WO2016111483A1 - 양자점 복합체 및 이를 포함하는 광전소자 - Google Patents

양자점 복합체 및 이를 포함하는 광전소자 Download PDF

Info

Publication number
WO2016111483A1
WO2016111483A1 PCT/KR2015/014151 KR2015014151W WO2016111483A1 WO 2016111483 A1 WO2016111483 A1 WO 2016111483A1 KR 2015014151 W KR2015014151 W KR 2015014151W WO 2016111483 A1 WO2016111483 A1 WO 2016111483A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
scattering particles
dot composite
matrix layer
light
Prior art date
Application number
PCT/KR2015/014151
Other languages
English (en)
French (fr)
Inventor
이기연
오윤석
이경진
양춘봉
조서영
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Priority to CN201580072572.3A priority Critical patent/CN107112398A/zh
Priority to US15/541,949 priority patent/US20170362502A1/en
Priority to JP2017535761A priority patent/JP2018510367A/ja
Priority to EP15877203.8A priority patent/EP3243887A4/en
Publication of WO2016111483A1 publication Critical patent/WO2016111483A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • the present invention relates to a quantum dot composite and an optoelectronic device including the same, and more particularly, to a quantum dot composite and an optoelectronic device including the same, which have excellent optical properties and can improve light efficiency of the optoelectronic device.
  • a quantum dot is a nanocrystal of a semiconductor material having a diameter of about 10 nm or less, and exhibits a quantum confinement effect.
  • quantum dots generate light in a narrower wavelength band than ordinary phosphors.
  • luminescence of the quantum dots is generated while the electrons in the excited state are transferred from the conduction band to the same material, but the same material also exhibits a characteristic of varying in wavelength depending on particle size.
  • the smaller the size of the quantum dot emits light of a shorter wavelength it is possible to obtain the light of the desired wavelength region by adjusting the size.
  • gaseous vapor deposition such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE), and a chemical wet method in which a precursor is added to an organic solvent to grow crystals are used.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the chemical wet method is a method in which the organic solvent is naturally coordinated to the crystal surface of the quantum dots when the crystal grows, and serves as a dispersant to control the growth of the crystal, which is simpler and cheaper than vapor deposition such as MOCVD or MBE.
  • the process also has the advantage of controlling the uniformity of the size and shape of the nanocrystals.
  • the quantum dots produced by the above method are characterized by biological images, photovoltaic devices, photoluminescent devices, memories, and the like due to unique physical properties such as nanometer scale size, scalable optical properties, high light stability, and broad absorption spectrum. It is used in various fields such as a display device.
  • these quantum dots are mixed with a conventional polymer (polymer) to form a sheet (sheet) to apply to a variety of fields.
  • a scattering agent such as titanium oxide, aluminum oxide, barium titanate, and silicon dioxide was added, but there was a limit in improving the light efficiency only by adding the scattering agent as described above.
  • an object of the present invention is to provide a quantum dot composite and an optoelectronic device comprising the same having excellent optical properties, which can improve the optical efficiency of the optoelectronic device will be.
  • the matrix layer A plurality of quantum dots dispersed within the matrix layer; And a plurality of scattering particles dispersed in the matrix layer in a form disposed between the plurality of quantum dots, wherein the scattering particles have hollows formed therein to exhibit multiple refractive indices. do.
  • the scattering particles may be made of glass particles or polymer particles having a hollow formed therein.
  • the plurality of scattering particles may be included in the matrix layer in a ratio of 0.04 ⁇ 10wt% relative to the content of the matrix layer and the plurality of quantum dots.
  • the scattering particles may be larger in size than the quantum dots.
  • the size of the scattering particles may be 3 ⁇ 100 ⁇ m.
  • the matrix layer may be made of a polymer resin.
  • the quantum dot may include any one nanocrystal of Si-based nanocrystals, II-VI compound semiconductor nanocrystals, III-V compound semiconductor nanocrystals, IV-VI compound semiconductor nanocrystals, and mixtures thereof. .
  • the present invention provides a photovoltaic device comprising the above quantum dot composite on the path from which light is emitted or incident.
  • a space in which light emitted from the quantum dots can be sufficiently emitted between a plurality of quantum dots dispersed inside the matrix layer is incident on the light emitted from the quantum dots, the light emitted from the photoelectric device or the photoelectric device.
  • the light efficiency of the optoelectronic device can be improved by having a plurality of scattering particles having multiple refractive indices dispersed in the matrix layer and having hollows therein.
  • the quantum dot composite according to the present invention when applied as a color conversion substrate of a light emitting diode, the color conversion efficiency and luminance of the light emitting diode can be significantly improved compared to the conventional one, and thus, the amount of quantum dots used can be reduced.
  • FIG. 1 is a schematic diagram showing a quantum dot composite according to an embodiment of the present invention.
  • 2 and 3 are optical micrographs of the quantum dot composite according to an embodiment of the present invention.
  • 4 to 8 are light emission spectra of the quantum dot composite according to Examples 1 to 5 of the present invention.
  • the quantum dot composite 100 is applied to an optoelectronic device, and serves to improve its light efficiency.
  • the optoelectronic device is formed of a photoelectric transmitter such as a light emitting diode or an organic light emitting diode
  • the quantum dot composite 100 is disposed on a path through which light generated from the optoelectronic device is emitted, and passes the light passing therethrough in various paths.
  • the quantum dot composite 100 is disposed on the path of the light incident to the optoelectronic device, the light passing through it in various paths
  • the quantum dot composite 100 is disposed on the path of the light incident to the optoelectronic device, the light passing through it in various paths
  • the quantum dot composite 100 may be formed in the form of a sheet or a substrate, the quantum dot composite 100 is a member disposed on the light emitting diode to convert a part of the light emitted from the light emitting diode color conversion Can be used.
  • a light emitting diode package including a quantum dot composite 100 and a light emitting diode according to an exemplary embodiment of the present invention may include, for example, blue light emitted from a blue light emitting diode and light converted by the quantum dot composite 100. The mixed white light is emitted to the outside.
  • the light emitting diode may include a main body and a light emitting diode chip.
  • the main body is a structure having an opening having a predetermined shape, and provides a structural space in which the LED chip is mounted.
  • the main body is provided with a wire and a lead frame for electrically connecting the light emitting diode chip to an external power source.
  • the light emitting diode chip is a light source that emits light by an electric current applied from the outside, and is mounted on the main body, connected to an external power source through a wire and a lead frame, and provides an n-type semiconductor layer and holes for providing electrons. It may be made of a forward junction of the p-type semiconductor layer to provide a (hole).
  • the quantum dot composite 100 used as the optical functional member of various photoelectric devices, in particular, the color conversion substrate of the light emitting device may include a matrix layer 110, a plurality of quantum dots 120, and a plurality of quantum dots 120. It is formed including the scattering particles 130.
