WO2013058476A1 - 투명 발광 시트 및 그 제조 방법 - Google Patents

투명 발광 시트 및 그 제조 방법 Download PDF

Info

Publication number
WO2013058476A1
WO2013058476A1 PCT/KR2012/007105 KR2012007105W WO2013058476A1 WO 2013058476 A1 WO2013058476 A1 WO 2013058476A1 KR 2012007105 W KR2012007105 W KR 2012007105W WO 2013058476 A1 WO2013058476 A1 WO 2013058476A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
transparent
sheet
emitting sheet
transparent light
Prior art date
Application number
PCT/KR2012/007105
Other languages
English (en)
French (fr)
Inventor
강동원
장동선
홍근영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/344,295 priority Critical patent/US20140340912A1/en
Publication of WO2013058476A1 publication Critical patent/WO2013058476A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present specification relates to a transparent light emitting sheet and a method of manufacturing the same.
  • LEDs light emitting devices
  • LEDs emit mostly light close to monochromatic light, unlike those having a broad emission spectrum, such as incandescent bulbs. Since the energy of the electron / hole coupling is different for each light emitting device, red, green, blue, and yellow color are displayed according to each characteristic.
  • An object of the present disclosure is to provide a transparent light emitting sheet capable of obtaining light having high color purity and improving light efficiency by improving light linearity and a method of manufacturing the same.
  • the transparent alumina sheet having a plurality of nano pores are constantly aligned; Each of the nanopores may be positioned to include light-emitting nanoparticles that generate wavelength converted light by wavelength converting the excitation light.
  • the light emitting nanoparticles may be quantum dots.
  • the plurality of nanopores may have a uniform size, a uniform shape, and a uniform arrangement.
  • the nanopores may have a shape of any one of a circle, a rectangle, and a hexagonal shape.
  • the plurality of nano pores may be formed by anodizing an aluminum thin film in an electrolyte acid solution including an oxide.
  • one quantum dot may be formed in each nano pore of the transparent alumina sheet.
  • the method of manufacturing a transparent light emitting sheet includes preparing a transparent alumina sheet having a plurality of nano pores by anodizing an aluminum thin film in an electrolyte acid solution; Filling a predetermined amount of luminescent precursor within said plurality of pores; The method may include generating quantum dots by applying heat to the light emitting precursor filled in the plurality of pores.
  • the transparent light emitting sheet and the method of manufacturing the same according to the embodiment of the present specification have an effect of obtaining light having high color purity by uniformly forming quantum dots of the same size in each nano pores of the transparent alumina sheet.
  • the transparent light emitting sheet and the method of manufacturing the same according to the embodiment of the present specification can produce a transparent light emitting sheet (or film) without further processing by using a transparent alumina sheet, and the quantum dot agglomeration phenomenon generated when the quantum dots are dispersed in a polymer There is also an effect that can solve.
  • the transparent light emitting sheet and the method of manufacturing the same according to the embodiments of the present specification also have an effect of improving light efficiency by improving the linearity of light by passing the light emitted by the quantum dots inside the nanopores.
  • FIG. 1 is a block diagram showing a transparent light emitting sheet according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line A-A 'of the transparent light emitting sheet according to the embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a transparent light emitting sheet according to an embodiment of the present invention.
  • 4 to 6 are diagrams illustrating a process of generating a quantum dot according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a transparent light emitting sheet that can be applied to various display devices such as a liquid crystal display (LCD), an organic light emitting diode (OLED), a light emitting diode (LED), and the like and a manufacturing method thereof will be described with reference to FIGS. 1 to 6. It demonstrates with reference.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • LED light emitting diode
  • FIG. 1 is a block diagram showing a transparent light emitting sheet according to an embodiment of the present invention.
  • the transparent light emitting sheet 100 may include a transparent alumina sheet 110 having a plurality of nano pores 111 regularly aligned. )Wow; Quantum dots (or luminescent nanoparticles) each positioned within the plurality of nanopores 111 to generate wavelength converted light by wavelength converting excitation light (eg, light generated by a blue LED) ( 120).
  • the nano pores 111 may be formed in a variety of structures, such as a circle, a square, a hexagon.
  • the quantum dot may be a nano-sized light emitter having a diameter of 10 nm or less, which may be a material exhibiting a quantum confinement effect.
  • the quantum dots generate light in a narrower wavelength band than a conventional phosphor.
