 추가로 거친 뒤, 용매를 제거하고 건조 과정을 거칠 수 있지만 이것만으로 한정되는 것은 아니고, 경우에 따라 다른 공정이 추가될 수도 있고, 일부 공정이 생략될 수도 있다.
상기 수용액 중합은 수용액에 열을 가하여 중합하는 열중합 방법, 자외선 등을 조사하여 중합하는 광중합 방법 및 이들을 혼용하는 방법 등으로 진행될 수 있다. 구체적인 예를 들어 벨트 상에 모노머 조성물을 주입하여 중합하는 벨트 중합 반응기를 사용하여 중합할 수 있고, 니더(kneader) 반응기를 사용하여 중합할 수도 있지만, 이들만으로 한정되는 것은 아니다. 보다 효율적인 공정을 위해서는 연속적인 중합 반응기를 사용하여 연속식으로 중합할 수 있다.
하나의 예에서, 현탁 중합용 모노머와 수용액 중합용 모노머는 동일할 수 있다. 또한, 동일한 물질은 아니더라도 중합 이전에 중화 등의 전처리 단계를 효율적으로 진행하기 위하여 동일한 성질, 예를 들어, 친수성을 가지는 모노머일 수 있지만, 이것만으로 한정되는 것은 아니다.
모노머 조성물에 포함되는 모노머의 예로, 수용성 에틸렌계 불포화 단량체를 들 수 있고, 상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 일반적으로 사용되는 단량체이면 어느 것이나 한정 없이 사용이 가능하다. 모노머는 크게 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.
예시적인 실시예에서, 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산 및 2-(메타)아크릴아미드-2-메틸프로판술폰산으로 이루어진 군에서 선택되는 하나 이상의 음이온성 단량체 또는 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 및 폴리에틸렌 글리콜(메타)아크릴레이트로 이루어진 군에서 선택되는 하나 이상의 비이온계 친수성 함유 단량체; 또는 (N,N)-디메틸아미노에틸(메타)아크릴레이트 및 (N,N)-디메틸아미노프로필(메타)아크릴아미드로 이루어진 군에서 선택되는 하나 이상의 아미노기 함유 불포화 단량체 또는 그 4급화물 등을 포함할 수 있다.
모노머 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건(현탁 중합에서 교반 속도, 온도, 시간, 분산제의 종류 및 양, 수용액 중합에서 모노머 조성물의 공급 속도, 열 및/또는 빛의 조사 시간, 조사 범위, 및 조사 강도, 벨트의 너비, 길이 및 이동 속도 등)을 고려하여 적절하게 선택하여 사용할 수 있다.
현탁 중합에서, 모노머 조성물은 가교제를 추가로 포함할 수 있다.
가교제는 단량체의 치환기와 반응할 수 있는 관능기 및 에틸렌성 불포화기를 각각 1개 이상 포함하는 가교제, 또는 단량체의 치환기 및/또는 상기 단량체를 가수분해하여 형성된 치환기와 반응할 수 있는 관능기를 2 이상 포함하는 가교제를 사용할 수 있다.
예시적인 실시예에서, 가교제는 탄소수 8 내지 12의 비스아크릴아미드, 탄소수 8 내지 12의 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리(메타)알릴에테르 등을 들 수 있고, 보다 구체적인 예로는, N,N'-메틸렌비스(메타)아크릴레이트, 에틸렌옥시(메타)아크릴레이트, 폴리에틸렌옥시(메타)아크릴레이트, 프로필렌옥시(메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티롤 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜로 또는 이들의 2종 이상의 혼합물을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
모노머 조성물에서, 가교제는 가교 효과를 나타낼 수 있으면 그 함량은 선택하여 사용할 수 있다. 예시적인 실시예에서, 가교제는 단량체 100 중량부 대비 0.01 내지 0.5 중량부 범위로 포함될 수 있지만, 이것만으로 한정되는 것은 아니다.
수용액 중합에서, 모노머 조성물은 광중합 개시제 열중합 개시제 및 가교제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다. 중합 개시제는 공정 과정에서 열중합, 광중합, 또는 열중합 및 광중합을 선택할지에 따라 그 종류를 적절히 선택하여 사용할 수 있다.
