WO2016111130A1 - Polymer blend composition, flexible metal laminate, and flexible printed wiring board - Google Patents

Polymer blend composition, flexible metal laminate, and flexible printed wiring board Download PDF

Info

Publication number
WO2016111130A1
WO2016111130A1 PCT/JP2015/085183 JP2015085183W WO2016111130A1 WO 2016111130 A1 WO2016111130 A1 WO 2016111130A1 JP 2015085183 W JP2015085183 W JP 2015085183W WO 2016111130 A1 WO2016111130 A1 WO 2016111130A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
general formula
film
polymer blend
metal foil
Prior art date
Application number
PCT/JP2015/085183
Other languages
French (fr)
Japanese (ja)
Inventor
佑 山本
智晴 栗田
翔太 井上
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016568309A priority Critical patent/JP6589887B2/en
Publication of WO2016111130A1 publication Critical patent/WO2016111130A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polymer blend composition, a film using the same, a flexible metal laminate, and a flexible printed board. More specifically, in addition to dimensional stability (low warpage, dimensional change), a polymer blend composition suitable for use in the fields of electrical and electronic equipment that has both adhesiveness and transparency, a film using the same, and a flexible metal laminate And a flexible printed circuit board.
  • the “flexible metal laminate” is a laminate formed of a metal foil and a film layer (resin layer), and is a laminate useful for manufacturing a flexible printed circuit board, for example.
  • the “flexible printed circuit board” can be manufactured by a conventionally known method such as a subtractive method using a flexible metal laminate, for example, and a conductor circuit may be partially or entirely covered by a coverlay film.
  • FPC flexible circuit boards
  • TAB tape automated bonding
  • COF chip-on-flexible board
  • Polyimide resin is widely used as a resin film for electronic materials because of its excellent insulation reliability in addition to heat resistance and chemical resistance.
  • the polyimide resin is insoluble and infusible, it is necessary to form a film by subjecting the solvent-soluble polyimide precursor to high temperature treatment. As a result, the problem is that the film is colored, the transparency is lowered, and the workability is poor because the procedure is complicated.
  • polyamideimide resin is excellent in solubility and heat-treated at a relatively low temperature to obtain a film having excellent transparency. Therefore, as an alternative material for polyimide resin, an electronic material, particularly a resin film for a flexible metal laminate for COF It is used as
  • a flexible metal laminate for COF when a driver IC is mounted on a substrate, positioning is often performed by irradiating visible light with a wavelength of 400 to 800 nm from the resin film side and performing image recognition processing with a CCD camera or the like.
  • the resin film is often made of a material having a double bond.
  • the wavelength range of 600 to 700 nm is generally regarded as particularly important. For this reason, when the light transmittance of the resin film after etching of the flexible metal laminate is low or when the haze is high, the positional accuracy is lowered, and it becomes impossible to cope with the high density and fine pitch of the wiring pattern.
  • a resin film has a coefficient of linear expansion (CTE) larger than that of metal.
  • CTE coefficient of linear expansion
  • the heat applied when used as an electronic material expands and contracts as a metal laminate, causing a dimensional change.
  • the wires may come into contact with each other and cause a short circuit.
  • the dimensions change it may be difficult to form the fine pattern circuit itself. Therefore, it is desirable that the CTE of the metal foil and the resin film is equally low. From the above, various attempts have been made to satisfy high transparency, high adhesive strength, and low CTE.
  • Patent Document 1 there is a method for producing a metal laminate having a good balance of heat resistance, adhesion, and the like by applying a polyamide imide resin having a high glass transition temperature (Tg) and low CTE onto a copper foil and drying.
  • Tg glass transition temperature
  • Patent Document 1 since the copper foil with a large surface roughness was used, there existed a problem that the resin film surface after etching a copper foil became rough and visibility deteriorated by irregular reflection of light. Also, the patternability at a narrow pitch is inferior due to the rough surface roughness of the copper foil, and the copper foil with a high surface roughness shows a high value, but the adhesive strength and patternability can be satisfied at the same time. Not.
  • Patent Document 2 a flexible metal laminate having a polyimide insulating layer composed of a plurality of layers on a copper foil by applying a polyimide precursor resin solution to a relatively mirror-finished copper foil having a low surface roughness, followed by drying and curing.
  • this metal laminate has insufficient bare chip mountability and adhesion strength to copper foil with high glossiness and reflectivity, and is further dried and imidized at a high temperature after application of the polyimide precursor resin solution. Therefore, it is inferior in workability.
  • copper foil since it heat-processes at high temperature, copper foil itself recrystallizes and there exists a problem that it is not suitable for the use for which fine pitch patterning property is requested
  • Patent Document 3 discloses a technique for improving adhesive strength by laminating two layers of polyamideimide resin on a relatively mirror-finished copper foil.
  • Patent Document 3 has a problem that the process becomes complicated by laminating two layers, and the productivity is poor. Further, since the thickness increases, there is a problem that it is difficult to reduce the size.
  • an object of the present invention is to provide a polymer blend composition excellent in transparency, adhesiveness, and dimensional stability by blending two kinds of polyamideimide resins as specific components. Furthermore, it is providing the film containing the said polymer blend composition, a flexible metal laminated body, and a flexible printed circuit board.
  • the present invention has the following configuration.
  • a polymer blend composition comprising a polyamideimide resin having two or more components and satisfying the following requirements (1) and (2).
  • a polyamideimide resin (resin ⁇ ) having a composition different from that of the resin ⁇ containing the following general formula (3) as a structural unit is an essential component.
  • R 4 and R 5 may be the same or different and each represents hydrogen, or an alkyl group or alkoxy group having 1 to 4 carbon atoms.
  • Resin ⁇ contains trimellitic anhydride as an acid component, and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride It is preferable that at least one kind selected from the group consisting of the above-mentioned products and o-tolidine as the amine component.
  • the flexible metal laminate preferably has a metal foil Rz of 1.2 ⁇ m or less, a 60 ° gloss of 200 or more, and an adhesive strength between the metal foil and the film of 7.0 N / cm or more.
  • the flexible metal laminate preferably has a light transmittance at a wavelength of 600 nm of 55% or more, a haze of 20% or less, and a linear expansion coefficient in the film portion after the metal foil etching.
  • the amount of film distortion at the glass transition temperature in the TMA method is preferably 200 ⁇ m or less.
  • a flexible printed board containing the flexible metal laminate A flexible printed board containing the flexible metal laminate.
  • the present invention can provide a polymer blend composition excellent in adhesiveness, transparency, and dimensional stability, and a film, a flexible metal laminate, and a flexible printed board containing the polymer blend composition.
  • a material that can be adapted to fine pitch requirements that will be further developed in the future for COF applications and the like can be obtained.
  • the polymer blend composition of the present invention is a composition containing two or more components of polyamideimide resin and satisfying the requirements (1) and (2). Two or more components of the polyamideimide resin are preferably mixed uniformly.
  • the polyamideimide resin can be obtained by uniformly mixing two or more types of polyamideimide resin varnish dissolved in an organic solvent and removing the solvent.
  • Polyamideimide resin ( ⁇ ) having a diphenyl ether skeleton and a phenylene skeleton contributes to transparency and adhesiveness. Further, the polyamideimide resin ( ⁇ ) having a biphenyl skeleton, particularly an o-tolidine skeleton, contributes to dimensional stability (low CTE). In the present invention, a polymer blend composition excellent in transparency, adhesiveness and dimensional stability can be obtained by blending these polyamideimide resins.
  • a polymer blend composition containing two or more components of a resin is compatible with these composition ratios in all practical areas below the thermal decomposition temperature, and incompatible in all areas.
  • incompatible systems and partially compatible systems that are compatible in a certain region.
  • partially miscible systems that induce reactions such as nucleation type and spinodal decomposition type depending on the condition of the phase separation state.
  • the uniform polymer blend composition in the present invention refers to a state in which there is no macro phase separation to the extent that scattering by visible light does not occur. When macro phase separation occurs, for example, in the case of a film, a significant decrease in transparency can be confirmed.
  • the requirement (1) includes a polyamide-imide resin (hereinafter also referred to as a resin ⁇ ) containing the general formula (1) and the general formula (2) as structural units as an essential component.
  • a polyamide-imide resin containing the basic structure represented by the general formula (1) and the general formula (2) as a repeating unit.
  • R 1 , R 2 and R 3 may be the same or different, and each represents hydrogen, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Show.
  • the carbon number is preferably 1 or more and 3 or less, more preferably 2 or less. Particularly preferably, R 1 , R 2 and R 3 are all hydrogen.
  • trimellitic anhydride is essential as the acid component constituting the resin ⁇ .
  • acid components other than trimellitic anhydride include pyromellitic anhydride, phthalic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic anhydride, or 3,3 ′, 4,4′- Biphenyltetracarboxylic acid anhydride is mentioned, These can be used alone or in combination of two or more. Of these, pyromellitic acid anhydride and phthalic acid anhydride are preferable.
  • trimellitic acid trimellitic acid, pyromellitic acid, phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, 3 as long as the object of the present invention is not impaired.
  • amine component constituting the resin ⁇ 4,4′-diaminodiphenyl ether, p-phenylenediamine, 2,4-diaminotoluene, or diisocyanate corresponding to these, or a mixture of two or more of them should be used. is required.
  • the resin ⁇ having the general formula (1) and the general formula (2) and the resin ⁇ having the general formula (3) are blended to maintain the dimensional stability (low CTE) of the film.
  • transparency can be improved.
  • the reason for the improved adhesiveness is that the ether bond of the general formula (1) provides flexibility, and the anchor is that the polymer blend composition easily enters fine irregularities on the surface even with a relatively mirror-finished metal foil. It is conceivable that it contributes to the improvement of the effect and the affinity with the metal foil. Moreover, it is thought that the characteristic that the ether bond of General formula (1) is hard to carry out heat deterioration contributes to the improvement of transparency.
  • the structural unit of the general formula (1) contained in the resin ⁇ is preferably 55 mol% or more, more preferably 60 mol% or more, further preferably 65 mol% or more, preferably 90 mol% or less, and preferably 85 mol% or less. More preferred is 80 mol% or less.
  • the structural unit of the general formula (2) contained in the resin ⁇ is preferably 10 mol% or more, more preferably 15 mol% or more, further preferably 20 mol% or more, preferably 45 mol% or less, and 40 mol%. The following is more preferable, and 35 mol% or less is more preferable. By setting it as the said range, the improvement effect of adhesiveness and transparency and the curvature prevention effect at the time of making a film can be anticipated.
  • the requirement (2) includes a polyamideimide resin (hereinafter, also referred to as a resin ⁇ ) having a composition different from that of the resin ⁇ including the general formula (3) as a structural unit as an essential component.
  • a polyamideimide resin containing the basic structure represented by the general formula (3) as a repeating unit is preferable.
  • R 4 and R 5 may be the same or different and each represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group.
  • the carbon number is preferably 1 or more and 3 or less, more preferably 2 or less. Particularly preferably, R 4 and R 5 both have 1 carbon.
  • the structural unit of the general formula (3) contained in the resin ⁇ is preferably 60 mol% or more, more preferably 65 mol% or more, and further preferably 70 mol% or more.
  • the upper limit is not particularly limited, and may be 100 mol%. If it is less than 60 mol%, low CTE characteristics are not sufficiently exhibited, and use as an insulating material for electrical and electronic equipment such as flexible printed wiring boards tends to be difficult.
  • Trimellitic anhydride is essential as the acid component constituting the resin ⁇ .
  • Acid components other than trimellitic anhydride include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, or pyromellitic An acid anhydride is mentioned, These can be used individually or in combination of 2 or more types. Of these, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride are preferable.
  • trimellitic acid, pyromellitic acid, phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, 3,3 ′, 4 are not limited as long as the object of the present invention is impaired.
  • amine component constituting the resin ⁇ o-tolidine, 4,4′-diaminobiphenyl, 2,2′-dimethylbiphenyl-4,4′-diamine, o-dianisidine, or a corresponding diisocyanate alone, Alternatively, a mixture of two or more kinds can be used.
  • 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 3,3 ′ may be used as an amine component within the range not impairing the object of the present invention.
  • a particularly preferred combination is a polyamideimide resin mainly composed of repeating units selected from the following monomer components.
  • ⁇ Acid component Trimellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • ⁇ Amine component o-Tolidine, 2,4-tolylenediamine, or the corresponding diisocyanate.
  • Resin ⁇ and resin ⁇ used in the present invention can be synthesized (polymerized) by an ordinary method.
  • an isocyanate method there are an isocyanate method, an acid chloride method, a low temperature solution polymerization method, a room temperature solution polymerization method, etc., but from the viewpoint of production cost, a particularly preferable production method is an isocyanate method in which a polymer varnish can be obtained by a decarboxylation reaction. .
  • Solvents used for polymerization include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, 1,3-dimethyl-2-imidazolidinone Solvents, sulfur solvents such as dimethyl sulfoxide and sulfolane, ketone solvents such as cyclohexanone and methyl ethyl ketone, nitro solvents such as nitrobenzene and nitroethane, ether solvents such as diglyme and tetrahydrofuran, nitrile solvents such as acetonitrile and propionitrile And ester solvents such as ⁇ -butyllactone and ⁇ -valerolactone can be used alone or as a mixed solvent.
  • amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylure
  • the content of the resin ⁇ is preferably 10 to 50% by weight, more preferably 15 to 50% by weight, and still more preferably 20 to 50% by weight based on the total weight of the polymer blend composition. %.
  • the content of the resin ⁇ exceeds 50% by weight, the CTE increases, and it tends to be difficult to use as an insulating material for electric and electronic devices such as flexible printed wiring boards.
  • the content of the resin ⁇ is less than 10% by weight, characteristics inherent to the polymer including the structure represented by the general formula (1), particularly characteristics such as adhesive strength and transparency, tend not to be maintained.
  • the polymer blend composition of the present invention was directly laminated on a metal foil having a 10-point average roughness (Rz) of 1.2 ⁇ m or less and a 60 ° gloss of 200 or more without using an adhesive, and IPC-FC241 ( According to IPC-TM-650, 2.4.9 (A)), the adhesive strength between the metal foil and the polymer blend composition layer (film layer) when a circuit pattern is formed by the subtractive method is 7.0 N / cm. It is preferable to have the above.
  • the molecular weight of the polyamideimide resin ⁇ and the resin ⁇ is a molecular weight corresponding to 0.1 to 2.8 dl / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dl) with a logarithmic viscosity at 30 ° C. And more preferably those having a molecular weight corresponding to 0.3 to 2.5 dl / g. If the logarithmic viscosity is less than 0.1 dl / g, mechanical properties may be insufficient when formed into a molded product such as a film, and if it exceeds 2.8 dl / g, the solution viscosity becomes high. May be difficult.
  • the vertical viscosity at 25 ° C. is in the range of 50 to 1000 dPa ⁇ s. When the viscosity is out of the above range, the coatability may be lowered.
  • the concentration of the polyamideimide resin ⁇ and the resin ⁇ solution can be selected from a wide range, but is generally preferably about 5 to 40% by weight, more preferably about 8 to 30% by weight. preferable. When the concentration is out of the above range, drying efficiency is deteriorated, and it is feared that formation of a smooth surface becomes difficult and a necessary amount of heat increases.
  • a preferred solvent for the polyamideimide resin solution N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, sulfolane, dimethylsulfone, and the like are used as dilution solvents after polymerization because of coating properties and the like.
  • Oxides, ⁇ -butyrolactone, cyclohexanone, cyclopentanone and the like are preferable, and N, N-dimethylacetamide and N-methyl-2-pyrrolidone are particularly preferable.
  • Some of these can be replaced with hydrocarbon organic solvents such as toluene and xylene, ether organic solvents such as diglyme, triglyme and tetrahydrofuran, and ketone organic solvents such as methyl ethyl ketone and methyl isobutyl ketone.
  • these solvents can also be applied as solvents during polymerization, the polymerization solution can be applied as it is, so that a resin solution having excellent processability can be easily obtained.
  • the polymer blend composition of the present invention may be added to the above-described polymer blend composition for the purpose of improving various properties of the flexible metal laminate or flexible printed circuit board, such as mechanical properties, electrical properties, slipperiness, and flame retardancy.
  • Other resins, organic compounds, and inorganic compounds may be mixed or reacted to be used in combination.
  • lubricant silicon, talc, silicone, etc.
  • adhesion promoter flame retardant (phosphorus, triazine, aluminum hydroxide, etc.), stabilizer (antioxidant, UV absorber, polymerization inhibitor, etc.), plating activity Agents, organic and inorganic fillers (talc, titanium oxide, silica, fluorine polymer fine particles, pigments, dyes, calcium carbide, etc.), silicone compounds, fluorine compounds, isocyanate compounds, blocked isocyanate compounds, acrylic resins, urethanes Resin, polyester resin, polyamide resin, epoxy resin, phenolic resin and organic compounds, or these curing agents, silicon oxide, titanium oxide, calcium carbonate, iron oxide and other inorganic compounds do not hinder the purpose of this invention Can be used together in a range.
  • a catalyst for polyimide formation such as aliphatic tertiary amine, aromatic tertiary amine, heterocyclic tertiary amine, aliphatic acid anhydride, aromatic acid anhydride, hydroxy compound, etc. It may be added.
  • triethylamine, triethylenediamine, dimethylaniline, pyridine, picoline, isoquinoline, imidazole, undecene, hydroxyacetophenone and the like are preferable, and pyridine compound, imidazole compound and undecene compound are particularly preferable.
  • benzimidazole, triazole, 4 -Pyridinemethanol, 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are preferred, and 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are more preferred.
  • the film of the present invention is a film containing a polymer blend composition, and can be produced using the polymer blend composition solution (varnish). Applying the polymer blend composition solution (varnish) on a support such as a metal foil, endless belt, drum, carrier film, etc., drying the coating, and optionally heat-treating the film after peeling off the support. It is formed by.
  • a conventionally known method can be applied, for example, roll coater, knife coater, doctor, blade coater, gravure coater, die coater, reverse coater. It can apply
  • the drying conditions after casting the polymer blend composition solution are not particularly limited, but in general, the polymer blend composition solution was initially dried at a temperature 70 to 130 ° C. lower than the boiling point (Tb (° C.)) of the solvent used in the polymer blend composition solution. Thereafter, secondary drying (heat treatment) is preferably performed at a temperature near or above the boiling point of the solvent.
  • Tb boiling point
  • warping may occur in the flexible metal laminate on which the film is laminated, and warping of the flexible printed circuit board obtained by processing the circuit may be increased.
  • the drying temperature is lower than (Tb-130) ° C.
  • the initial drying temperature varies depending on the type of solvent, but is generally about 60 to 150 ° C., preferably about 80 to 120 ° C.
  • the time required for the initial drying is generally an effective time for the solvent remaining rate in the coating film to be about 5 to 40% by weight under the above temperature conditions, but generally about 1 to 30 minutes, Especially about 2 to 15 minutes.
  • the secondary drying may be performed at a temperature near or above the boiling point of the solvent, but is generally 150 to 500 ° C., preferably 200 to 400 ° C.
  • the time required for the secondary drying is generally an effective time for the solvent remaining amount in the coating film to be 1% by weight or less under the above-mentioned temperature conditions. is there.
  • initial drying and secondary drying may be performed under an inert gas atmosphere or under reduced pressure.
  • the inert gas include nitrogen, carbon dioxide, helium, and argon, but it is preferable to use easily available nitrogen.
  • the reaction is preferably performed under a pressure of about 10 ⁇ 5 to 10 3 Pa, preferably about 10 ⁇ 1 to 200 Pa.
  • both the initial drying and heat treatment methods are not particularly limited, but can be performed by a conventionally known method such as a roll support method or a floating method. Moreover, continuous heat treatment in a heating furnace such as a tenter type is also possible.
  • the film containing the polymer blend composition of the present invention thus obtained can obtain a tough film with mechanical properties, that is, high strength and high elongation, without impairing the low CTE property of the resin ⁇ .
  • the thickness of the film can be selected from a wide range, it is generally about 5 to 100 ⁇ m, preferably about 10 to 50 ⁇ m, after drying. When the thickness is less than 5 ⁇ m, the mechanical properties such as film strength and handling properties are inferior. On the other hand, when the thickness exceeds 100 ⁇ m, the properties such as flexibility and workability (drying property, coating property) are deteriorated. There are things to do.
  • surface treatment may be performed as necessary.
  • surface treatment such as hydrolysis, corona discharge, low temperature plasma, physical roughening, and easy adhesion coating treatment can be performed.
  • the flexible metal laminate of the present invention is preferably a two-layer metal laminate in which the film and the metal foil are directly laminated without using an adhesive.
  • Examples of the production method include a laminating method and a casting method, and are not particularly limited. However, it is preferable to produce by a casting method that can be produced at low cost and processability.
  • the thickness of the metal foil is not particularly limited, but a metal foil of 1 to 50 ⁇ m, preferably 3 to 35 ⁇ m, more preferably 3 to 18 ⁇ m can be suitably used.
  • a metal foil of 1 to 50 ⁇ m, preferably 3 to 35 ⁇ m, more preferably 3 to 18 ⁇ m can be suitably used.
  • the thickness of the metal foil is less than 1 ⁇ m, the yield at the time of conveyance is lowered, and when it is thicker than 50 ⁇ m, the winding as a long object is poor and the winding property is deteriorated, and the yield may be lowered.
  • a metal foil having a 10-point average roughness Rz of 1.2 ⁇ m or less, preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less can be suitably used. If Rz exceeds 1.2 ⁇ m, the unevenness of the copper foil is transferred to the resin film, the transparency of the resin film after etching is lowered, and sufficient positioning accuracy may not be ensured.
  • the glossiness of the metal foil is 200 or more, preferably 300 or more, more preferably 400 or more.
  • the glossiness is measured according to JIS-Z8741-1997, and irradiated at an incident angle of 60 °, and the reflected light at 60 ° is measured.
  • the flexible metal laminate of the present invention is preferably formed by directly applying a solution of the polymer blend composition to a metal foil, drying the coating film, and optionally heat-treating it.
  • a metal foil copper foil, aluminum foil, steel foil, nickel foil, etc. can be used, composite metal foil that combines these, zinc, chromium, nickel, cobalt, molybdenum compounds, or alloys thereof, Metal foils treated with other metals can also be used.
  • a more preferable metal foil is a copper foil, but a commercially available electrolytic foil or a rolled foil can be used as it is if the above-mentioned characteristics are satisfied.
  • the amount of strain is the amount of change in the film caused by the release of internal stress when the flexible metal laminate is exposed to a temperature higher than the glass transition temperature, and the amount of strain is preferably 200 ⁇ m or less. If it exceeds 200 ⁇ m, the amount of change is large, the dimensional change of the flexible metal laminate is large, and the positional accuracy during mounting may be insufficient.
  • the flexible metal laminate of the present invention thus obtained has high mechanical properties of the insulating resin layer, that is, high strength, high strength, without impairing the high transparency, high adhesive strength of the resin ⁇ , and the low CTE of the resin ⁇ . It is possible to obtain a flexible metal laminate in which an elongation and tough film is laminated.
  • the adhesive strength between the metal foil and the film in the flexible metal laminate is preferably 7.0 N / cm or more, more preferably 7.5 N / cm or more, and still more preferably 8.0 N / cm or more. If it is less than 7.0 N / cm, the wiring may be peeled off from the substrate due to repeated shrinkage and expansion due to heat generated when used as an electronic component, making it difficult to cope with fine pitch. is there. Therefore, the higher the adhesive strength, the better, but 10.0 N / cm or more is sufficient.
  • the light transmittance is a characteristic related to the positioning accuracy when the driver is mounted, and the parallel light transmittance at 600 nm is defined as the light transmittance.
  • the light transmittance in the film portion after etching the metal foil of the flexible metal laminate is preferably 60% or more, more preferably 65% or more, and still more preferably 70% or more. If it is less than 60%, the positioning accuracy at the time of mounting described above may be lowered, and it may be difficult to cope with fine pitch.
  • haze is also a characteristic related to positioning accuracy, similar to light transmittance.
  • Haze is an index of turbidity, and the higher the haze, the lower the transparency of the object and the lower the transmittance.
  • the haze in the film portion after etching the metal foil of the flexible metal laminate is preferably 20% or less, more preferably 15% or less, and still more preferably 13% or less.
  • the coefficient of linear expansion (CTE) in the film portion after etching the metal foil of the flexible metal laminate is preferably 10 to 25 ppm / K, more preferably 12 to 25 ppm / K, and still more preferably 15 to 25 ppm / K. .
  • the flexible metal laminate of the present invention is excellent in transparency by specifying the surface characteristics of the copper foil. Furthermore, it is excellent in adhesive force by blending two kinds of polyamideimide resins whose resin composition is specified, and is excellent in dimensional stability and workability by specifying the blend ratio. Therefore, as an electronic material, it can be suitably used not only for FPC, flat cable, and TAB applications but also for COF film carrier tapes that have high needs for miniaturization and high performance and fine wiring pitches.
  • V1 represents the solution viscosity measured with an Ubbelohde type viscosity tube
  • V2 represents the solvent viscosity measured with an Ubbelohde type viscosity tube
  • V1 and V2 represent a polymer solution and a solvent (N-methyl-2-pyrrolidone).
  • V3 is the polymer concentration (g / dl).
  • ⁇ Glass transition temperature and strain> TMA Thermo-mechanical analyzer / manufactured by Seiko Instruments Inc.
  • the glass transition temperature was defined as the intersection of the base line before the endothermic peak and the tangent toward the endothermic peak in the endothermic curve at elevated temperature.
  • the amount of strain was calculated from the inflection point of the baseline and the change length of the endothermic peak point.
  • the sample used the film part after etching the metal foil of the flexible metal laminated body obtained by the experiment example.
  • Load 5g Sample size: 4 (width) x 20 (length) mm
  • Temperature increase rate 10 ° C / min
  • Atmosphere Nitrogen
  • the glossiness of the metal foil was in accordance with the specular glossiness measuring method described in JIS Z8741-1997, and the intensity of light reflected at a reflection angle of 60 ° was measured by irradiating a light source at an incident angle of 60 °.
  • the incident angle here is 0 ° in the direction perpendicular to the light irradiation surface. Measurement was performed using a VG200 gloss meter manufactured by Nippon Denshoku Co., Ltd. The measurement measured the resin application surface of metal foil.
  • a circuit pattern was prepared by a subtractive method in accordance with IPC-FC241 (IPC-TM-650, 2.4.9 (A)) from the flexible metal foil laminate sample obtained in the experimental example, and the metal foil and film (polymer The adhesive strength with the blend composition layer) was measured.
  • the measuring instrument was measured using a spectrophotometer V650 manufactured by JASCO Corporation. In order to measure the parallel light transmittance, an integrating sphere unit that receives diffused light was not used, and measurement was performed in a standard state. The measurement range was 300 to 800 nm, and the value at 600 nm was read.
  • the measuring instrument was NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the measurement was performed according to JIS-K7136.
  • the scattered light transmittance divided by the total light transmittance was expressed as a percentage.
  • Example 7 As shown in Tables 1 and 2, a metal laminate was obtained under the same conditions as in Experimental Example 1 except that the resin composition of the resin ⁇ was changed. By changing the composition of the resin ⁇ , the properties of the metal laminate were greatly deteriorated. From this, it can be seen that the composition of the resin ⁇ is important in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The purpose of the present invention is to provide a polymer blend composition which is excellent in terms of adhesiveness, transparency, and dimensional stability. In particular, provided is a material capable of accommodating finer-pitch requests which will become severer in future in COF and other applications. The polymer blend composition is characterized by comprising two or more polyamide-imide resins and by satisfying the following requirements (1) and (2). (1) To include, as an essential component, a polyamide-imide resin (resin α) comprising general formula (1) and general formula (2) as constituent units, the molar ratio of general formula (1) to general formula (2) in the resin α, (general formula (1))/(general formula (2)), being 55/45 to 90/10 (2) To include, as an essential component, a polyamide-imide resin (resin β) which comprises general formula (3) as a constituent unit and which differs in makeup from the resin α.