  • the emission of the quantum dots is generated by the transition of electrons excited in the valence band in the conduction band, and even in the same material, the wavelength varies depending on the particle size. As the size of the quantum dot is smaller, light of shorter wavelength is generated, so that light of a desired wavelength region can be obtained by adjusting the size of the quantum dot.
  • a CdSe / ZnS core / shell quantum dot may be used as the quantum dot.
  • the quantum dots emit light even if an excitation wavelength (or excitation light) is arbitrarily selected, the light of various colors can be observed at once by exciting various kinds of quantum dots at one wavelength.
  • the quantum dots may be prepared by a vapor deposition method such as metal organic chemical vapor deposition (MOCVD) or molecular beamepitaxy (MBE), or may be prepared by a chemical wet method in which a precursor material is added to an organic solvent to grow crystals.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beamepitaxy
  • the quantum dots are dispersed in a polymer and coded on a transparent substrate such as glass, the uniformity of light may be reduced due to agglomeration of the quantum dots, but a plurality of uniformly aligned as in the present invention
  • Quantum dots are grown in nano pores to produce a transparent light emitting sheet 100, and the transparent light emitting sheet 100 is used in place of a conventional opaque fluorescent film. It is possible to increase the color convert efficiency.
  • the transparent light emitting sheet 100 grows one quantum dot in each nano-pore having a uniform size, uniform shape, and uniform arrangement, so that the quantum dot itself is formed by aggregation and resorption.
  • the efficiency reduction of can also be improved.
  • the transparent light emitting sheet 100 has a quantum dot having a uniform size by growing one quantum dot in each nano pores of a uniform size.
  • a transparent light emitting sheet (or film) may be manufactured without further processing by using a transparent alumina sheet.
  • the light generated by the quantum dots may pass through the interior of the nano-pores 111 of the transparent alumina sheet 110 to improve the linearity of the light to increase the light efficiency.
  • FIG. 2 is a cross-sectional view taken along the line A-A 'of the transparent light emitting sheet according to the embodiment of the present invention.
  • the excitation light As shown in FIG. 2, after one quantum dot 120 is grown inside each of the nanopores 111 having a uniform size, a uniform shape, and a uniform arrangement formed on the transparent alumina sheet 110,
  • the excitation light passes through the transparent nano-pores and enters the quantum dot 120, and the quantum dot 120 emits the excitation light (eg, a blue LED).
  • the excitation light eg, a blue LED.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a transparent light emitting sheet according to an embodiment of the present invention.
  • an aluminum thin film is impregnated into an electrolyte acid solution containing an oxide such as H 2 SO 4 , C 2 H 2 O 4 , H 3 PO 4, and the like (S11).
  • a transparent alumina sheet 110 having a plurality of nanopores formed in a uniform size, a uniform shape, and a uniform arrangement is manufactured (S12). .
  • the size and height of the nanopores can be adjusted by oxidation time, voltage, electrolyte solution, and the like.
  • a transparent alumina sheet 110 having a plurality of nanopores formed in any one of a uniform size, a uniform shape, and a uniform arrangement may be prepared. have.
  • a predetermined amount of the light emitting precursor 121 is filled in the plurality of pores (S13).
  • the size of the quantum dot may vary depending on the amount of the luminescent precursor.
  • 4 to 6 are diagrams illustrating a process of generating a quantum dot according to an embodiment of the present invention.
  • a predetermined amount of the light emitting precursor 121 is filled in each pore 111.
  • the size of the quantum dot may be determined according to the amount of the light emitting precursor 121 filled in each of the pores 111.
  • the quantum dots are generated by applying heat to the light emitting precursors filled in the plurality of pores (S14).
  • the light emitting precursor 121 after filling a predetermined amount of the light emitting precursor 121 in each pore 111, gradually becomes heated when heat is applied to the light emitting precursor 121. While aggregated, they are produced (formed) as one quantum dot.
  • the size of the quantum dots is also uniformly generated due to the uniform size of each of the nanopores. That is, quantum dots of the same size may be generated by uniformly filling the amount of the luminescent precursor in the reaction space (each nano-pores) having a limited space and uniformity.
  • one quantum dot is generated in one nanopore by applying heat to the luminescent precursor filled in one pore.
  • quantum dots having the same size are uniformly formed in each of the nano pores of the transparent alumina sheet to obtain light having high color purity.
  • a transparent light emitting sheet (or film) can be manufactured without additional processes (eg, a semiconductor process) by using a transparent alumina sheet, and the quantum dots
  • additional processes eg, a semiconductor process
  • the quantum dots The quantum dot aggregation phenomenon that occurs when dispersing can be solved.
  • light generated by the quantum dots may pass through the interior of the nanopores, thereby improving light efficiency by improving the linearity of the light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