  • the matrix layer 110 serves to protect the plurality of quantum dots 120 and the plurality of scattering particles 130 dispersed therein from an external environment such as oxygen or moisture.
  • the matrix layer 110 serves to maintain a structure in which a plurality of quantum dots 120 are arranged in a dispersed manner.
  • the matrix layer 110 may be processed or molded in the form of a sheet or a substrate to provide a movement path of light emitted or received.
  • the matrix layer 110 may be made of a thermal or UV curable polymer resin.
  • the plurality of quantum dots 120 are distributed inside the matrix layer 110. In this case, the plurality of quantum dots 120 is protected from the external environment by the matrix layer 110, and its dispersibility is maintained.
  • the quantum dot 120 is a nano crystal of a semiconductor material having a diameter of about 1 to 10 nm, and is a material exhibiting a quantum confinement effect.
  • the quantum dot 120 converts the wavelength of light emitted from the light emitting diode to generate wavelength converted light, that is, fluorescence.
  • the quantum dot composite 100 according to the embodiment of the present invention is applied as a color conversion substrate of a blue light emitting diode, for quantum dot 120 to realize white light through mixing with blue light emitted from the blue light emitting diode, Fluorescence is generated to wavelength convert a portion of the light emitted from the blue light emitting diode into yellow.
  • the quantum dot 120 may include any one of Si-based nanocrystals, group II-VI compound semiconductor nanocrystals, group III-V compound semiconductor nanocrystals, group IV-VI compound semiconductor nanocrystals, and a mixture thereof. Can be.
  • CdSe may be used as the II-VI compound semiconductor nanocrystal
  • InP may be used as the quantum dot 120 as the III-V compound semiconductor nanocrystal, but in the embodiment of the present invention, the quantum dot 120 may be CdSe. It is not specifically limited to InP.
  • the plurality of scattering particles 130 are dispersed in the matrix layer 110.
  • the plurality of scattering particles 130 are dispersed in the matrix layer 110 in a form disposed between the plurality of quantum dots 120.
  • the scattering particles 130 have a larger size than the quantum dot 120.
  • the scattering particles 130 may be formed to have a size of 3 ⁇ 100 ⁇ m larger than the quantum dot 120 is a nanocrystal.
  • the size of the scattering particles 130 may be defined as the diameter of the scattering particles 130 having a spherical shape.
  • a space in which the light emitted from the quantum dots 120 may be sufficiently emitted may be formed in the matrix layer 110. Since it is made between the neighboring quantum dots 120, it is possible to achieve excellent color conversion efficiency and color rendering index (CRI).
  • CRI color conversion efficiency and color rendering index
  • the optical properties such as color conversion efficiency and color rendering index of the quantum dot composite 100 through the scattering particles 130 is excellent, it is also possible to reduce the use of the quantum dot 120 than the conventional Become.
  • the scattering particles 130 shows a multiple refractive index.
  • the scattering particles 130 may be made of glass particles or polymer particles having a hollow 131 formed therein.
  • the hollow 131 may be formed in the shape of occupying approximately 80% by volume relative to the total volume of the scattering particles 130 in the scattering particles 130. That is, the scattering particles 130 may be formed of a core made of a hollow 131 occupying approximately 80% by volume and a shell structure made of glass or polymer surrounding the core.
  • the scattering particles 130 are made of glass particles or polymer particles having a core-shell structure having a refractive index difference from each other, for example, the path of light generated from the light emitting diode or the light emitted from the quantum dot 120 is complicated. By diversifying, the efficiency of extracting the emitted light to the outside, that is, the light efficiency of the light emitting diode can be improved.
  • the incident light may be scattered through the scattering particles 130 to increase the amount of light absorbed into the light absorbing layer of the photovoltaic cell, thereby improving the light efficiency of the photovoltaic cell.
  • the plurality of scattering particles 130 may be included in the matrix layer 110 at a rate of 0.04 to 10 wt% relative to the content of the matrix layer 110 and the plurality of quantum dots 120 dispersed therein.
  • the dispersion content of the scattering particles 130 is less than 0.04wt%, the effect of improving the color conversion efficiency through this little or no, the utility having the scattering particles 130 is lost.
  • the dispersion content of the scattering particles 130 exceeds 10wt%, the luminance of the optoelectronic device, for example, a light emitting diode, employing the scattering particles 130 is lowered.
  • the quantum dot composite was prepared by mixing. Accordingly, the scattering particles form a structure that is dispersed in the mixture forming the matrix layer at 3.08wt% relative to the content of the quantum dot and the UV resin.
  • a quantum dot composite was prepared by mixing the first mixture and the second mixture of Example 1 in a ratio of 1: 0.4. Accordingly, the scattering particles form a structure that is dispersed in the mixture forming the matrix layer at 5.19wt% relative to the content of the quantum dot and the UV resin.
  • a quantum dot composite was prepared by mixing the first mixture and the second mixture of Example 1 in a ratio of 1: 0.6. Accordingly, the scattering particles form a structure that is dispersed in the mixture forming the matrix layer at 6.74wt% relative to the content of the quantum dot and the UV resin.
  • a quantum dot composite was prepared by mixing the first mixture and the second mixture of Example 1 in a ratio of 1: 0.8. Accordingly, the scattering particles form a structure dispersed in the mixture forming the matrix layer to 7.92wt% relative to the content of the quantum dot and the UV resin.
  • a quantum dot composite was prepared by mixing the first mixture and the second mixture of Example 1 in a ratio of 1: 1. Accordingly, the scattering particles form a structure that is dispersed in the mixture forming the matrix layer to 8.85wt% relative to the content of the quantum dot and the UV resin.
  • a quantum dot composite was prepared from the first mixture of Example 1. That is, in Comparative Example 1, a hollow was formed therein, thereby preparing a quantum dot composite having no scattering particles having multiple refractive indices.
  • Example 1 0.2160 0.2024 10641 3.08
  • Example 2 0.2282 0.2368 11058 5.19
  • Example 3 0.2409 0.2569 11368 6.74
  • Example 4 0.2494 0.2659 11062 7.92
  • Example 5 0.2393 0.2574 11266 8.85 Comparative Example 1 0.1748 0.1117 7586 -
  • Table 1 shows the color coordinates and the luminance change after applying the quantum dot composite according to Examples 1 to 5 and Comparative Example 1 of the present invention to a light emitting diode.
  • 4 to 8 show emission spectra of the quantum dot composites according to Examples 1 to 5
  • FIG. 9 shows the emission spectra of the quantum dot composites according to Comparative Example 1.
  • the quantum dot composite 100 is disposed between the plurality of quantum dots 120 and the quantum dots 120 dispersed in the matrix layer 110, and thus, from the quantum dots 120.
  • a space is formed between the quantum dots 120 and scattering particles 130 having multiple refractive indices for scattering the emitted light through various paths.
  • the quantum dot composite 100 according to the embodiment of the present invention can improve the light efficiency of the applied optoelectronic device.
  • the quantum dot composite 100 according to the embodiment of the present invention when applied as a color conversion substrate of the light emitting diode, the color conversion efficiency of the light emitting diode and the conventional quantum dot composite having no scattering particles 130 having multiple refractive index and The luminance can be greatly improved, and accordingly, the amount of quantum dots 120 used can be reduced.