Description

ポリマーブレンド組成物、フレキシブル金属積層体およびフレキシブルプリント基板Polymer blend composition, flexible metal laminate and flexible printed circuit board
 本発明は、ポリマーブレンド組成物、それを用いたフィルム、フレキシブル金属積層体、およびフレキシブルプリント基板に関するものである。更に詳しくは寸法安定性(低反り、寸法変化)に加え、接着性と透明性を両立した電気、電子機器分野で好適に利用されるポリマーブレンド組成物、それを用いたフィルム、フレキシブル金属積層体、およびフレキシブルプリント基板に関するものである。 The present invention relates to a polymer blend composition, a film using the same, a flexible metal laminate, and a flexible printed board. More specifically, in addition to dimensional stability (low warpage, dimensional change), a polymer blend composition suitable for use in the fields of electrical and electronic equipment that has both adhesiveness and transparency, a film using the same, and a flexible metal laminate And a flexible printed circuit board.
 本発明において、「フレキシブル金属積層体」とは、金属箔とフィルム層(樹脂層)とから形成された積層体であって、例えば、フレキシブルプリント基板等の製造に有用な積層体である。又、「フレキシブルプリント基板」とは、例えば、フレキシブル金属積層体を用いてサブトラクティブ法等の従来公知の方法により製造でき、必要に応じて、導体回路を部分的、或いは全面的にカバーレイフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル回路板(FPC)、フラットケーブル、テープオートメーティツドボンディング(TAB)用やチップオンフレキシブル基板(COF)の回路板などを総称している。 In the present invention, the “flexible metal laminate” is a laminate formed of a metal foil and a film layer (resin layer), and is a laminate useful for manufacturing a flexible printed circuit board, for example. In addition, the “flexible printed circuit board” can be manufactured by a conventionally known method such as a subtractive method using a flexible metal laminate, for example, and a conductor circuit may be partially or entirely covered by a coverlay film. And so-called flexible circuit boards (FPC), flat cables, tape automated bonding (TAB), chip-on-flexible board (COF) circuit boards, and the like, which are coated with screen printing ink or the like.
 ポリイミド樹脂は耐熱性、耐薬品性に加え、絶縁信頼性に優れている点から電子材料の樹脂フィルムとして広く利用されている。しかし、ポリイミド樹脂は不溶不融なため、溶剤可溶なポリイミド前駆体を高温処理することでフィルム化する必要がある。この結果、フィルムが着色し、透明性が低下すること、また手順が煩雑なため加工性が悪いことが課題としてある。一方、ポリアミドイミド樹脂は溶解性に優れ、比較的低温で熱処理し、透明性に優れたフィルムが得られることから、ポリイミド樹脂の代替材料として、電子材料、特にCOF用フレキシブル金属積層体の樹脂フィルムとして使用されている。 Polyimide resin is widely used as a resin film for electronic materials because of its excellent insulation reliability in addition to heat resistance and chemical resistance. However, since the polyimide resin is insoluble and infusible, it is necessary to form a film by subjecting the solvent-soluble polyimide precursor to high temperature treatment. As a result, the problem is that the film is colored, the transparency is lowered, and the workability is poor because the procedure is complicated. On the other hand, polyamideimide resin is excellent in solubility and heat-treated at a relatively low temperature to obtain a film having excellent transparency. Therefore, as an alternative material for polyimide resin, an electronic material, particularly a resin film for a flexible metal laminate for COF It is used as
 COF用フレキシブル金属積層体はドライバICを基板上に実装する際、位置決めを樹脂フィルム側から波長400~800nmの可視光を照射し、CCDカメラ等で画像認識処理することで行われることが多い。特に樹脂フィルムは二重結合を有する材料から成る場合が多く、その場合500nm以下に大きな吸収をもつため、一般的に600~700nmの波長範囲が特に重要視される。そのため、フレキシブル金属積層体のエッチング後の樹脂フィルムの光線透過率が低い場合やヘイズが高い場合は位置精度の低下を招き、配線パターンの高密度化、ファインピッチ化に対応できなくなる。 In the case of a flexible metal laminate for COF, when a driver IC is mounted on a substrate, positioning is often performed by irradiating visible light with a wavelength of 400 to 800 nm from the resin film side and performing image recognition processing with a CCD camera or the like. In particular, the resin film is often made of a material having a double bond. In this case, since the resin film has a large absorption below 500 nm, the wavelength range of 600 to 700 nm is generally regarded as particularly important. For this reason, when the light transmittance of the resin film after etching of the flexible metal laminate is low or when the haze is high, the positional accuracy is lowered, and it becomes impossible to cope with the high density and fine pitch of the wiring pattern.
 近年のファインピッチ化傾向により、配線と樹脂フィルムの接着面積が小さくなるため、これまで以上に高い樹脂フィルムと金属箔の接着強度(ピール強度)の向上が求められている。また一般的に樹脂フィルムは金属より線膨張係数(CTE)が大きいが、CTEの差が大きく異なると、電子材料として使用する際にかかる熱により、金属積層体として伸縮し、寸法変化を引き起こす。その結果、配線同士が接触し、短絡を起こすおそれがある。また寸法変化することで、ファインパターンの回路形成自体が困難となることがある。そのため、金属箔と樹脂フィルムのCTEは同等に低いことが望ましい。以上のことより、高透明、高接着強度、低CTEを満たすために、種々の試みがなされている。 Due to the trend toward fine pitch in recent years, the bonding area between the wiring and the resin film is reduced, and therefore, higher bond strength (peel strength) between the resin film and the metal foil is required. In general, a resin film has a coefficient of linear expansion (CTE) larger than that of metal. However, if the difference in CTE is greatly different, the heat applied when used as an electronic material expands and contracts as a metal laminate, causing a dimensional change. As a result, the wires may come into contact with each other and cause a short circuit. In addition, when the dimensions change, it may be difficult to form the fine pattern circuit itself. Therefore, it is desirable that the CTE of the metal foil and the resin film is equally low. From the above, various attempts have been made to satisfy high transparency, high adhesive strength, and low CTE.
 特許文献1では、高いガラス転移温度(Tg)、低CTEのポリアミドイミド樹脂を銅箔上へ塗布、乾燥することで、耐熱性、接着性等のバランスの取れた金属積層体を製造する方法が記載されている。しかし、特許文献1では、表面粗度の大きい銅箔を用いているため、銅箔をエッチングした後の樹脂フィルム面が粗くなり、光の乱反射により視認性が悪くなるといった問題点があった。また、狭ピッチでのパターニング性も銅箔の表面粗度が粗いために劣り、接着強度も表面粗度の大きい銅箔では高い値を示すが、接着強度とパターニング性を同時に満足することはできていない。 In Patent Document 1, there is a method for producing a metal laminate having a good balance of heat resistance, adhesion, and the like by applying a polyamide imide resin having a high glass transition temperature (Tg) and low CTE onto a copper foil and drying. Are listed. However, in patent document 1, since the copper foil with a large surface roughness was used, there existed a problem that the resin film surface after etching a copper foil became rough and visibility deteriorated by irregular reflection of light. Also, the patternability at a narrow pitch is inferior due to the rough surface roughness of the copper foil, and the copper foil with a high surface roughness shows a high value, but the adhesive strength and patternability can be satisfied at the same time. Not.
 特許文献2では、表面粗度の低い比較的鏡面な銅箔にポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することで銅箔上に複数層からなるポリイミド絶縁層を持つフレキシブル金属積層体が記載されている。しかし、この金属積層体は、ベアチップの実装性及び光沢度や反射率の高い銅箔に対する接着強度が不十分であり、さらに、ポリイミド前駆体樹脂溶液の塗布後に高温で乾燥・イミド化を行っているため、加工性に劣る。また、高温で熱処理するため、銅箔自体が再結晶化し、ファインピッチなパターニング性が要求される用途には適していないという問題がある。 In Patent Document 2, a flexible metal laminate having a polyimide insulating layer composed of a plurality of layers on a copper foil by applying a polyimide precursor resin solution to a relatively mirror-finished copper foil having a low surface roughness, followed by drying and curing. Is described. However, this metal laminate has insufficient bare chip mountability and adhesion strength to copper foil with high glossiness and reflectivity, and is further dried and imidized at a high temperature after application of the polyimide precursor resin solution. Therefore, it is inferior in workability. Moreover, since it heat-processes at high temperature, copper foil itself recrystallizes and there exists a problem that it is not suitable for the use for which fine pitch patterning property is requested | required.
 特許文献3では、比較的鏡面な銅箔にポリアミドイミド樹脂を2層積層することで接着強度を向上させる技術が開示されている。 Patent Document 3 discloses a technique for improving adhesive strength by laminating two layers of polyamideimide resin on a relatively mirror-finished copper foil.
特開2008-110612号公報JP 2008-110612 A 特開2007-214555号公報JP 2007-214555 A 特開2012-11388号公報JP 2012-11388 A
 しかし、特許文献3では、2層積層することで工程が煩雑となり、生産性に乏しいといった問題がある。また厚みが大きくなるため、小型化が困難といった問題がある。 However, Patent Document 3 has a problem that the process becomes complicated by laminating two layers, and the productivity is poor. Further, since the thickness increases, there is a problem that it is difficult to reduce the size.
 本発明は上記問題を鑑みて、特定成分のポリアミドイミド樹脂を2種類ブレンドすることで透明性、接着性、寸法安定性に優れたポリマーブレンド組成物を提供することを目的とする。さらに、当該ポリマーブレンド組成物を含有するフィルム、フレキシブル金属積層体、及び、フレキシブルプリント基板を提供することにある。 In view of the above problems, an object of the present invention is to provide a polymer blend composition excellent in transparency, adhesiveness, and dimensional stability by blending two kinds of polyamideimide resins as specific components. Furthermore, it is providing the film containing the said polymer blend composition, a flexible metal laminated body, and a flexible printed circuit board.
 本課題を解決すべく、様々な検討を重ねた結果、以下の形態にすることにより達成できることを見出した。 As a result of various studies to solve this problem, it was found that this can be achieved by adopting the following forms.
 すなわち、本発明は、下記構成からなる。 That is, the present invention has the following configuration.
 二成分以上のポリアミドイミド樹脂を含有し、下記要件(1)および(2)を満たすことを特徴とするポリマーブレンド組成物。
(1)下記一般式(1)および一般式(2)を構成単位として含むポリアミドイミド樹脂(樹脂α)を必須成分とし、樹脂α中の一般式(1)と一般式(2)のモル比が一般式(1)/(2)=55/45~90/10とする
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
(一般式(1)及び一般式(2)中、R、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基もしくはアルコキシ基を示す。)
(2)下記一般式(3)を構成単位として含む樹脂αとは異なる組成のポリアミドイミド樹脂(樹脂β)を必須成分とする
Figure JPOXMLDOC01-appb-C000006
 
(一般式(3)中、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基もしくはアルコキシ基を示す。)
A polymer blend composition comprising a polyamideimide resin having two or more components and satisfying the following requirements (1) and (2).
(1) A polyamideimide resin (resin α) containing the following general formula (1) and general formula (2) as structural units is an essential component, and the molar ratio of general formula (1) and general formula (2) in resin α Is the general formula (1) / (2) = 55/45 to 90/10
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005

(In general formula (1) and general formula (2), R 1 , R 2 and R 3 may be the same or different, and each represents hydrogen, or an alkyl group or alkoxy group having 1 to 4 carbon atoms. Is shown.)
(2) A polyamideimide resin (resin β) having a composition different from that of the resin α containing the following general formula (3) as a structural unit is an essential component.
Figure JPOXMLDOC01-appb-C000006

(In general formula (3), R 4 and R 5 may be the same or different and each represents hydrogen, or an alkyl group or alkoxy group having 1 to 4 carbon atoms.)
 樹脂αと樹脂βの組成比は、樹脂α/樹脂β=20/80~50/50重量比であることが好ましい。また、樹脂βが酸成分として無水トリメリット酸を含み、かつ3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物及び3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる群より1種以上を含み、アミン成分としてo-トリジンを含むことが好ましい。 The composition ratio of resin α and resin β is preferably resin α / resin β = 20/80 to 50/50 weight ratio. Resin β contains trimellitic anhydride as an acid component, and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride It is preferable that at least one kind selected from the group consisting of the above-mentioned products and o-tolidine as the amine component.
 前記ポリマーブレンド組成物を含有するフィルム、および金属箔の少なくとも片面に前記フィルムが積層されたフレキシブル金属積層体。 A film containing the polymer blend composition and a flexible metal laminate in which the film is laminated on at least one side of a metal foil.
 前記フレキシブル金属積層体は、金属箔のRzが1.2μm以下、及び60°光沢度が200以上であり、金属箔とフィルムの接着強度が7.0N/cm以上であることが好ましい。 The flexible metal laminate preferably has a metal foil Rz of 1.2 μm or less, a 60 ° gloss of 200 or more, and an adhesive strength between the metal foil and the film of 7.0 N / cm or more.
 また、前記フレキシブル金属積層体は、金属箔エッチング後のフィルム部分において、波長600nmでの光線透過率が55%以上であることが好ましく、ヘイズが20%以下であることが好ましく、線膨張係数が10~25ppm/Kであることが好ましく、TMA法におけるガラス転移温度でのフィルム歪み量が200μm以下であることが好ましい。 The flexible metal laminate preferably has a light transmittance at a wavelength of 600 nm of 55% or more, a haze of 20% or less, and a linear expansion coefficient in the film portion after the metal foil etching. The amount of film distortion at the glass transition temperature in the TMA method is preferably 200 μm or less.
 前記フレキシブル金属積層体を含有するフレキシブルプリント基板。 A flexible printed board containing the flexible metal laminate.
 本発明は接着性、透明性、および寸法安定性に優れるポリマーブレンド組成物、および該ポリマーブレンド組成物を含有するフィルム、フレキシブル金属積層体、並びにフレキシブルプリント基板を得ることができる。特にCOF用途等で今後更に進められるファインピッチ要求に適応しうる材料が得られる。 The present invention can provide a polymer blend composition excellent in adhesiveness, transparency, and dimensional stability, and a film, a flexible metal laminate, and a flexible printed board containing the polymer blend composition. In particular, a material that can be adapted to fine pitch requirements that will be further developed in the future for COF applications and the like can be obtained.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(ポリマーブレンド組成物)
 本発明のポリマーブレンド組成物は、二成分以上のポリアミドイミド樹脂を含有し、要件(1)および(2)を満足する組成物である。二成分以上のポリアミドイミド樹脂は均一に混合されていることが好ましく、例えば、有機溶媒に溶解したポリアミドイミド樹脂ワニスの2種類以上を均一に混合し、溶媒を除去することなどにより得られる。
(Polymer blend composition)
The polymer blend composition of the present invention is a composition containing two or more components of polyamideimide resin and satisfying the requirements (1) and (2). Two or more components of the polyamideimide resin are preferably mixed uniformly. For example, the polyamideimide resin can be obtained by uniformly mixing two or more types of polyamideimide resin varnish dissolved in an organic solvent and removing the solvent.
 ジフェニルエーテル骨格およびフェニレン骨格を有するポリアミドイミド樹脂(α)は透明性、接着性に寄与する。また、ビフェニル骨格、特にo-トリジン骨格を有するポリアミドイミド樹脂(β)は寸法安定性(低CTE)に寄与する。本発明では、これらポリアミドイミド樹脂をブレンドすることで透明性、接着性、寸法安定性に優れたポリマーブレンド組成物を得ることができる。 Polyamideimide resin (α) having a diphenyl ether skeleton and a phenylene skeleton contributes to transparency and adhesiveness. Further, the polyamideimide resin (β) having a biphenyl skeleton, particularly an o-tolidine skeleton, contributes to dimensional stability (low CTE). In the present invention, a polymer blend composition excellent in transparency, adhesiveness and dimensional stability can be obtained by blending these polyamideimide resins.
 通常、二成分以上の樹脂を含有するポリマーブレンド組成物には、これらの組成比に対して、熱分解温度以下の実用的な全領域において相溶する相溶系、全領域で非相溶となる非相溶系、及び、ある領域で相溶する部分相溶系がある。部分相溶系には、その相分離状態の条件によって、核生成型やスピノーダル分解型などの反応を誘発するタイプがある。本発明における、均一なポリマーブレンド組成物とは、可視光での散乱が生じない程度のマクロな相分離のない状態であるものをさす。マクロな相分離が生じると、例えば、フィルムの場合では、著しい透明性の低下等が確認され得る。 Usually, a polymer blend composition containing two or more components of a resin is compatible with these composition ratios in all practical areas below the thermal decomposition temperature, and incompatible in all areas. There are incompatible systems and partially compatible systems that are compatible in a certain region. There are types of partially miscible systems that induce reactions such as nucleation type and spinodal decomposition type depending on the condition of the phase separation state. The uniform polymer blend composition in the present invention refers to a state in which there is no macro phase separation to the extent that scattering by visible light does not occur. When macro phase separation occurs, for example, in the case of a film, a significant decrease in transparency can be confirmed.
[要件(1):第一成分:樹脂α]
 要件(1)について説明する。要件(1)は、一般式(1)及び一般式(2)を構成単位として含むポリアミドイミド樹脂(以下、樹脂αともいう)を必須成分とする。好ましくは一般式(1)及び一般式(2)に示す基本構造を繰り返し単位として含んだポリアミドイミド樹脂である。
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
 一般式(1)及び一般式(2)中、R、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基もしくはアルコキシ基を示す。好ましい炭素数は、1以上3以下であり、より好ましくは2以下である。特に好ましくは、R、R、Rとも水素である。
[Requirement (1): First component: Resin α]
The requirement (1) will be described. The requirement (1) includes a polyamide-imide resin (hereinafter also referred to as a resin α) containing the general formula (1) and the general formula (2) as structural units as an essential component. Preferably, it is a polyamide-imide resin containing the basic structure represented by the general formula (1) and the general formula (2) as a repeating unit.
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