본 명세서는 색순도가 높은 광을 획득할 수 있고, 광의 직진성을 향상시킴으로써 광 효율을 높일 수 있는 투명 발광 시트 및 그 제조 방법에 관한 것으로서, 본 명세서의 실시예에 따른 투명 발광 시트는, 일정하게 정렬된 다수의 나노 기공을 갖는 투명 알루미나 시트와; 상기 다수의 나노 기공 내에 각각 위치되고, 여기 광을 파장 변환함으로써 파장 변환 광을 발생시키는 발광성 나노 입자를 포함할 수 있다.

Description

투명 발광 시트 및 그 제조 방법
본 명세서는 투명 발광 시트 및 그 제조 방법에 관한 것이다.
일반적으로, 발광 소자(light emitting device, LED)는, 백열 전구와 같이 폭넓은 발광 스펙트럼을 갖는 것과는 다르게 대부분 단색광에 가까운 광을 발광한다. 발광 소자마다 그 전자/정공 결합에 따른 에너지가 상이하므로, 각각의 특성에 따라 적색, 녹색, 청색, 황색을 나타낸다.
본 명세서는 색순도가 높은 광을 획득할 수 있고, 광의 직진성을 향상시킴으로써 광 효율을 높일 수 있는 투명 발광 시트 및 그 제조 방법을 제공하는데 그 목적이 있다.
본 명세서의 실시예에 따른 투명 발광 시트는, 일정하게 정렬된 다수의 나노 기공을 갖는 투명 알루미나 시트와; 상기 다수의 나노 기공 내에 각각 위치되고, 여기 광을 파장 변환함으로써 파장 변환 광을 발생시키는 발광성 나노 입자를 포함할 수 있다.
본 명세서와 관련된 일 예로서, 상기 발광성 나노 입자는 양자점일 수 있다.
본 명세서와 관련된 일 예로서, 상기 다수의 나노 기공은 균일한 크기, 균일한 모양, 균일한 배열을 가질 수 있다.
본 명세서와 관련된 일 예로서, 상기 나노 기공은 원형, 사각형, 육각형 모양 중 어느 하나의 모양을 가질 수 있다.
본 명세서와 관련된 일 예로서, 상기 다수의 나노 기공은 산화물을 포함한 전해질 산용액에서 알루니늄 박막을 양극 산화시킴으로써 형성될 수 있다.
본 명세서와 관련된 일 예로서, 상기 투명 알루미나 시트의 각 나노 기공 내에는 하나의 양자점이 형성될 수 있다.
본 명세서의 실시예에 따른 투명 발광 시트 제조 방법은, 전해질 산용액에서 알루니늄 박막을 양극 산화시킴으로써 다수의 나노 기공을 갖는 투명 알루미나 시트를 제조하는 단계와; 상기 다수의 기공 내에 미리 정해진 양의 발광성 전구체를 채우는 단계와; 상기 다수의 기공 내에 채워진 발광성 전구체에 열을 가함으로써 양자점을 생성하는 단계를 포함할 수 있다.
본 명세서의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 투명 알루미나 시트의 각 나노 기공 속에 동일한 크기의 양자점을 균일하게 형성함으로써 색순도가 높은 광을 얻을 수 있는 효과가 있다.
본 명세서의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 투명한 알루미나 시트를 사용함으로써 추가 공정없이 투명한 발광 시트(또는 필름)를 제조할 수 있으며, 양자점을 폴리머에 분산할 때 발생하는 양자점 뭉침 현상을 해결할 수 있는 효과도 있다.
본 명세서의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 양자점에 의해 발광된 광이 나노 기공의 내부를 통과함으로써 광의 직진성을 향상시킴으로써 광 효율을 높일 수도 있는 효과도 있다.
도 1은 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)를 나타낸 구성도이다.
도 2는 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)의 A-A' 절단면을 나타낸 도이다.
도 3은 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)를 제조하는 방법을 나타낸 흐름도이다.
도 4 내지 도 6은 본 발명의 일 실시예에 따라 양자점을 생성하는 과정을 나타낸 도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