Abstract

본 발명은 양자점 복합체 및 이를 포함하는 광전소자에 관한 것으로서 더욱 상세하게는 우수한 광학특성을 가져, 광전소자의 광효율을 향상시킬 수 있는 양자점 복합체 및 이를 포함하는 광전소자에 관한 것이다. 이를 위해, 본 발명은, 매트릭스 층; 상기 매트릭스 층 내부에 분산되어 있는 다수의 양자점; 및 상기 다수의 양자점 사이에 배치되는 형태로 상기 매트릭스 층 내부에 분산되어 있는 다수의 산란입자를 포함하되, 상기 산란입자는 내부에 중공이 형성되어 있어 다중 굴절률을 나타내는 것을 특징으로 하는 양자점 복합체 및 이를 포함하는 광전소자를 제공한다.

Description

양자점 복합체 및 이를 포함하는 광전소자
본 발명은 양자점 복합체 및 이를 포함하는 광전소자에 관한 것으로서 더욱 상세하게는 우수한 광학특성을 가져, 광전소자의 광효율을 향상시킬 수 있는 양자점 복합체 및 이를 포함하는 광전소자에 관한 것이다.
양자점(quantum dot)은 약 10㎚ 이하의 직경을 갖는 반도체 물질의 나노 결정으로, 양자제한(quantum confinement) 효과를 나타내는 물질이다. 이러한 양자점은 통상의 형광체보다 강한 빛을 좁은 파장대에서 발생시킨다. 이때, 양자점의 발광은 전도대에서 가전자대로 들뜬 상태의 전자가 전이하면서 발생되는데 같은 물질의 경우에도 입자 크기에 따라 파장이 달라지는 특성을 나타낸다. 즉, 양자점의 크기가 작을수록 짧은 파장의 빛을 발광하기 때문에 크기 조절을 통해 원하는 파장 영역의 빛을 얻을 수 있다.
나노 결정의 양자점을 합성하는 방법으로는 MOCVD(metal organic chemical vapor deposition)나 MBE(molecular beam epitaxy)와 같은 기상 증착법과 유기용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식법이 이용된다.
여기서, 화학적 습식법은 결정이 성장할 때, 유기용매가 자연스럽게 양자점의 결정 표면에 배위되어, 분산제의 역할을 하도록 하여 결정의 성장을 조절하는 방법으로, MOCVD나 MBE와 같은 기상 증착법보다 간단하고, 저가의 공정을 통해서도 나노 결정의 크기와 형태의 균일도를 조절할 수 있는 장점을 갖는다.
상기와 같은 방법을 통해 제조된 양자점은 나노미터 스케일의 크기, 크기 조절이 가능한 광학특성, 높은 광 안정성 및 넓은 흡수 스펙트럼과 같은 독특한 물리적 특성으로 인해, 생체영상, 광전지 장치, 광 발광소자, 메모리 및 디스플레이 장치 등 다양한 분야에 활용되고 있다.
한편, 이러한 양자점은 통상의 폴리머(polymer)와 혼합하여 시트(sheet) 형태로 만들어 다양한 분야에 적용하게 된다. 종래에는 높은 광효율을 얻기 위해, 산화티타늄, 산화알루미늄, 티탄산바륨 및 이산화실리콘 등의 산란제를 첨가하였으나, 상기와 같은 산란제를 첨가하는 방식만으로는 광효율 향상에 한계가 있었다.
[선행기술문헌]
대한민국 공개특허공보 제10-2013-0136259호(2013.12.12.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 우수한 광학특성을 가져, 광전소자의 광효율을 향상시킬 수 있는 양자점 복합체 및 이를 포함하는 광전소자를 제공하는 것이다.
이를 위해, 본 발명은, 매트릭스 층; 상기 매트릭스 층 내부에 분산되어 있는 다수의 양자점; 및 상기 다수의 양자점 사이에 배치되는 형태로 상기 매트릭스 층 내부에 분산되어 있는 다수의 산란입자를 포함하되, 상기 산란입자는 내부에 중공이 형성되어 있어 다중 굴절률을 나타내는 것을 특징으로 하는 양자점 복합체를 제공한다.
여기서, 상기 산란입자는 내부에 중공이 형성되어 있는 유리입자 또는 폴리머입자로 이루어질 수 있다.
또한, 상기 다수의 산란입자는 상기 매트릭스 층 내부에 상기 매트릭스 층과 상기 다수의 양자점의 함량 대비 0.04~10wt% 비율로 포함되어 있을 수 있다.
그리고 상기 산란입자는 상기 양자점보다 크기가 클 수 있다.
이때, 상기 산란입자의 크기는 3~100㎛일 수 있다.
또한, 상기 매트릭스 층은 고분자 수지로 이루어질 수 있다.
그리고 상기 양자점은 Si계 나노결정, Ⅱ-Ⅵ족계 화합물 반도체 나노결정, Ⅲ-Ⅴ족계 화합물 반도체 나노결정, Ⅳ-Ⅵ족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노 결정을 포함할 수 있다.
한편, 본 발명은, 상기의 양자점 복합체를 광이 출사 또는 입사되는 경로 상에 구비하는 것을 특징으로 하는 광전소자를 제공한다.
본 발명에 따르면, 매트릭스 층 내부에 분산되어 있는 다수의 양자점들 사이에서 양자점으로부터 발광된 빛이 충분히 발광될 수 있는 공간을 만들고, 양자점으로부터 발광된 빛, 광전소자로부터 출사되는 빛 또는 광전소자로 입사되는 빛의 경로를 복잡화 혹은 다양화시키기 위한 수단으로, 매트릭스 층 내부에 분산되어 있되 내부에 중공이 형성되어 있어 다중 굴절률을 갖는 다수의 산란입자를 구비함으로써, 광전소자의 광효율을 향상시킬 수 있다.
특히, 본 발명에 따른 양자점 복합체를 발광 다이오드의 색변환 기판으로 적용하는 경우, 종래보다 발광 다이오드의 색변환 효율 및 휘도를 크게 향상시킬 수 있으며, 이에 따라, 종래보다 양자점 사용량을 줄일 수 있다.
도 1은 본 발명의 실시 예에 따른 양자점 복합체를 나타낸 모식도.
도 2 및 도 3은 본 발명의 실시 예에 따른 양자점 복합체에 대한 광학 현미경 사진들.
도 4 내지 도 8은 본 발명의 실시 예1 내지 실시 예5에 따른 양자점 복합체에 대한 발광 스펙트럼.