광중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 디에톡시 아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1-온, 4-(2-히드록시 에톡시)페닐-(2-히드록시)-2-프로필 케톤, 1-히드록시시클로헥실페닐케톤 등의 아세토페논 유도체; 벤조인메틸에테르, 벤조인에틸에테르, 벤조인이소프로필에테르, 벤조인이소부틸에테르 등의 벤조인알킬에테르류 화합물; o-벤조일 안식향산 메틸, 4-페닐 벤조페논, 4-벤조일-4'-메틸-디페닐 황화물, (4-벤조일 벤질)트리메틸암모늄 염화물 등의 벤조페논 유도체; 티옥산톤(thioxanthone)계 화합물; 비스(2,4,6-트리메틸벤조일)-페닐 포스핀 옥사이드, 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥사이드 등의 아실 포스핀 옥사이드 유도체; 또는 2-히드록시 메틸 프로피온니트릴, 2,2'-(아조비스(2-메틸-N-(1,1'-비스(히드록시메틸)-2-히드록시에틸)프로피온 아미드) 등의 아조계 화합물 등을 1종 또는 2종 이상 혼합하여 사용할 수 있지만, 이들만으로 한정되는 것은 아니다.
열중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 아조계(azo) 개시제, 과산화물계 개시제, 레독시(redox)계 개시제 또는 유기 할로겐화물 개시제 등을 1종 또는 2종 이상 혼합하여 사용할 수 있다. 그리고, 상기 열중합 개시제 중 소디움퍼설페이트(Sodium persulfate, Na2S2O8) 또는 포타시움 퍼설페이트(Potassium persulfate, K2S2O8)를 들 수 있지만, 이들만으로 한정되는 것은 아니다.
모노머 조성물에서, 광중합 개시제 및 열중합 개시제는 중합 개시 효과를 나타낼 수 있으면 그 함량은 선택하여 사용할 수 있다. 즉, 광중합 개시제 및/또는 열중합 개시제의 사용량은, 각 중합 단계에 있어서 상기 수용성 에틸렌계 불포화 단량체 100중량부 대비 0.005 내지 1몰 중량부 범위로 포함될 수 있다. 0.005 중량부보다 적을 경우, 중합 반응에 매우 많은 시간이 필요할 수 있고, 1 중량부보다 클 경우, 급격한 중합 반응이 일어나 제품 불량을 야기할 염려가 있다.
예시적인 실시예에서, 광중합 개시제는 단량체 100 중량부 대비 0.005 내지 0.1 중량부 범위로 포함될 수 있고, 열중합 개시제는 단량체 100 중량부 대비 0.01 내지 0.5 중량부 범위로 포함될 수 있지만, 이들만으로 한정되는 것은 아니다.
가교제는 상기 현탁 중합에서 설명한 내용과 동일하므로, 중복되는 설명은 생략한다.
수용액 중합 반응기에서 중합이 완료된 중합체는 절단 장치에 투입되어, 커터로 중합체를 절단하는 단계를 거칠 수 있다.
절단이 완료된 중합체는 분쇄, 건조 및 건조된 중합체를 추가 분쇄하는 단계를 추가로 더 포함할 수 있다. 경우에 따라서는 분쇄 공정 전에, 가건조 단계를 추가로 포함하여 분쇄 공정에서 뭉침 등을 방지할 수 있다.
분쇄 방법으로는 특별히 한정되는 것은 아니지만, 예를 들어, 고무상 탄성체를 절단, 압출하는 장치를 이용할 수 있다. 예시적인 실시예에서, 커터형 절단기, 쵸퍼형 절단기, 니더형 절단기, 진동식 분쇄기, 충격식 분쇄기, 마찰형 분쇄기 등을 들 수 있지만 이들만으로 한정되는 것은 아니다.
건조 방법으로는 통상 건조기와 가열로를 이용할 수 있다. 예시적인 실시예에서, 열풍 건조기, 유동층 건조기, 기류 건조기, 적외선 건조기, 유전가열 건조기 등을 들 수 있지만 이들만으로 한정되는 것은 아니다. 건조 온도는 특별히 제한되는 것은 아니지만, 열열화를 방지하고 효율적인 건조를 위하여 100 내지 200℃범위일 수 있다.
예시적인 실시예에서, 수용액 중합 반응기에서 중합된 중합체는 표면 가교를 추가로 수행할 수 있다.