이하에서는, LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diode),LED(Light Emitting Diode) 등과 같은 다양한 디스플레이 소자에 적용될 수 있는 투명 발광 시트(sheet) 및 그 제조 방법을 도 1 내지 도 6을 참조하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)를 나타낸 구성도이다.
도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 투명 발광 시트(100)는, 일정하게 정렬된 다수의 나노 기공(nano pore)(111)을 갖는 투명 알루미나 시트(alumina sheet)(110)와; 상기 다수의 나노 기공(111) 내에 각각 위치되고, 여기 광(예를 들면, Blue LED에 의해 발생된 광)을 파장 변환함으로써 파장 변환 광을 발생시키는 양자점(quantum dots)(또는 발광성 나노 입자)(120)을 포함한다. 상기 나노 기공(111)은 원형, 사각형, 육각형 등과 같이 다양한 구조로 형성될 수 있다.
상기 양자점은, 10nm 이하의 직경을 갖는 나노 크기의 발광체일 수 있으며, 이는 양자 제한(quantum confinement) 효과를 나타내는 물질일 수 있다. 상기 양자점은 통상의 형광체보다 강한 빛을 좁은 파장대에서 발생시킨다. 상기 양자점의 발광은 전도대에서 가전자대로 들뜬 상태의 전자가 전이하면서 발생하며, 이와 동일한 물질의 경우에도 입자 크기에 따라 파장이 달라지는 특성을 나타낸다. 상기 양자점의 크기가 작아질수록 짧은 파장의 광을 발생하기 때문에 양자점의 크기를 조절하여 원하는 파장 영역의 광을 얻을 수 있다. 상기 양자점으로서 CdSe/ZnS 코어 쉘형 양자점(CdSe/ZnS core/shell quantum dot)이 사용될 수도 있다.
상기 양자점은, 여기 파장(excitation wavelength)(또는 여기광)을 임의로 선택해도 발광하므로, 하나의 파장으로 여러 종류의 양자점을 여기시키면 여러 가지 색의 광을 한번에 관찰할 수도 있다.
상기 양자점은, MOCVD(metal organic chemical vapor deposition)나 MBE(molecular beamepitaxy)와 같은 기상 증착법으로 제조되거나, 유기 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식 방법으로 제조될 수도 있다.
반면, 상기 양자점을 폴리머에 분산시켜 유리 등과 같은 투명 기판상에 코딩하면, 양자점이 서로 뭉치는 현상으로 인해 광(빛)의 균일성이 저하될 수 있으나, 본 발명과 같이 일정하게 정렬된 다수의 나노 기공(nano pore) 내에서 양자점(quantum dots)(또는 발광성 나노 입자)을 성장시켜 투명 발광 시트(100)를 제조하고, 그 투명 발광 시트(100)를 종래의 불투명한 형광막 대신 사용함으로써 색 변환(color convert) 효율을 상승시킬 수 있다.
본 발명의 일 실시예에 따른 투명 발광 시트(100)는, 균일한 크기, 균일한 모양, 균일한 배열을 가진 각 나노 기공에 하나의 양자점을 성장시키므로 응집(aggregation) 및 재흡수에 의한 양자점 자체의 효율 저하도 개선할 수 있다.
본 발명의 일 실시예에 따른 투명 발광 시트(100)는, 균일한 크기의 각 나노 기공 내에서 하나의 양자점이 성장됨으로써 균일한 크기의 양자점을 갖게 된다.
본 발명의 일 실시예에 따른 투명 발광 시트(sheet)는, 투명한 알루미나 시트를 사용함으로써 추가 공정없이 투명한 발광 시트(또는 필름)를 제조할 수도 있다.
본 발명의 일 실시예에 따른 투명 발광 시트(sheet)는, 양자점에 의해 발생한 광이 상기 투명 알루미나 시트(110)의 나노 기공(111)의 내부를 통과함으로써 광의 직진성을 향상시켜 광 효율을 높일 수도 있다.