In general formula (1) and general formula (2), R 1 , R 2 and R 3 may be the same or different, and each represents hydrogen, an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Show. The carbon number is preferably 1 or more and 3 or less, more preferably 2 or less. Particularly preferably, R 1 , R 2 and R 3 are all hydrogen.
 樹脂αを構成する酸成分としては、無水トリメリット酸が必須である。無水トリメリット酸以外の酸成分としては、ピロメリット酸無水物、フタル酸無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸無水物、または3,3’,4,4’-ビフェニルテトラカルボン酸無水物が挙げられ、これらを単独、或いは2種以上を併用することができる。なかでも好ましくは、ピロメリット酸無水物、フタル酸無水物である。 As the acid component constituting the resin α, trimellitic anhydride is essential. Examples of acid components other than trimellitic anhydride include pyromellitic anhydride, phthalic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic anhydride, or 3,3 ′, 4,4′- Biphenyltetracarboxylic acid anhydride is mentioned, These can be used alone or in combination of two or more. Of these, pyromellitic acid anhydride and phthalic acid anhydride are preferable.
 また上記以外にも、酸成分として本発明の目的を損なわない範囲で、トリメリット酸、ピロメリット酸、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、4,4’-ジカルボキシジフェニルエーテルテトラカルボン酸、ビスフェノールビス(トリメリテート)、ナフタレン-2,3,6,7-テトラカルボン酸等の一無水物、二無水物、エステル化物が単独、或いは2種以上の混合物として使用することができる。 In addition to the above, as the acid component, trimellitic acid, pyromellitic acid, phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, 3 as long as the object of the present invention is not impaired. , 3 ′, 4,4′-benzophenone tetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 4,4′-dicarboxydiphenyl ether tetracarboxylic acid, bisphenol bis (trimellitate), naphthalene-2 , 3,6,7-tetracarboxylic acid and the like, monoanhydrides, dianhydrides, and esterified products can be used alone or as a mixture of two or more.
 樹脂αを構成するアミン成分として、4,4'-ジアミノジフェニルエーテル、p-フェニレンジアミン、もしくは2,4-ジアミノトルエン、またはこられに対応するジイソシアネートなどの単独、或いは2種以上の混合物を用いることが必要である。 As the amine component constituting the resin α, 4,4′-diaminodiphenyl ether, p-phenylenediamine, 2,4-diaminotoluene, or diisocyanate corresponding to these, or a mixture of two or more of them should be used. is required.
 同様に、上記以外にもアミン成分として本発明の目的を損なわない範囲で、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメチルジフェニルメタン、o-トリジン、m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、3,4-ジアミノトルエン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、p-キシレンジアミン、m-キシレンジアミン、1,4’-ナフタレンジアミン、1,5’-ナフタレンジアミン、2,6’-ナフタレンジアミン、2,7-ナフタレンジアミン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル等、或いは、こられに対応するジイソシアネートなどの単独、或いは2種以上の混合物を用いることができる。 Similarly, in addition to the above, 3,4′-diaminodiphenyl ether, 4,4′-diamino-3,3′-dimethyldiphenylmethane, o-tolidine, m-phenylene as long as the object of the present invention is not impaired as an amine component. Diamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 3,4-diaminotoluene, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-diaminobenzophenone, 3 , 3′-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 4,4′-diaminodiphenylpropane, 3,3'-diaminodiphenylpropane, 3,3'-diaminodiphenylmethane 4,4'-diaminodiphenylmethane, p-xylenediamine, m-xylenediamine, 1,4'-naphthalenediamine, 1,5'-naphthalenediamine, 2,6'-naphthalenediamine, 2,7-naphthalenediamine, 2 , 2'-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) Benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [ 4- (3-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4 ′ Bis (3-aminophenoxy) biphenyl and the like, or may be used alone, such as a diisocyanate corresponding to being this, or in combination of two or more.
 本発明では一般式(1)及び一般式(2)を有する樹脂αと一般式(3)を有する樹脂βを配合することでフィルムの寸法安定性(低CTE)を維持したまま、接着性や透明性が向上できることを見出した。接着性が向上した要因としては一般式(1)のエーテル結合により柔軟性が付与され、比較的鏡面な金属箔であっても表面の微細な凹凸にポリマーブレンド組成物が入り込みやすくなることによるアンカー効果の発現や金属箔との親和性の向上に寄与している等が考えられる。また透明性の向上には一般式(1)のエーテル結合の熱劣化がしにくいという特性が寄与していると考えられる。 In the present invention, the resin α having the general formula (1) and the general formula (2) and the resin β having the general formula (3) are blended to maintain the dimensional stability (low CTE) of the film. We found that transparency can be improved. The reason for the improved adhesiveness is that the ether bond of the general formula (1) provides flexibility, and the anchor is that the polymer blend composition easily enters fine irregularities on the surface even with a relatively mirror-finished metal foil. It is conceivable that it contributes to the improvement of the effect and the affinity with the metal foil. Moreover, it is thought that the characteristic that the ether bond of General formula (1) is hard to carry out heat deterioration contributes to the improvement of transparency.
 樹脂α中の一般式(1)と一般式(2)のモル比は一般式(1)/一般式(2)=55/45~90/10であることが好ましい。より好ましくは60/40~85/15、特に好ましくは65/35~80/20である。一般式(1)のモル比が55未満だと一般式(1)が有するエーテル結合による接着性や透明性の向上効果が十分でなくなることがある。また一般式(1)のモル比が90を越えると柔軟成分により、製造工程中の熱履歴等により生じる応力を吸収しやすくなるが、樹脂骨格が柔らかくなりすぎるため、逆にフィルムにした際の反りが生じやすくなる。 The molar ratio of the general formula (1) to the general formula (2) in the resin α is preferably general formula (1) / general formula (2) = 55/45 to 90/10. More preferably, it is 60/40 to 85/15, and particularly preferably 65/35 to 80/20. If the molar ratio of the general formula (1) is less than 55, the effect of improving the adhesion and transparency by the ether bond of the general formula (1) may not be sufficient. Further, when the molar ratio of the general formula (1) exceeds 90, the soft component easily absorbs stress caused by the thermal history during the manufacturing process, but the resin skeleton becomes too soft, so that when the film is made into a film, Warpage tends to occur.
 樹脂αに含まれる一般式(1)の構成単位は、55モル%以上が好ましく、60モル%以上がより好ましく、65モル%以上がさらに好ましく、90モル%以下が好ましく、85モル%以下がより好ましく、80モル%以下がさらに好ましい。また、樹脂αに含まれる一般式(2)の構成単位は、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましく、45モル%以下が好ましく、40モル%以下がより好ましく、35モル%以下がさらに好ましい。上記範囲とすることで、接着性や透明性の向上効果およびフィルムにした際の反り防止効果が期待できる。 The structural unit of the general formula (1) contained in the resin α is preferably 55 mol% or more, more preferably 60 mol% or more, further preferably 65 mol% or more, preferably 90 mol% or less, and preferably 85 mol% or less. More preferred is 80 mol% or less. The structural unit of the general formula (2) contained in the resin α is preferably 10 mol% or more, more preferably 15 mol% or more, further preferably 20 mol% or more, preferably 45 mol% or less, and 40 mol%. The following is more preferable, and 35 mol% or less is more preferable. By setting it as the said range, the improvement effect of adhesiveness and transparency and the curvature prevention effect at the time of making a film can be anticipated.
[要件(2):第二成分:樹脂β]
 要件(2)について説明する。要件(2)は、一般式(3)を構成単位として含む樹脂αとは異なる組成のポリアミドイミド樹脂(以下、樹脂βともいう)を必須成分とする。好ましくは一般式(3)に示す基本構造を繰り返し単位として含んだポリアミドイミド樹脂である。
Figure JPOXMLDOC01-appb-C000009
 
 一般式(3)中、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基またはアルコキシ基を示す。好ましい炭素数は、1以上3以下であり、より好ましくは2以下である。特に好ましくは、R、Rとも炭素数1である。
[Requirement (2): Second component: Resin β]
The requirement (2) will be described. The requirement (2) includes a polyamideimide resin (hereinafter, also referred to as a resin β) having a composition different from that of the resin α including the general formula (3) as a structural unit as an essential component. A polyamideimide resin containing the basic structure represented by the general formula (3) as a repeating unit is preferable.
Figure JPOXMLDOC01-appb-C000009