도 9는 본 발명의 비교 예1에 따른 양자점 복합체에 대한 발광 스펙트럼.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 양자점 복합체 및 이를 포함하는 광전소자에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1 내지 도 3을 참조하면, 본 발명의 실시 예에 따른 양자점 복합체(100)는 광전소자에 적용되어, 이의 광효율을 향상시키는 역할을 한다. 예를 들어, 광전소자가 발광 다이오드나 유기 발광 다이오드와 같은 광전 발신기로 이루어진 경우, 양자점 복합체(100)는 광전소자로부터 발생된 광이 출사되는 경로 상에 배치되어, 이를 통과하는 광을 다양한 경로로 산란시켜 외부로 추출되는 광량을 증가시키고, 광전소자가 광전지와 같은 광전 수신기로 이루어진 경우, 양자점 복합체(100)는 광전소자로 광이 입사되는 경로 상에 배치되어, 이를 통과하는 광을 다양한 경로로 산란시켜 양자점에 흡수되는 광량을 증가시킴으로써, 광전소자의 광효율을 향상시킨다.
또한, 본 발명의 실시 예에 따른 양자점 복합체(100)는 시트 혹은 기판 형태로 이루어질 수 있는데, 이러한 양자점 복합체(100)는 발광 다이오드 상에 배치되어 발광 다이오드로부터 출사되는 광의 일부를 색변환시키는 부재로 사용될 수 있다. 이를 구체적으로 설명하면, 본 발명의 실시 예에 따른 양자점 복합체(100)와 발광 다이오드를 포함하는 발광 다이오드 패키지는 예컨대, 청색 발광 다이오드로부터 방출된 청색광과 양자점 복합체(100)에 의해 색변환된 광이 혼합된 백색광을 외부로 방출하게 된다. 여기서, 도시하진 않았지만, 발광 다이오드는 본체 및 발광 다이오드 칩을 포함하여 형성될 수 있다. 본체는 소정 형상의 개구부가 형성된 구조물로, 발광 다이오드 칩이 실장되는 구조적 공간을 제공한다. 이러한 본체에는 발광 다이오드 칩을 외부 전원과 전기적으로 접속시키는 와이어와 리드 프레임이 설치된다. 또한, 발광 다이오드 칩은 외부에서 인가되는 전류에 의해 광을 방출하는 광원으로, 본체에 실장되고, 와이어와 리드 프레임을 통해 외부 전원과 연결되며, 전자(electron)를 제공하는 n형 반도체층과 정공(hole)을 제공하는 p형 반도체층의 순방향 접합으로 이루어질 수 있다.
이와 같이, 다양한 광전소자의 광 기능성 부재, 특히, 발광소자의 색변환 기판으로 사용되는 본 발명의 실시 예에 따른 양자점 복합체(100)는 매트릭스 층(110), 다수의 양자점(120) 및 다수의 산란입자(130)를 포함하여 형성된다.
매트릭스 층(110)은 내부에 분산되어 있는 다수의 양자점(120) 및 다수의 산란입자(130)를 산소나 수분과 같은 외부 환경으로부터 보호하는 역할을 한다. 또한, 매트릭스 층(110)은 다수의 양자점(120)이 분산 배열되어 있는 구조를 유지하는 역할을 한다. 그리고 매트릭스 층(110)은 시트 혹은 기판 형태로 가공 혹은 성형되어, 발광 또는 수광되는 광의 이동 통로를 제공한다. 본 발명의 실시 예에서, 이러한 매트릭스 층(110)은 열 또는 UV 경화성 고분자 수지로 이루어질 수 있다.
다수의 양자점(120)은 매트릭스 층(110) 내부에 분산되어 있다. 이때, 다수의 양자점(120)은 매트릭스 층(110)에 의해 외부 환경으로부터 보호되고, 그 분산성이 유지된다.
여기서, 양자점(120)은 대략 1~10㎚의 직경을 갖는 반도체 물질의 나노 결정(nano crystal)으로, 양자제한(quantum confinement) 효과를 나타내는 물질이다. 이러한 양자점(120)은 예컨대, 발광 다이오드에서 방출되는 광의 파장을 변환하여 파장 변환광, 즉, 형광을 발생시킨다. 예들 들어, 본 발명의 실시 예에 따른 양자점 복합체(100)가 청색 발광 다이오드의 색변환 기판으로 적용되는 경우, 청색 발광 다이오드로부터 발광되는 청색광과의 혼색을 통한 백색광 구현을 위해, 양자점(120)은 청색 발광 다이오드로부터 발광된 광의 일부를 황색으로 파장 변환시키는 형광을 발생시킨다.
이러한 양자점(120)은 Si계 나노결정, Ⅱ-Ⅵ족계 화합물 반도체 나노결정, Ⅲ-Ⅴ족계 화합물 반도체 나노결정, Ⅳ-Ⅵ족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노 결정을 포함할 수 있다. 예를 들어, Ⅱ-Ⅵ족계 화합물 반도체 나노결정으로는 CdSe, Ⅲ-Ⅴ족계 화합물 반도체 나노결정으로는 InP가 양자점(120)으로 사용될 수 있으나, 본 발명의 실시 예에서, 양자점(120)을 CdSe나 InP로 특별히 한정하는 것은 아니다.
다수의 산란입자(130)는 다수의 양자점(120)과 마찬가지로, 매트릭스 층(110) 내부에 분산되어 있다. 이때, 다수의 산란입자(130)는 다수의 양자점(120) 사이에 배치되는 형태로 매트릭스 층(110) 내부에 분산되어 있다. 본 발명의 실시 예에서, 이러한 산란입자(130)는 양자점(120)보다 큰 크기를 갖는다. 예를 들어, 산란입자(130)는 나노 결정인 양자점(120)보다 큰 3~100㎛ 크기로 형성될 수 있다. 이때, 산란입자(130)의 크기는 구형으로 이루어지는 산란입자(130)의 직경으로 정의될 수 있다.
이와 같이, 크기가 큰 다수의 산란입자(130)가 이보다 작은 양자점(120)들 사이 사이에 배치되면, 양자점(120)으로부터 발생되는 빛이 충분히 발광될 수 있는 공간이 매트릭스 층(110) 내부에서 서로 이웃하는 양자점(120) 사이에 만들어지기 때문에, 이를 통해, 우수한 색변환 효율 및 연색지수(CRI) 구현이 가능해진다. 본 발명의 실시 예에서는 이와 같이, 산란입자(130)를 통해 양자점 복합체(100)의 색변환 효율 및 연색지수와 같은 광학특성이 우수해짐에 따라, 종래보다 양자점(120) 사용량을 줄이는 것 또한 가능해진다.