도 2는 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)의 A-A' 절단면을 나타낸 도이다.
도 2에 도시한 바와 같이, 상기 투명 알루미나 시트(110)에 형성된 균일한 크기, 균일한 모양, 균일한 배열을 가진 각 나노 기공(111) 내부에서 하나의 양자점(120)을 성장시킨 후, 상기 나노 기공(111)에 여기 광을 인가하면 상기 여기 광은 상기 투명한 나노 기공을 투과하여 상기 양자점(120)에 입사되고, 상기 양자점(120)은 상기 여기 광(예를 들면, Blue LED)을 파장 변환함으로써 파장 변환 광을 발생시킨다.
도 3은 본 발명의 일 실시예에 따른 투명 발광 시트(sheet)를 제조하는 방법을 나타낸 흐름도이다.
먼저, H2SO4, C2H2O4, H3PO4 등과 같은 산화물(oxide)을 포함한 전해질 산용액(acid solution)에 알루니늄 박막을 함침시킨다(S11).
상기 전해질 산용액에서 상기 알루니늄 박막을 양극 산화시킴으로써, 균일한 크기, 균일한 모양, 균일한 배열로 형성된 다수의 나노 기공을 갖는 투명 알루미나 시트(alumina sheet)(110)를 제조한다(S12). 상기 나노 기공의 크기 및 높이는 산화 시간, 전압, 전해질 용액 등으로 조절될 수 있다.
상기 전해질 산용액에서 상기 알루니늄 박막을 양극 산화시킴으로써, 균일한 크기, 균일한 모양, 균일한 배열 중에서 어느 하나로 형성된 다수의 나노 기공을 갖는 투명 알루미나 시트(alumina sheet)(110)를 제조할 수도 있다.
상기 다수의 기공 내에 미리 정해진 양의 발광성 전구체(121)를 채운다(S13). 상기 발광성 전구체의 양에 따라 양자점의 크기는 달라질 수 있다.
도 4 내지 도 6은 본 발명의 일 실시예에 따라 양자점을 생성하는 과정을 나타낸 도이다.
도 4에 도시한 바와 같이, 각각의 기공(111) 내부에 미리 정해진 양의 발광성 전구체(121)를 채운다. 상기 각 기공(111) 내부에 채워진 발광성 전구체(121)의 양에 따라 상기 양자점의 크기가 결정될 수 있다.
상기 다수의 기공 내에 채워진 발광성 전구체에 열을 가함으로써 상기 양자점을 생성한다(S14).
도 5 및 도 6에 도시한 바와 같이, 각각의 기공(111) 내부에 미리 정해진 양의 발광성 전구체(121)를 채운 후, 상기 발광성 전구체(121)에 열을 가하면 상기 발광성 전구체(121)가 서서히 응집하면서 하나의 양자점으로서 생성(형성)된다.
상기 균일한 크기를 갖는 나노 기공에 채워진 발광성 전구체에 열을 가하면 상기 각 나노 기공의 크기가 균일함으로 인해 상기 양자점의 크기도 균일하게 생성된다. 즉, 제한된 공간 및 균일성을 갖는 반응 공간(각 나노 기공) 내부에 상기 발광성 전구체의 양을 균일하게 채움으로써 동일한 크기의 양자점을 생성할 수 있다. 여기서, 하나의 기공 내에 채워진 발광성 전구체에 열을 가함으로써 하나의 나노 기공 내에 하나의 양자점이 생성된다.
이상에서 설명한 바와 같이, 본 발명의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 투명 알루미나 시트의 각 나노 기공 속에 동일한 크기의 양자점이 하나씩 균일하게 형성됨으로써 색순도가 높은 광을 얻을 수 있다.
본 발명의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 투명한 알루미나 시트를 사용함으로써 추가 공정(예를 들면, 반도체 공정)없이 투명한 발광 시트(또는 필름)를 제조할 수 있으며, 양자점을 폴리머에 분산할 때 발생하는 양자점 뭉침 현상을 해결할 수도 있다.
본 발명의 실시예에 따른 투명 발광 시트 및 그 제조 방법은, 양자점에 의해 발생한 광이 나노 기공의 내부를 통과하여 광의 직진성을 향상시킴으로써 광 효율을 높일 수도 있다.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (17)