표면 가교는, 예를 들어, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄올을 이용하여 이루어질 수 있으나, 이것만으로 한정되는 것은 아니다.
표면 가교는, 예를 들어, 분쇄 및 건조를 통하여 입자를 형성한 후에 실시할 수 있지만, 이것만으로 한정되는 것은 아니고, 필요에 따라 여러 차례 실시할 수도 있다.
중합체를 혼합하는 단계는 수용액 중합 반응기에서 중합된 중합체가 건조가 모두 이루어진 이후, 표면 가교가 추가된다면 표면 가교 이후 건조된 상태에서 이루어질 수 있다. 현탁 중합 반응기에서 중합된 중합체 또한 건조가 모두 이루어진 이후에 혼합될 수 있다.
상기 혼합하는 단계에서, 실리카, 필러, 내마모성 폴리머 등을 첨가제로 추가할 수 있지만, 이것으로 한정되는 것은 아니다.
비교예 1 (벨트 중합)
산기의 70몰%가 중화하게 되는 농도 45 질량%의 아크릴산 나트륨 수용액으로, 내부 가교제 폴리에틸렌 글리콜 디아크릴레이트를 0.12중량% 포함하는 것을 단량체(1)이라고 하고 준비하였다. 준비된 단량체(1)을 20℃로 유지하면서 상기 단량체(1) 100중량부에 대해 디페닐 (2,4,5-트리메틸벤조일)-포스핀 옥시드 0.08중량부를 혼합한 뒤, 열교환기를 통과하여 40℃로 온도를 승온하고 벨트에 놓이기 직전에 단량체(1) 100중량부에 대해 과황화칼륨 0.06중량부를 연속 혼합한 후, 정량 펌프로 벨트상에 두께 10mm 되도록 연속 피드 했다. 단량체 혼합물이 연속 이동하는 실리콘 소재의 컨베이어 벨트상으로 이동되면서, 3분 동안 자외선 (조사량: 9mW/cm2)을 조사하여 광중합을 진행하여 미세 함수겔 중합체를 제조하였다. 제조된 함수겔 중합체를 각각의 meat chopper를 통해 작은 입경 사이즈의 겔로 만들고, 170℃온도의 열풍 벨트 건조기로 모아 40분 동안 건조하였다. 이를 분쇄 밀로 분쇄한 후 시브(sieve)를 이용하여 입경이 150 내지 850 ㎛인 베이스 폴리머를 얻었다.
이후, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄올을 이용하여 고흡수성 수지를 표면 가교후, 140℃에서 40분 반응시키고, 분쇄 후 시브(sieve)를 이용하여 입경이 150 내지 850㎛인 표면 처리된 고흡수성 수지를 제조하였다.
비교예 2 (현탁 중합)
4매 패들 날개를 2단으로 가지는 교반 날개를 갖춘, 2 L크기의 원통형 반응기에 사이클로헥산 378 g(472 ml), 분산 안정제로서 Sorbitan monolaurate 0.92 g, 고분자계 분산 안정제로서 말레산 무수물로 변형된 저분자 폴리에틸렌(미츠이 화학 주식회사제, Hi-Wax 1105A) 0.92 g를 첨가해, 교반 하면서 80℃까지 승온해 분산 안정제를 용해한 후, 55℃까지 냉각하였다.
한편, 500 mL용의 삼각 플라스크에 80.5 질량%의 아크릴산 수용액 92 g(1.03 몰)과 이온 교환수 51.2 g를 혼합해, 외부에서 냉각하면서, 30 질량%의 수산화 나트륨 수용액 102.9 g를 첨가해 75 몰%의 중화를 실시하였다. 그 후, 중합 개시제로서 과황산칼리움 0.11 g(0.41밀리 몰), 내부 가교제로서 N, N'-메틸렌비스아크릴아미드 2.3 mg(0.01밀리 몰)을 더해 용해하여 단량체 수용액을 조제하였다.
교반기의 회전수를 250 rpm으로 하여 상기 단량체 수용액을, 상기 원통형 반응기에 첨가하고, 계내를 질소로 치환하면서 35℃로 30분간 유지 하였다. 그 후, 반응기를 70℃로 승온하고, 중합을 60분간 행하였다.