한편, 본 발명의 실시 예에 따른 산란입자(130)는 다중 굴절률을 나타낸다. 이를 위해, 산란입자(130)는 내부에 중공(131)이 형성되어 있는 유리입자 또는 폴리머입자로 이루어질 수 있다. 이때, 중공(131)은 산란입자(130) 내부에 산란입자(130)의 전체 부피 대비 대략 80부피%를 차지하는 형태로 형성될 수 있다. 즉, 산란입자(130)는 대략 80부피%를 차지하는 중공(131)으로 이루어진 코어 및 이를 감싸는 유리 또는 폴리머로 이루어진 쉘 구조로 형성될 수 있다. 이와 같이, 산란입자(130)가 서로 굴절률 차이를 갖는 코어-쉘 구조의 유리입자 또는 폴리머입자로 이루어지면, 예컨대, 발광 다이오드로부터 발광된 빛 또는 양자점(120)으로부터 발생되는 빛의 경로를 복잡화 혹은 다변화시켜, 발광된 빛을 외부로 추출하는 효율, 즉, 발광 다이오드의 광효율을 향상시킬 수 있게 된다.
광전지의 경우에도 입사되는 빛을 산란입자(130)를 통해 산란시켜, 광전지의 광 흡수층으로 흡수되는 광량을 증가시킬 수 있고, 이를 통해, 광전지의 광효율 또한 향상시킬 수 있게 된다.
여기서, 다수의 산란입자(130)는 매트릭스 층(110)과 이의 내부에 분산되어 있는 다수의 양자점(120)의 함량 대비 0.04~10wt% 비율로 매트릭스 층(110) 내부에 포함될 수 있다. 이때, 산란입자(130)들의 분산 함량이 0.04wt%보다 작게 되면, 이를 통한 색변환 효율 향상 효과가 미미하거나 없게 되어, 산란입자(130)를 구비하는 효용이 사라지게 된다. 반대로, 산란입자(130)들의 분산 함량이 10wt%를 넘게 되면, 이를 채용한 광전소자, 예컨대, 발광 다이오드의 휘도가 저하된다.
실시 예1
양자점 6.6g, 저점도 UV 수지 2g, 고점도 UV 수지 2g을 혼합한 제1 혼합물과, 속이 빈 유리 또는 폴리머로 이루어진 산란입자 2g과 고점도 UV 수지 10g을 혼합한 제2 혼합물을 1:0.2의 비율로 혼합하여 양자점 복합체를 제조하였다. 이에 따라, 산란입자는 양자점과 UV 수지의 함량 대비 3.08wt%로 매트릭스 층을 이루는 혼합물에 분산되어 있는 구조를 이룬다.
실시 예2
상기 실시 예1의 제1 혼합물과, 제2 혼합물을 1:0.4의 비율로 혼합하여 양자점 복합체를 제조하였다. 이에 따라, 산란입자는 양자점과 UV 수지의 함량 대비 5.19wt%로 매트릭스 층을 이루는 혼합물에 분산되어 있는 구조를 이룬다.
실시 예3
상기 실시 예1의 제1 혼합물과, 제2 혼합물을 1:0.6의 비율로 혼합하여 양자점 복합체를 제조하였다. 이에 따라, 산란입자는 양자점과 UV 수지의 함량 대비 6.74wt%로 매트릭스 층을 이루는 혼합물에 분산되어 있는 구조를 이룬다.
실시 예4
상기 실시 예1의 제1 혼합물과, 제2 혼합물을 1:0.8의 비율로 혼합하여 양자점 복합체를 제조하였다. 이에 따라, 산란입자는 양자점과 UV 수지의 함량 대비 7.92wt%로 매트릭스 층을 이루는 혼합물에 분산되어 있는 구조를 이룬다.
실시 예5
상기 실시 예1의 제1 혼합물과, 제2 혼합물을 1:1의 비율로 혼합하여 양자점 복합체를 제조하였다. 이에 따라, 산란입자는 양자점과 UV 수지의 함량 대비 8.85wt%로 매트릭스 층을 이루는 혼합물에 분산되어 있는 구조를 이룬다.
비교 예1
상기 실시 예1의 제1 혼합물로 양자점 복합체를 제조하였다. 즉, 비교 예1에서는 내부에 중공이 형성되어 있어 다중 굴절률을 가지는 산란입자가 포함되어 있지 않은 양자점 복합체를 제조하였다.
x y 휘도 산란입자(wt%)
실시 예1 0.2160 0.2024 10641 3.08
실시 예2 0.2282 0.2368 11058 5.19
실시 예3 0.2409 0.2569 11368 6.74
실시 예4 0.2494 0.2659 11062 7.92
실시 예5 0.2393 0.2574 11266 8.85
비교 예1 0.1748 0.1117 7586 -
상기 표 1은 본 발명의 실시 예1 내지 실시 예5 및 비교 예1에 따른 양자점 복합체를 발광 다이오드에 적용한 후, 색좌표 및 휘도 변화를 나타낸 것이다. 또한, 도 4 내지 도 8은 실시 예1 내지 실시 예5에 따른 양자점 복합체에 대한 발광 스펙트럼을 보여주고 있고, 도 9는 비교 예1에 따른 양자점 복합체에 대한 발광 스펙트럼을 보여주고 있다.
표 1 및 도 4 내지 도 9을 보면, 산란입자가 포함된 경우(실시 예1 내지 실시 예5)는 그렇지 않은 경우(비교 예1)보다 휘도가 크게 향상되는 것으로 확인되었다. 이를 통해, 산란입자가 광학특성 향상에 기여한다는 것을 알 수 있다. 이때, 산란입자가 6.74wt% 포함되었을 때, 가장 큰 휘도를 나타내는 것으로 확인되었다. 또한, 산란입자를 포함하는 경우(실시 예1 내지 실시 예5)는 그렇지 않은 경우(비교 예1)보다 색변환 효율이 거의 2배 정도 상승되는 것으로 확인되었다.
상술한 바와 같이, 본 발명의 실시 예에 따른 양자점 복합체(100)는 매트릭스 층(110) 내부에 분산되어 있는 다수의 양자점(120) 및 양자점(120)들 사이에 배치되어, 양자점(120)으로부터 발생된 빛에 대한 충분한 발광이 이루어질 수 있도록, 양자점(120)들 사이에 공간을 형성하고, 발광된 광을 다양한 경로로 산란시키는 다중 굴절률을 갖는 산란입자(130)를 구비한다. 이를 통해, 본 발명의 실시 예에 따른 양자점 복합체(100)는 적용되는 광전소자의 광효율을 향상시킬 수 있다. 특히, 본 발명의 실시 예에 따른 양자점 복합체(100)가 발광 다이오드의 색변환 기판으로 적용되면, 다중 굴절률을 갖는 산란입자(130)를 구비하지 않는 종래의 양자점 복합체보다 발광 다이오드의 색변환 효율 및 휘도를 크게 향상시킬 수 있고, 이에 따라, 종래보다 양자점(120) 사용량을 줄일 수 있게 된다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (8)