  1. 일정하게 정렬된 다수의 나노 기공을 갖는 투명 알루미나 시트와;
    상기 다수의 나노 기공 내에 각각 위치되고, 여기 광을 파장 변환함으로써 파장 변환 광을 발생시키는 발광성 나노 입자를 포함하는 것을 특징으로 하는 투명 발광 시트.
  2. 제1항에 있어서, 상기 발광성 나노 입자는 양자점인 것을 특징으로 하는 투명 발광 시트.
  3. 제1항에 있어서, 상기 다수의 나노 기공은,
    균일한 크기, 균일한 모양, 균일한 배열을 갖는 것을 특징으로 하는 투명 발광 시트.
  4. 제1항에 있어서, 상기 다수의 나노 기공은,
    균일한 크기, 균일한 모양, 균일한 배열 중 어느 하나를 갖는 것을 특징으로 하는 투명 발광 시트.
  5. 제1항에 있어서, 상기 나노 기공은,
    원형, 사각형, 육각형 모양 중 어느 하나의 모양을 갖는 것을 특징으로 하는 투명 발광 시트.
  6. 제1항에 있어서, 상기 다수의 나노 기공은,
    산화물을 포함한 전해질 산용액에서 알루니늄 박막을 양극 산화시킴으로써 형성되는 것을 특징으로 하는 투명 발광 시트.
  7. 제2항에 있어서, 상기 투명 알루미나 시트의 각 나노 기공 내에는 하나의 양자점이 형성되는 것을 특징으로 하는 투명 발광 시트.
  8. 제2항에 있어서, 상기 양자점은,
    MOCVD(metal organic chemical vapor deposition)나 MBE(molecular beamepitaxy)에 의해 형성되는 것을 특징으로 하는 투명 발광 시트.
  9. 제2항에 있어서, 상기 양자점은,
    유기 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식 방법에 의해 형성되는 것을 특징으로 하는 투명 발광 시트.
  10. 전해질 산용액에서 알루니늄 박막을 양극 산화시킴으로써 다수의 나노 기공을 갖는 투명 알루미나 시트를 제조하는 단계와;
    상기 다수의 기공 내에 미리 정해진 양의 발광성 전구체를 채우는 단계와;
    상기 다수의 기공 내에 채워진 발광성 전구체에 열을 가함으로써 발광성 나노 입자를 생성하는 단계를 포함하는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  11. 제10항에 있어서, 상기 발광성 나노 입자는 양자점인 것을 특징으로 하는 투명 발광 시트 제조 방법.
  12. 제10항에 있어서, 상기 다수의 나노 기공은,
    균일한 크기, 균일한 모양, 균일한 배열을 갖는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  13. 제10항에 있어서, 상기 다수의 나노 기공은,
    균일한 크기, 균일한 모양, 균일한 배열 중 어느 하나를 갖는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  14. 제10항에 있어서, 상기 투명 알루미나 시트를 제조하는 단계는,
    산화물을 포함한 전해질 산용액에 알루니늄 박막을 함침키는 단계와;
    상기 전해질 산용액에서 상기 알루니늄 박막을 양극 산화시킴으로써 상기 다수의 나노 기공을 상기 알루니늄 박막에 형성하는 단계를 포함하는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  15. 제11항에 있어서, 상기 투명 알루미나 시트의 각 나노 기공 내에는 하나의 양자점이 형성되는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  16. 제11항에 있어서, 상기 양자점은,
    MOCVD(metal organic chemical vapor deposition)나 MBE(molecular beamepitaxy)에 의해 형성되는 것을 특징으로 하는 투명 발광 시트 제조 방법.
  17. 제11항에 있어서, 상기 양자점은,
    유기 용매에 전구체 물질을 넣어 결정을 성장시키는 화학적 습식 방법에 의해 형성되는 것을 특징으로 하는 투명 발광 시트 제조 방법.
PCT/KR2012/007105 2011-10-17 2012-09-05 투명 발광 시트 및 그 제조 방법 WO2013058476A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/344,295 US20140340912A1 (en) 2011-10-17 2012-09-05 Transparent light-emitting sheet and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110106130A KR20130041699A (ko) 2011-10-17 2011-10-17 투명 발광 시트 및 그 제조 방법
KR10-2011-0106130 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058476A1 true WO2013058476A1 (ko) 2013-04-25