In general formula (3), R 4 and R 5 may be the same or different and each represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group. The carbon number is preferably 1 or more and 3 or less, more preferably 2 or less. Particularly preferably, R 4 and R 5 both have 1 carbon.
 樹脂βに含まれる一般式(3)の構成単位は、60モル%以上が好ましく、65モル%以上がより好ましく、70モル%以上がさらに好ましい。上限は特に限定されず、100モル%であっても差し支えない。60モル%未満であると、低CTE特性が十分に発現されず、フレキシブルプリント配線板など、電気、電子機器用の絶縁材料としての使用は困難になる傾向がある。 The structural unit of the general formula (3) contained in the resin β is preferably 60 mol% or more, more preferably 65 mol% or more, and further preferably 70 mol% or more. The upper limit is not particularly limited, and may be 100 mol%. If it is less than 60 mol%, low CTE characteristics are not sufficiently exhibited, and use as an insulating material for electrical and electronic equipment such as flexible printed wiring boards tends to be difficult.
 樹脂βを構成する酸成分としては、無水トリメリット酸が必須である。無水トリメリット酸以外の酸成分としては、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、またはピロメリット酸無水物が挙げられ、これらを単独、或いは2種以上を併用することができる。なかでも好ましくは、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である。 Trimellitic anhydride is essential as the acid component constituting the resin β. Acid components other than trimellitic anhydride include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, or pyromellitic An acid anhydride is mentioned, These can be used individually or in combination of 2 or more types. Of these, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride are preferable.
 また酸成分として本発明の目的を損なわない範囲で、トリメリット酸、ピロメリット酸、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、4,4’- ジカルボキシジフェニルエーテルテトラカルボン酸、ビスフェノールビス(トリメリテート)、ナフタレン-2,3,6,7-テトラカルボン酸等の一無水物、二無水物、エステル化物が単独、或いは2種以上の混合物として使用することができる。 Further, trimellitic acid, pyromellitic acid, phthalic acid, isophthalic acid, terephthalic acid, biphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, 3,3 ′, 4 are not limited as long as the object of the present invention is impaired. , 4′-benzophenone tetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 4,4′- dicarboxydiphenyl ether tetracarboxylic acid, bisphenol bis (trimellitate), naphthalene-2,3,6, Monoanhydrides such as 7-tetracarboxylic acid, dianhydrides, and esterified products can be used alone or as a mixture of two or more.
 樹脂βを構成するアミン成分として、o-トリジン、4,4’-ジアミノビフェニル、2,2’-ジメチルビフェニル-4,4’-ジアミン、o-ジアニシジン或いは、これらに対応するジイソシアネートなどの単独、或いは2種以上の混合物を用いることができる。 As an amine component constituting the resin β, o-tolidine, 4,4′-diaminobiphenyl, 2,2′-dimethylbiphenyl-4,4′-diamine, o-dianisidine, or a corresponding diisocyanate alone, Alternatively, a mixture of two or more kinds can be used.
 同様に、上記以外にもアミン成分として本発明の目的を損なわない範囲で、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノビフエニル、3,3’-ジアミノビフエニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジエトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフエノン、3,3’-ジアミノベンゾフエノン、3,4’-ジアミノベンゾフエノン、p-フェニレンジアミン、m-フェニレンジアミン、3,3’-ジアミノベンズアニリド、4,4’-ジアミノベンズアニリド、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン、p-キシレンジアミン、m-キシレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル等、或いはこれらに対応するジイソシアネートなどの単独、或いは2種以上の混合物を用いることができる。 Similarly, other than the above, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 3,3 ′ may be used as an amine component within the range not impairing the object of the present invention. -Diaminodiphenylmethane, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'- Diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3, 3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, 4,4 ' Diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, p-phenylenediamine, m-phenylenediamine, 3,3'-diaminobenzanilide, 4,4'-diamino Benzanilide, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 3,3 ' -Diaminodiphenylpropane, p-xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 2,7-naphthalenediamine, 2,2'-bis ( 4-aminophenyl) propane, 1,3-bis (3-aminophenoxy) benzene, , 3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4- Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4 , 4′-bis (3-aminophenoxy) biphenyl or the like, or diisocyanates corresponding to these, or a mixture of two or more thereof can be used.
 上記酸成分、アミン成分の中でも、特に好ましい組み合わせは以下のモノマー成分の中から選択して合成された繰り返し単位を主成分とするポリアミドイミド樹脂である。 Among the acid component and amine component, a particularly preferred combination is a polyamideimide resin mainly composed of repeating units selected from the following monomer components.
〈酸成分〉
 無水トリメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である。
〈アミン成分〉
 o-トリジン、2,4-トリレンジアミン、或いはこれらに対応するジイソシアネートである。
<Acid component>
Trimellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
<Amine component>
o-Tolidine, 2,4-tolylenediamine, or the corresponding diisocyanate.
 本発明に用いる樹脂αおよび樹脂βは、通常の方法で合成(重合)することができる。例えば、イソシアネート法、酸クロリド法、低温溶液重合法、室温溶液重合法などがあるが、製造コストなどの観点から、特に、好ましい製造法は脱炭酸反応により、ポリマーワニスが得られるイソシアネート法である。 Resin α and resin β used in the present invention can be synthesized (polymerized) by an ordinary method. For example, there are an isocyanate method, an acid chloride method, a low temperature solution polymerization method, a room temperature solution polymerization method, etc., but from the viewpoint of production cost, a particularly preferable production method is an isocyanate method in which a polymer varnish can be obtained by a decarboxylation reaction. .
 重合に使用される溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノンなどのアミド系溶剤、ジメチルスルホオキシド、スルホラン等の硫黄系溶媒、シクロヘキサノン、メチルエチルケトン等のケトン系溶媒、ニトロベンゼン、ニトロエタン等のニトロ系溶媒、ジグライム、テトラヒドロフラン等のエーテル系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒、γ-ブチルラクトン、γ-バレロラクトンなどのエステル系溶剤などが挙げられ、単独でも混合溶媒としても使用できる。 Solvents used for polymerization include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, 1,3-dimethyl-2-imidazolidinone Solvents, sulfur solvents such as dimethyl sulfoxide and sulfolane, ketone solvents such as cyclohexanone and methyl ethyl ketone, nitro solvents such as nitrobenzene and nitroethane, ether solvents such as diglyme and tetrahydrofuran, nitrile solvents such as acetonitrile and propionitrile And ester solvents such as γ-butyllactone and γ-valerolactone can be used alone or as a mixed solvent.
 樹脂αと樹脂βの組成比は、樹脂α/樹脂β=20/80~50/50(重量比)であることが好ましい。より好ましくは25/75~40/60(重量比)である。樹脂αが多すぎる(50(重量比)を超える)と樹脂βの有する低CTE特性が十分に発現されず、フレキシブルプリント配線板など、電気、電子機器用の絶縁材料としての使用は困難になる傾向がある。逆に、樹脂αが少なすぎる(20(重量比)未満である)と、樹脂αの有する特性、特に、接着強度、透明性などの特性が発現できない場合がある。 The composition ratio of resin α and resin β is preferably resin α / resin β = 20/80 to 50/50 (weight ratio). More preferably, it is 25/75 to 40/60 (weight ratio). If the resin α is too much (exceeds 50 (weight ratio)), the low CTE characteristic of the resin β is not sufficiently exhibited, and it becomes difficult to use it as an insulating material for electrical and electronic devices such as flexible printed wiring boards. Tend. Conversely, if the amount of the resin α is too small (less than 20 (weight ratio)), the properties of the resin α, particularly properties such as adhesive strength and transparency may not be exhibited.
 本発明のポリマーブレンド組成物において、樹脂αの含有量は、ポリマーブレンド組成物全体の重量に対して10~50重量%が好ましく、より好ましくは15~50重量%、さらに好ましくは20~50重量%である。樹脂αの含有量が50重量%を超えると、CTEが高くなり、フレキシブルプリント配線板など、電気、電子機器用の絶縁材料としての使用は困難になる傾向がある。樹脂αの含有量が10重量%未満では、一般式(1)で示される構造を含むポリマーの本来有する特性、特に、接着強度、透明性などの特性が維持できない傾向にある。 In the polymer blend composition of the present invention, the content of the resin α is preferably 10 to 50% by weight, more preferably 15 to 50% by weight, and still more preferably 20 to 50% by weight based on the total weight of the polymer blend composition. %. When the content of the resin α exceeds 50% by weight, the CTE increases, and it tends to be difficult to use as an insulating material for electric and electronic devices such as flexible printed wiring boards. When the content of the resin α is less than 10% by weight, characteristics inherent to the polymer including the structure represented by the general formula (1), particularly characteristics such as adhesive strength and transparency, tend not to be maintained.
 本発明のポリマーブレンド組成物は、十点平均粗さ(Rz)が1.2μm以下、及び60°光沢度が200以上である金属箔に接着剤を介さずに直接積層し、IPC-FC241(IPC-TM-650,2.4.9(A))に従い、サブトラクティブ法により回路パターンを形成した際の金属箔とポリマーブレンド組成物層(フィルム層)との接着強度が7.0N/cm以上を有するものであることが好ましい。 The polymer blend composition of the present invention was directly laminated on a metal foil having a 10-point average roughness (Rz) of 1.2 μm or less and a 60 ° gloss of 200 or more without using an adhesive, and IPC-FC241 ( According to IPC-TM-650, 2.4.9 (A)), the adhesive strength between the metal foil and the polymer blend composition layer (film layer) when a circuit pattern is formed by the subtractive method is 7.0 N / cm. It is preferable to have the above.
<ポリアミドイミド樹脂溶液>
 ポリアミドイミド樹脂αと樹脂βの分子量は、N-メチル-2-ピロリドン中(ポリマー濃度0.5g/dl)、30℃での対数粘度にして0.1から2.8dl/gに相当する分子量を有するものが好ましく、より好ましくは0.3から2.5dl/gに相当する分子量を有するものである。対数粘度が0.1dl/g未満ではフィルム等の成型物にしたとき、機械的特性が不十分となるおそれがあり、また、2.8dl/gを超えると溶液粘度が高くなる為、成形加工が困難となることがある。適正な溶液粘度としては、25℃でのΒ型粘度が、50~1000dPa・sの範囲である。該粘度が上記範囲を外れると塗工性が低下することがある。
<Polyamideimide resin solution>
The molecular weight of the polyamideimide resin α and the resin β is a molecular weight corresponding to 0.1 to 2.8 dl / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / dl) with a logarithmic viscosity at 30 ° C. And more preferably those having a molecular weight corresponding to 0.3 to 2.5 dl / g. If the logarithmic viscosity is less than 0.1 dl / g, mechanical properties may be insufficient when formed into a molded product such as a film, and if it exceeds 2.8 dl / g, the solution viscosity becomes high. May be difficult. As an appropriate solution viscosity, the vertical viscosity at 25 ° C. is in the range of 50 to 1000 dPa · s. When the viscosity is out of the above range, the coatability may be lowered.
 ポリアミドイミド樹脂αと樹脂β溶液(ポリマーブレンド組成物溶液)の濃度は、広い範囲から選択できるが、一般には5~40重量%程度が好ましく、より好ましくは8~30重量%程度とするのが好ましい。該濃度が上記範囲を外れると、乾燥効率が悪化し、平滑面の形成が困難になることや必要な熱量が増加することが懸念される。ポリアミドイミド樹脂溶液の好ましい溶媒としては、塗工性等から、重合後の希釈溶剤としてはN,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、テトラメチルウレア、スルホラン、ジメチルスルホオキシド、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンなどで、特に好ましくは、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンである。また、これらの一部をトルエン、キシレンなどの炭化水素系有機溶剤、ジグライム、トリグライム、テトラヒドロフランなどのエーテル系有機溶剤、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤で置き換えることも可能である。又、これらの溶媒は、重合時の溶媒としても適用できる為、重合溶液をそのまま塗工できることから、加工性に優れる樹脂溶液を簡便に得ることができる。 The concentration of the polyamideimide resin α and the resin β solution (polymer blend composition solution) can be selected from a wide range, but is generally preferably about 5 to 40% by weight, more preferably about 8 to 30% by weight. preferable. When the concentration is out of the above range, drying efficiency is deteriorated, and it is feared that formation of a smooth surface becomes difficult and a necessary amount of heat increases. As a preferred solvent for the polyamideimide resin solution, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea, sulfolane, dimethylsulfone, and the like are used as dilution solvents after polymerization because of coating properties and the like. Oxides, γ-butyrolactone, cyclohexanone, cyclopentanone and the like are preferable, and N, N-dimethylacetamide and N-methyl-2-pyrrolidone are particularly preferable. Some of these can be replaced with hydrocarbon organic solvents such as toluene and xylene, ether organic solvents such as diglyme, triglyme and tetrahydrofuran, and ketone organic solvents such as methyl ethyl ketone and methyl isobutyl ketone. In addition, since these solvents can also be applied as solvents during polymerization, the polymerization solution can be applied as it is, so that a resin solution having excellent processability can be easily obtained.
 必要ならば、フレキシブル金属積層体、或いは、フレキシブルプリント基板の諸特性、たとえば、機械的特性、電気的特性、滑り性、難燃性などを改良する目的で、本発明の上記ポリマーブレンド組成物に、他の樹脂や有機化合物、及び無機化合物を混合させたり、あるいは、反応させたりして併用してもよい。たとえば、滑剤(シリカ、タルク、シリコーン等)、接着促進剤、難燃剤(リン系やトリアジン系、水酸化アルミ等)、安定剤(酸化防止剤、紫外線吸収剤、重合禁止剤等)、メッキ活性化剤、有機や無機の充填剤(タルク、酸化チタン、シリカ、フッ素系ポリマー微粒子、顔料、染料、炭化カルシウム等)、その他、シリコーン化合物、フッ素化合物、イソシアネート化合物、ブロックイソシアネート化合物、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、フェノール樹脂のような樹脂や有機化合物、或いはこれらの硬化剤、酸化珪素、酸化チタン、炭酸カルシウム、酸化鉄などの無機化合物をこの発明の目的を阻害しない範囲で併用することができる。又、必要に応じて、脂肪族第3級アミン、芳香族第3級アミン、複素環式第3級アミン、脂肪族酸無水物、芳香族酸無水物、ヒドロキシ化合物などのポリイミド化の触媒を添加してもよい。例えば、トリエチルアミン、トリエチレンジアミン、ジメチルアニリン、ピリジン、ピコリン、イソキノリン、イミダゾール、ウンデセン、ヒドロキシアセトフェノンなどが好ましく、特に好ましくは、ピリジン化合物、イミダゾール化合物、ウンデセン化合物であり、その中でも、ベンズイミダゾール、トリアゾール、4-ピリジンメタノール、2-ヒドロキシピリジン、ジアザビシクロ[5.4.0]ウンデセン-7が好ましく、より好ましくは、2-ヒドロキシピリジン、ジアザビシクロ[5.4.0]ウンデセン-7である。 If necessary, the polymer blend composition of the present invention may be added to the above-described polymer blend composition for the purpose of improving various properties of the flexible metal laminate or flexible printed circuit board, such as mechanical properties, electrical properties, slipperiness, and flame retardancy. Other resins, organic compounds, and inorganic compounds may be mixed or reacted to be used in combination. For example, lubricant (silica, talc, silicone, etc.), adhesion promoter, flame retardant (phosphorus, triazine, aluminum hydroxide, etc.), stabilizer (antioxidant, UV absorber, polymerization inhibitor, etc.), plating activity Agents, organic and inorganic fillers (talc, titanium oxide, silica, fluorine polymer fine particles, pigments, dyes, calcium carbide, etc.), silicone compounds, fluorine compounds, isocyanate compounds, blocked isocyanate compounds, acrylic resins, urethanes Resin, polyester resin, polyamide resin, epoxy resin, phenolic resin and organic compounds, or these curing agents, silicon oxide, titanium oxide, calcium carbonate, iron oxide and other inorganic compounds do not hinder the purpose of this invention Can be used together in a range. In addition, if necessary, a catalyst for polyimide formation such as aliphatic tertiary amine, aromatic tertiary amine, heterocyclic tertiary amine, aliphatic acid anhydride, aromatic acid anhydride, hydroxy compound, etc. It may be added. For example, triethylamine, triethylenediamine, dimethylaniline, pyridine, picoline, isoquinoline, imidazole, undecene, hydroxyacetophenone and the like are preferable, and pyridine compound, imidazole compound and undecene compound are particularly preferable. Among them, benzimidazole, triazole, 4 -Pyridinemethanol, 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are preferred, and 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are more preferred.