  1. 매트릭스 층;
    상기 매트릭스 층 내부에 분산되어 있는 다수의 양자점; 및
    상기 다수의 양자점 사이에 배치되는 형태로 상기 매트릭스 층 내부에 분산되어 있는 다수의 산란입자;
    를 포함하되,
    상기 산란입자는 내부에 중공이 형성되어 있어 다중 굴절률을 나타내는 것을 특징으로 하는 양자점 복합체.
  2. 제1항에 있어서,
    상기 산란입자는 내부에 중공이 형성되어 있는 유리입자 또는 폴리머입자로 이루어진 것을 특징으로 하는 양자점 복합체.
  3. 제1항에 있어서,
    상기 다수의 산란입자는 상기 매트릭스 층 내부에 상기 매트릭스 층과 상기 다수의 양자점의 함량 대비 0.04~10wt% 비율로 포함되어 있는 것을 특징으로 하는 양자점 복합체.
  4. 제1항에 있어서,
    상기 산란입자는 상기 양자점보다 크기가 큰 것을 특징으로 하는 양자점 복합체.
  5. 제4항에 있어서,
    상기 산란입자의 크기는 3~100㎛인 것을 특징으로 하는 양자점 복합체.
  6. 제1항에 있어서,
    상기 매트릭스 층은 고분자 수지로 이루어진 것을 특징으로 하는 양자점 복합체.
  7. 제1항에 있어서,
    상기 양자점은 Si계 나노결정, Ⅱ-Ⅵ족계 화합물 반도체 나노결정, Ⅲ-Ⅴ족계 화합물 반도체 나노결정, Ⅳ-Ⅵ족계 화합물 반도체 나노결정 및 이들의 혼합물 중 어느 하나의 나노 결정을 포함하는 것을 특징으로 하는 양자점 복합체.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 양자점 복합체를 광이 출사 또는 입사되는 경로 상에 구비하는 것을 특징으로 하는 광전소자.
PCT/KR2015/014151 2015-01-06 2015-12-23 양자점 복합체 및 이를 포함하는 광전소자 WO2016111483A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580072572.3A CN107112398A (zh) 2015-01-06 2015-12-23 量子点复合物和包括其的光电器件
US15/541,949 US20170362502A1 (en) 2015-01-06 2015-12-23 Quantum dot composite and photoelectric device comprising same
JP2017535761A JP2018510367A (ja) 2015-01-06 2015-12-23 量子ドット複合体及びこれを含む光電素子
EP15877203.8A EP3243887A4 (en) 2015-01-06 2015-12-23 Quantum dot composite and photoelectric device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0001053 2015-01-06
KR1020150001053A KR101777596B1 (ko) 2015-01-06 2015-01-06 양자점 복합체 및 이를 포함하는 광전소자

