WO2016111261A1 - 血流計及び測定装置 - Google Patents

血流計及び測定装置 Download PDF

Info

Publication number
WO2016111261A1
WO2016111261A1 PCT/JP2016/050029 JP2016050029W WO2016111261A1 WO 2016111261 A1 WO2016111261 A1 WO 2016111261A1 JP 2016050029 W JP2016050029 W JP 2016050029W WO 2016111261 A1 WO2016111261 A1 WO 2016111261A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
flow meter
measuring element
wire
holding body
Prior art date
Application number
PCT/JP2016/050029
Other languages
English (en)
French (fr)
Inventor
佐野 嘉彦
証英 原田
宮川 克也
夏美 島崎
Original Assignee
ニプロ株式会社
原田電子工業株式会社
佐野 嘉彦
証英 原田
宮川 克也
夏美 島崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社, 原田電子工業株式会社, 佐野 嘉彦, 証英 原田, 宮川 克也, 夏美 島崎 filed Critical ニプロ株式会社
Priority to CN201680005045.5A priority Critical patent/CN107427244B/zh
Priority to JP2016568370A priority patent/JP6880741B2/ja
Priority to ES16735000T priority patent/ES2934139T3/es
Priority to US15/539,901 priority patent/US11330990B2/en
Priority to EP16735000.8A priority patent/EP3243432B1/en
Publication of WO2016111261A1 publication Critical patent/WO2016111261A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0275Measuring blood flow using tracers, e.g. dye dilution
    • A61B5/028Measuring blood flow using tracers, e.g. dye dilution by thermo-dilution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics

Definitions

  • the present invention relates to a blood flow meter that is inserted into a blood vessel of a living body and acquires information related to blood flow, and a measurement device that uses the blood flow meter.
  • CFR coronary flow reserve
  • CFR is about 3.0 to 4.0 in healthy cases, but is less than 2.0 for significant stenosis with a diameter stenosis ratio (% DS) of 75% or more.
  • % DS diameter stenosis ratio
  • Patent Document 1 discloses a guide wire in which a pressure sensor having a temperature sensing member is provided at a tip portion.
  • the pressure sensor is provided in a stainless steel outer tube having an opening, and a temperature sensing member in the pressure sensor is exposed from the stainless steel outer tube through the opening.
  • the temperature sensing member outputs a signal corresponding to a temperature change accompanying a change in the mass flow rate of the blood flow contacting through the opening.
  • Patent Document 1 describes that the CFR can be calculated based only on the output signal of the temperature sensing member.
  • the temperature sensing member in the guide wire described in Patent Document 1 is in contact with the bloodstream through the opening of the stainless steel outer tube. Since the temperature sensing member is provided on the outer peripheral surface side of the stainless steel mantle tube, the temperature sensing member can only acquire information relating to the mass flow rate of the blood flow near the inner wall of the blood vessel. Further, since the temperature detection member is provided at a predetermined position in the circumferential direction of the stainless steel mantle tube, only the information relating to the mass flow rate of the blood flow at the predetermined position in the circumferential direction of the blood vessel can be acquired. As a result, the configuration of the guide wire described in Patent Document 1 may not be able to accurately measure the mass flow rate of blood flow in the blood vessel.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a blood flow meter and a measurement device that can acquire information on a mass flow rate of a blood flow with high accuracy in a blood vessel of a living body. It is to provide.
  • a blood flow meter has a flexible hollow shaft that can be inserted into a blood vessel, and is provided coaxially with the shaft on the distal side of the shaft.
  • a measuring element composed of a tubular element holder having an outer diameter equal to or smaller than the outer diameter and a heating resistor having a temperature-resistance characteristic, and the measuring element controls all temperature changes in the peripheral wall of the element holder.
  • a flow sensor housed inside the element holder in a state that can be detected over the circumference, and a thermally conductive insulating member interposed between the flow sensor and the element holder inside the element holder. Have.
  • the measuring element of the flow sensor detects a temperature change in the entire circumference in the circumferential direction of the element holder due to a change in the mass flow rate of the blood flow at any position in the blood vessel via the insulating member. be able to.
  • the heating resistor is a wire
  • the measuring element has a coil shape in which the wire is spirally wound and the adjacent wires are separated from each other and insulated.
  • the element holder is accommodated in a state along the axial direction of the element holder.
  • the coil-shaped measuring element can acquire the temperature change in the entire circumference of the element holder over the entire length along the axial direction.
  • the wire is a metal wire that is not insulated.
  • the coil-shaped measuring element is suppressed from increasing in outer diameter, it can be accommodated in an element holding body having a predetermined outer diameter.
  • the metal wire is a nickel wire or a platinum wire.
  • the outer diameter of the shaft is 0.36 mm or less.
  • the insulating member is a resin having a thermal diffusivity of 0.06 to 0.21 mm 2 / s.
  • the measuring element can acquire the temperature change in the element holder with high accuracy.
  • the flow sensor has an insulating core material, and the measuring element is provided on the outer peripheral surface of the core material.
  • the measuring element can be formed into a predetermined coil shape.
  • it further has a pair of conducting wires for supplying power to the measuring element, and one of the pair of conducting wires is inserted through the core, and the conducting wire and one end of the measuring element are connected to each other. The other conducting wire and the other end of the measuring element are electrically connected.
  • the coil-shaped measuring element is suppressed from increasing in outer diameter, and can be accommodated in an element holding body having a predetermined outer diameter.
  • it further has a coaxial cable for supplying electric power to the measurement element, and an inner conductor of the coaxial cable is electrically connected to one end of the measurement element through the core. The other end of the measuring element is electrically connected to the outer conductor of the coaxial cable.
  • the coil-shaped measuring element can be accommodated in the element holding body having a predetermined outer diameter since the increase in outer diameter is suppressed.
  • it further has a pair of conducting wire connected to each end of the measuring element, and the measuring element is provided around both or one of the conducting wires.
  • the measuring element is an outer covering of the outer covering of the coaxial cable or an inner covering exposed from the coaxial cable. It is provided above.
  • a flexible cylindrical member having flexibility is provided at the distal end of the shaft in a coaxial state, and the element holder is coaxial with the distal end of the flexible member. It is provided in the state.
  • a flexible cylindrical guide body is provided coaxially at the distal end of the element holding body.
  • the guide body has a coil spring made of a radiopaque metal wire.
  • the measurement device of the present invention supplies power to the blood flow meter and the measurement device of the blood flow meter, and calculates the mass of the blood flow from the power information based on the resistance change corresponding to the temperature change of the measurement device. And a measurement unit that acquires information about the flow rate.
  • information on the mass flow rate of the entire blood flow can be obtained with high accuracy at a desired position in the blood vessel.
  • FIG. 1 is a schematic diagram illustrating a configuration of a measurement apparatus 20 including a blood flow meter 10 according to the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the distal end portion of the blood flow meter 10.
  • FIG. 3 is a cross-sectional view of the shaft 12 provided in the blood flow meter 10.
  • FIG. 4 is a perspective view of the flow sensor 21 provided in the blood flow meter 10.
  • FIG. 5 is a graph showing the result of simulation of the time responsiveness of the measuring element using a type A flow sensor.
  • FIG. 6 is a graph showing the result of a simulation of the time responsiveness of the measuring element using a type B flow sensor.
  • FIG. 7 is a graph showing the result of a simulation of the time response of the measuring element using a type C flow sensor.
  • Each of (A), (B), and (C) of FIG. 8 shows respective output waveforms when the flow sensors of type A, type B, and type C are arranged in the bloodstream of the living coronary artery. It is a graph.
  • FIG. 9 shows the result of simulating the temperature change that occurs in the measurement element of each flow rate sensor due to the change in the blood flow velocity when each flow rate sensor fixed in the element holding body by five insulating members having different thermophysical values is used. It is a graph which shows.
  • FIG. 10 is a longitudinal sectional view of the distal end portion of the blood flow meter 40 according to the second embodiment.
  • FIG. 11 is a perspective view of the flow sensor 21 provided in the blood flow meter 40.
  • FIG. 12 is a longitudinal sectional view of the distal end portion of the blood flow meter 50 according to the third embodiment.
  • FIG. 13 is a cross-sectional view of the shaft 12 provided in the blood flow meter 50.
  • FIG. 14 is a perspective view of the flow sensor 21 provided in the blood flow meter 50.
  • FIG. 15 is a longitudinal sectional view of the distal end portion of the blood flow meter 60 according to the fourth embodiment.
  • FIG. 16 is a perspective view of the flow sensor 21 provided in the blood flow meter 60.
  • FIG. 17 is a perspective view of the flow sensor 21 provided in the blood flow meter 70 according to the fifth embodiment.
  • the measurement device 20 is based on a guide wire type blood flow meter 10 that can be inserted into a blood vessel (for example, a coronary artery) of a living body, and information acquired by the blood flow meter 10. And an arithmetic control unit 30 for calculating a value related to the mass flow rate of blood.
  • a blood vessel for example, a coronary artery
  • an arithmetic control unit 30 for calculating a value related to the mass flow rate of blood.
  • the blood flow meter 10 has a hollow shaft 12 having an outer diameter smaller than that of a living blood vessel.
  • a cylindrical flexible member 13 having flexibility to bend along the blood vessel is provided at the end of the shaft 12 on the tip side (corresponding to the distal side) in a coaxial state with the shaft 12.
  • a coaxial state is a state in which the axial centers of a plurality of members having a columnar shape or a cylindrical shape are located on the same line.
  • a tubular element holder 14 in which a hot-wire flow sensor 21 that acquires information on the mass flow rate of blood flow in the blood vessel is accommodated is coaxial with the flexible member 13.
  • a cylindrical guide body 15 that guides the blood flow meter 10 in the blood vessel is provided coaxially with the element holder 14.
  • the flexible member 13, the element holding body 14, and the guide body 15 constituting the blood flow meter 10 are configured by winding a wire rod made of stainless steel in a spiral shape, or by a stainless steel tube. .
  • the blood flow meter 10 having the flexible member 13, the element holding body 14, and the guide body 15 has the flexibility to bend along the curve or branching of the blood vessel as a whole.
  • a pair of conductors 26 used for energizing the core wire 11 and the flow rate sensor 21 (see FIG. 2) provided in the element holder 14. , 27 are inserted along the longitudinal direction of the shaft 12.
  • the core wire 11 is made of, for example, a stainless steel wire having a diameter smaller than the inner diameter of the shaft 12, and extends from the proximal side of the shaft 12 to the vicinity of the element holding body 14. When the core wire 11 is selected to have higher bending rigidity than the shaft 12, the core wire 11 is prevented from being greatly bent.
  • each of the conductive wires 26 and 27 is obtained by insulatingly covering copper wires 26A and 27A with insulating coating materials 26B and 27B such as polyurethane resin.
  • first conductor 26 extends to the distal side from the flow sensor 21 (left side from the flow sensor 21 in FIG. 2).
  • second conducting wire 27 extends from the flow sensor 21 to the proximal side (right side from the flow sensor 21 in FIG. 2).
  • the proximal end of the shaft 12 is connected to the arithmetic control unit 30 via a connector 29.
  • the first conducting wire 26 and the second conducting wire 27 inserted through the shaft 12 are electrically connected to the calculation control unit 30.
  • an opening 14 ⁇ / b> A is provided on the peripheral wall of the element holder 14.
  • the length of the opening 14A along the axial direction of the shaft 12 is shorter than the length along the axial direction of the flow sensor 21 (for example, about 3 mm), and the circumferential length is the outer diameter of the element holding body 14. It is about 1/2. Details of the flow sensor 21 housed inside the element holder 14 will be described later.
  • the guide body 15 includes a coil spring 16 provided at the distal end of the element holder 14, a sealing member 18 that seals the inner space on the distal side of the element holder 14, A tip chip 19 provided at the distal end of the coil spring 16 and a tip core member 17 provided in the internal space of the coil spring 16 are provided.
  • the coil spring 16 is made of, for example, a radiopaque platinum wire wound in a spiral shape, and has flexibility such that it can be bent along a curve of a blood vessel, a branch of a blood vessel, or the like. .
  • the coil spring 16 is integrally coupled to the element holding body 14.
  • the coil spring 16 made of a radiopaque platinum wire or the like has a function as a marker at the distal end portion of the blood flow meter 10.
  • Each of the sealing member 18, the tip chip 19, and the tip core member 17 is made of stainless steel, for example.
  • the distal end core member 17 extends along the axis of the coil spring 16, is integrally coupled to the sealing member 18 on the proximal side, and is integrally coupled to the distal end tip 19 on the distal side. .
  • the distal end core member 17 is selected to have a higher bending rigidity than the coil spring 16, thereby suppressing the coil spring 16 from being greatly bent.
  • the flow sensor 21 has a cylindrical insulating core material 23 and a measuring element 22 formed in a coil shape along the outer peripheral surface of the core material 23.
  • the core material 23 is made of an insulating material such as ceramic.
  • the outer diameter and the axial length of the core member 23 are set so as to be accommodated in the internal space of the element holding body 14.
  • a through hole 24 is provided in the center of the core member 23.
  • the measuring element 22 is a conductive heating resistor having temperature-resistance characteristics.
  • the temperature-resistance characteristic is a property in which the electric resistance value changes with a temperature change. Specifically, when the temperature rises, the electric resistance value increases proportionally (positive characteristic), or when the temperature rises, the electric resistance value decreases proportionally (negative characteristic). . Therefore, the temperature change of the resistance heating element can be detected based on the change of the electrical resistance in the heating resistor.
  • the measuring element 22 for example, an uninsulated nickel wire (positive characteristic) is used.
  • the measuring element 22 has a coil shape by being wound in a spiral shape along the outer peripheral surface of the core member 23.
  • the nickel wires forming the coil shape are separated so that adjacent nickel wires do not contact each other. Both ends of the coil-shaped nickel wire are each extended outward in the axial direction of the core member 23.
  • the nickel wire wound around the outer peripheral surface of the core member 23 is bonded to the outer peripheral surface of the core member 23 with, for example, a cyanoacrylate instantaneous adhesive.
  • the distal end of the second conducting wire 27 is located on the proximal side of the core member 23.
  • the copper wire 27 ⁇ / b> A is exposed from the insulating coating material 27 ⁇ / b> B and is electrically connected to one end of the measuring element (nickel wire) 22.
  • the other first conductive wire 26 has a copper wire 26 ⁇ / b> A exposed from the insulating coating material 26 ⁇ / b> B on the proximal side of the core material 23, and the exposed copper wire 26 ⁇ / b> A is inserted through the through hole 24 of the core material 23. ing.
  • the distal end of the copper wire 26 ⁇ / b> A is located distal to the core member 23 and is electrically connected to the other end of the measuring element (nickel wire) 22.
  • the flow rate sensor 21 constituted by the measuring element 22 and the core material 23 is accommodated between the flow rate sensor 21 and the element holding body 14 while being accommodated in the internal space of the element holding body 14. It is fixed by an interposed insulating member 25.
  • the insulating member 25 has thermal conductivity and insulating properties, and for example, an epoxy resin that is an insulating resin is used.
  • the insulating member 25 covers the entire core member 23, and on the outer peripheral surface of the core member 23, an insulating state between portions adjacent to each other in the axial direction of the nickel wire is secured.
  • the epoxy resin is injected into the internal space of the element holding body 14 from the opening 14 ⁇ / b> A provided in the element holding body 14 in a molten state, so that the epoxy resin is interposed between the measuring element 22 and the core material 23 and the element holding body 14. Filled. Thereafter, the epoxy resin is cured in the element holding body 14, whereby the measuring element 22 and the core material 23 are fixed in the internal space of the element holding member 14.
  • the calculation control unit 30 connected to the blood flow meter 10 includes a power supply unit 31 and a calculation unit 32.
  • the power supply unit 31 supplies power to the measuring element 22 of the flow sensor 21 through the first conducting wire 26 and the second conducting wire 27.
  • the computing unit 32 computes a value related to the mass flow rate of the blood flow, based on the current value that flows when the measuring element 22 is energized.
  • the measuring device 20 is used, for example, to measure a change in the mass flow rate of the blood flow at a predetermined position in the coronary artery.
  • the blood flow meter 10 is inserted into the blood vessel with the distal tip 19 side as the front side, and is sent to a desired position of the coronary artery.
  • the position of the front end side of the blood flow meter 10 in the coronary artery can be grasped based on the position of the guide body 15 in the X-ray fluoroscopic image of the blood vessel.
  • a constant direct current is supplied from the power supply unit 31 of the arithmetic control unit 30 to the measuring element 22 of the flow sensor 21 through the first conductor 26 and the second conductor 27. Is done.
  • the measurement element 22 generates Joule heat when supplied with current, and this Joule heat is transmitted to the element holding body 14 through the insulating member 25. Since blood flows around the outer peripheral surface of the element holding body 14, the heated element holding body 14 is cooled by heat being taken away by the blood. As the element holder 14 is cooled, the temperature of the measuring element 22 decreases.
  • the mass flow rate of the blood flow changes with the pulsation caused by the heartbeat
  • the amount of heat taken from the element holding body 14 changes, and as a result, the temperature change in the measurement element 22 also occurs.
  • the measuring element 22 is composed of a heating resistor having temperature-resistance characteristics, the electrical resistance changes when a temperature change occurs. Since a constant direct current is passed through the measuring element 22, the voltage applied to the measuring element 22 varies when the electrical resistance of the measuring element 22 changes.
  • the calculation unit 32 in the calculation control unit 30 calculates a value related to the mass flow rate of the blood flow based on such a change in voltage in the measurement element 22.
  • the electrical resistance value of the measuring element 22 formed of a nickel wire decreases proportionally.
  • the voltage applied to the measuring element 22 decreases.
  • the calculation unit 32 calculates, for example, the blood flow velocity based on the detected voltage drop.
  • the measuring element 22 can measure the change in the mass flow rate of the blood flow that flows along the axial direction on the entire outer peripheral surface of the element holding body 14.
  • the nickel wire used as the measuring element 22 of the flow sensor 21 is a metal material having a large electrical resistivity ⁇ and temperature coefficient ⁇ , and the product ( ⁇ ⁇ ⁇ ) of the electrical resistivity ⁇ and the temperature coefficient ⁇ . Is as large as 0.061 ( ⁇ ⁇ cm / ° C.).
  • the measuring element 22 using such a nickel wire has a large change in electrical resistance value with respect to a temperature change per 1 ° C. Since such a nickel wire is wound in a coil shape, the measuring element 22 faces the inner peripheral surface of the element holding body 14 without interruption in the circumferential direction. Thereby, the measurement element 22 can detect the temperature change of the perimeter of the surrounding wall of the element holding body 14 with the whole nickel wire.
  • the measuring element 22 can measure the change in mass flow rate of the entire blood flow in the blood vessel with high accuracy.
  • the blood flow meter 10 includes a flexible member 13 having an outer diameter similar to the outer diameter of the shaft 12, an element holding body 14, and a distal end portion of the shaft 12 whose outer diameter is 0.35 mm. It is preferable that the guide body 15 is provided and the whole has an outer diameter smaller than 0.36 mm.
  • the outer diameter of 0.36 mm in this case is a standard value regarding the outer diameter of the guide wire that can be used for the coronary artery.
  • the flow rate sensor 21 has a time response characteristic (time constant) that can measure a flow rate change due to pulsation. From this, the time response characteristic (time constant) of the flow sensor 21 in the blood flow meter 10 is generated by circulation of blood flow at a living body temperature using a flow sensor (type C) corresponding to the flow sensor 21. The simulation was performed by measuring the flow velocity change of the water flow simulating the pulsation.
  • the type C flow sensor has a measuring element in which a nickel wire having a wire diameter of 0.0095 mm is spirally wound around an insulating core member 23 to form a coil shape. It has an outer diameter that can be accommodated in a 35 mm element holding body.
  • two flow sensors each having an outer diameter larger than that of the type C flow sensor are prepared using nickel wires having a wire diameter of 0.014 mm, and the type C flow sensor is prepared.
  • One flow sensor has an outer diameter that can be accommodated in an element holder with an outer diameter of 1.1 mm (type A), and the other flow sensor can be accommodated in an element holder with an outer diameter of 0.6 mm.
  • Outer diameter (referred to as type B).
  • Table 1 shows the conditions of the flow sensors of each of type A, type B, and type C (the outer diameter of the element holder 14 and the diameter of the nickel wire).
  • a pulsation simulating the circulation of a blood flow at a living body temperature was generated by providing a circulation channel in a constant temperature water bath at 37 ° C. and supplying a water flow to the circulation channel using a roller pump.
  • a pipe having an inner diameter of 2.0 mm was provided as a measurement channel in the middle of such a circulation channel, and the flow rate of the water flow in the measurement channel was measured by the above three types of flow rate sensors.
  • a constant current of 20 mA and 30 mA is supplied to the measuring element of each flow sensor to cause self-heating, and for each current, a voltage change generated in the measuring element is amplified by a differential amplifier, and a digital pen recorder is used. Recorded. Note that the voltage change of the measuring element (the output waveform of the flow rate sensor) was recorded for two types, a case where a 400 Hz low-pass filter was interposed and a case where a low-pass filter was not interposed.
  • a Coriolis mass flow meter manufactured by Keyence Corporation, trade name “FD-SS2A”, response time 50 ms
  • the mass flow rate in the measurement channel was measured.
  • the waveform obtained by dividing the mass flow rate (ml / s) obtained by the Coriolis mass flow meter by the cross-sectional area of the measurement channel (pipe) is used as the flow velocity value (mm / s) in the measurement channel.
  • the corresponding reference waveform was used.
  • FIG. 5, FIG. 6, and FIG. 5, 6, and 7 are graphs in which normalized output waveforms (thick lines) and reference waveforms (thin lines) corresponding to voltage changes of the flow sensors of type A, type B, and type C are superimposed. It is.
  • the output waveform of the type A flow sensor has low similarity to the reference waveform regardless of the presence or absence of the low-pass filter, and the pulsation flow velocity in the water flow cannot be reproduced.
  • the output waveform of the type B flow sensor has a reference when no low-pass filter is interposed (data is not obtained when a low-pass filter is not interposed). The resemblance with the waveform was high, and the pulsation flow velocity in the water flow was reproduced.
  • the output waveform of the type C flow sensor has a high similarity to the reference waveform regardless of the presence or absence of the low-pass filter, and the pulsation flow velocity in the water flow is reproduced with high accuracy. .
  • each flow sensor is positioned in the coronary artery of a domestic pig (female, 30000 g) using three blood flow meters each provided with a type A, type B, and type C flow sensor, The output waveform of each flow sensor was recorded.
  • the output waveforms of type A, type B, and type C flow sensors are shown in FIGS. 8A, 8B, and 8C, respectively.
  • the output waveform of any flow sensor the bimodal flow velocity corresponding to the diastole and the systole of the heart was measured. Further, in any output waveform, respiratory fluctuations in blood flow (0.5 to 3 Hz) appeared.
  • the output waveform of the type C flow sensor shown in FIG. 8C the flow velocity change corresponding to the actual diastole and systole of the heart was faithfully reproduced. This is considered to be because the time constant of the heating resistor in the measuring element becomes smaller and the measurable frequency band in pulsation becomes larger as the wire diameter of the nickel wire becomes smaller.
  • the flow sensor 21 corresponding to the type C flow sensor has a time constant capable of measuring the flow velocity change of the blood flow in the living coronary artery with high accuracy.
  • the flow sensor 21 accommodated in the element holder 14 is covered with the insulating member 25, and therefore, the element based on the change in mass flow corresponding to the pulsation of blood flow.
  • a change in the amount of heat of the holding body 14 is transmitted to the measuring element 22 through the insulating member 25.
  • the temperature change timing of the measurement element 22 is greatly shifted with respect to the change in mass flow rate due to the pulsation of blood flow. There is a possibility that changes in mass flow rate cannot be measured with high accuracy.
  • the output timing of the electrical signal from the measuring element 22 is also shifted.
  • the actual time constant of the measuring element 22 has not changed, it can be considered that the apparent time response characteristic (time constant) of the measuring element 22 has changed.
  • the apparent time constant of each measuring element 22 is determined for each insulating resin. It calculated based on the thermophysical property value of.
  • insulating resins other than epoxy are silicone, polyamide, polyimide, and high-density polyethylene.
  • the thermophysical values of the insulating resin are density, specific heat, thermal conductivity, and thermal diffusivity. Table 2 shows the thermophysical value of each of the above insulating resins and the apparent time constant of the calculated measurement element 22.
  • thermophysical value of the insulating resin used for the insulating member 25 changes, the apparent time constant in the measuring element 22 changes. From this, it is possible to detect a change in mass flow rate based on blood flow pulsation with high accuracy by selecting and using an insulating resin having an appropriate thermophysical value corresponding to the physical property of the blood flow as the insulating member 25. .
  • the thermal property value of the insulating resin can be changed by mixing a conductive substance or the like into the insulating resin.
  • the thermal diffusivity of the insulating resin increases. Therefore, when an insulating resin is used as the insulating member 25, the apparent time constant of the measuring element 22 can be changed by mixing a conductive substance such as metal powder into the insulating resin.
  • the insulating member 25 may be an insulating resin having a low thermal diffusivity or a low thermal diffusivity. An adjusted insulating resin can be used.
  • each flow rate sensor 21 fixed in the element holding body 14 by the insulating member 25 made of the above-described five types of insulating resins is disposed in the blood flow with flow rates of 5 cm / s and 20 cm / s, respectively.
  • the theoretical value of the temperature change generated in the measuring element 22 due to the change in the flow velocity was obtained.
  • the flow rate sensor 21 in the case where the insulating member 25 is a virtual resin having a higher thermal conductivity than the above five types of resins (referred to as “high thermal conductive resin”) is similar to that of the measurement element 22 by the same simulation.
  • the theoretical value of temperature change was obtained.
  • the results are also shown in FIG.
  • the measurement element 22 of the present embodiment can measure the flow rate change in the blood flow at a flow rate of about 5 cm / s.
  • each measuring element 22 when the flow rate is 20 cm / s, when five types of insulating resins other than the virtual high thermal conductive resin are used as the insulating member 25, the temperature change of each measuring element 22 is 0.5 ° C to 1. It became about 5 ° C. If there is such a temperature change, each measuring element 22 can also measure a flow rate change in a blood flow having a flow rate of about 20 cm / s. However, in the measuring element 22 using a virtual high thermal conductive resin, almost no temperature change is observed, and there is a possibility that the flow rate change in the blood flow of about 20 cm / s cannot be measured.
  • the thermal diffusivity of the insulating resin used as the insulating member 25 is preferably in the range of the thermal diffusivity of all the insulating resins shown in Table 2, that is, the range of 0.06 to 0.23 mm 2 / s. .
  • the insulating member 25 a material having an optimum thermophysical property value for the properties of blood vessels to be measured and the physical properties of blood flow may be selected. For this reason, not only the insulating resin but also an inorganic insulating material powder such as magnesium, alumina, or silica may be used as the insulating member 25. In the case of using the inorganic insulating material powder, the element holding body 14 in which the flow rate sensor 21 is accommodated is filled with the inorganic insulating material powder from the opening 14A and the opening 14A is sealed with a resin or the like. .
  • the measuring element 22 has a coil shape in which a wire such as a nickel wire or a platinum wire is spirally wound and the adjacent wires are separated from each other and insulated.
  • the element holding body 14 is housed in a state along the axial direction. Thereby, the coil-shaped measuring element 22 can acquire a temperature change in the entire circumference of the element holding body 14 over the entire length along the axial direction.
  • the wire constituting the resistance heating element is a metal wire that is not insulated, the increase in the outer diameter of the coil-shaped measuring element 22 is suppressed. Thereby, the measuring element 22 can be accommodated in the element holding body 14 having a predetermined outer diameter.
  • the measuring element 22 is made of a nickel wire or a platinum wire, a change in mass flow rate of the entire blood flow can be obtained with high accuracy.
  • the blood flow meter 10 when the outer diameter of the shaft 12 is 0.36 mm or less, the blood flow meter 10 is configured to have the same size as a guide wire used for a catheter. Can be used as a catheter guide wire. Thereby, the blood flow meter 10 can be smoothly moved in the blood vessel.
  • the temperature change of the element holder 14 based on the change in the blood flow velocity changes the temperature change in the measurement element 22. Can be measured as Thereby, the flow rate change of the blood flow can be accurately acquired by the measuring element 22.
  • the flow sensor 21 has an insulating core member 23 and the measuring element 22 is provided on the outer peripheral surface of the core member 23, the measuring element 22 is formed in a coil shape having a predetermined outer diameter. be able to.
  • the first conductor 26 that supplies power to the measurement element 22 is inserted through the inside of the core member 23 and is electrically connected to one end of the measurement element 22, and the second conductor 27 and the other end of the measurement element 22 are connected to each other. Electrically connected. Accordingly, the coil-shaped measuring element 22 is suppressed from increasing in outer diameter, and the measuring element 22 can be accommodated in the element holding body 14 having a predetermined outer diameter.
  • a flexible cylindrical member 13 having flexibility is provided at the distal end of the shaft 12 in a coaxial state, and the element holding body 14 is provided at the distal end of the flexible member 13. It is provided coaxially at the end. Thereby, the blood flow meter 10 can be smoothly moved along the blood vessel.
  • the blood flow meter 10 can be easily moved to any position in the blood vessel. Can be made.
  • the guide body 15 has the coil spring 16 made of a radiopaque metal (platinum) wire, so that the position of the flow sensor 21 in the blood vessel can be specified.
  • FIG. 10 is a longitudinal sectional view of the distal end portion of the blood flow meter 40 of the second embodiment.
  • the pair of first conductive wires 26 and second conductive wires 27 that pass through the inside of the shaft 12 pass through the inside of the flexible member 13 and enter the inside of the element holding body 14.
  • Each distal end is located within the distal end of the element carrier 14.
  • FIG. 11 is a perspective view of the flow sensor 21 housed inside the element holder 14.
  • the flow sensor 21 is not provided with the core member 23 provided in the flow sensor 21 of the first embodiment, and the measurement element 22 includes a pair of first conductors 26 inserted through the element holding body 14 and the first conductors 26.
  • a nickel wire is spirally wound around the two conducting wires 27 to form a coil shape.
  • the measuring element 22 having a coil shape is separated so that adjacent nickel wires do not contact each other, as in the first embodiment.
  • the nickel wire wound around the first conducting wire 26 and the second conducting wire 27 is adhered to the respective insulation coating materials 26B and 27B of the first conducting wire 26 and the second conducting wire 27 by, for example, an instantaneous adhesive.
  • the distal ends of the first conductor 26 and the second conductor 27 are located on the distal side of the coil-shaped measuring element 22, and one of the first conductors 26 has a copper wire 26A at the distal end. It is exposed from the insulating coating material 26 ⁇ / b> B and is electrically connected to one end of the measuring element 22.
  • An opening 27C is formed in the insulating coating material 27B of the other second conductive wire 27 on the proximal side of the coil-shaped measuring element 22, and a part of the copper wire 27A is exposed from the opening 27C. .
  • the copper wire 27 ⁇ / b> A exposed from the opening 27 ⁇ / b> C is electrically connected to the other end of the measuring element 22.
  • the pair of first conductors 26 and second conductors 27 inserted through the inside of the element holder 14 are fixed together with the flow sensor 21 by an insulating member 25 provided in the element holder 14.
  • the insulating member 25 is formed, for example, by filling a molten epoxy resin into the element holder 14 and curing it.
  • the change in the mass flow rate of the blood flow at an arbitrary position of the coronary artery can be detected with high accuracy, similarly to the blood flow meter 10 according to the first embodiment. can do.
  • the measuring element 22 of the flow sensor 21 is wound around the pair of the first conductive wire 26 and the second conductive wire 27 and formed into a coil shape. There is no need to use the core material 23 for winding the measuring element 22 into a coil shape as in the first embodiment. Thereby, the number of parts which comprise the flow sensor 21 decreases, and manufacturing cost can be reduced. Moreover, since it is suppressed that the outer diameter of the measurement element 22 becomes large, the measurement element 22 can be accommodated in the element holding body of a predetermined outer diameter.
  • both the first conducting wire 26 and the second conducting wire 27 are inserted into the element holding body 14, and a nickel wire is wound around the first conducting wire 26 and the second conducting wire 27.
  • the measuring element 22 is formed in a coil shape.
  • the present invention is not limited to this configuration, and only one of the first conductive wire 26 and the second conductive wire 27 is inserted into the element holding body 14, and the measuring element 22 is coiled by winding a nickel wire around the conductive wire. You may form in.
  • FIG. 12 is a longitudinal sectional view of the distal end portion of the blood flow meter 50 according to the third embodiment
  • FIG. 13 is a transverse sectional view of the shaft 12 in the blood flow meter 50.
  • a coaxial cable 41 is inserted through the shaft 12 along the core wire 11, and the coaxial cable 41 allows the measurement element 22 of the flow sensor 21 provided inside the element holding body 14 to pass through. The current is supplied.
  • the coaxial cable 41 includes an inner conductor 41A provided at the axial center, an inner covering material 41B for insulatingly covering the outer peripheral surface of the inner conductor 41A, and an outer peripheral surface of the inner covering material 41B.
  • the outer conductor 41C is laminated with a constant thickness, and the outer covering material 41D covers the outer peripheral surface of the outer conductor 41C.
  • Each of the inner conductor 41A, the inner covering material 41B, the outer conductor 41C, and the outer covering material 41D is in a coaxial state.
  • the inner conductor 41A is made of an alloy mainly composed of copper.
  • the inner covering material 41B is made of a fluororesin.
  • the outer conductor 41C is made of copper foil.
  • the outer covering material 41D is made of a polyurethane resin.
  • FIG. 14 is a perspective view of the flow sensor 21 provided inside the element holder 14.
  • the flow sensor 21 is a measuring element having a coil shape on the outer peripheral surface of a ceramic core member 23 formed in a columnar shape, like the flow sensor 21 of the first embodiment. 22 is provided.
  • the measuring element 22 is composed of a nickel wire, and is separated from adjacent nickel wires so as not to contact each other, and is adhered to the outer peripheral surface of the core member 23 by, for example, an instantaneous adhesive.
  • the flow sensor 21 is fixed inside the element holder 14 by an insulating member 25 provided inside the element holder 14.
  • the coaxial cable 41 inserted through the shaft 12 passes through the flexible member 13 and enters the inside of the element holding body 14.
  • the coaxial cable 41 has an outer conductor 41 ⁇ / b> C exposed from the outer covering material 41 ⁇ / b> D in the proximal end of the element holding body 14, and the exposed outer conductor 41 ⁇ / b> C. Therefore, the inner conductor 41A is exposed.
  • the exposed inner conductor 41 ⁇ / b> A is inserted through the through hole 24 of the core member 23, and its distal end protrudes from the distal end of the core member 23.
  • the distal end of the inner conductor 41 ⁇ / b> A is electrically connected to one end of the measuring element 22.
  • the distal end of the outer conductor 41 ⁇ / b> C located on the proximal side of the core member 23 is electrically connected to the other end of the measuring element 22.
  • a guide body 55 is provided at the distal end of the element holding body 14.
  • This guide body 55 is provided with one sealing member 51 in place of the sealing member 18 and the tip core material 17 of the guide body 15 in the first embodiment.
  • Other configurations of the guide body 55 are the same as those of the guide body 15 of the first embodiment, and the coil spring 16 supported on the distal end of the element holding body 14 and the tip supported on the distal end of the coil spring 16. Chip 19.
  • the sealing member 51 has a columnar sealing main body 52 fitted in the distal end of the element holding body 14.
  • the distal end of the sealing body 52 has a tapered shape with an outer diameter decreasing toward the distal side.
  • a cylindrical shaft portion 53 is a sealing body. It extends along the axial center of 52.
  • the shaft portion 53 and the sealing main body portion 52 are integrally formed of stainless steel, and the sealing main body portion 52 is integrally connected to the element holding body 14.
  • the distal end portion of the shaft portion 53 is inserted into the axial center portion of the distal tip 19 and is integrally coupled to the distal tip 19.
  • the shaft portion 53 is selected from a material having higher bending rigidity than the coil spring 16, thereby suppressing the coil spring 16 from being greatly bent.
  • a change in mass flow rate of the entire blood flow at an arbitrary position of the coronary artery can be detected with high accuracy. can do.
  • FIG. 15 is a longitudinal sectional view of the distal end portion of the blood flow meter 60 according to the fourth embodiment.
  • the blood flow meter 60 also has the coaxial cable 41 inserted through the shaft 12 along the core wire 11.
  • the coaxial cable 41 has the same configuration as the coaxial cable 41 of the third embodiment.
  • the blood flow meter 60 according to the present embodiment has the same configuration as that of the blood flow meter 50 according to the third embodiment except that the configuration of the distal end of the coaxial cable 41 and the configuration of the flow sensor 21 are different. It has become.
  • the coaxial cable 41 inserted through the shaft 12 passes through the flexible member 13 and enters the element holding body 14.
  • the outer conductor 41 ⁇ / b> C is exposed from the outer covering material 41 ⁇ / b> D in the proximal end portion of the element holding body 14.
  • the outer conductor 41C is exposed from the outer covering material 41D with a relatively short length
  • the inner covering material 41B is exposed from the distal end thereof.
  • the exposed inner covering material 41 ⁇ / b> B passes through the element holding body 14, and the distal end thereof is positioned in the vicinity of the distal end of the element holding body 14. From the distal end of the inner covering material 41B, the inner conductor 41A is exposed with a relatively short length.
  • FIG. 16 is a perspective view of the flow sensor 21 provided inside the element holder 14. As shown in FIG. 16, the measuring element 22 of the flow rate sensor 21 is formed in a coil shape by winding a nickel wire spirally on the outer peripheral surface of the inner covering material 41 ⁇ / b> B inserted through the element holding body 14. Yes.
  • the measuring element 22 is separated on the outer peripheral surface of the inner covering material 41B so that adjacent nickel wires do not come into contact with each other, and is adhered to the outer peripheral surface of the inner covering material 41B by, for example, an instantaneous adhesive.
  • the flow sensor 21 is fixed inside the element holder 14 by an insulating member 25 provided inside the element holder 14.
  • the inner conductor 41A is fixed in the element holding body 14 by an insulating member 25 provided in the element holding body 14 together with the measuring element 22 provided on the outer peripheral surface.
  • the change in the mass flow rate of the blood flow at an arbitrary position of the coronary artery can be detected with high accuracy, similarly to the blood flow meter 50 according to the third embodiment. can do.
  • the measuring element 22 is provided on the outer peripheral surface of the outer covering material of the coaxial cable 41, a special member for holding the measuring element 22 in a coil shape is not necessary.
  • the blood flow meter according to the fifth embodiment has a configuration in which the coaxial cable 41 is inserted along the core wire 11 inside the shaft 12 as in the blood flow meter 60 of the fourth embodiment.
  • the configuration of the distal end portion of the coaxial cable 41 is different from that of the fourth embodiment.
  • the configuration other than the configuration of the distal end portion of the coaxial cable 41 is the same as that of the blood flow meter 60 according to the fourth embodiment.
  • FIG. 17 is a perspective view of the flow sensor 21 in the blood flow meter according to the fifth embodiment.
  • the coaxial cable 41 inserted through the shaft 12 passes through the flexible member 13 and enters the element holding body 14, and its distal end is provided at the distal end of the element holding body 14.
  • the sealing member 51 is located in the vicinity.
  • the inner conductor 41A is exposed from the inner covering material 41B, the outer conductor 41C and the outer covering material 41D with a relatively short length.
  • the measuring element 22 of the flow rate sensor 21 is formed in a coil shape by spirally winding a nickel wire on the outer peripheral surface of the external covering material 41D inserted through the element holding body 14.
  • the measuring element 22 is bonded to the outer peripheral surface of the outer covering material 41D by, for example, an instantaneous adhesive.
  • the inner conductor 41 ⁇ / b> A exposed at the distal end of the coaxial cable 41 is electrically connected to one end of the measuring element 22.
  • the coaxial cable 41 has an opening 41E formed by removing a part of the outer covering material 41D in the proximal end of the element holding body 14, and the outer conductor 41C is formed from the opening 41E. Exposed.
  • the external conductor 41C exposed from the opening 41E is electrically connected to the other end of the measuring element 22.
  • the measuring element 22 provided on the outer peripheral surface of the inner conductor 41A is fixed in the element holding body 14 by an insulating member 25 provided in the element holding body 14.
  • the measuring element 22 is provided on the outer peripheral surface of the inner covering material exposed from the coaxial cable 41, a special member for holding the measuring element 22 in a coil shape becomes unnecessary.
  • the measuring element 22 of the flow sensor 21 is not limited to the above embodiment, and the measuring element 22 configured by the heating resistor can detect the temperature change on the wall surface of the element holding body 14 over the entire circumference. It only has to be.
  • the measuring element 22 may be a metal wire (wire) that is a heating resistor having temperature-resistance characteristics other than the nickel wire.
  • a metal wire for example, a platinum wire having a product ( ⁇ ⁇ ⁇ ) of an electrical resistivity ⁇ and a temperature coefficient ⁇ of 0.042 ( ⁇ ⁇ cm / ° C.) is preferably used.
  • the measuring element 22 of the flow sensor 21 may be formed in a predetermined shape by electroforming nickel wire or the like as a heating resistor. Furthermore, the measuring element 22 may be configured by a resistance heating element formed in a predetermined shape by MEMS (Micro Electro Mechanical Systems).
  • a temperature sensor such as a thermocouple for detecting the blood flow temperature may be provided inside the flexible member 13.
  • the temperature sensor is disposed so as to be in contact with the blood flow flowing into the flexible member 13.
  • the output of the temperature sensor is given to the calculation unit 32 of the calculation control unit 30 by a conducting wire inserted into the shaft 12.
  • the calculation unit 32 is configured to compensate for the voltage change of the measurement element 22 in the flow sensor 21 based on the temperature of the blood flow detected by the temperature sensor. Thereby, even when the temperature of the blood flow changes, the change of the mass flow rate in the blood flow can be measured with higher accuracy.
  • a constant DC current is supplied to the measuring element 22 in the flow sensor 21, but an AC current may be supplied to the measuring element 22.
  • an alternating current of 100 kHz is considered safe, when supplying an alternating current to the measuring element 22, it is preferable to set the frequency to 100 kHz.
  • the calculation unit 32 is configured to calculate the blood flow velocity based on the change in the electrical resistance value of the measurement element 22, but is not limited to such a configuration.
  • the volume flow rate is calculated by multiplying the mass flow rate (g / mm 2 ⁇ s) per unit area of the blood flow obtained by the flow sensor 21 by the reciprocal of the blood density (g / ml).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring Volume Flow (AREA)

Abstract

【課題】生体の血管内において、血流の流量を高精度で計測できる血流計の提供。 【解決手段】血管内に挿入可能であって可撓性を有する中空のシャフト12の遠位側に、シャフト12の外径以下の外径を有する管状の素子保持体14がシャフト12と同軸状態で設けられている。素子保持体14の内部には、流量センサ21が収容されている。流量センサ21は、隣り合うニッケル線同士が接触しない絶縁状態で螺旋状に巻回されてコイル形状に形成された計測素子22を有する。素子保持体14の内部には、流量センサ21と素子保持体14との間に熱伝導性の絶縁部材25が介在されており、絶縁部材25によって流量センサ21が素子保持体14内に固定されている。

Description

血流計及び測定装置
 本発明は、生体の血管内に挿入されて血流に関する情報を取得する血流計、及びその血流計を用いた測定装置に関する。
 冠動脈における狭窄病変の治療方針を決定するための指標の一つとして、冠血流予備能(CFR)がある。CFRとは、心筋酸素消費量の増大に応じて冠血流量を増大させ得る能力を表す指標であり、最大充血時の冠血流量と安静時の冠血流量との比で求められる。このCFRの低下が冠循環から見た心筋虚血の発生機序と考えられている。また、冠動脈径が変化しない場合には、冠動脈血流量と冠動脈血流速とは直線相関することから、CFRは、最大冠動脈血流速と安静時冠動脈血流速との比として求められる。
 CFRは、健常例では、3.0~4.0程度であるが、径狭窄率(%DS)が75%以上の有意狭窄では2.0未満となる。また、CFRが冠動脈に有意狭窄がなくても、冠最小動脈障害でも低下することが報告されており、単なる冠動脈の径狭窄率評価ではなく、冠微小循環を含めた冠循環の総合的な指標として用いられている。
 特許文献1には、温度感知部材を有する圧力センサが先端部に設けられたガイドワイヤが開示されている。圧力センサは、開口部を有するステンレス外套管内に設けられており、圧力センサにおける温度感知部材が開口部を介してステンレス外套管から露出している。温度感知部材は、開口部を介して接触する血流の質量流量の変化に伴う温度変化に対応した信号を出力する。特許文献1には、温度感知部材の出力信号のみに基づいて、CFRの演算が可能であることが記載されている。
特表2000-504249号公報
 特許文献1に記載されたガイドワイヤにおける温度感知部材は、ステンレス外套管の開口部を介して血流に接している。温度感知部材がステンレス外套管の外周面側に設けられているので、この温度検知部材は、血管の内壁付近の血流の質量流量に関する情報しか取得することができない。また、温度検知部材はステンレス外套管において周方向の所定の位置に設けられているので、血管の周方向の所定位置における血流の質量流量に関する情報しか取得することができない。その結果、特許文献1に記載されたガイドワイヤの構成では、血管内における血流の質量流量を正確に測定できないおそれがある。
 本発明は、前述された事情に鑑みてなされたものであり、その目的は、生体の血管内において、血流の質量流量に関する情報を高精度で取得することができる血流計及び測定装置を提供することにある。
 (1) 本発明に係る血流計は、可撓性を有し、血管内に挿入可能な中空のシャフトと、上記シャフトの遠位側において当該シャフトと同軸状態で設けられており、当該シャフトの外径以下の外径を有する管状の素子保持体と、温度-抵抗特性を有する発熱抵抗体によって構成された計測素子を有し、当該計測素子が上記素子保持体の周壁における温度変化を全周にわたって検知できる状態で上記素子保持体の内部に収容された流量センサと、上記素子保持体の内部において、上記流量センサと上記素子保持体との間に介在された熱伝導性の絶縁部材と、を有する。
 このような構成により、流量センサの計測素子は、血管内における任意の位置において、血流の質量流量の変化による素子保持体の周方向の全周における温度変化を、絶縁部材を介して検知することができる。
 (2) 好ましくは、上記発熱抵抗体が線材であり、上記計測素子は、上記線材が螺旋状に巻回されて、隣り合う線材同士が隔てられて絶縁された状態のコイル形状になっており、上記素子保持体内に当該素子保持体の軸線方向に沿った状態で収容されている。
 コイル形状の計測素子は、軸線方向に沿った長さの全体にわたって、素子保持体の全周における温度変化を取得することができる。
 (3) 好ましくは、上記線材が、絶縁被覆されていない金属線である。
 これにより、コイル形状の計測素子は、外径が大きくなることが抑制されるために、所定の外径の素子保持体内に収容することができる。
 (4) 好ましくは、上記金属線がニッケル線又は白金線である。
 これにより、計測素子によって、血流全体の質量流量の変化を高精度で取得することができる。
 (5) 好ましくは、上記シャフトの外径が0.36mm以下である。
 これにより、血管内において血流計を円滑に移動させることができる。
 (6) 好ましくは、上記絶縁部材は、熱拡散率が0.06~0.21mm/sの樹脂である。
 これにより、計測素子は、素子保持体における温度変化を精度良く取得することができる。
 (7) 好ましくは、上記流量センサは絶縁性の芯材を有し、上記芯材の外周面上に上記計測素子が設けられている。
 これにより、計測素子を所定のコイル形状とすることができる。
 (8) 好ましくは、上記計測素子に電力を供給する一対の導線をさらに有し、上記一対の導線の一方が上記芯材の内部を挿通しており、当該導線と上記計測素子の一端とが電気的に接続され、他方の導線と上記計測素子の他端とが電気的に接続されている。
 これにより、コイル形状の計測素子は、外径が大きくなることが抑制され、所定の外径の素子保持体内に収容することができる。
 (9) 好ましくは、上記計測素子に電力を供給する同軸ケーブルをさらに有し、当該同軸ケーブルの内部導体が、上記芯材の内部を挿通して上記計測素子の一端と電気的に接続され、上記計測素子の他端が上記同軸ケーブルの外部導体と電気的に接続されている。
 これによっても、コイル形状の計測素子は、外径が大きくなることが抑制されるために、所定の外径の素子保持体内に収容することができる。
 (10) 好ましくは、上記計測素子の各端部に接続される一対の導線をさらに有し、上記計測素子は、上記導線の両方またはいずれか一方の周囲に設けられている。
 これにより、計測素子をコイル形状に保持するための特別な部材が不要になる。
 (11) 好ましくは、上記計測素子に電力を供給する同軸ケーブルをさらに有し、上記計測素子は、上記同軸ケーブルの外部被覆材、又は、上記同軸ケーブルから剥き出された内部被覆材の外周面上に設けられている。
 これによっても、計測素子をコイル形状に保持するための特別な部材が不要になる。
 (12) 好ましくは、上記シャフトの遠位端には、可撓性を有する円筒形状の可撓部材が同軸状態で設けられており、上記素子保持体が上記可撓部材の遠位端に同軸状態で設けられている。
 これにより、血流計を血管に沿って容易に移動させることができる。
 (13) 好ましくは、上記素子保持体の遠位端に、可撓性を有する円筒形状のガイド体が同軸状態で設けられている。
 これにより、血流計を血管内における任意の位置へ容易に移動させることができる。
 (14) 好ましくは、上記ガイド体は、放射線不透過性の金属ワイヤによって構成されたコイルバネを有する。
 これにより、血管内における流量センサの位置を特定することができる。
 (15) 本発明の測定装置は、上記血流計と、上記血流計の計測素子に電力を供給して、上記計測素子の温度変化に対応した抵抗変化に基づく電力情報から血流の質量流量に関する情報を取得する測定部と、を備えている。
 これにより、血流計において取得された電気情報に基づいて、血流の質量流量の変化に関する情報を高精度で取得することができる。
 本発明によれば、血管内における所望の位置において、血流全体の質量流量に関する情報を高精度で取得することができる。
図1は、本発明の第1実施形態に係る血流計10を備えた測定装置20の構成を示す模式図である。 図2は、血流計10の先端部の縦断面図である。 図3は、血流計10に設けられたシャフト12の横断面図である。 図4は、血流計10に設けられた流量センサ21の斜視図である。 図5は、タイプAの流量センサによって計測素子の時間応答性についてシミュレーションした結果を示すグラフである。 図6は、タイプBの流量センサによって計測素子の時間応答性についてシミュレーションした結果を示すグラフである。 図7は、タイプCの流量センサによって計測素子の時間応答性についてシミュレーションした結果を示すグラフである。 図8の(A)、(B)、(C)のそれぞれは、タイプA、タイプB、タイプCの各流量センサが生体の冠動脈の血流内に配置された場合におけるそれぞれの出力波形を示すグラフである。 図9は、異なる熱物性値の5つの絶縁部材によって素子保持体内に固定された各流量センサを用いた場合に、血流の流速変化によって各流量センサの計測素子に生じる温度変化をシミュレーションした結果を示すグラフである。 図10は、第2実施形態に係る血流計40の先端部の縦断面図である。 図11は、血流計40に設けられた流量センサ21の斜視図である。 図12は、第3実施形態に係る血流計50の先端部の縦断面図である。 図13は、血流計50に設けられたシャフト12の横断面図である。 図14は、血流計50に設けられた流量センサ21の斜視図である。 図15は、第4実施形態に係る血流計60の先端部の縦断面図である。 図16は、血流計60に設けられた流量センサ21の斜視図である。 図17は、第5実施形態に係る血流計70に設けられた流量センサ21の斜視図である。
 以下、本発明の好ましい実施形態を説明する。なお、本実施形態は、本発明の一実施態様にすぎず、本発明の要旨を変更しない範囲で実施態様を変更できることは言うまでもない。
[第1実施形態]
 図1に示されるように、測定装置20は、生体の血管(例えば、冠状動脈)内に挿入可能なガイドワイヤ型の血流計10と、血流計10によって取得された情報に基づいて、血液の質量流量に関する値を演算する演算制御部30と、を備えている。
 血流計10は、生体の血管よりも小径の外径を有する中空のシャフト12を有する。シャフト12の先端側(遠位側に相当)の端部には、血管に沿って撓む可撓性を有する円筒形状の可撓部材13が、シャフト12と同軸状態で設けられている。なお、同軸状態とは、円柱形状又は円筒形状になった複数の部材のそれぞれの軸心が同一線上に位置する状態である。
 可撓部材13の遠位端には、血管内における血流の質量流量に関する情報を取得する熱線式の流量センサ21が収容された管状の素子保持体14が、可撓部材13と同軸状態で設けられている。さらに、素子保持体14の遠位側には、血管内において血流計10を案内する円筒形状のガイド体15が素子保持体14と同軸状態で設けられている。
 血流計10を構成する可撓部材13、素子保持体14、及びガイド体15は、ステンレス綱からなる線材が螺旋形状に巻かれた構成とされたり、ステンレス綱の管体によって構成されたりする。可撓部材13、素子保持体14及びガイド体15を有する血流計10は、全体として血管の湾曲や分岐等に沿って撓む可撓性を有する。
 図2及び図3に示されるように、シャフト12の内部には、コアワイヤ11と、素子保持体14内に設けられた流量センサ21(図2参照)に対する通電等に使用される一対の導線26,27が、シャフト12の長手方向に沿って挿通している。
 コアワイヤ11は、例えば、シャフト12の内径より細い線径のステンレス綱からなり、シャフト12の近位側から素子保持体14付近まで延出されている。コアワイヤ11は、シャフト12より曲げ剛性の高いものが選択されることにより、シャフト12が大きく撓むことを抑制する。
 図3に示されるように、導線26,27のそれぞれは、ポリウレタン樹脂などの絶縁被覆材26B,27Bにより銅線26A,27Aが絶縁被覆されたものである。図2に示されるように、一方の導線26(以下、「第1導線26」とする)の遠位端は、流量センサ21より遠位側(図2における流量センサ21より左側)まで延出されている。他方の導線27(以下、「第2導線27」とする)の遠位端は、流量センサ21より近位側(図2における流量センサ21より右側)まで延出されている。
 図1に示されるように、シャフト12の近位端は、コネクタ29を介して演算制御部30に接続されている。シャフト12に挿通された第1導線26及び第2導線27は、演算制御部30と電気的に接続されている。
 図1に示されるように、素子保持体14の周壁には、開口部14Aが設けられている。開口部14Aは、例えば、シャフト12の軸線方向に沿った長さが、流量センサ21の軸線方向に沿った長さより短く(例えば約3mm)、周方向長さは、素子保持体14の外径の1/2程度になっている。素子保持体14の内部に収容された流量センサ21の詳細については後述する。
 図2に示されるように、ガイド体15は、素子保持体14の遠位端に設けられたコイルバネ16と、素子保持体14の遠位側の内部空間を封止する封止部材18と、コイルバネ16の遠位端に設けられた先端チップ19と、コイルバネ16の内部空間に設けられた先端芯材17と、を有する。
 コイルバネ16は、例えば、放射線不透過性を有する白金ワイヤが螺旋形状に巻回されたものであり、血管の湾曲、血管の分岐等に沿って撓むことができる可撓性を有している。コイルバネ16は、素子保持体14と一体的に結合されている。放射線不透過性の白金ワイヤなどから構成されたコイルバネ16は、血流計10における先端部分のマーカーとしての機能を有する。封止部材18、先端チップ19、及び先端芯材17は、それぞれが例えばステンレス綱から形成されている。先端芯材17は、コイルバネ16の軸線に沿って延出されており、近位側において封止部材18と一体的に結合され、かつ遠位側において先端チップ19と一体的に結合されている。先端芯材17は、コイルバネ16より曲げ剛性が高いものが選択されることにより、コイルバネ16が大きく撓むことを抑制する。
 図4に示されるように、流量センサ21は、円柱形状の絶縁性の芯材23と、芯材23の外周面に沿ってコイル形状に形成された計測素子22と、を有している。
 芯材23は、セラミックなどの絶縁性の素材からなる。芯材23の外径及び軸線方向の長さは、素子保持体14の内部空間に収容可能に設定されている。芯材23の中心には貫通孔24が設けられている。
 計測素子22は、温度-抵抗特性を有する導電性の発熱抵抗体である。温度-抵抗特性とは、温度変化によって電気抵抗値が変化する性質のことである。具体的には、温度が上昇すれば、電気抵抗値が比例的に増加する性質(正特性)、又は、温度が上昇すれば、電気抵抗値が比例的に低下する性質(負特性)を有する。従って、発熱抵抗体における電気抵抗の変化に基づいて、抵抗発熱体の温度変化を検出することができる。
 計測素子22としては、例えば、絶縁被覆されていないニッケル線(正特性)が用いられている。計測素子22は、芯材23の外周面に沿って螺旋形状に巻回されることによってコイル形状をなしている。コイル形状をなすニッケル線は、隣り合うニッケル線同士が接触しないように隔てられている。コイル形状のニッケル線の両端は、それぞれ、芯材23の軸線方向の外方へ延出されている。芯材23の外周面に巻かれたニッケル線は、例えばシアノアクリレート系の瞬間接着剤などによって芯材23の外周面に接着されている。
 図4に示されるように、第2導線27の遠位端は、芯材23より近位側に位置している。この第2導線27の遠位端においては、銅線27Aが、絶縁被覆材27Bから剥き出しにされて計測素子(ニッケル線)22の一端と電気的に接続されている。
 他方の第1導線26は、芯材23より近位側において銅線26Aが絶縁被覆材26Bから剥き出しにされており、剥き出しにされた銅線26Aは芯材23の貫通孔24内を挿通している。銅線26Aの遠位端は、芯材23より遠位側に位置しており、計測素子(ニッケル線)22の他端と電気的に接続されている。
 図2に示されるように、計測素子22及び芯材23によって構成された流量センサ21は、素子保持体14の内部空間に収容された状態で、流量センサ21と素子保持体14との間に介在された絶縁部材25によって固定されている。絶縁部材25は、熱伝導性及び絶縁性を有しており、例えば、絶縁樹脂であるエポキシ樹脂が用いられる。絶縁部材25は芯材23の全体を被覆しており、芯材23の外周面上において、ニッケル線における軸線方向に隣り合う部分同士の絶縁状態を確保している。エポキシ樹脂は、溶融状態で、素子保持体14に設けられた開口部14Aから素子保持体14の内部空間に注入されることにより、計測素子22及び芯材23と素子保持体14との間に充填される。その後、素子保持体14内においてエポキシ樹脂が硬化することにより、計測素子22及び芯材23が素子保持部材14の内部空間に固定される。
 図1に示されるように、血流計10に接続された演算制御部30は、電源部31及び演算部32を有する。電源部31は、第1導線26及び第2導線27を通じて流量センサ21の計測素子22へ電力を供給する。演算部32は、計測素子22に通電されることにより流れる電流値に基づいて、血流の質量流量に関する値を演算する。
[測定装置20の使用例]
 測定装置20は、例えば、冠動脈内の所定の位置における血流の質量流量の変化を測定するために使用される。血流計10は、先端チップ19側を前側として血管内へ挿入されて、冠動脈の所望の位置まで送り込まれる。冠動脈における血流計10の先端側の位置は、血管のX線透視画像におけるガイド体15の位置に基づいて把握できる。
 ガイド体15が冠動脈内における所望の位置に位置された後、演算制御部30の電源部31から、第1導線26及び第2導線27を通じて流量センサ21の計測素子22に一定の直流電流が供給される。計測素子22は、電流が供給されることによってジュール熱を発生し、このジュール熱が、絶縁部材25を通じて素子保持体14に伝達される。素子保持体14の外周面の周りには血液が流れているので、加熱された素子保持体14は、血液によって熱が奪われて冷却される。素子保持体14が冷却されることにより、計測素子22の温度が低下する。
 この場合、心拍によって生じる脈動に伴って血流の質量流量が変化すると、素子保持体14から奪われる熱量が変化し、その結果、計測素子22においても脈動に伴った温度変化が生じる。計測素子22は、温度-抵抗特性を有する発熱抵抗体によって構成されていることから、温度変化が生じることによって電気抵抗が変化する。計測素子22には一定の直流電流が流されているので、計測素子22の電気抵抗が変化すると、計測素子22に印加される電圧が変動する。演算制御部30における演算部32は、このような計測素子22における電圧の変化に基づいて、血流の質量流量に関する値を演算する。
 具体的には、血流によって計測素子22の温度が低下すると、ニッケル線によって構成された計測素子22の電気抵抗値が比例的に減少する。その結果、計測素子22に印加される電圧が低下する。演算部32は、検出された電圧の低下に基づいて、例えば血流の流速を演算する。
 管状の素子保持体14は、外周面の全周において軸線方向に沿って血液が流れるために、血流の質量流量における微細な変化に対して大きな熱量変化が生じる。これにより、流量センサ21の計測素子22においても大きな温度変化が生じ、電気抵抗値が大きく変化する。従って、計測素子22は、素子保持体14の外周面全周を軸線方向に沿って流れる血流の質量流量の変化を計測することができる。
 さらに、流量センサ21の計測素子22として用いられたニッケル線は、電気抵抗率ρ及び温度係数αのそれぞれが大きな金属材料であり、電気抵抗率ρと温度係数αとの積(ρ・α)は、0.061(μΩ・cm/℃)と大きくなっている。このようなニッケル線を用いた計測素子22は、1℃当たりの温度変化に対する電気抵抗値の変化が大きくなる。計測素子22は、このようなニッケル線がコイル形状に巻かれているので、素子保持体14の内周面に対して、周方向に途切れることなく対向している。これにより、計測素子22は、ニッケル線の全体によって、素子保持体14の周壁の全周の温度変化を検出することができる。
 以上により、計測素子22は、血管内における血流全体の質量流量の変化を高精度で計測することができる。
 また、本実施形態における血流計10は、外径が0.35mmになったシャフト12の先端部に、シャフト12の外径と同様の外径を有する可撓部材13、素子保持体14、ガイド体15が設けられて、全体が、0.36mmよりも小さな外径になっていることが好ましい。この場合の0.36mmの外径は、冠動脈に対して使用可能なガイドワイヤの外径に関する規格値である。このようにシャフト12等の外径が設定されることにより、血流計10が冠動脈における血流の質量流量の計測に好適に使用されるものとなる。
[流量センサ21の特性]
 以下に、流量センサ21の特性が説明される。
 血流計10によって、血流における質量流量の変化に関する情報を得るためには、流量センサ21は、脈動による流速変化を計測できる時間応答特性(時定数)を有することが望ましい。このことから、血流計10における流量センサ21の時間応答特性(時定数)を、当該流量センサ21に対応した流量センサ(タイプCとする)を用いて、生体温度の血流の循環により生じる脈動を模擬した水流の流速変化を計測することによってシミュレーションした。
 タイプCの流量センサは、絶縁性の芯材23に対して0.0095mmの線径のニッケル線を螺旋状に巻回してコイル形状とされた計測素子を有しており、流量センサは、0.35mmの素子保持体内に収容可能な外径になっている。
 また、比較のために、線径が0.014mmの線径のニッケル線によって、それぞれ、タイプCの流量センサよりも大きな外径とされた2つの流量センサを準備して、タイプCの流量センサと同様にして、脈動の流速変化を計測した。一方の流量センサは、外径が1.1mmの素子保持体内に収容可能な外径とされ(タイプAとする)、他方の流量センサは、外径が0.6mmの素子保持体内に収容可能な外径とされている(タイプBとする)。タイプA、タイプB、タイプCのそれぞれの流量センサの条件(素子保持体14の外径及びニッケル線の線径)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 生体温度の血流の循環を模擬した脈動は、37℃の恒温水槽内に循環水路を設けて、ローラポンプによって循環水路に水流を供給することによって発生させた。水流は、ローラポンプの回転によって、約0.5(1/s)の周期で脈動した。このような循環水路の途中に、計測流路として内径2.0mmのパイプを設けて、この計測流路内での水流の流速を、上記の3つのタイプの流量センサによってそれぞれ測定した。それぞれの流量センサの計測素子には、20mA及び30mAの一定電流を供給して自己発熱させ、それぞれの電流毎に、計測素子に生じる電圧変化を、差動アンプによって増幅して、デジタルペンレコーダを用いて記録した。なお、計測素子の電圧変化(流量センサの出力波形)は、400Hzのローパスフィルタを介在させた場合と、ローパスフィルタを介在させない場合との2種類について記録した。
 また、循環水路における水流の脈動のリファレンス(参照値)を得るために、計測水路の途中にコリオリ式質量流量計(キーエンス社製、商品名「FD-SS2A」、応答時間50ms)を設置して、計測水路における質量流量を計測した。そして、コリオリ式質量流量計によって得られる質量流量(ml/s)を、計測流路(パイプ)の断面積で除して得られる波形を、計測流路内の流速値(mm/s)に対応するリファレンス波形とした。
 タイプA、タイプB、タイプCのそれぞれの流量センサの出力波形(2種類)と、リファレンス波形との類似度を検証するために、それぞれの出力波形及びリファレンス波形を正規化して重ね合わせた。その結果を、図5、図6、図7に示す。図5、図6、図7のそれぞれは、タイプA、タイプB、タイプCのそれぞれの流量センサの電圧変化に対応する正規化された出力波形(太線)及びリファレンス波形(細線)を重ねたグラフである。
 図5に示されるように、タイプAの流量センサの出力波形は、ローパスフィルタの有無にかかわらず、リファレンス波形との類似性が低く、水流における脈動の流速を再現することができなかった。これに対して、図6に示されるように、タイプBの流量センサの出力波形は、ローパスフィルタが介在されている場合(ローパスフィルタが介在されていない場合についてはデータが得られず)、リファレンス波形との類似性が高く、水流における脈動の流速が再現されていた。さらに、図7に示されるように、タイプCの流量センサの出力波形は、ローパスフィルタの有無にかかわらず、リファレンス波形との類似性が高く、水流における脈動の流速が高精度で再現されていた。
 以上の結果は、コイル形状の計測素子の外径を大きくするために線径の大きなニッケル線を用いると、ニッケル線の温度変化に対する抵抗値変化が小さくなり、計測素子における発熱抵抗体の時間応答特性(時定数)が低下したためと考えられる。すなわち、計測素子である発熱抵抗体の時定数が低下すると、水流の脈動によって生じた温度変化に対して電気抵抗値の変化が追従できなくなり、脈動に対応した電圧が出力できなくなると考えられる。
 また、図5、図6、図7に示されるタイプA、タイプB、タイプCの流量センサの出力波形においては、20mAの電流を供給する場合よりも、30mAの電流を供給する場合の方が、ノイズが小さくなっている。従って、血流における質量流量の変化を測定する場合には、流量センサの計測素子に供給される電流を高く設定することが好ましい。しかし、計測素子に比較的低い電流を供給する場合であっても、差動アンプの増幅度等の調整によってノイズを低減することは可能である。
 次に、タイプA、タイプB、タイプCの3つの流量センサのそれぞれが、冠状動脈における血流内に配置された場合における時間応答特性について検証した。このために、タイプA、タイプB、タイプCの流量センサのそれぞれが設けられた3つの血流計を用いて、各流量センサを、家畜ブタ(雌、30000g)の冠動脈内に位置させて、各流量センサの出力波形をそれぞれ記録した。
 タイプA、タイプB、タイプCの流量センサの出力波形を、それぞれ、図8の(A)、(B)、(C)に示す。いずれの流量センサの出力波形も、心臓の拡張期及び収縮期に対応した2峰性の流速が計測された。また、いずれの出力波形においても、血流の呼吸性変動(0.5~3Hz)が現れていた。特に、図8(C)に示されるタイプCの流量センサの出力波形では、実際の心臓の拡張期及び収縮期に対応した流速変化が忠実に再現されていた。これは、ニッケル線の線径が小さくなるほど、計測素子における発熱抵抗体の時定数が小さくなり、脈動における計測可能な周波数帯域が大きくなったためであると考えられる。
 以上により、タイプCの流量センサに対応する流量センサ21は、生体の冠動脈における血流の流速変化を高精度で測定することができる時定数を有することが検証された。
[絶縁部材の熱伝導性について]
 上記第1実施形態において、素子保持体14内に収容された流量センサ21は、絶縁部材25によって被覆された状態になっており、従って、血流の脈動に対応した質量流量の変化に基づく素子保持体14の熱量変化が、絶縁部材25を介して計測素子22に伝達される。このために、絶縁部材25の熱伝導性によっては、血流の脈動による質量流量の変化に対して、計測素子22の温度変化のタイミングが大きくずれて、計測素子22は、血流の脈動による質量流量の変化を精度良く計測できないおそれがある。
 なお、絶縁部材25の熱伝導性によって、計測素子22における温度変化のタイミングがずれると、計測素子22からの電気信号の出力タイミングもずれることになる。この場合には、計測素子22の実際の時定数は変化していないが、計測素子22の見掛け上の時間応答特性(時定数)が変化したものとみなすことができる。
 このことから、計測素子22の見掛け上の時間応答特性を、絶縁部材25の熱物性値に基づいてシミュレーションした。
 このシミュレーションでは、血流計10の構成において、絶縁部材25としてエポキシを含む5種類の絶縁樹脂をそれぞれ用いた場合を想定して、それぞれの計測素子22の見掛け上の時定数を、各絶縁樹脂の熱物性値に基づいて演算した。エポキシ以外の4種類の絶縁樹脂は、シリコーン、ポリアミド、ポリイミド、高密度ポリエチレンである。絶縁樹脂の熱物性値は、密度、比熱、熱伝導率、熱拡散率である。表2に、上記の各絶縁樹脂の熱物性値と、演算された計測素子22の見掛け上の時定数とを示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、絶縁部材25に用いられる絶縁樹脂の熱物性値が変化すると、計測素子22における見掛け上の時定数が変化する。このことから、絶縁部材25として、血流の物性等に対応した適切な熱物性値を有する絶縁樹脂を選択して用いることにより、血流の脈動に基づく質量流量の変化を高精度で検出できる。
 なお、絶縁部材25として絶縁樹脂を用いる場合には、絶縁樹脂に導電性物質等を混入させることによって、絶縁樹脂の熱物性値を変化させることができる。例えば、絶縁樹脂に金属粉体を混入させると、絶縁樹脂の熱拡散率が高くなる。このことから、絶縁部材25として絶縁樹脂を使用する場合には、絶縁樹脂に金属粉体等の導電性物質を混入させることにより、計測素子22における見掛け上の時定数を変化させることができる。
 例えば、計測素子22によって、心拍出周期(血流変動の中心周期、通常は1.1~2.0Hz)の10倍以上の周波数成分を検出するためには、20Hz以上の周波数成分の検出が必要になる。このために、計測素子22の見掛け上の時定数(s)を、1/20(=0.05)以下にする必要がある。このことから、計測素子22における見掛け上の時定数が0.05以下になるような所定の高熱拡散値の絶縁樹脂、あるいは、導電性物質の混入によって所定の高熱拡散値に調整された絶縁樹脂を、絶縁部材25として用いることができる。反対に、心拍出周期の影響を排除して流速変化が平均化された測定結果が必要とされる場合には、絶縁部材25として、低い熱拡散率の絶縁樹脂、あるいは低い熱拡散率に調整された絶縁樹脂を用いることができる。
 なお、血流の流速が高速の場合には、単位時間当たりの流速の変化が大きくなるために、素子保持体14における単位時間当たりの温度変化も大きくなる。このために、絶縁部材25の熱拡散率が高くなると、素子保持体14における単位時間当たりの温度変化が、絶縁部材25によって拡散され、計測素子22における温度変化が小さくなる。このことから、絶縁部材25として熱拡散率が異なる絶縁樹脂を用いた場合に、血流の流速変化によって計測素子22における温度変化にどのような影響があるかを、シミュレーションによって検証した。
 このシミュレーションでは、上記の5種類の絶縁樹脂からなる絶縁部材25によって素子保持体14内に固定された状態の各流量センサ21を、流速が5cm/s及び20cm/sの血流内にそれぞれ配置した場合に、流速の変化によって計測素子22に生じる温度変化の理論値を求めた。その結果を図9に示す。また、上記の5種類の樹脂よりも熱伝導率が高い仮想の樹脂(「高熱伝導樹脂」とする)を絶縁部材25とした場合の流量センサ21についても、同様のシミュレーションによって、計測素子22の温度変化の理論値を求めた。その結果を図9に併記する。
 図9に示されるように、上記5種類の絶縁樹脂及び仮想の高熱伝導樹脂を絶縁部材25として用いた場合、血流の流速が5cm/sのときには、計測素子22に生じる温度変化の範囲は3~5℃程度であった。従って、5種類の絶縁樹脂のいずれを絶縁部材25として用いても、本実施形態の計測素子22によって、5cm/s程度の流速の血流における流速変化の計測が可能である。
 これに対して、流速が20cm/sのときには、仮想の高熱伝導樹脂以外の5種類の絶縁樹脂を絶縁部材25として用いた場合、各計測素子22の温度変化は、0.5℃~1.5℃程度になった。このような温度変化があれば、それぞれの計測素子22は、20cm/sの程度の流速の血流における流速変化についても計測することができる。しかし、仮想の高熱伝導樹脂を用いた計測素子22では、温度変化がほとんど認められず、20cm/s程度の流速の血流における流速変化を計測できないおそれがある。
 以上のように、表2に示された5種類の絶縁樹脂(仮想の高熱伝導樹脂以外)の全てが絶縁部材25として好適に用いることができる。このことから、絶縁部材25として用いられる絶縁樹脂の熱拡散率は、表2に示される全ての絶縁樹脂の熱拡散率の範囲、すなわち、0.06~0.23mm/sの範囲が好ましい。
 なお、絶縁部材25としては、計測対象とされる血管の性状、血流の物性等に対して最適な熱物性値を有する材料を選択すればよい。このことから、絶縁樹脂に限らず、マグネシウム、アルミナ、シリカ等の無機絶縁材粉末を絶縁部材25として用いる構成としてもよい。無機絶縁材粉末を用いる場合には、内部に流量センサ21が収容された素子保持体14内に、開口部14Aから無機絶縁材粉末を充填して開口部14Aを樹脂等で封止すればよい。
[第1実施形態の作用効果]
 第1実施形態に係る血流計10では、遠位端近傍に位置する流量センサ21によって、冠動脈の任意の位置における血流の質量流量の変化を高精度で計測できる。従って、血流計10による計測結果は、冠動脈における総合的な指標(CFR)として適切に用いることができる。
 また、計測素子22は、ニッケル線、白金線等の線材が螺旋状に巻回されて、隣り合う線材同士が隔てられて絶縁された状態のコイル形状になっており、素子保持体14内に当該素子保持体14の軸線方向に沿った状態で収容されている。これにより、コイル形状の計測素子22は、軸線方向に沿った長さの全体にわたって、素子保持体14の全周における温度変化を取得することができる。
 さらに、抵抗発熱体を構成する線材が、絶縁被覆されていない金属線であることから、コイル形状の計測素子22の外径が大きくなることが抑制される。これにより、計測素子22を所定の外径の素子保持体14内に収容することができる。
 また、計測素子22がニッケル線又は白金線で構成されることにより、血流全体の質量流量の変化を高精度で取得することができる。
 なお、上記第1実施形態において、シャフト12の外径が0.36mm以下とされる場合には、血流計10は、カテーテルに使用されるガイドワイヤと同様の大きさに構成されることから、カテーテルのガイドワイヤとして使用することができる。これにより、血管内において血流計10を円滑に移動させることができる。
 また、絶縁部材25は、熱拡散率が0.06~0.23mm/sの樹脂の場合には、血流の流速変化に基づく素子保持体14の温度変化が、計測素子22における温度変化として計測できる。これにより、計測素子22によって、血流の流速変化を精度良く取得することができる。
 さらに、流量センサ21は絶縁性の芯材23を有しており、芯材23の外周面上に計測素子22が設けられていることから、計測素子22を所定の外径のコイル形状とすることができる。
 また、計測素子22に電力を供給する第1導線26が芯材23の内部を挿通して、計測素子22の一端と電気的に接続され、第2導線27と計測素子22の他端とが電気的に接続されている。これにより、コイル形状の計測素子22は、外径が大きくなることが抑制され、所定の外径の素子保持体14内に計測素子22を収容することができる。
 上記第1実施形態においては、シャフト12の遠位端には、可撓性を有する円筒形状の可撓部材13が同軸状態で設けられており、素子保持体14が可撓部材13の遠位端に同軸状態で設けられている。これにより、血流計10を血管に沿って円滑に移動させることができる。
 さらには、素子保持体14の遠位端に、可撓性を有する円筒形状のガイド体15が同軸状態で設けられていることにより、血流計10を血管内における任意の位置へ容易に移動させることができる。
 また、ガイド体15は、放射線不透過性の金属(白金)ワイヤによって構成されたコイルバネ16を有することにより、血管内における流量センサ21の位置を特定することができる。
[第2実施形態]
 図10は、第2実施形態の血流計40の遠位側の端部の縦断面図である。この第2実施形態の血流計40では、シャフト12の内部を通過する一対の第1導線26及び第2導線27が、可撓部材13の内部を通過して、素子保持体14の内部に進入しており、それぞれの遠位端が素子保持体14の遠位側の端部内に位置している。
 図11は、素子保持体14の内部に収容された流量センサ21の斜視図である。この流量センサ21には、上記の第1実施形態の流量センサ21に設けられた芯材23が設けられず、計測素子22は、素子保持体14内を挿通する一対の第1導線26及び第2導線27の周囲にニッケル線を螺旋状に巻回されてコイル形状に形成されている。
 コイル形状をなす計測素子22は、上記の第1実施形態と同様に、隣り合うニッケル線同士が接触しないように隔てられている。第1導線26及び第2導線27に巻かれたニッケル線は、例えば瞬間接着剤によって、第1導線26及び第2導線27のそれぞれの絶縁被覆材26B及び27Bに接着されている。
 第1導線26及び第2導線27のそれぞれの遠位端は、コイル形状の計測素子22よりも遠位側に位置しており、一方の第1導線26は、遠位端において銅線26Aが絶縁被覆材26Bから剥き出しにされて、計測素子22の一端と電気的に接続されている。
 他方の第2導線27の絶縁被覆材27Bには、コイル形状の計測素子22よりも近位側において開口部27Cが形成されており、開口部27Cから銅線27Aの一部が露出している。開口部27Cから露出した銅線27Aは、計測素子22の他端と電気的に接続されている。
 図10に示されるように、素子保持体14の内部を挿通する一対の第1導線26及び第2導線27は、素子保持体14内に設けられた絶縁部材25によって、流量センサ21とともに固定されている。絶縁部材25は、上記第1実施形態と同様に、例えば、溶融状態のエポキシ樹脂を素子保持体14の内部に充填して硬化させることによって形成されている。
 このような構成の第2実施形態に係る血流計40でも、上記第1実施形態に係る血流計10と同様に、冠動脈の任意の位置における血流の質量流量の変化を高精度で検出することができる。
 また、第2実施形態に係る血流計40では、流量センサ21の計測素子22が、一対の第1導線26及び第2導線27に巻回されてコイル形状に形成されているために、第1実施形態のように、計測素子22をコイル形状に巻回するための芯材23を用いる必要がない。これにより、流量センサ21を構成する部品点数が少なくなり、製造コストを低減することができる。また、計測素子22の外径が大きくなることが抑制されるために、所定の外径の素子保持体内に計測素子22を収容することができる。
 なお、この第2実施形態では、素子保持体14内に第1導線26及び第2導線27の両方を挿通させて、それらの第1導線26及び第2導線27にニッケル線を巻回することにより計測素子22をコイル形状にしている。しかし、このような構成に限らず、第1導線26及び第2導線27の一方のみを素子保持体14内に挿通させて、その導線にニッケル線を巻回することによって計測素子22をコイル形状に形成してもよい。
[第3実施形態]
 図12は、第3実施形態に係る血流計50の先端部の縦断面図、図13は、その血流計50におけるシャフト12の横断面図である。この血流計50では、シャフト12の内部を、コアワイヤ11に沿って同軸ケーブル41が挿通しており、同軸ケーブル41によって、素子保持体14の内部に設けられた流量センサ21の計測素子22に電流が供給される構成になっている。
 図13に示されるように、同軸ケーブル41は、軸心部に設けられた内部導体41Aと、内部導体41Aの外周面を絶縁被覆する内部被覆材41Bと、内部被覆材41Bの外周面上に一定の厚さで積層された外部導体41Cと、外部導体41Cの外周面を被覆する外部被覆材41Dとを有している。内部導体41A、内部被覆材41B、外部導体41C、外部被覆材41Dのそれぞれは、同軸状態になっている。
 内部導体41Aは、銅を主成分とする合金によって構成されている。内部被覆材41Bはフッ素樹脂によって構成されている。外部導体41Cは、銅箔によって構成されている。外部被覆材41Dは、ポリウレタン樹脂によって構成されている。
 図14は、素子保持体14の内部に設けられた流量センサ21の斜視図である。この流量センサ21は、図14に示されるように、上記第1実施形態の流量センサ21と同様に、円柱状に構成されたセラミック製の芯材23の外周面上にコイル形状をなす計測素子22が設けられている。計測素子22は、ニッケル線によって構成されており、隣り合うニッケル線同士が接触しないように隔てられて、例えば瞬間接着剤によって、芯材23の外周面に接着されている。流量センサ21は、図12に示されるように、素子保持体14の内部に設けられた絶縁部材25によって、素子保持体14内に固定されている。
 図12に示されるように、シャフト12内を挿通した同軸ケーブル41は、可撓部材13内を通過して、素子保持体14の内部に進入している。同軸ケーブル41は、素子保持体14における近位側の端部内において、図14に示されるように、外部導体41Cが外部被覆材41Dから剥き出しにされており、さらに、剥き出しにされた外部導体41Cから、内部導体41Aが剥き出しにされている。剥き出しにされた内部導体41Aは、芯材23の貫通孔24内を挿通しており、その遠位端が、芯材23の遠位端から突出している。内部導体41Aの遠位端は、計測素子22の一端と電気的に接続されている。芯材23の近位側に位置する外部導体41Cの遠位端は、計測素子22の他端に電気的に接続されている。
 図12に示されるように、素子保持体14の遠位側の端部にはガイド体55が設けられている。このガイド体55は、上記第1実施形態におけるガイド体15の封止部材18及び先端芯材17に替えて、1つの封止部材51が設けられている。ガイド体55のその他の構成は、上記第1実施形態のガイド体15と同様であり、素子保持体14の遠位端に支持されたコイルバネ16と、コイルバネ16の遠位端に支持された先端チップ19とを有している。
 封止部材51は、素子保持体14の遠位側の端部内に嵌合された円柱状の封止本体部52を有している。封止本体部52の遠位側の端部は、遠位側になるにつれて外径が小さくなったテーパ形状になっており、その遠位端から、円柱状の軸部53が封止本体部52の軸心部に沿って延出している。
 軸部53及び封止本体部52は、ステンレスによって一体的に構成されており、封止本体部52は素子保持体14と一体的に結合されている。軸部53の先端部は、先端チップ19の軸心部内に挿入されて、先端チップ19とは一体的に結合されている。軸部53は、コイルバネ16より曲げ剛性の高いものが選択されることにより、コイルバネ16が大きく撓むことを抑制する。
 このような構成の本実施形態に係る血流計50でも、上記第1実施形態に係る血流計10と同様に、冠動脈の任意の位置における血流全体の質量流量の変化を高精度で検出することができる。
[第4実施形態]
 図15は、第4実施形態に係る血流計60の先端部の縦断面図である。この血流計60も、第3実施形態と同様に、シャフト12の内部を、コアワイヤ11に沿って同軸ケーブル41が挿通している。同軸ケーブル41は、上記第3実施形態の同軸ケーブル41と同様の構成になっている。
 本実施形態に係る血流計60は、同軸ケーブル41における遠位側の端部の構成及び流量センサ21の構成が異なること以外は、第3実施形態に係る血流計50と同様の構成になっている。
 図15に示されるように、シャフト12内を挿通した同軸ケーブル41は、可撓部材13の内部を通過して素子保持体14の内部に進入している。同軸ケーブル41は、素子保持体14における近位側の端部内において、外部導体41Cが外部被覆材41Dから剥き出しにされている。外部導体41Cは、外部被覆材41Dから比較的短い長さで剥き出しにされており、その遠位端から内部被覆材41Bが剥き出しにされている。剥き出しにされた内部被覆材41Bは、素子保持体14内を挿通しており、その遠位端が、素子保持体14における遠位端の近傍に位置している。内部被覆材41Bの遠位端からは、内部導体41Aが比較的短い長さで剥き出しにされている。
 図16は、素子保持体14の内部に設けられた流量センサ21の斜視図である。図16に示されるように、流量センサ21の計測素子22は、素子保持体14内を挿通する内部被覆材41Bの外周面上においてニッケル線が螺旋状に巻回されてコイル形状に形成されている。
 計測素子22は、内部被覆材41Bの外周面上において、隣り合うニッケル線同士が接触しないように隔てられて、例えば瞬間接着剤によって、内部被覆材41Bの外周面に接着されている。流量センサ21は、図12に示されるように、素子保持体14の内部に設けられた絶縁部材25によって、素子保持体14内に固定されている。
 内部被覆材41Bの遠位端から剥き出しにされた内部導体41Aは、計測素子22の一端に電気的に接続されている。また、素子保持体14の近位側の端部内において剥き出しにされた外部導体41Cは、計測素子22の他端に電気的に接続されている。
 内部導体41Aは、外周面上に設けられた計測素子22とともに、素子保持体14の内部に設けられた絶縁部材25によって、素子保持体14内に固定されている。
 このような構成の第4実施形態に係る血流計60でも、上記第3実施形態に係る血流計50と同様に、冠動脈の任意の位置における血流の質量流量の変化を高精度で検出することができる。
 また、計測素子22は、同軸ケーブル41の外部被覆材の外周面上に設けられていることから、計測素子22をコイル形状に保持するための特別な部材が不要になる。
[第5実施形態]
 第5実施形態に係る血流計は、第4実施形態の血流計60と同様に、シャフト12の内部には、コアワイヤ11に沿って同軸ケーブル41が挿通した構成になっているが、この同軸ケーブル41の遠位側端部の構成が上記第4実施形態とは異なっている。同軸ケーブル41の遠位側端部の構成以外の構成は、上記第4実施形態に係る血流計60と同様である。
 図17は、第5実施形態に係る血流計における流量センサ21の斜視図である。シャフト12内を挿通した同軸ケーブル41は、可撓部材13内を通過して、素子保持体14の内部に進入しており、その遠位端が、素子保持体14の遠位端に設けられた封止部材51の近傍に位置している。同軸ケーブル41の遠位端では、内部導体41Aが、内部被覆材41B、外部導体41C及び外部被覆材41Dから比較的短い長さで剥き出しにされている。
 流量センサ21の計測素子22は、素子保持体14内を挿通する外部被覆材41Dの外周面上において、ニッケル線が螺旋状に巻回されてコイル形状に構成されている。計測素子22は、外部被覆材41Dの外周面に、例えば瞬間接着剤によって接着されている。
 同軸ケーブル41の遠位端において剥き出しにされた内部導体41Aは、計測素子22の一端に電気的に接続されている。また、同軸ケーブル41には、素子保持体14の近位側の端部内において外部被覆材41Dの一部が除去されることによって開口部41Eが形成されており、開口部41Eから外部導体41Cが露出している。開口部41Eから露出した外部導体41Cは、計測素子22の他端に電気的に接続されている。
 内部導体41Aの外周面上に設けられた計測素子22は、素子保持体14の内部に設けられた絶縁部材25によって、素子保持体14内に固定されている。
 このような構成の第5実施形態に係る血流計でも、上記第4実施形態に係る血流計60と同様に、冠動脈の任意の位置における血流の質量流量の変化を高精度で検出することができる。
 また、計測素子22は、同軸ケーブル41から剥き出された内部被覆材の外周面上に設けられていることから、計測素子22をコイル形状に保持するための特別な部材が不要になる。
[変形例1]
 流量センサ21の計測素子22は、上記の実施形態に限定されるものではなく、発熱抵抗体によって構成された計測素子22が、素子保持体14の壁面における温度変化を全周にわたって検知できる構成になっていればよい。
 例えば、計測素子22として、ニッケル線以外の温度-抵抗特性を有する発熱抵抗体である金属線(線材)を用いても良い。金属線としては、例えば、電気抵抗率ρと、温度係数αとの積(ρ・α)が0.042(μΩ・cm/℃)である白金線が好適に用いられる。
 また、流量センサ21の計測素子22は、発熱抵抗体としてのニッケル線等を電鋳によって所定の形状に形成しても良い。さらに、計測素子22を、MEMS(Micro Electro Mechanical Systems)によって所定の形状に形成された抵抗発熱体で構成してもよい。
[変形例2]
 上記の各実施形態において、可撓部材13の内部に、血流の温度を検出する熱電対等の温度センサーを設ける構成としてもよい。温度センサは、可撓部材13の内部に流入する血流に接するように配置される。温度センサの出力は、シャフト12の内部に挿通された導線によって、演算制御部30の演算部32に与えられる。演算部32は、温度センサによって検出された血流の温度に基づいて、流量センサ21における計測素子22の電圧変化を補償する構成とされる。これにより、血流の温度が変化した場合にも、血流における質量流量の変化を、より一層高精度で測定することかできる。
[変形例3]
 上記の実施形態では、一定の直流電流を流量センサ21における計測素子22に供給する構成であったが、計測素子22に交流電流を供給する構成としてもよい。なお、生体器官加熱用カテーテルにおいては、100kHzの交流電流が安全とされているために、交流電流を計測素子22に供給する場合には、100kHzとすることが好ましい。
[変形例4]
 上記の実施形態では、演算部32は、計測素子22の電気抵抗値の変化に基づいて血流の流速を演算する構成であったが、このような構成に限らない。例えば、血流計10に、超音波等によって血管内腔面積を計測する計測手段を設けて、その計測手段によって得られる血管内腔面積と、流量センサ21によって得られる血流の単位面積当たりの質量流量(g/mm・s)とによって、血流の質量流量(g/s)を、以下の式に基づいて演算してもよい。
 質量流量(g/s)=[単位面積当たりを通過する単位時間当たりの質量流量(g/mm・s)]×[血管内腔面積(mm)]
 また、演算部32において血流の体積流量を求める構成としてもよい。この場合には、流量センサ21によって得られる血流の単位面積当たりの質量流量(g/mm・s)に、血液密度(g/ml)の逆数を乗じることによって体積流量が演算される。
10 血流計
11 コアワイヤ
12 シャフト
13 可撓部材
14 素子保持体
15 ガイド体
16 コイルバネ
17 先端芯材
20 測定装置
21 流量センサ
22 計測素子
23 芯材
24 貫通孔
25 絶縁部材
26 第1導線
26A 銅線
26B 絶縁被覆材
27 第2導線
27A 銅線
27B 絶縁被覆材
30 演算制御部
31 電源部
32 演算部
40 血流計
41 同軸ケーブル
41A 内部導体
41B 内部被覆材
41C 外部導体
41D 外部被覆材
41E 開口部
50 血流計
60 血流計

Claims (15)

  1.  可撓性を有し、血管内に挿入可能な中空のシャフトと、
     上記シャフトの遠位側において当該シャフトと同軸状態で設けられており、当該シャフトの外径以下の外径を有する管状の素子保持体と、
     温度-抵抗特性を有する発熱抵抗体によって構成された計測素子を有し、当該計測素子が上記素子保持体の周壁における温度変化を全周にわたって検知できる状態で上記素子保持体の内部に収容された流量センサと、
     上記素子保持体の内部において、上記流量センサと上記素子保持体との間に介在された熱伝導性の絶縁部材と、を有する血流計。
  2.  上記発熱抵抗体が線材であり、
     上記計測素子は、上記線材が螺旋状に巻回されて、隣り合う線材同士が隔てられて絶縁された状態のコイル形状になっており、上記素子保持体内に当該素子保持体の軸線方向に沿った状態で収容されている請求項1に記載の血流計。
  3.  上記線材が、絶縁被覆されていない金属線である請求項2に記載の血流計。
  4.  上記金属線がニッケル線又は白金線である請求項3に記載の血流計。
  5.  上記シャフトの外径が0.36mm以下である請求項1から4のいずれかに記載の血流計。
  6.  上記絶縁部材は、熱拡散率が0.06~0.21mm/sの樹脂である請求項1から5のいずれかに記載の血流計。
  7.  上記流量センサは絶縁性の芯材を有し、上記芯材の外周面上に上記計測素子が設けられている請求項2から6のいずれかに記載の血流計。
  8.  上記計測素子に電力を供給する一対の導線をさらに有し、
     上記一対の導線の一方が上記芯材の内部を挿通しており、
     当該導線と上記計測素子の一端とが電気的に接続され、他方の導線と上記計測素子の他端とが電気的に接続されている請求項7に記載の血流計。
  9.  上記計測素子に電力を供給する同軸ケーブルをさらに有し、
     当該同軸ケーブルの内部導体が、上記芯材の内部を挿通して上記計測素子の一端と電気的に接続され、上記計測素子の他端が上記同軸ケーブルの外部導体と電気的に接続されている請求項7に記載の血流計。
  10.  上記計測素子の各端部に接続される一対の導線をさらに有し、
     上記計測素子は、上記導線の両方またはいずれか一方の周囲に設けられている請求項2から6のいずれかに記載の血流計。
  11.  上記計測素子に電力を供給する同軸ケーブルをさらに有し、
     上記計測素子は、上記同軸ケーブルの外部被覆材、又は、上記同軸ケーブルから剥き出された内部被覆材の外周面上に設けられている請求項2から6のいずれかに記載の血流計。
  12.  上記シャフトの遠位端には、可撓性を有する円筒形状の可撓部材が同軸状態で設けられており、
     上記素子保持体が上記可撓部材の遠位端に同軸状態で設けられている請求項1から11のいずれかに記載の血流計。
  13.  上記素子保持体の遠位端に、可撓性を有する円筒形状のガイド体が同軸状態で設けられている請求項1から12のいずれかに記載の血流計。
  14.  上記ガイド体は、放射線不透過性の金属ワイヤによって構成されたコイルバネを有する請求項13に記載の血流計。
  15.  請求項1から14のいずれかに記載の血流計と、
     上記血流計の計測素子に電力を供給して、上記計測素子の温度変化に対応した抵抗変化に基づく電力情報から血流の質量流量に関する情報を取得する測定部と、を備えた測定装置。
PCT/JP2016/050029 2015-01-05 2016-01-04 血流計及び測定装置 WO2016111261A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680005045.5A CN107427244B (zh) 2015-01-05 2016-01-04 血流计及测定装置
JP2016568370A JP6880741B2 (ja) 2015-01-05 2016-01-04 血流計及び測定装置
ES16735000T ES2934139T3 (es) 2015-01-05 2016-01-04 Medidor de flujo sanguíneo y dispositivo de medición
US15/539,901 US11330990B2 (en) 2015-01-05 2016-01-04 Blood flow meter and measurement device
EP16735000.8A EP3243432B1 (en) 2015-01-05 2016-01-04 Blood flow meter and measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000474 2015-01-05
JP2015-000474 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016111261A1 true WO2016111261A1 (ja) 2016-07-14

Family

ID=56355949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050029 WO2016111261A1 (ja) 2015-01-05 2016-01-04 血流計及び測定装置

Country Status (6)

Country Link
US (1) US11330990B2 (ja)
EP (1) EP3243432B1 (ja)
JP (1) JP6880741B2 (ja)
CN (1) CN107427244B (ja)
ES (1) ES2934139T3 (ja)
WO (1) WO2016111261A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131309A (ja) * 2016-01-26 2017-08-03 Kddi株式会社 脈拍測定装置
US10980434B2 (en) 2016-01-28 2021-04-20 Kddi Corporation Pulsebeat measurement apparatus
CN115972643A (zh) * 2022-12-06 2023-04-18 河北晟泽管道制造集团有限公司 一种塑套钢保温管的生产装置及生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313475A (ja) * 1994-05-30 1995-12-05 Terumo Corp 流速センサプローブ
JPH11244248A (ja) * 1998-02-27 1999-09-14 Nippon Bxi Kk ガイドワイヤー型血流計
JP2000504249A (ja) * 1996-01-30 2000-04-11 ラディ・メディカル・システムズ・アクチェボラーグ 流量、圧力及び温度の複合センサ

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452740A (en) * 1966-05-31 1969-07-01 Us Catheter & Instr Corp Spring guide manipulator
US3726269A (en) * 1971-11-24 1973-04-10 W Webster Cardiovascular catheter for thermal dilution measurement
FR2311309A1 (fr) 1975-05-12 1976-12-10 Constantinesco Andre Sonde de mesure du debit d'un fluide a faibles fluctuations de temperature
US4240441A (en) * 1978-10-10 1980-12-23 The United States Of America As Represented By The Secretary Of The Navy Carotid thermodilution catheter
DE3760300D1 (en) * 1987-02-17 1989-08-17 Hewlett Packard Gmbh Method for manufacturing a measuring probe
DK161260C (da) * 1988-05-06 1991-12-30 Paul Verner Nielsen Flowmaaler
JP2866132B2 (ja) * 1990-01-29 1999-03-08 テルモ株式会社 流速センサプローブ
US6387052B1 (en) * 1991-01-29 2002-05-14 Edwards Lifesciences Corporation Thermodilution catheter having a safe, flexible heating element
US5682899A (en) * 1991-05-16 1997-11-04 Ami-Med Corporation Apparatus and method for continuous cardiac output monitoring
US5339816A (en) * 1991-10-23 1994-08-23 Aloka Co., Ltd. Ultrasonic doppler blood flow monitoring system
US5873835A (en) * 1993-04-29 1999-02-23 Scimed Life Systems, Inc. Intravascular pressure and flow sensor
US5617870A (en) * 1993-04-29 1997-04-08 Scimed Life Systems, Inc. Intravascular flow measurement system
US5467384A (en) * 1993-05-28 1995-11-14 U S West Advanced Technologies, Inc. Method and apparatus for providing power to a coaxial cable network
US5381798A (en) * 1993-11-02 1995-01-17 Quinton Instrument Company Spread spectrum telemetry of physiological signals
US5509424A (en) * 1994-01-28 1996-04-23 Aws Salim Nashef Continuous cardiac output monitoring system
US5493100A (en) * 1994-12-28 1996-02-20 Pacesetter, Inc. Thermistor flow sensor and related method
JP3696682B2 (ja) 1996-02-09 2005-09-21 テルモ株式会社 流速測定用センサプローブ
US6986744B1 (en) * 1999-02-02 2006-01-17 Transonic Systems, Inc. Method and apparatus for determining blood flow during a vascular corrective procedure
US6672172B2 (en) * 2000-01-31 2004-01-06 Radi Medical Systems Ab Triggered flow measurement
JP4138583B2 (ja) * 2002-08-08 2008-08-27 テルモ株式会社 ガイドワイヤ
US20070167866A1 (en) * 2005-11-29 2007-07-19 Lopez George A Cardiac output measurement devices and methods
US10028783B2 (en) * 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
WO2009082716A1 (en) * 2007-12-21 2009-07-02 Microvention, Inc. System and method for locating detachment zone of a detachable implant
KR101634570B1 (ko) * 2009-05-28 2016-06-29 코닌클리케 필립스 엔.브이. 혈관에 대한 튜브의 원위 단부의 위치를 모니터링하기 위한 장치
JP5899200B2 (ja) * 2010-04-14 2016-04-06 マイクロベンション インコーポレイテッド インプラント送達デバイス
US8792962B2 (en) * 2010-12-30 2014-07-29 Biosense Webster, Inc. Catheter with single axial sensors
US20140058277A1 (en) * 2011-03-09 2014-02-27 Nanyang Polytechnic Blood flow rate measurement system
JP6629983B2 (ja) * 2016-02-04 2020-01-15 メディリア アクチェンゲゼルシャフト センサ配列体を備えるカテーテル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313475A (ja) * 1994-05-30 1995-12-05 Terumo Corp 流速センサプローブ
JP2000504249A (ja) * 1996-01-30 2000-04-11 ラディ・メディカル・システムズ・アクチェボラーグ 流量、圧力及び温度の複合センサ
JPH11244248A (ja) * 1998-02-27 1999-09-14 Nippon Bxi Kk ガイドワイヤー型血流計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3243432A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131309A (ja) * 2016-01-26 2017-08-03 Kddi株式会社 脈拍測定装置
US10952626B2 (en) 2016-01-26 2021-03-23 Kddi Corporation Pulsebeat measurement apparatus
US10980434B2 (en) 2016-01-28 2021-04-20 Kddi Corporation Pulsebeat measurement apparatus
CN115972643A (zh) * 2022-12-06 2023-04-18 河北晟泽管道制造集团有限公司 一种塑套钢保温管的生产装置及生产工艺
CN115972643B (zh) * 2022-12-06 2023-07-21 河北晟泽管道制造集团有限公司 一种塑套钢保温管的生产装置及生产工艺

Also Published As

Publication number Publication date
EP3243432B1 (en) 2022-10-12
EP3243432A4 (en) 2018-08-22
JP6880741B2 (ja) 2021-06-02
EP3243432A1 (en) 2017-11-15
US11330990B2 (en) 2022-05-17
CN107427244B (zh) 2021-05-14
CN107427244A (zh) 2017-12-01
ES2934139T3 (es) 2023-02-17
US20180263508A1 (en) 2018-09-20
JPWO2016111261A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
US5873835A (en) Intravascular pressure and flow sensor
US6551250B2 (en) Transit time thermodilution guidewire system for measuring coronary flow velocity
US4217910A (en) Internal jugular and left ventricular thermodilution catheter
US3359974A (en) Device for the thermal determination of cardiac volumetric performance
US3661148A (en) Induction type artery gage
US6926674B2 (en) Combined pressure-volume sensor and guide wire assembly
JP5626689B2 (ja) 生体埋め込み型流量センサ
WO2016111261A1 (ja) 血流計及び測定装置
EP2664275A2 (en) Guide wire with position sensing electrodes for localization via measurement of bioimpedance
JP6341616B2 (ja) 電熱ヒータおよびその製造方法
US20230172469A1 (en) Sensor Control Circuit
US10765377B2 (en) Heartbeat-signal detecting device
US3838683A (en) Self-contained electromagnetic flow sensor
US3805768A (en) Electromagnetic blood flow probe
WO2004007014A1 (en) Transmit time thermodilution guidewire system for measuring coronary blood flow velocity
US3773037A (en) Simplified external field electromagnetic catheter flow meter
JP2013501935A (ja) 定温熱伝導体式アネモメーター
JPH11244248A (ja) ガイドワイヤー型血流計
US20180184981A1 (en) Intravascular devices systems and methods with a solid core proximal section and a slotted tubular distal section
JP2621740B2 (ja) 医療用カテーテル式流量計
JP7027241B2 (ja) 渦電流検知に基づいた機械力センサ
JP2016217885A (ja) 温度測定装置、熱伝導率測定装置および熱伝導率測定方法
JP6332655B2 (ja) 熱線流速計およびそれを用いた血流速計
JPH09215666A (ja) 流速測定用センサプローブ
JP6604709B2 (ja) 計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016735000

Country of ref document: EP