Family

ID=48141091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007105 WO2013058476A1 (ko) 2011-10-17 2012-09-05 투명 발광 시트 및 그 제조 방법

Country Status (3)

Country Link
US (1) US20140340912A1 (ko)
KR (1) KR20130041699A (ko)
WO (1) WO2013058476A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574135B2 (en) * 2013-08-22 2017-02-21 Nanoco Technologies Ltd. Gas phase enhancement of emission color quality in solid state LEDs
US11359301B2 (en) * 2016-01-13 2022-06-14 David Roberts Winn Transparent and colorless hardcoating films for optical materials with a tunable index of refraction and scratch resistance, as formed from anodic aluminum films
KR101937825B1 (ko) * 2016-11-01 2019-04-09 주식회사 지엘비젼 파장 변환 구조체, 발광 다이오드 패키지 및 조명장치
US11142684B2 (en) * 2017-02-13 2021-10-12 Philip Taubman Kalisman Systems and methods for a hermetically sealed quantum dot light emitting diode
US11870015B2 (en) * 2019-03-11 2024-01-09 Saphlux, Inc. Light conversion devices incorporating quantum dots
US11757072B2 (en) 2019-03-11 2023-09-12 Saphlux, Inc. Semiconductor devices incorporating quantum dots
WO2022010873A1 (en) * 2020-07-06 2022-01-13 Saphlux, Inc. Computing devices with under-display sensors
CN111785763A (zh) * 2020-07-29 2020-10-16 北海惠科光电技术有限公司 一种显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139376A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd ナノ粒子分散材料、シート、積層体、及びその製造方法
KR20060035120A (ko) * 2004-10-21 2006-04-26 학교법인고려중앙학원 나노입자가 충진된 나노구조
KR20070107438A (ko) * 2006-05-03 2007-11-07 삼성전자주식회사 편광판 및 그의 제조방법
KR20090059541A (ko) * 2007-12-06 2009-06-11 한국산업기술평가원(관리부서:요업기술원) 양자점 재료 증착박막 형성방법 및 그 생성물
KR20100134177A (ko) * 2009-06-15 2010-12-23 경원대학교 산학협력단 양자점-나노튜브 바코드의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754396B1 (ko) * 2006-02-16 2007-08-31 삼성전자주식회사 양자점 발광소자 및 그 제조방법
GB0701069D0 (en) * 2007-01-19 2007-02-28 Univ Bath Nanostructure template and production of semiconductors using the template
KR101060014B1 (ko) * 2008-08-28 2011-08-26 한국표준과학연구원 양자점 태양광 소자 및 그 제조방법
GB0916699D0 (en) * 2009-09-23 2009-11-04 Nanoco Technologies Ltd Semiconductor nanoparticle-based materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139376A (ja) * 2003-11-10 2005-06-02 Hitachi Ltd ナノ粒子分散材料、シート、積層体、及びその製造方法
KR20060035120A (ko) * 2004-10-21 2006-04-26 학교법인고려중앙학원 나노입자가 충진된 나노구조
KR20070107438A (ko) * 2006-05-03 2007-11-07 삼성전자주식회사 편광판 및 그의 제조방법
KR20090059541A (ko) * 2007-12-06 2009-06-11 한국산업기술평가원(관리부서:요업기술원) 양자점 재료 증착박막 형성방법 및 그 생성물
KR20100134177A (ko) * 2009-06-15 2010-12-23 경원대학교 산학협력단 양자점-나노튜브 바코드의 제조방법