중합 후, 교반기의 회전수를 1000 rpm로 변경하고, 125℃로 승온하고, 물과 사이클로헥산과의 공비증류에 의해, 사이클로헥산을 환류하면서, 125.7 g의 물을 계외에 뽑아냈다.
그 후, 표면가교제로서 에틸렌 글리콜 디 글리시딜에테르의 2 질량%수용액 3.68 g를 첨가해, 물과 사이클로헥산을 증류에 의해 제거, 건조함으로써, 구상 입자가 부분적으로 응집한 형상의 표면 처리된 고 흡수성 수지 입자를 얻었다.
실시예 1
비교예 1에서 제조된 표면 처리된 고 흡수성 수지와 비교예 2에서 제조된 표면 처리된 고 흡수성 수지 입자를 중량비로 9 : 1로 믹서에 넣고, 0.5 파트의 silica (Evonik sipernet 22S) 첨가하여 함께 혼합하여 고흡수성 수지를 제조하였다.
실시예 2
비교예 1에서 제조된 표면 처리된 고 흡수성 수지와 비교예 2에서 제조된 표면 처리된 고 흡수성 수지 입자를 중량비로 7 : 3로 믹서에 넣고, 0.5 파트의 silica (Evonik sipernet 22S) 첨가하여 함께 혼합 하여 고흡수성 수지를 제조하였다.
실시예 3
비교예 1에서 제조된 표면 처리된 고 흡수성 수지와 비교예 2에서 제조된 표면 처리된 고 흡수성 수지 입자를 중량비로 5 : 5로 믹서에 넣고, 0.5 파트의 silica (Evonik sipernet 22S) 첨가하여 함께 혼합 하여 고흡수성 수지를 제조하였다.
실시예 4
비교예 1의 표면 처리 되기 전의 베이스 폴리머와 비교예 2의 표면 처리 되기 전의 물질을 건조한 파우더를 5:5로 혼합한 후, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄올을 이용하여 표면 가교 후, 140℃에서 40분 반응시키고, 분쇄 후 시브(sieve)를 이용하여 입경이 150 내지 850㎛이면서, 표면 처리된 고흡수성 수지를 제조하였다.
실험예 1
비교예 1 내지 2 및 실시예 1 내지 3에서 제조된 표면 처리된 고 흡수성 수지의 CRC(Centrifuge Retention Capacity), 0.7 psi AUP(Absorbency Under Pressure), 16h EC(Extractable Content), 및 FSR(g/g/s) 을 각각 EDANA WSP 241.2. R3, EDANA WSP 242.2. R3 및 EDANA WSP 270.2. R3 및 EDANA WSP 210.2. R3 규격으로 측정하여 그 결과를 하기 표 1에 나타내었다.
FSR(Free Swelling Rate)은 고흡수성 수지의 흡수 속도 측정을 위한 방법이다. 이를 측정하는 방법 미 수치화하는 방법으로는 우선, 고흡수성 수지를 300~600㎛사이의 사이즈로 분급하여 준비한 후, 100ml 비이커에 생리식염수 50g을 계량하여 넣고, 마그네틱 바를 넣어 600rpm으로 교반한다. 이후, 회오리가 생긴 것을 확인하고, 고흡수성 수지 2g을 해당 비커에 넣으며, 넣음과 동시에 초시계로 시간을 측정하여 표면에 회오리가 없어지는 시점까지의 시간을 측정한다. 계산식은 FSR = (생리식염수양/고흡수성 수지양/회오리 없어지는 시간)으로 계산하여 나타낸다.
CRC 0.7 psi AUP 16h EC FSR(g/g/s)
비교예 1 27 25 18 0.25
비교예 2 31 16 14 0.98
실시예 1 29 25 18 0.33
실시예 2 30 24 16 0.41
실시예 3 30 22 14 0.7
실시예 4 30 26 11 0.78
비교예 1의 경우, CRC가 상대적으로 낮고, AUP 및 EC는 상대적으로 높고, 비교예 2의 경우, CRC가 상대적으로 높고, AUP 및 EC는 상대적으로 낮다.
일반적으로 흡수능은 CRC가 높을수록 우수하고, gel blocking은 AUP가 높고 EC가 낮을수록 초래되지 않을 수 있다.