Publications (1)

Publication Number Publication Date
WO2016111483A1 true WO2016111483A1 (ko) 2016-07-14

Family

ID=56356136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014151 WO2016111483A1 (ko) 2015-01-06 2015-12-23 양자점 복합체 및 이를 포함하는 광전소자

Country Status (7)

Country Link
US (1) US20170362502A1 (ko)
EP (1) EP3243887A4 (ko)
JP (1) JP2018510367A (ko)
KR (1) KR101777596B1 (ko)
CN (1) CN107112398A (ko)
TW (1) TWI589020B (ko)
WO (1) WO2016111483A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置
WO2019115462A1 (de) * 2017-12-14 2019-06-20 Osram Opto Semiconductors Gmbh Leuchtstoffmischung, konversionselement und optoelektronisches bauelement
EP3318922B1 (en) * 2016-11-02 2020-02-12 Samsung Display Co., Ltd. Display device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601838B (zh) * 2016-12-12 2017-11-14 兰州大学 一种点阵式磁光电器件及其制备方法
KR102466420B1 (ko) * 2017-08-22 2022-11-11 삼성디스플레이 주식회사 색변환 표시판 및 이를 포함하는 표시 장치
KR20200084328A (ko) 2017-11-10 2020-07-10 디아이씨 가부시끼가이샤 잉크 조성물 및 그 제조 방법, 그리고 광변환층 및 컬러 필터
CN108150968A (zh) * 2017-12-26 2018-06-12 中华映管股份有限公司 反射膜
KR20190094628A (ko) * 2018-02-05 2019-08-14 삼성전자주식회사 디스플레이 장치
US11067848B1 (en) * 2018-06-22 2021-07-20 Facebook Technologies, Llc Switchable reflective devices including first and second optically transparent materials with different refractive indexes and methods and systems for fabrication thereof
CN109031754A (zh) * 2018-07-20 2018-12-18 深圳市华星光电技术有限公司 量子点结构、偏光片及液晶显示装置
US11243333B1 (en) * 2018-10-24 2022-02-08 Facebook Technologies, Llc Nanovoided optical structures and corresponding systems and methods
US11526129B1 (en) 2018-12-07 2022-12-13 Meta Platforms Technologies, Llc Nanovoided holographic structures and corresponding systems and methods
US11340386B1 (en) 2018-12-07 2022-05-24 Facebook Technologies, Llc Index-gradient structures with nanovoided materials and corresponding systems and methods
CN111995997B (zh) * 2020-08-05 2022-03-08 深圳市华星光电半导体显示技术有限公司 光学薄膜的制备方法及光学薄膜
WO2022080359A1 (ja) * 2020-10-12 2022-04-21 パナソニックIpマネジメント株式会社 波長変換部材成形用組成物、カラーレジスト、カラーフィルタ、カラーレジストの製造方法、発光装置、及び発光装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283072A1 (en) * 2007-07-18 2010-11-11 Kazlas Peter T Quantum dot-based light sheets useful for solid-state lighting
KR20130044032A (ko) * 2011-10-21 2013-05-02 엘지이노텍 주식회사 광학 부재 및 이를 포함하는 표시장치
JP2013149729A (ja) * 2012-01-18 2013-08-01 Fujifilm Corp 量子ドット構造体、波長変換素子および光電変換装置
WO2013162646A1 (en) * 2012-04-22 2013-10-31 Qd Vision, Inc. Coated semiconductor nanocrystals and products including same
KR20130120486A (ko) * 2010-11-10 2013-11-04 나노시스, 인크. 양자 도트 필름들, 조명 디바이스들, 및 조명 방법들