<フィルム>
 本発明のフィルムは、ポリマーブレンド組成物を含有するフィルムであり、上記のポリマーブレンド組成物溶液(ワニス)を用いて製造することが出来る。金属箔、エンドレスベルト、ドラム、キャリアフィルム等の支持体上に、前記ポリマーブレンド組成物溶液(ワニス)を塗布し、塗膜を乾燥、場合により、該支持体よりフィルムを剥離後、熱処理することにより形成される。
<Film>
The film of the present invention is a film containing a polymer blend composition, and can be produced using the polymer blend composition solution (varnish). Applying the polymer blend composition solution (varnish) on a support such as a metal foil, endless belt, drum, carrier film, etc., drying the coating, and optionally heat-treating the film after peeling off the support. It is formed by.
(塗工)
 ポリマーブレンド組成物を金属箔等の支持体に塗布する方法としては、従来公知の方法を適用することができ、例えば、ロールコーター、ナイフコーター、ドクタ、ブレードコーター、グラビアコーター、ダイコーター、リバースコーターなどにより塗布することができる。
(Coating)
As a method of applying the polymer blend composition to a support such as a metal foil, a conventionally known method can be applied, for example, roll coater, knife coater, doctor, blade coater, gravure coater, die coater, reverse coater. It can apply | coat by etc.
(乾燥)
 ポリマーブレンド組成物溶液をキャスティング後の乾燥条件は、特に限定されないが、一般的にはポリマーブレンド組成物溶液に使用する溶媒の沸点(Tb(℃))より70~130℃低い温度で初期乾燥した後、溶媒の沸点近傍または沸点以上の温度でさらに二次乾燥(熱処理)するのが好ましい。初期乾燥温度が(Tb-70)℃より高いと、塗工面に発泡が生じたり、樹脂層(ポリマーブレンド組成物層)の厚み方向での残溶剤のムラが大きくなるため、フィルムの弛みが発生する場合がある。また、このフィルムが積層されたフレキシブル金属積層体に反り(カール)が発生する場合があり、これを回路加工したフレキシブルプリント基板の反りも大きくなることがある。
 また、乾燥温度が(Tb-130)℃より低いと乾燥時間が長くなり、生産性が低下することがある。初期乾燥温度は溶媒の種類によっても異なるが、一般には60~150℃程度、好ましくは80~120℃程度である。初期乾燥に要する時間は、一般には上記温度条件下で、塗膜中の溶媒残存率が5~40重量%程度になるのに有効な時間とすればよいが、一般には1~30分程度、特に2~15分程度である。
(Dry)
The drying conditions after casting the polymer blend composition solution are not particularly limited, but in general, the polymer blend composition solution was initially dried at a temperature 70 to 130 ° C. lower than the boiling point (Tb (° C.)) of the solvent used in the polymer blend composition solution. Thereafter, secondary drying (heat treatment) is preferably performed at a temperature near or above the boiling point of the solvent. When the initial drying temperature is higher than (Tb-70) ° C., foaming occurs on the coated surface, and unevenness of the residual solvent in the thickness direction of the resin layer (polymer blend composition layer) increases, resulting in loose film. There is a case. In addition, warping (curl) may occur in the flexible metal laminate on which the film is laminated, and warping of the flexible printed circuit board obtained by processing the circuit may be increased.
On the other hand, when the drying temperature is lower than (Tb-130) ° C., the drying time becomes longer and the productivity may be lowered. The initial drying temperature varies depending on the type of solvent, but is generally about 60 to 150 ° C., preferably about 80 to 120 ° C. The time required for the initial drying is generally an effective time for the solvent remaining rate in the coating film to be about 5 to 40% by weight under the above temperature conditions, but generally about 1 to 30 minutes, Especially about 2 to 15 minutes.
 また、二次乾燥(熱処理)条件は、溶媒の沸点近傍または沸点以上の温度で乾燥すればよいが、一般には150~500℃、好ましくは200~400℃である。二次乾燥温度が低いと、乾燥時間が長くなり、生産性が低下することがある。高すぎると、樹脂組成によっては劣化反応が進行し、樹脂フィルムが脆くなる場合があり、またコストも高くなることがある。二次乾燥に要する時間は一般には上記温度条件下で、塗膜中の溶媒残存量が1重量%以下になるのに有効な時間とすればよいが、一般には数分間~数十分程度である。 The secondary drying (heat treatment) may be performed at a temperature near or above the boiling point of the solvent, but is generally 150 to 500 ° C., preferably 200 to 400 ° C. When the secondary drying temperature is low, the drying time becomes long and the productivity may decrease. If it is too high, the deterioration reaction proceeds depending on the resin composition, the resin film may become brittle, and the cost may increase. The time required for the secondary drying is generally an effective time for the solvent remaining amount in the coating film to be 1% by weight or less under the above-mentioned temperature conditions. is there.
 本発明において、初期乾燥、二次乾燥は、不活性ガス雰囲気下、或いは、減圧下で行ってもよい。不活性ガスとしては、窒素、二酸化炭素、へリウム、アルゴン等が例示できるが、入手容易な窒素を用いるのが好ましい。又、減圧下で行う場合は、10-5~10Pa程度、好ましくは10-1~200Pa程度の圧力下で行うのが好ましい。 In the present invention, initial drying and secondary drying may be performed under an inert gas atmosphere or under reduced pressure. Examples of the inert gas include nitrogen, carbon dioxide, helium, and argon, but it is preferable to use easily available nitrogen. When the reaction is performed under reduced pressure, the reaction is preferably performed under a pressure of about 10 −5 to 10 3 Pa, preferably about 10 −1 to 200 Pa.
 本発明において、初期乾燥、熱処理ともに方式に特に限定はないが、ロールサポート方式やフローティング方式など、従来公知の方法で行うことができる。又、テンター式などの加熱炉での連続熱処理も可能である。 In the present invention, both the initial drying and heat treatment methods are not particularly limited, but can be performed by a conventionally known method such as a roll support method or a floating method. Moreover, continuous heat treatment in a heating furnace such as a tenter type is also possible.
 こうして得られる本発明のポリマーブレンド組成物を含有するフィルムは、樹脂βの低CTE性を損なうことなく、力学的性質、即ち、高強度、高伸度で強靭なフィルムを得ることができる。 The film containing the polymer blend composition of the present invention thus obtained can obtain a tough film with mechanical properties, that is, high strength and high elongation, without impairing the low CTE property of the resin β.
 尚、フィルムの厚さは、広い範囲から選択できるが、一般には絶乾後の厚さで5~100μm程度、好ましくは10~50μm程度である。厚さが5μmよりも小さいと、フィルム強度等の機械的性質やハンドリング性に劣り、一方、厚さが100μmを超えるとフレキシブル性などの特性や加工性(乾燥性、塗工性)等が低下することがある。 Although the thickness of the film can be selected from a wide range, it is generally about 5 to 100 μm, preferably about 10 to 50 μm, after drying. When the thickness is less than 5 μm, the mechanical properties such as film strength and handling properties are inferior. On the other hand, when the thickness exceeds 100 μm, the properties such as flexibility and workability (drying property, coating property) are deteriorated. There are things to do.
 又、必要に応じて、表面処理を施してもよい。例えば、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。 In addition, surface treatment may be performed as necessary. For example, surface treatment such as hydrolysis, corona discharge, low temperature plasma, physical roughening, and easy adhesion coating treatment can be performed.
<フレキシブル金属積層体>
 本発明のフレキシブル金属積層体は前記フィルムと金属箔とが接着剤を介さずに直接積層した2層金属積層体であることが好ましい。製造方法としては、ラミネート法、キャスティング法が挙げられ、特に限定はないが、加工性、安価に製造可能なキャスティング法で製造することが好ましい。
<Flexible metal laminate>
The flexible metal laminate of the present invention is preferably a two-layer metal laminate in which the film and the metal foil are directly laminated without using an adhesive. Examples of the production method include a laminating method and a casting method, and are not particularly limited. However, it is preferable to produce by a casting method that can be produced at low cost and processability.
 金属箔は厚みについては特に限定はないが、1~50μm、好ましくは3~35μm、より好ましくは、3~18μmの金属箔を好適に用いることができる。金属箔の厚みが1μm未満では、搬送時の歩留まりが低下し、又、50μmより厚い場合には、長尺物としての巻きだし、巻き取り性に劣り、歩留まりが低下することがある。 The thickness of the metal foil is not particularly limited, but a metal foil of 1 to 50 μm, preferably 3 to 35 μm, more preferably 3 to 18 μm can be suitably used. When the thickness of the metal foil is less than 1 μm, the yield at the time of conveyance is lowered, and when it is thicker than 50 μm, the winding as a long object is poor and the winding property is deteriorated, and the yield may be lowered.
 金属箔の十点平均粗さRzは1.2μm以下、好ましくは1.0μm以下、より好ましくは0.8μm以下の金属箔を好適に用いることができる。Rzが1.2μmを超えると、樹脂フィルムに銅箔の凹凸が転写し、エッチング後の樹脂フィルムの透明性が低下し、十分な位置決め精度が確保できなくなることがある。 A metal foil having a 10-point average roughness Rz of 1.2 μm or less, preferably 1.0 μm or less, more preferably 0.8 μm or less can be suitably used. If Rz exceeds 1.2 μm, the unevenness of the copper foil is transferred to the resin film, the transparency of the resin film after etching is lowered, and sufficient positioning accuracy may not be ensured.
 金属箔の光沢度は、200以上、好ましくは300以上、より好ましくは400以上である。光沢度は、JIS-Z8741-1997により測定され、入射角60°で照射し、60°での反射光を測定する。光沢度は高いほど、表面粗さは低く、また、表面粗度には反映されないうねり等も少ないため、表面がより平滑になる。従って、光沢度は高いほど良いが、800程度あれば十分である。 The glossiness of the metal foil is 200 or more, preferably 300 or more, more preferably 400 or more. The glossiness is measured according to JIS-Z8741-1997, and irradiated at an incident angle of 60 °, and the reflected light at 60 ° is measured. The higher the glossiness is, the lower the surface roughness is, and since there are less undulations reflected in the surface roughness, the surface becomes smoother. Therefore, a higher glossiness is better, but about 800 is sufficient.
 本発明のフレキシブル金属積層体は、金属箔に直接、前記ポリマーブレンド組成物の溶液を塗布し、塗膜を乾燥、場合により熱処理することにより形成されるものであることが好ましい。金属箔としては、銅箔、アルミニウム箔、スチール箔、及びニッケル箔などを使用することができ、これらを複合した複合金属箔や亜鉛やクロム、ニッケル、コバルト、モリブデン化合物、或いはこれらの合金など、他の金属で処理した金属箔についても用いることができる。より好ましい金属箔は銅箔であるが、上述の特性を満足すれば、市販の電解箔、或いは、圧延箔をそのまま使用することができる。例えば、福田金属箔粉工業(株)製の「SV」、「RCF」、日鉱金属(株)製の「GHY」、或いは、三井金属鉱業(株)製の「TQ-M4-VSP」などが挙げられる。 The flexible metal laminate of the present invention is preferably formed by directly applying a solution of the polymer blend composition to a metal foil, drying the coating film, and optionally heat-treating it. As the metal foil, copper foil, aluminum foil, steel foil, nickel foil, etc. can be used, composite metal foil that combines these, zinc, chromium, nickel, cobalt, molybdenum compounds, or alloys thereof, Metal foils treated with other metals can also be used. A more preferable metal foil is a copper foil, but a commercially available electrolytic foil or a rolled foil can be used as it is if the above-mentioned characteristics are satisfied. For example, “SV”, “RCF” manufactured by Fukuda Metal Foil Powder Co., Ltd., “GHY” manufactured by Nikko Metal Co., Ltd., or “TQ-M4-VSP” manufactured by Mitsui Metal Mining Co., Ltd. Can be mentioned.
 本発明において、歪み量とはフレキシブル金属積層体がガラス転移温度以上の温度に曝された際に、内部応力の解放により生じるフィルムの変化量であり、歪み量は200μm以下であることが好ましい。200μm超であると変化量が大きく、フレキシブル金属積層体の寸法変化が大きく、実装時の位置精度が不十分となることがある。 In the present invention, the amount of strain is the amount of change in the film caused by the release of internal stress when the flexible metal laminate is exposed to a temperature higher than the glass transition temperature, and the amount of strain is preferably 200 μm or less. If it exceeds 200 μm, the amount of change is large, the dimensional change of the flexible metal laminate is large, and the positional accuracy during mounting may be insufficient.
 こうして得られる本発明のフレキシブル金属積層体は、樹脂αの有する高透明性、高接着強度と樹脂βの有する低CTEを損なうことなく、その絶縁樹脂層の力学的性質、即ち、高強度、高伸度で強靭なフィルムを積層したフレキシブル金属積層体を得ることができる。 The flexible metal laminate of the present invention thus obtained has high mechanical properties of the insulating resin layer, that is, high strength, high strength, without impairing the high transparency, high adhesive strength of the resin α, and the low CTE of the resin β. It is possible to obtain a flexible metal laminate in which an elongation and tough film is laminated.
 フレキシブル金属積層体における金属箔とフィルムの接着強度は、7.0N/cm以上が好ましく、より好ましくは7.5N/cm以上、さらに好ましくは8.0N/cm以上である。7.0N/cm未満であると、電子部品として使用する際に生じる熱により収縮、膨張を繰り返すことにより、配線が基板から剥離するおそれがあり、ファインピッチ化への対応が困難となることがある。従って、接着強度が高ければ高いほど良いが、10.0N/cm以上あれば十分である。 The adhesive strength between the metal foil and the film in the flexible metal laminate is preferably 7.0 N / cm or more, more preferably 7.5 N / cm or more, and still more preferably 8.0 N / cm or more. If it is less than 7.0 N / cm, the wiring may be peeled off from the substrate due to repeated shrinkage and expansion due to heat generated when used as an electronic component, making it difficult to cope with fine pitch. is there. Therefore, the higher the adhesive strength, the better, but 10.0 N / cm or more is sufficient.
 本発明において、光線透過率はドライバ実装時の位置決め精度にかかる特性であり、600nmにおける平行光透過率を光線透過率とする。フレキシブル金属積層体の金属箔をエッチングした後のフィルム部分における光線透過率は60%以上が好まく、より好ましくは65%以上、さらに好ましくは70%以上である。60%未満であると、上述した実装時の位置決め精度が低下し、ファインピッチ化への対応が困難となることがある。 In the present invention, the light transmittance is a characteristic related to the positioning accuracy when the driver is mounted, and the parallel light transmittance at 600 nm is defined as the light transmittance. The light transmittance in the film portion after etching the metal foil of the flexible metal laminate is preferably 60% or more, more preferably 65% or more, and still more preferably 70% or more. If it is less than 60%, the positioning accuracy at the time of mounting described above may be lowered, and it may be difficult to cope with fine pitch.
 本発明において、ヘイズも光線透過率と同様に位置決め精度にかかる特性である。ヘイズは濁度の指標であり、ヘイズが高いほど、対象物の透明性は低く、透過率が低いことに相当する。フレキシブル金属積層体の金属箔をエッチングした後のフィルム部分におけるヘイズは20%以下が好ましく、より好ましくは15%以下、さらに好ましくは13%以下である。 In the present invention, haze is also a characteristic related to positioning accuracy, similar to light transmittance. Haze is an index of turbidity, and the higher the haze, the lower the transparency of the object and the lower the transmittance. The haze in the film portion after etching the metal foil of the flexible metal laminate is preferably 20% or less, more preferably 15% or less, and still more preferably 13% or less.
 フレキシブル金属積層体の金属箔をエッチングした後のフィルム部分における線膨張係数(CTE)は、10~25ppm/Kが好ましく、より好ましくは12~25ppm/K、さらに好ましくは15~25ppm/Kである。 The coefficient of linear expansion (CTE) in the film portion after etching the metal foil of the flexible metal laminate is preferably 10 to 25 ppm / K, more preferably 12 to 25 ppm / K, and still more preferably 15 to 25 ppm / K. .
 本発明のフレキシブル金属積層体は、銅箔の表面特性を特定したことで、透明性に優れている。さらに、樹脂組成を特定した2種のポリアミドイミド樹脂のブレンドにより、接着力に優れ、ブレンド比率を特定することで、寸法安定性、加工性に優れている。従って、電子材料として、FPC、フラットケーブル、TAB用途だけでなく、小型化、高性能化のニーズの高く、配線のファインピッチ化が進む、COFフィルムキャリアテープに好適に利用することができる。 The flexible metal laminate of the present invention is excellent in transparency by specifying the surface characteristics of the copper foil. Furthermore, it is excellent in adhesive force by blending two kinds of polyamideimide resins whose resin composition is specified, and is excellent in dimensional stability and workability by specifying the blend ratio. Therefore, as an electronic material, it can be suitably used not only for FPC, flat cable, and TAB applications but also for COF film carrier tapes that have high needs for miniaturization and high performance and fine wiring pitches.
 以下、実験例により、この発明をさらに詳しく説明する。なお、本発明は実験例により、特に制限されるものではない。 Hereinafter, the present invention will be described in more detail by experimental examples. The present invention is not particularly limited by the experimental examples.
<対数粘度>
 実験例で得られたポリアミドイミド樹脂サンプル(樹脂α、樹脂β)を用い、ポリマー濃度が0.5g/dlとなるようにN-メチル-2-ピロリドンに溶解した。その溶液の溶液粘度、及び、溶媒粘度を30℃で、ウベローデ型の粘度管により測定して、下記の式で計算した。
 対数粘度(dl/g)=[ln(V1/V2)]/V3
 上記式中、V1はウベローデ型粘度管により測定した溶液粘度を示し、V2はウベローデ型粘度管により測定した溶媒粘度を示すが、V1及びV2はポリマー溶液及び溶媒(N-メチル-2-ピロリドン)が粘度管のキャピラリーを通過する時間から求めた。また、V3は、ポリマー濃度(g/dl)である。
<Logarithmic viscosity>
Using the polyamideimide resin sample (resin α, resin β) obtained in the experimental example, it was dissolved in N-methyl-2-pyrrolidone so that the polymer concentration was 0.5 g / dl. The solution viscosity and solvent viscosity of the solution were measured at 30 ° C. with an Ubbelohde type viscosity tube, and calculated according to the following formula.
Logarithmic viscosity (dl / g) = [ln (V1 / V2)] / V3
In the above formula, V1 represents the solution viscosity measured with an Ubbelohde type viscosity tube, V2 represents the solvent viscosity measured with an Ubbelohde type viscosity tube, and V1 and V2 represent a polymer solution and a solvent (N-methyl-2-pyrrolidone). Was determined from the time taken to pass through the capillary of the viscosity tube. V3 is the polymer concentration (g / dl).
<ポリマー濃度>
 実験例で得られたポリアミドイミド樹脂サンプル(樹脂α、樹脂β)を用い、ポリマー樹脂溶液の重量が0.20gとなるように秤量し(W1)、240℃の熱風乾燥機中で1時間乾燥後、再度重量を測定し(W2)、揮発せず残存したポリマー量からポリマー濃度を算出した。
 ポリマー濃度(重量%)=(W2/W1)×100
<Polymer concentration>
Using the polyamideimide resin sample (resin α, resin β) obtained in the experimental example, weighed the polymer resin solution to 0.20 g (W1), and dried in a hot air dryer at 240 ° C. for 1 hour. Thereafter, the weight was measured again (W2), and the polymer concentration was calculated from the amount of polymer that remained without volatilization.
Polymer concentration (% by weight) = (W2 / W1) × 100
<エッチング>
 実験例で得られたポリアミドイミド樹脂サンプル(樹脂α、樹脂β)を金属箔に塗工、乾燥した後、35%の塩化第二鉄水溶液に浸漬させ、金属箔を完全に除去(エッチング)し、単層のエッチングフィルムを得た。
<Etching>
The polyamideimide resin sample (resin α, resin β) obtained in the experimental example was applied to metal foil, dried, then immersed in 35% aqueous ferric chloride solution, and the metal foil was completely removed (etched). A single-layer etching film was obtained.
<ガラス転移温度、歪み量>
 TMA(熱機械的分析装置/セイコーインスツル(株)社製)引張荷重法により以下の条件で測定した。ガラス転移温度は、昇温での吸熱曲線において、吸熱ピークが出る前のベースラインと、吸熱ピークに向かう接線との交点とした。歪み量はベースラインの変曲点と吸熱ピーク点の変化長より算出した。サンプルは、実験例で得られたフレキシブル金属積層体の金属箔をエッチングした後のフィルム部分を用いた。
 荷重:5g
 サンプルサイズ:4(幅)×20(長さ)mm
 昇温速度:10℃/分
 雰囲気:窒素
<Glass transition temperature and strain>
TMA (Thermo-mechanical analyzer / manufactured by Seiko Instruments Inc.) was measured under the following conditions by the tensile load method. The glass transition temperature was defined as the intersection of the base line before the endothermic peak and the tangent toward the endothermic peak in the endothermic curve at elevated temperature. The amount of strain was calculated from the inflection point of the baseline and the change length of the endothermic peak point. The sample used the film part after etching the metal foil of the flexible metal laminated body obtained by the experiment example.
Load: 5g
Sample size: 4 (width) x 20 (length) mm
Temperature increase rate: 10 ° C / min Atmosphere: Nitrogen
<線膨張係数(CTE)>
 TMA(熱機械的分析装置/セイコーインスツル(株)社製)を用いて引張荷重法により以下の条件で測定した。サンプルは実験例で得られたフレキシブル金属積層体の金属箔をエッチングした後のフィルム部分を用いた。CTEは、100~200℃における平均値より算出した。CTEが低いほど寸法安定性が高いと判断される。
 荷重:5g
 サンプルサイズ:4(幅)×20(長さ)mm
 昇温速度:10℃/分
 雰囲気:窒素
<Linear expansion coefficient (CTE)>
Using TMA (Thermomechanical Analyzer / Seiko Instruments Co., Ltd.), the tensile load method was used under the following conditions. The sample used the film part after etching the metal foil of the flexible metal laminated body obtained by the experiment example. CTE was calculated from the average value at 100 to 200 ° C. The lower the CTE, the higher the dimensional stability.
Load: 5g
Sample size: 4 (width) x 20 (length) mm
Temperature increase rate: 10 ° C / min Atmosphere: Nitrogen
<光沢度>
 金属箔の光沢度はJIS Z8741-1997に記載されている鏡面光沢度測定方法に準拠し、入射角60°で光源を照射し、反射角60°で反射した光の強度を測定した。ここでいう入射角は、光の照射面に対する直角方向を0°としている。測定機器は日本電色(株)のVG200グロスメータを用いて測定を行った。測定は金属箔の樹脂塗布面を測定した。
<Glossiness>
The glossiness of the metal foil was in accordance with the specular glossiness measuring method described in JIS Z8741-1997, and the intensity of light reflected at a reflection angle of 60 ° was measured by irradiating a light source at an incident angle of 60 °. The incident angle here is 0 ° in the direction perpendicular to the light irradiation surface. Measurement was performed using a VG200 gloss meter manufactured by Nippon Denshoku Co., Ltd. The measurement measured the resin application surface of metal foil.
<接着強度>
 実験例で得られたフレキシブル金属箔積層体サンプルをIPC-FC241(IPC-TM-650,2.4.9(A))に従い、サブトラクティブ法により回路パターンを作製し、金属箔とフィルム(ポリマーブレンド組成物層)との接着強度を測定した。
<Adhesive strength>
A circuit pattern was prepared by a subtractive method in accordance with IPC-FC241 (IPC-TM-650, 2.4.9 (A)) from the flexible metal foil laminate sample obtained in the experimental example, and the metal foil and film (polymer The adhesive strength with the blend composition layer) was measured.
<光線透過率>
 実験例で得られたフレキシブル金属箔積層体の金属箔をエッチングした後のフィルム部分を用い、測定機器は日本分光(株)の分光光度計V650を用いて、測定した。平行光透過率を測定するため、拡散光を受光してしまう積分球ユニットは使用せず、標準状態で測定した。
 測定範囲:300~800nmとし、600nmでの値を読み取った。
<Light transmittance>
Using the film portion after etching the metal foil of the flexible metal foil laminate obtained in the experimental example, the measuring instrument was measured using a spectrophotometer V650 manufactured by JASCO Corporation. In order to measure the parallel light transmittance, an integrating sphere unit that receives diffused light was not used, and measurement was performed in a standard state.
The measurement range was 300 to 800 nm, and the value at 600 nm was read.
<ヘイズ>
 実験例で得られたフレキシブル金属箔積層体の金属箔をエッチングした後のフィルム部分を用い、測定機器は日本電色工業(株)製NDH2000を用い、JIS-K7136に準拠して測定した。散乱光線透過率を全光線透過率で割ったものを百分率で表した。
<Haze>
Using the film portion after etching the metal foil of the flexible metal foil laminate obtained in the experimental example, the measuring instrument was NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the measurement was performed according to JIS-K7136. The scattered light transmittance divided by the total light transmittance was expressed as a percentage.
<ブレンド>
 樹脂αおよび/または樹脂βをポリマー濃度が表1記載にした値になるように仕込んだ。希釈溶剤としてはジメチルアセトアミドを用い、100℃のオイルバス中で2時間均一になるまで攪拌し、室温まで冷却し、ポリマーブレンド組成物を得た。ブレンドを実施しない場合はジメチルアセトアミドで表1記載のポリマー濃度に希釈した。
<Blend>
Resin α and / or resin β were charged so that the polymer concentration was as shown in Table 1. Dimethylacetamide was used as a diluent solvent, stirred for 2 hours in a 100 ° C. oil bath until uniform, and cooled to room temperature to obtain a polymer blend composition. When blending was not performed, the polymer concentrations shown in Table 1 were diluted with dimethylacetamide.
(合成例1(樹脂α))
 無水トリメリット酸(86モル%、86.46g)、無水ピロメリット酸(7モル%、10.91g)、4、4'-ジイソシアネートジフェニルエーテル(75モル%、93.64g)、1,4-フェニレンジイソシアネート(25モル%、19.82g)、ジアザビシクロ[5.4.0]ウンデセン-7(0.76g)にN-メチル-2-ピロリドン(390.24g)を加え、ポリマー濃度30重量%でセパラブルフラスコに仕込んだ。100℃のオイルバス中で5時間反応させた後、無水フタル酸(7モル%、7.41g)投入し、1時間攪拌後、N-メチル-2-ピロリドン(291.09g)を加え、ポリマー濃度20重量%に希釈し、室温まで冷却した後にポリアミドイミド樹脂(α-1)を得た。
(Synthesis Example 1 (Resin α))
Trimellitic anhydride (86 mol%, 86.46 g), pyromellitic anhydride (7 mol%, 10.91 g), 4,4′-diisocyanate diphenyl ether (75 mol%, 93.64 g), 1,4-phenylene N-methyl-2-pyrrolidone (390.24 g) was added to diisocyanate (25 mol%, 19.82 g) and diazabicyclo [5.4.0] undecene-7 (0.76 g), and the polymer concentration was 30% by weight. A bull flask was charged. After reacting in an oil bath at 100 ° C. for 5 hours, phthalic anhydride (7 mol%, 7.41 g) was added, stirred for 1 hour, N-methyl-2-pyrrolidone (291.09 g) was added, and polymer was added. After diluting to a concentration of 20% by weight and cooling to room temperature, a polyamideimide resin (α-1) was obtained.
(合成例2)
 無水トリメリット酸(100モル%、76.85g)、ジフェニルメタンジイソシアネート(100モル%、99.10g)、ジアザビシクロ[5.4.0]ウンデセン-7(0.61g)にN-メチル-2-ピロリドン(564.38g)を加え、ポリマー濃度20重量%でセパラブルフラスコに仕込んだ。100℃のオイルバス中で5時間反応させた後、N-メチル-2-ピロリドン(235.16g)を加え、ポリマー濃度15重量%に希釈し、室温まで冷却し、ポリアミドイミド樹脂を得た。
(Synthesis Example 2)
Trimellitic anhydride (100 mol%, 76.85 g), diphenylmethane diisocyanate (100 mol%, 99.10 g), diazabicyclo [5.4.0] undecene-7 (0.61 g) and N-methyl-2-pyrrolidone (564.38 g) was added and charged to a separable flask at a polymer concentration of 20% by weight. After reacting in an oil bath at 100 ° C. for 5 hours, N-methyl-2-pyrrolidone (235.16 g) was added, diluted to a polymer concentration of 15% by weight, and cooled to room temperature to obtain a polyamideimide resin.
(合成例3(樹脂β))
 無水トリメリット酸(80モル%、41.50g)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸(12.5モル%、10.88g)、3,3’,4,4’-ビフェニルテトラカルボン酸(7.5モル%、5.96g)、o-トリジンジイソシアネート(100モル%、71.36)、ジアザビシクロ[5.4.0]ウンデセン-7(0.21g)にN-メチル-2-ピロリドン(600.24g)を加え、ポリマー濃度15重量%でセパラブルフラスコに仕込んだ。100℃のオイルバス中で5時間反応させた後、室温まで冷却し、ポリアミドイミド樹脂(β-1)を得た。
(Synthesis Example 3 (Resin β))
Trimellitic anhydride (80 mol%, 41.50 g), 3,3 ', 4,4'-benzophenonetetracarboxylic acid (12.5 mol%, 10.88 g), 3,3', 4,4'- Biphenyltetracarboxylic acid (7.5 mol%, 5.96 g), o-tolidine diisocyanate (100 mol%, 71.36), diazabicyclo [5.4.0] undecene-7 (0.21 g) with N-methyl -2-Pyrrolidone (600.24 g) was added and charged to a separable flask at a polymer concentration of 15% by weight. After reacting in an oil bath at 100 ° C. for 5 hours, the mixture was cooled to room temperature to obtain a polyamideimide resin (β-1).
(合成例4(樹脂β))
 無水トリメリット酸(100モル%)、o-トリジンジイソシアネート(80モル%)、トリレンジイソシアネート(20モル%)を用いて、合成例3と同じ条件で実施し、樹脂β-2を得た。
(Synthesis Example 4 (Resin β))
Using β-trimellitic anhydride (100 mol%), o-tolidine diisocyanate (80 mol%), and tolylene diisocyanate (20 mol%), the same procedure as in Synthesis Example 3 was carried out to obtain Resin β-2.
(実験例1~6)
 表1、2に示すように樹脂αのブレンド比率を変更したポリマーブレンド組成物を用いて、電解銅箔(商品名「CF-T9DA-SV」:福田金属箔粉工業(株)製:Rz=0.75μm、光沢度=500)にナイフコーターを用いて塗布し、90℃で8分間初期乾燥した。次いで、真空下で十分に溶剤が揮発するまで乾燥を行い、金属積層体を得た。
 樹脂αのブレンド比率が増加することで、接着強度の向上が確認され、また透過率の向上、ヘイズの低減が確認されたことから、樹脂αの存在が本発明において、必要不可欠であることが分かる。また樹脂αのブレンド比率が増加することで、線膨張係数も増加しており、ブレンド比率が高くすることで、銅との線膨張係数の乖離が大きくなるため、ブレンド比率の制御も重要であることがわかる。
(Experimental Examples 1-6)
As shown in Tables 1 and 2, by using a polymer blend composition in which the blend ratio of the resin α was changed, electrolytic copper foil (trade name “CF-T9DA-SV”: manufactured by Fukuda Metal Foil Industry Co., Ltd .: Rz = 0.75 μm, glossiness = 500) using a knife coater and initial drying at 90 ° C. for 8 minutes. Subsequently, it dried until the solvent fully volatilized under vacuum, and the metal laminated body was obtained.
The increase in the blend ratio of the resin α confirmed that the adhesive strength was improved, and that the transmittance was improved and the haze was reduced. Therefore, the presence of the resin α is essential in the present invention. I understand. Also, as the blend ratio of the resin α increases, the linear expansion coefficient also increases. By increasing the blend ratio, the deviation of the linear expansion coefficient from copper increases, so control of the blend ratio is also important. I understand that.
(実験例7)
 表1、2に示すように、樹脂αの樹脂組成を変えた以外は実験例1と同様の条件で、金属積層体を得た。
 樹脂αの組成を変更することで、金属積層体の特性が大幅に悪化した。このことから、樹脂αの組成が本発明において重要であることがわかる。
(Experimental example 7)
As shown in Tables 1 and 2, a metal laminate was obtained under the same conditions as in Experimental Example 1 except that the resin composition of the resin α was changed.
By changing the composition of the resin α, the properties of the metal laminate were greatly deteriorated. From this, it can be seen that the composition of the resin α is important in the present invention.
(実験例8、9)
 表1、2に示すように、樹脂α単独のブレンド比率に変えた以外は実験例1と同様の条件で金属積層体を得た。
 樹脂α単独では線膨張係数が十分ではないことが確認された。このことから、樹脂βの存在が本発明において重要であることがわかる。
(Experimental examples 8 and 9)
As shown in Tables 1 and 2, a metal laminate was obtained under the same conditions as in Experimental Example 1 except that the blend ratio of the resin α alone was changed.
It was confirmed that the resin α alone does not have a sufficient linear expansion coefficient. From this, it can be seen that the presence of the resin β is important in the present invention.
(実験例10~13)
 表1、2に示すように樹脂βの組成、ブレンド比率を変えた以外は実験例1と同様の条件で金属積層体を得た。
 実験例1と同様に樹脂αのブレンドにより接着強度、光線透過率、ヘイズの向上が確認された。このことからも樹脂αの存在が本発明において重要であることがわかる。
(Experimental Examples 10 to 13)
As shown in Tables 1 and 2, a metal laminate was obtained under the same conditions as in Experimental Example 1 except that the composition of resin β and the blend ratio were changed.
In the same manner as in Experimental Example 1, it was confirmed that the adhesive strength, light transmittance, and haze were improved by blending the resin α. This also shows that the presence of the resin α is important in the present invention.
(実験例14)
 表2に示すように、銅箔(商品名「CF-T4X-SV」:福田金属箔粉工業(株)製:Rz=1.28μm、光沢度=90)を変えた以外は実験例1と同様の条件で、金属積層体を得た。
 銅箔の表面粗度Rzを高くし、光沢度を低くすることで、接着強度の向上は確認されたが、透過率、ヘイズが大幅に悪化することが確認された。このことから、銅箔特性が本発明において重要であることがわかる。
(Experimental example 14)
As shown in Table 2, Experimental Example 1 except that the copper foil (trade name “CF-T4X-SV”: Fukuda Metal Foil Industry Co., Ltd .: Rz = 1.28 μm, glossiness = 90) was changed. A metal laminate was obtained under the same conditions.
Although the improvement of adhesive strength was confirmed by increasing the surface roughness Rz and decreasing the glossiness of the copper foil, it was confirmed that the transmittance and haze were greatly deteriorated. From this, it can be seen that the copper foil characteristics are important in the present invention.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (11)

  1.  二成分以上のポリアミドイミド樹脂を含有し、下記要件(1)および(2)を満たすことを特徴とするポリマーブレンド組成物。
    (1)下記一般式(1)および一般式(2)を構成単位として含むポリアミドイミド樹脂(樹脂α)を必須成分とし、樹脂α中の一般式(1)と一般式(2)のモル比が一般式(1)/一般式(2)=55/45~90/10とする
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
    (一般式(1)及び一般式(2)中、R、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基もしくはアルコキシ基を示す。)
    (2)下記一般式(3)を構成単位として含む樹脂αとは異なる組成のポリアミドイミド樹脂(樹脂β)を必須成分とする
    Figure JPOXMLDOC01-appb-C000003
     
    (一般式(3)中、RおよびRは同じであっても、異なっていてもよく、それぞれ水素、または炭素数1~4のアルキル基もしくはアルコキシ基を示す。)
    A polymer blend composition comprising a polyamideimide resin having two or more components and satisfying the following requirements (1) and (2).
    (1) A polyamideimide resin (resin α) containing the following general formula (1) and general formula (2) as structural units is an essential component, and the molar ratio of general formula (1) and general formula (2) in resin α Is general formula (1) / general formula (2) = 55/45 to 90/10
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (In general formula (1) and general formula (2), R 1 , R 2 and R 3 may be the same or different, and each represents hydrogen, or an alkyl group or alkoxy group having 1 to 4 carbon atoms. Is shown.)
    (2) A polyamideimide resin (resin β) having a composition different from that of the resin α containing the following general formula (3) as a structural unit is an essential component.
    Figure JPOXMLDOC01-appb-C000003

    (In general formula (3), R 4 and R 5 may be the same or different and each represents hydrogen, or an alkyl group or alkoxy group having 1 to 4 carbon atoms.)
  2.  樹脂αと樹脂βの組成比が樹脂α/樹脂β=20/80~50/50重量比である請求項1記載のポリマーブレンド組成物。 2. The polymer blend composition according to claim 1, wherein the composition ratio of the resin α and the resin β is resin α / resin β = 20/80 to 50/50 weight ratio.
  3.  樹脂βが酸成分として無水トリメリット酸を含み、かつ3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物及び3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる群より1種以上を含み、アミン成分としてo-トリジンを含むことを特徴とする請求項1又は2記載のポリマーブレンド組成物。 Resin β contains trimellitic anhydride as an acid component, and from 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 3. The polymer blend composition according to claim 1, comprising at least one selected from the group consisting of o-tolidine as an amine component.
  4.  請求項1~3のいずれかに記載のポリマーブレンド組成物を含有するフィルム。 A film containing the polymer blend composition according to any one of claims 1 to 3.
  5.  金属箔の少なくとも片面に直接請求項4記載のフィルムが積層されたフレキシブル金属積層体。 A flexible metal laminate in which the film according to claim 4 is directly laminated on at least one side of a metal foil.
  6.  請求項5に記載の金属箔のRzが1.2μm以下、及び60°光沢度が200以上であり、金属箔とフィルムの接着強度が7.0N/cm以上であるフレキシブル金属積層体。 6. A flexible metal laminate in which Rz of the metal foil according to claim 5 is 1.2 μm or less, 60 ° gloss is 200 or more, and the adhesive strength between the metal foil and the film is 7.0 N / cm or more.
  7.  金属箔エッチング後のフィルム部分において、波長600nmでの光線透過率が55%以上である請求項5又は6記載のフレキシブル金属積層体。 The flexible metal laminate according to claim 5 or 6, wherein the film portion after etching the metal foil has a light transmittance of 55% or more at a wavelength of 600 nm.
  8.  金属箔エッチング後のフィルム部分において、ヘイズが20%以下である請求項5~7のいずれかに記載のフレキシブル金属積層体。 The flexible metal laminate according to any one of claims 5 to 7, wherein the film portion after the metal foil etching has a haze of 20% or less.
  9.  金属箔エッチング後のフィルム部分において、線膨張係数が10~25ppm/Kである請求項5~8のいずれかに記載のフレキシブル金属積層体。 The flexible metal laminate according to any one of claims 5 to 8, wherein the film portion after the metal foil etching has a linear expansion coefficient of 10 to 25 ppm / K.
  10.  金属箔エッチング後のフィルム部分において、TMA法におけるガラス転移温度でのフィルム歪み量が200μm以下である請求項5~9のいずれかに記載のフレキシブル金属積層体。 The flexible metal laminate according to any one of claims 5 to 9, wherein in the film portion after etching the metal foil, the amount of film distortion at the glass transition temperature in the TMA method is 200 µm or less.
  11.  請求項5~10のいずれかに記載のフレキシブル金属積層体を含有するフレキシブルプリント基板。
     
    A flexible printed circuit board comprising the flexible metal laminate according to any one of claims 5 to 10.
PCT/JP2015/085183 2015-01-09 2015-12-16 Polymer blend composition, flexible metal laminate, and flexible printed wiring board WO2016111130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016568309A JP6589887B2 (en) 2015-01-09 2015-12-16 Polymer blend composition, flexible metal laminate and flexible printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-002901 2015-01-09
JP2015002901 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016111130A1 true WO2016111130A1 (en) 2016-07-14

Family

ID=56355832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085183 WO2016111130A1 (en) 2015-01-09 2015-12-16 Polymer blend composition, flexible metal laminate, and flexible printed wiring board

Country Status (3)

Country Link
JP (1) JP6589887B2 (en)
TW (1) TWI653291B (en)
WO (1) WO2016111130A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099172A1 (en) * 2015-12-09 2017-06-15 東レ株式会社 Resin, slurry, laminate using same, and production method for laminate
US11261303B2 (en) * 2016-07-21 2022-03-01 Mitsubishi Gas Chemical Company, Inc. Polyimide resin film and method for producing polyimide resin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533909B (en) * 2020-06-08 2023-04-25 武汉柔显科技股份有限公司 Polyamide imide, polyamide imide film and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103822A (en) * 1992-09-18 1994-04-15 Sumitomo Electric Ind Ltd Insulated electric cable
JPH06196025A (en) * 1992-12-22 1994-07-15 Sumitomo Electric Ind Ltd Insulated wire
JP2009141337A (en) * 2007-11-12 2009-06-25 Toyobo Co Ltd Metal laminate
WO2011152178A1 (en) * 2010-05-31 2011-12-08 東洋紡績株式会社 Flexible metal-clad laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103822A (en) * 1992-09-18 1994-04-15 Sumitomo Electric Ind Ltd Insulated electric cable
JPH06196025A (en) * 1992-12-22 1994-07-15 Sumitomo Electric Ind Ltd Insulated wire
JP2009141337A (en) * 2007-11-12 2009-06-25 Toyobo Co Ltd Metal laminate
WO2011152178A1 (en) * 2010-05-31 2011-12-08 東洋紡績株式会社 Flexible metal-clad laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099172A1 (en) * 2015-12-09 2017-06-15 東レ株式会社 Resin, slurry, laminate using same, and production method for laminate
JPWO2017099172A1 (en) * 2015-12-09 2018-11-01 東レ株式会社 Resin, slurry, laminate using them, and method for producing the same
JP7135272B2 (en) 2015-12-09 2022-09-13 東レ株式会社 Resin, slurry, laminate using them, and manufacturing method thereof
US11261303B2 (en) * 2016-07-21 2022-03-01 Mitsubishi Gas Chemical Company, Inc. Polyimide resin film and method for producing polyimide resin film

Also Published As

Publication number Publication date
TWI653291B (en) 2019-03-11
JPWO2016111130A1 (en) 2017-10-12
JP6589887B2 (en) 2019-10-16
TW201631038A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6908590B2 (en) Polyamic acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board
JP2022126664A (en) Metal-clad laminate and circuit board
JP5713242B2 (en) Flexible metal-clad laminate
CN113874420B (en) Resin film and metal-clad laminate
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP6589887B2 (en) Polymer blend composition, flexible metal laminate and flexible printed circuit board
JP5532069B2 (en) Method for producing flexible metal laminate
CN112745676A (en) Resin composition, resin film, and metal-clad laminate
CN112745529A (en) Silica particles, resin composition, resin film, and metal-clad laminate
WO2020022129A1 (en) Metal-cladded laminate plate, and circuit board
JP5240204B2 (en) Metal laminate
CN110871606B (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP2008135759A (en) Base substrate for printed wiring board and multilayer printed wiring board that use polyimide benzoxazole film as insulating layer
JPWO2020022129A5 (en)
JP6936639B2 (en) Laminates, flexible metal-clad laminates, and flexible printed circuit boards
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
KR20200026461A (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
JP5152028B2 (en) Polymer blend composition, film, and metal laminate
JP7195848B2 (en) Polyamic acid, polyimide, resin film, metal-clad laminate and manufacturing method thereof
JP2022099997A (en) Conductor-polyimide laminate
JP4721657B2 (en) Polyimide benzoxazole film
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate
JP4684601B2 (en) Manufacturing method of flexible laminated substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877003

Country of ref document: EP

Kind code of ref document: A1