실시예 1 내지 3의 경우, 혼합 비율에 따라 차이는 있지만, 일반적으로 두 중합 방법의 혼합 시 기대되는 산술평균 수치보다 CRC 및 AUP는 높게 나타나고, EC는 낮게 나타나는 것을 확인할 수 있다. 실시예 3의 경우, 5 : 5 혼합에도 불구하고, CRC는 비교예 2의 높은 CRC 값에 근접하고, AUP는 비교예 1의 높은 AUP 값에 근접하며, EC는 비교예 2의 낮은 EC 값과 동일한 것을 확인할 수 있다.
따라서, 실시예 1 내지 3의 고흡수성 수지는 흡수능이 우수하고 gel blocking 현상을 초래하지 않을 수 있다.
또한, FSR은 고흡수성 수지 1g이 1초에 흡수하는 생리식염수의 양을 수치화 한 것으로 높은 값을 나타낼 수록, 빠른 흡수속도를 가진다고 할 수 있다. 현탁 중합에서 얻은 고흡수성 수지의 경우가 흡수속도에서 매우 높은 수치를 나타내며, 실시예 1~3을 비교할 때, 실시예 1에서 실시예 3으로 갈수록 현탁 중합에 의한 고흡수성 수지의 함량이 증가하고, 이에 의해 현탁 중합형 고흡수성 수지의 함량이 증가할수록 흡수속도가 증가하는 것을 확인할 수 있다. 이렇게 현탁 중합에 의한 흡수성 수지 입자를 혼용함으로써, 수용액 중합형 고흡수성 수지의 낮은 흡수속도에 대한 단점을 보안할 수 있으며 기저귀 사용시 빠른 흡수를 이끌어 기저귀 표면의 축축함을 방지할 수 있다.
수용액 중합에 의한 베이스 폴리머와 현탁 중합에 의한 고흡수성 수지를 동시에 표면 가교하는 실시예 4의 경우, 다른 실시예들에 비해 AUP가 높아지면서 EC는 감소하는 물성을 나타낸 것을 볼 수 있다. 이는 표면 가교를 동시에 진행하여도 전반적으로 우수한 물성을 나타낸다는 것을 알 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 현탁 중합 반응기 및 수용액 중합 반응기에서 각각 모노머 조성물을 중합하는 단계;
    상기 현탁 중합 반응기 및 상기 수용액 중합 반응기 각각에서 중합된 중합체를 건조하는 단계; 및
    상기 건조된 중합체를 혼합하는 단계를 포함하는 고흡수성 수지의 제조 방법.
  2. 제 1 항에 있어서,
    상기 수용액 중합 반응기는 벨트형 반응기 또는 니더(kneader) 반응기인 고흡수성 수지의 제조 방법.
  3. 제 1 항에 있어서,
    상기 수용액 중합 반응기에서 중합된 중합체는 분쇄 및 건조하는 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
  4. 제 3 항에 있어서,
    상기 수용액 중합 반응기에서 중합된 중합체는 상기 분쇄 단계 이전에 상기 중합체를 절단하는 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
  5. 제 3항에 있어서,
    상기 중합체의 상기 분쇄는 커터형 절단기, 쵸퍼형 절단기, 니더형 절단기, 진동식 분쇄기, 충격식 분쇄기 및 마찰형 분쇄기 중 어느 하나의 방법으로 수행되는 고흡수성 수지의 제조 방법.
  6. 제 1 항에 있어서,
    상기 수용액 중합 반응기에서 중합된 중합체는 표면 가교 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
  7. 제 1 항에 있어서,
    상기 현탁 중합 반응기에서 중합된 중합체는 표면 가교 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
  8. 제 1 항에 있어서,
    상기 혼합 단계에서, 상기 현탁 중합 반응기에서 중합된 중합체와 상기 수용액 중합 반응기에서 중합된 중합체의 혼합 비율은 중량비로 1 : 9 내지 6 : 4 범위인 고흡수성 수지의 제조 방법.
  9. 제 1항에 있어서,
    상기 혼합하는 단계는 실리카, 필러 및 내마모성 폴리머로 구성되는 첨가제 중 적어도 하나 이상을 포함하는 고흡수성 수지의 제조방법.
  10. 제 1 항에 있어서,
    상기 혼합하는 단계 이후에 혼합된 중합체를 표면 가교 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.
PCT/KR2015/014325 2015-01-06 2015-12-28 고흡수성 수지 제조 방법 WO2016111491A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150001210A KR20160084671A (ko) 2015-01-06 2015-01-06 고흡수성 수지 제조 방법
KR10-2015-0001210 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016111491A1 true WO2016111491A1 (ko) 2016-07-14

Family

ID=56356138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014325 WO2016111491A1 (ko) 2015-01-06 2015-12-28 고흡수성 수지 제조 방법

Country Status (4)

Country Link
KR (1) KR20160084671A (ko)
AR (1) AR103356A1 (ko)
TW (1) TW201630944A (ko)
WO (1) WO2016111491A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136564A1 (ko) * 2022-12-23 2024-06-27 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032081A1 (en) * 2002-09-04 2006-02-16 Sahbl Belkhiria Process for the production of sap
JP2009084472A (ja) * 2007-10-01 2009-04-23 San-Dia Polymer Ltd 吸収性樹脂粒子、この製造方法及び吸収性物品
US20100010173A1 (en) * 2007-01-16 2010-01-14 Basf Se Production of Super Absorbent Polymers on a Continuous Belt Reactor
KR20110136597A (ko) * 2010-06-15 2011-12-21 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20140130034A (ko) * 2013-04-30 2014-11-07 주식회사 엘지화학 고흡수성 수지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032081A1 (en) * 2002-09-04 2006-02-16 Sahbl Belkhiria Process for the production of sap
US20100010173A1 (en) * 2007-01-16 2010-01-14 Basf Se Production of Super Absorbent Polymers on a Continuous Belt Reactor
JP2009084472A (ja) * 2007-10-01 2009-04-23 San-Dia Polymer Ltd 吸収性樹脂粒子、この製造方法及び吸収性物品
KR20110136597A (ko) * 2010-06-15 2011-12-21 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20140130034A (ko) * 2013-04-30 2014-11-07 주식회사 엘지화학 고흡수성 수지

Also Published As

Publication number Publication date
TW201630944A (zh) 2016-09-01
AR103356A1 (es) 2017-05-03
KR20160084671A (ko) 2016-07-14

Similar Documents

Publication Publication Date Title
EP3067370B1 (en) Method for preparing super-absorbent resin
KR101393681B1 (ko) 고흡수성 수지의 제조 방법
WO2015115821A1 (ko) 고흡수성 수지 절단 장치 및 이를 이용한 고흡수성 수지 제조 방법
KR20160128350A (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법
EP3093298A1 (en) Method for preparing superabsorbent polymer
KR20130018350A (ko) 고흡수성 수지의 제조 방법
KR101477252B1 (ko) 고흡수성 수지의 제조 방법
WO2016200054A1 (ko) 고흡수성 수지 및 그의 제조 방법
WO2015088246A1 (ko) 고흡수성 수지 제조 장치 및 이를 이용한 고흡수성 수지 제조 방법
KR20150085484A (ko) 고흡수성 수지 절단 장치 및 이를 이용한 고흡수성 수지 제조 방법
WO2016111491A1 (ko) 고흡수성 수지 제조 방법
WO2015156545A1 (ko) 고흡수성 수지 및 이의 제조방법
WO2015065054A1 (ko) 고흡수성 수지 제조 장치 및 이를 이용한 고흡수성 수지 제조 방법
KR20150082098A (ko) 고흡수성 수지 제조 방법
KR20220077722A (ko) 고흡수성 수지의 제조 방법
KR102186939B1 (ko) 고흡수성 수지의 제조 방법
WO2015102457A1 (ko) 고흡수성 수지 제조 방법
WO2015108350A1 (ko) 고흡수성 수지 절단 장치 및 이를 이용한 고흡수성 수지 제조 방법
WO2015102463A1 (ko) 고흡수성 수지 제조 방법
KR102213451B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2015156570A1 (ko) 고흡수성 수지 제조 방법
KR20120047034A (ko) 고흡수성 수지의 제조 방법
KR20170110060A (ko) 고흡수성 수지 및 이의 제조 방법
WO2016003240A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR101367362B1 (ko) 중합 반응기 및 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877211

Country of ref document: EP

Kind code of ref document: A1