Also Published As

Publication number Publication date
KR20130041699A (ko) 2013-04-25
US20140340912A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
WO2013058476A1 (ko) 투명 발광 시트 및 그 제조 방법
JP6631973B2 (ja) 量子ドット複合材料ならびにその製造方法および用途
KR101813792B1 (ko) 발광 장치 및 화상 표시 장치
WO2016111483A1 (ko) 양자점 복합체 및 이를 포함하는 광전소자
KR101585430B1 (ko) 형광체용 나노하이브리드 복합체, 그를 이용한 광학 모듈 및 그의 제조방법
JP6575314B2 (ja) 波長変換部材の製造方法及び波長変換部材
TWI680178B (zh) 量子點材料及其製備方法
US7569984B2 (en) White-light fluorescent lamp having luminescence layer with silicon quantum dots
WO2014046488A2 (ko) 색변환 엘리먼트 및 그 제조방법
JP2014241431A (ja) 発光装置の製造方法
US5789856A (en) Fluorescent display device with blue filter
CN105098084B (zh) 一种基于量子点的电致发光器件及显示装置
CN106229418A (zh) 一种电致发光显示器件及显示装置
TW200847226A (en) Surface treatment method for phosphor and method for manufacturing flat display
US20210381676A1 (en) A quantum dot enhanced film and a preparation method thereof, a backlight source and a display device
CN104584178B (zh) 场致电子发射膜、场致电子发射元件、发光元件及其制造方法
CN107502335B (zh) 高荧光效率核壳结构无镉量子点及其制备方法和用途
WO2018174409A1 (ko) 양자점 발광소자 및 이를 포함하는 백라이트 유닛
KR101413660B1 (ko) 발광다이오드용 양자점-고분자 복합체 플레이트 및 그 제조 방법
WO2017039252A1 (ko) 발광 배리어 필름 및 이의 형성방법
US10663144B2 (en) Human body-friendly light source
KR101492015B1 (ko) 디스플레이 형광체용 나노하이브리드 복합체 및 이의 제조방법
KR20130123042A (ko) 발광다이오드용 양자점 및 이를 이용한 백색 발광 소자
JP2009032683A (ja) 発光装置
WO2016125934A1 (ko) 발광소자 및 발광소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14344295

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841489

Country of ref document: EP

Kind code of ref document: A1