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627177A1 (en) * 2003-05-09 2006-02-22 Philips Intellectual Property & Standards GmbH Uv light source coated with nano-particles of phosphor
US8718437B2 (en) * 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP5773646B2 (ja) * 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
KR101560846B1 (ko) * 2007-06-25 2015-10-15 큐디 비젼, 인크. 조성물, 광학 부품, 광학 부품을 포함하는 시스템, 소자 및 다른 제품
TW200900764A (en) * 2007-06-29 2009-01-01 Exploit Technology Co Ltd Light guide plate and the backlight module using the same
WO2009014707A2 (en) * 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8389958B2 (en) * 2009-03-18 2013-03-05 Duke University Up and down conversion systems for production of emitted light from various energy sources
WO2009137053A1 (en) * 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
EP2164302A1 (de) * 2008-09-12 2010-03-17 Ilford Imaging Switzerland Gmbh Optisches Element und Verfahren zu seiner Herstellung
KR101562022B1 (ko) * 2009-02-02 2015-10-21 삼성디스플레이 주식회사 발광 다이오드 유닛, 이를 포함하는 표시 장치 및 발광 다이오드 유닛 제조 방법
EP2465147B1 (en) * 2009-08-14 2019-02-27 Samsung Electronics Co., Ltd. Lighting devices, an optical component for a lighting device, and methods
TW201139532A (en) * 2010-04-30 2011-11-16 Styron Europe Gmbh Improved light diffusing composition
US20120113671A1 (en) * 2010-08-11 2012-05-10 Sridhar Sadasivan Quantum dot based lighting
KR20130136259A (ko) 2012-06-04 2013-12-12 삼성전자주식회사 양자점을 이용한 발광소자 패키지
TW201427893A (zh) * 2013-01-07 2014-07-16 群康科技(深圳)有限公司 圖案化色轉換膜及應用其之顯示裝置
KR102294837B1 (ko) * 2013-08-16 2021-08-26 삼성전자주식회사 광학 부품을 제조하는 방법, 광학 부품, 및 그것을 포함하는 제품
CN106536676B (zh) * 2014-08-14 2019-08-16 株式会社Lg化学 发光膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283072A1 (en) * 2007-07-18 2010-11-11 Kazlas Peter T Quantum dot-based light sheets useful for solid-state lighting
KR20130120486A (ko) * 2010-11-10 2013-11-04 나노시스, 인크. 양자 도트 필름들, 조명 디바이스들, 및 조명 방법들
KR20130044032A (ko) * 2011-10-21 2013-05-02 엘지이노텍 주식회사 광학 부재 및 이를 포함하는 표시장치
JP2013149729A (ja) * 2012-01-18 2013-08-01 Fujifilm Corp 量子ドット構造体、波長変換素子および光電変換装置
WO2013162646A1 (en) * 2012-04-22 2013-10-31 Qd Vision, Inc. Coated semiconductor nanocrystals and products including same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3243887A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025802A (ja) * 2016-08-11 2018-02-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カラーフィルタ、及びそれを含む表示装置
JP7007133B2 (ja) 2016-08-11 2022-01-24 三星ディスプレイ株式會社 カラーフィルタ、その製造方法及びそれを含む表示装置
EP3318922B1 (en) * 2016-11-02 2020-02-12 Samsung Display Co., Ltd. Display device
US11099432B2 (en) 2016-11-02 2021-08-24 Samsung Display Co., Ltd. Display device
WO2019115462A1 (de) * 2017-12-14 2019-06-20 Osram Opto Semiconductors Gmbh Leuchtstoffmischung, konversionselement und optoelektronisches bauelement
US11616175B2 (en) 2017-12-14 2023-03-28 Osram Oled Gmbh Luminophore mixture, conversion element and optoelectronic component

Also Published As

Publication number Publication date
TWI589020B (zh) 2017-06-21
US20170362502A1 (en) 2017-12-21
KR101777596B1 (ko) 2017-09-13
JP2018510367A (ja) 2018-04-12
EP3243887A4 (en) 2018-08-15
EP3243887A1 (en) 2017-11-15
KR20160084619A (ko) 2016-07-14
CN107112398A (zh) 2017-08-29
TW201633558A (zh) 2016-09-16

Similar Documents

Publication Publication Date Title
WO2016111483A1 (ko) 양자점 복합체 및 이를 포함하는 광전소자
US10461224B2 (en) Molded nanoparticle phosphor for light emitting applications
DE102018129856B4 (de) Leuchtkörper, Leuchtfilm, Leuchtdiode, Leuchtdioden-Package und damit ausgestattete Anzeigevorrichtungen
CN105733556B (zh) 一种量子点复合荧光颗粒、led模块
US9508892B2 (en) Group I-III-VI material nano-crystalline core and group I-III-VI material nano-crystalline shell pairing
KR101585430B1 (ko) 형광체용 나노하이브리드 복합체, 그를 이용한 광학 모듈 및 그의 제조방법
EP3623442B1 (en) Nano-crystalline core and nano-crystalline shell pairing having group i-iii-vi material nano-crystalline core
WO2018056632A1 (en) Hybrid organic/inorganic quantum dot composite and method for preparing the same
JP2021523530A (ja) 共鳴エネルギー移動に基づく量子ドットled設計
WO2013058476A1 (ko) 투명 발광 시트 및 그 제조 방법
WO2017025437A1 (de) Optoelektronisches bauelement umfassend ein konversionselement, verfahren zur herstellung eines optoelektronischen bauelements umfassend ein konversionselement und verwendung eines optoelektronischen bauelements umfassend ein konversionselement
CN108417698A (zh) 量子点封装体及其制备方法、发光装置和显示装置
US20200255733A1 (en) Fused Encapsulation of Quantum Dots
He et al. ZnO/SiO2 encapsulation of perovskite nanocrystals for efficient and stable light-emitting diodes
KR102200585B1 (ko) 고발광성 단파 적외선 나노입자 및 이의 제조방법
KR101360073B1 (ko) 발광다이오드용 양자점 및 이를 이용한 백색 발광 소자
KR101888427B1 (ko) 표시 장치용 양자점 및 이의 제조 방법
KR20150034381A (ko) 양자 라드 및 그 제조방법, 이를 포함하는 표시장치
DE102017102477B4 (de) Verfahren zur Herstellung eines Auskoppelelements für ein optoelektronisches Bauelement und Auskoppelelement
CN112912464A (zh) 组合物、膜、层叠结构体、发光装置和显示器
WO2012060498A1 (ko) 형광체를 이용한 녹색 발광 다이오드
KR101203173B1 (ko) 양자점 및 그 제조 방법
WO2022113967A1 (ja) 色変換粒子
DE102015106658A1 (de) Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
KR20160059547A (ko) 다분산 양자점 매트릭스, 그 제조 방법 및 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535761

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15541949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE