JPWO2017099172A1 - Resin, slurry, laminate using them, and method for producing the same - Google Patents

Resin, slurry, laminate using them, and method for producing the same Download PDF

Info

Publication number
JPWO2017099172A1
JPWO2017099172A1 JP2016572603A JP2016572603A JPWO2017099172A1 JP WO2017099172 A1 JPWO2017099172 A1 JP WO2017099172A1 JP 2016572603 A JP2016572603 A JP 2016572603A JP 2016572603 A JP2016572603 A JP 2016572603A JP WO2017099172 A1 JPWO2017099172 A1 JP WO2017099172A1
Authority
JP
Japan
Prior art keywords
resin
general formula
carbon atoms
group
organic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016572603A
Other languages
Japanese (ja)
Other versions
JP7135272B2 (en
Inventor
祐真 杉崎
祐真 杉崎
弓場 智之
智之 弓場
奈津子 茶山
奈津子 茶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017099172A1 publication Critical patent/JPWO2017099172A1/en
Application granted granted Critical
Publication of JP7135272B2 publication Critical patent/JP7135272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、低温硬化可能でかつ高強度、高弾性、高接着、低線膨張であって、リチウムイオン電池、キャパシタ電極用バインダーにおいて良好な充放電時の容量維持率を得ることが可能であり、さらに、デバイス基板の反りの低い半導体パッケージ、ディスプレー、多層配線基板を作製することが可能な樹脂を提供することを目的とする。
本発明は、請求項1に記載のとおり、一般式(1)で表される構造単位および/または一般式(2)で表される構造単位を有する樹脂であって、樹脂中に含まれるRおよびRは、各々、独立して、少なくとも一部に下記一般式(3)で表される構造および一般式(4)で表される構造を含む樹脂を提供する。
The present invention can be cured at low temperature, has high strength, high elasticity, high adhesion, and low linear expansion, and can obtain a good capacity retention rate during charge and discharge in a binder for lithium ion batteries and capacitor electrodes. It is another object of the present invention to provide a resin capable of producing a semiconductor package, a display, and a multilayer wiring board with low warpage of the device substrate.
The present invention provides a resin having a structural unit represented by the general formula (1) and / or a structural unit represented by the general formula (2) as defined in claim 1, wherein R is contained in the resin. 1 and R 4 each independently provide a resin including at least part of the structure represented by the following general formula (3) and the structure represented by the general formula (4).

Description

リチウムイオン二次電池、キャパシタ電極用バインダーや半導体パッケージ、多層配線基板、ディスプレー用絶縁膜として好適に用いられる樹脂、スラリー、および導電性基材、導電性配線付き基材とそれらの積層体とその製造方法に関するものである。   Lithium ion secondary battery, capacitor electrode binder and semiconductor package, multilayer wiring board, resin, slurry, and conductive base material suitably used as display insulating film, base material with conductive wiring, and their laminates and their It relates to a manufacturing method.

近年、ノート型パーソナルコンピューターや小型携帯端末の爆発的な普及に伴って、充電可能な小型、軽量、高容量、高エネルギー密度、高信頼性を有する二次電池への要求が強まっている。   In recent years, with the explosive spread of notebook personal computers and small portable terminals, there has been an increasing demand for rechargeable secondary batteries having a small size, light weight, high capacity, high energy density, and high reliability.

また自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発も盛んに行われている。   In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and the development of secondary batteries for motor drives that hold the key to their practical application. It is actively done.

特に電池の中で最も高い理論エネルギーを有すると言われるリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。現在広く使われているリチウムイオン電池は、コバルト酸リチウムなど、リチウムを含む複合酸化物などの正極活物質とポリフッ化ビニリデン(PVDF)などのバインダーを含むペーストをアルミ箔上に塗布して形成される正極と、炭素系の活物質など、リチウムイオン吸蔵放出可能な負極活物質とPVDFやスチレン・ブタジエン・ゴム(SBR)などのバインダーを含むペーストを銅箔上に塗布して形成される負極が、セパレーター、電解質層を介して接続され、密封された構成を有している。   In particular, lithium ion secondary batteries, which are said to have the highest theoretical energy among batteries, are attracting attention, and are currently being developed rapidly. Lithium ion batteries, which are widely used at present, are formed by applying a paste containing a positive electrode active material such as lithium cobalt oxide and a composite oxide containing lithium and a binder such as polyvinylidene fluoride (PVDF) on an aluminum foil. A negative electrode formed by coating a copper foil with a paste containing a negative electrode active material capable of occluding and releasing lithium ions, such as a carbon-based active material, and a binder such as PVDF or styrene / butadiene / rubber (SBR). , A separator and an electrolyte layer are connected and sealed.

リチウムイオン電池の容量をさらに大きくするために、負極活物質としてケイ素、ゲルマニウムまたはスズを用いることが検討されている(例えば、特許文献1参照)。このようにケイ素、ゲルマニウム、スズなどを用いた負極活物質は、リチウムイオンを大量に受け取ることができるために、十分に充電が行われたときと十分に放電が行われた時の体積の変化が大きく、従来のバインダーでは活物質の体積変化に追随できないため、充放電サイクルにおける容量維持率が低下する。このため体積膨脹の大きな負極用のバインダーの検討がなされている(例えば特許文献2、3、4参照)。   In order to further increase the capacity of a lithium ion battery, it has been studied to use silicon, germanium, or tin as a negative electrode active material (see, for example, Patent Document 1). In this way, since the negative electrode active material using silicon, germanium, tin, etc. can receive a large amount of lithium ions, the change in volume when fully charged and fully discharged However, since the conventional binder cannot follow the volume change of the active material, the capacity maintenance rate in the charge / discharge cycle is lowered. For this reason, a binder for a negative electrode having a large volume expansion has been studied (for example, see Patent Documents 2, 3, and 4).

さらにノート型パーソナルコンピューターや小型携帯端末の高速化、小型化は半導体、ディスプレー、多層配線基板等の部品の小型化、薄化を進行し、それに伴ってデバイス基板の反りに起因する工程歩留まりの悪化やデバイスの信頼性への悪影響が懸念されている。このため、樹脂にも基板の反りを小さくする特性の付与が求められている。   Furthermore, the speeding up and downsizing of notebook personal computers and small portable terminals has led to the downsizing and thinning of parts such as semiconductors, displays, and multilayer wiring boards, and the resulting deterioration in process yield due to warping of device boards. There are concerns about adverse effects on device reliability. For this reason, the resin is also required to be imparted with characteristics that reduce the warpage of the substrate.

デバイス基板の反りを小さくする手法としては、基板上に製膜された樹脂と基板そのものの熱線膨張係数の差を小さくして、熱膨張差によって発生する応力を小さくすることが挙げられる。一般的な樹脂の熱線膨張係数は基板の熱線膨張係数よりも10ppm以上大きいため、上記した応力低減のためには樹脂の熱線膨張係数を小さくすることが効果的である。本課題を達成するために主鎖に剛直な構造を含んだ熱線膨張係数の小さいポリイミド系樹脂(例えば、特許文献5〜9参照)などが報告されている。   As a method for reducing the warpage of the device substrate, it is possible to reduce the difference in thermal linear expansion coefficient between the resin formed on the substrate and the substrate itself, thereby reducing the stress generated by the thermal expansion difference. Since the thermal linear expansion coefficient of a general resin is 10 ppm or more larger than the thermal linear expansion coefficient of the substrate, it is effective to reduce the thermal linear expansion coefficient of the resin in order to reduce the stress described above. In order to achieve this object, a polyimide resin (for example, see Patent Documents 5 to 9) having a small thermal linear expansion coefficient including a rigid structure in the main chain has been reported.

特開2009−199761号公報JP 2009-199761 A 特開2009−245773号広報Japanese Unexamined Patent Publication No. 2009-245773 特開2010−062041号広報JP 2010-062041 PR 特開2009−170384号公報JP 2009-170384 A 特開平2−283762号公報JP-A-2-283762 特開平8−48773号公報JP-A-8-48773 特開平8−253584号公報Japanese Patent Application Laid-Open No. 8-253854 特開平11−158279号公報Japanese Patent Laid-Open No. 11-158279 特開2002−363283号公報JP 2002-363283 A

しかしながら、特許文献1に体積膨脹の大きな負極に対する具体的なバインダーとして記載されているカルボキシメチルセルロースのナトリウム塩では、強度が未だ不足しており充放電サイクルにおいて十分な容量維持率を得ることができないという問題があった。   However, the sodium salt of carboxymethyl cellulose described as a specific binder for a negative electrode having a large volume expansion in Patent Document 1 is still insufficient in strength and cannot obtain a sufficient capacity maintenance ratio in a charge / discharge cycle. There was a problem.

特許文献2に記載のポリイミドバインダーでは、バインダーの強度は高いが、ポリイミド構造に転化するために電極作製時に300℃以上の高温処理を行わねばならないため、電極の酸化劣化等の問題があった。   In the polyimide binder described in Patent Document 2, although the binder has high strength, there is a problem such as oxidative deterioration of the electrode because a high temperature treatment of 300 ° C. or more must be performed at the time of electrode preparation in order to convert it into a polyimide structure.

特許文献3および4に記載のバインダーでは、バインダーの強度は高く、処理温度も低くできるが、充放電時の体積変化による電極の劣化を抑えて高い容量維持率を得るには、膜物性が未だ不十分という問題があった。   In the binders described in Patent Documents 3 and 4, the strength of the binder is high and the processing temperature can be lowered. However, in order to obtain a high capacity retention rate by suppressing the deterioration of the electrode due to the volume change at the time of charge and discharge, the film physical properties are not yet obtained. There was a problem of insufficient.

また、特許文献5〜9に記載のポリイミドはポリイミド構造に転化するために300℃以上の高温処理を行わねばならないため、デバイスの酸化劣化等の問題があった。   Moreover, since the polyimides described in Patent Documents 5 to 9 must be subjected to a high-temperature treatment at 300 ° C. or higher in order to convert them into a polyimide structure, there are problems such as oxidative deterioration of the device.

そこで本発明は、低温処理可能であり、かつ、処理後の膜が高強度、高弾性、高接着、低熱線膨張である樹脂、スラリー、およびそれらを導電性基材、導電性配線付き基材に製膜された積層体を提供することを課題とする。   Therefore, the present invention provides a resin, slurry, and a conductive substrate and a substrate with a conductive wiring, which can be processed at a low temperature and whose processed film has high strength, high elasticity, high adhesion, and low thermal linear expansion. It is an object of the present invention to provide a laminate formed into a film.

すなわち本発明は、一般式(1)で表される構造単位および/または下記一般式(2)で表される構造単位を有する樹脂であって、樹脂中に含まれるRおよびRは、各々独立して、少なくとも一部に下記一般式(3)で表される構造および下記一般式(4)で表される構造を含む樹脂である。That is, the present invention is a resin having a structural unit represented by the general formula (1) and / or a structural unit represented by the following general formula (2), wherein R 1 and R 4 contained in the resin are: Each of them is a resin including a structure represented by the following general formula (3) and a structure represented by the following general formula (4) at least partially.

Figure 2017099172
(一般式(1)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。Rは水素原子、または炭素数1〜10の有機基を示す。mは1または2の整数である。)
Figure 2017099172
(In General Formula (1), R 1 represents a divalent organic group having 2 to 50 carbon atoms. R 2 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. R 3 represents a hydrogen atom. Or an organic group having 1 to 10 carbon atoms, m 1 is an integer of 1 or 2.)

Figure 2017099172
(一般式(2)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。mは0または1の整数、cは0または1の整数であり、m=0のときc=1、m=1のときc=0である。)
Figure 2017099172
(In General Formula (2), R 4 represents a divalent organic group having 2 to 50 carbon atoms. R 5 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. M 2 is 0 or 1 integer, c 1 is an integer of 0 or 1, and c 1 = 0 when c 1 = 1, m 2 = 1 when m 2 = 0.)

Figure 2017099172
(一般式(3)中、R、Rは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bおよびbは各々独立に0〜3の整数である。)
Figure 2017099172
(In General Formula (3), R 6 and R 7 each independently represent a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 1 and b 2 are each independently an integer of 0 to 3. .)

Figure 2017099172
(一般式(4)中、Rは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bは0〜4の整数である。)
Figure 2017099172
(In General Formula (4), each R 8 independently represents a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 3 is an integer of 0 to 4.)

本発明の樹脂によれば、低温硬化可能でかつ高強度、高弾性、高接着、低線膨張であって、リチウムイオン電池、キャパシタ電極用バインダーにおいて良好な充放電時の容量維持率を得ることが可能であり、さらに、デバイス基板の反りの低い半導体パッケージ、ディスプレー、多層配線基板を作製することが可能となる。   According to the resin of the present invention, it can be cured at low temperature and has high strength, high elasticity, high adhesion, and low linear expansion, and obtains a good capacity maintenance ratio during charge and discharge in a binder for a lithium ion battery and a capacitor electrode. In addition, it is possible to manufacture a semiconductor package, a display, and a multilayer wiring board with low warpage of the device substrate.

本発明の樹脂は、下記一般式(1)および(2)のうち少なくとも1つから選ばれる構造単位を有する樹脂である。   The resin of the present invention is a resin having a structural unit selected from at least one of the following general formulas (1) and (2).

Figure 2017099172
(一般式(1)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。Rは水素原子、または炭素数1〜10の有機基を示す。mは1または2の整数である。)
Figure 2017099172
(In General Formula (1), R 1 represents a divalent organic group having 2 to 50 carbon atoms. R 2 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. R 3 represents a hydrogen atom. Or an organic group having 1 to 10 carbon atoms, m 1 is an integer of 1 or 2.)

Figure 2017099172
(一般式(2)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。mは0または1の整数、cは0または1の整数であり、m=0のときc=1、m=1のときc=0である。)
Figure 2017099172
(In General Formula (2), R 4 represents a divalent organic group having 2 to 50 carbon atoms. R 5 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. M 2 is 0 or 1 integer, c 1 is an integer of 0 or 1, and c 1 = 0 when c 1 = 1, m 2 = 1 when m 2 = 0.)

より低温で処理可能であるという観点から、一般式(2)で表される構造単位を主成分とする樹脂であることが好ましく、溶媒への可溶性という観点からmは0のポリアミドイミド構造であることがさらに好ましい。
ここで言う主成分とは全樹脂のうち70重量%以上、好ましくは80重量%以上であることを指す。
From the viewpoint that it can be processed at a lower temperature, the resin is preferably a resin having the structural unit represented by the general formula (2) as a main component, and m 2 has a polyamideimide structure of 0 from the viewpoint of solubility in a solvent. More preferably it is.
The main component as used herein refers to 70% by weight or more, preferably 80% by weight or more of the total resin.

一般式(1)および(2)中、R、Rはジアミン残基を表し、炭素数2〜50の2価の有機基を示す。RおよびRは、各々独立して、一般式(3)で表される構造及び一般式(4)で表される構造を含む。In general formulas (1) and (2), R 1 and R 4 represent a diamine residue and represent a divalent organic group having 2 to 50 carbon atoms. R 1 and R 4 each independently include a structure represented by the general formula (3) and a structure represented by the general formula (4).

Figure 2017099172
Figure 2017099172

Figure 2017099172
Figure 2017099172

一般式(3)中、R、Rは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。樹脂の線膨張係数が低減できるという点で、好ましくはフッ素原子、炭素数1〜3のアルキル基またはフルオロアルキル基、より好ましくは炭素数1〜3のアルキル基またはフルオロアルキル基である。In General Formula (3), R 6 and R 7 each independently represent a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint that the linear expansion coefficient of the resin can be reduced, a fluorine atom, an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group is preferable, and an alkyl group or fluoroalkyl group having 1 to 3 carbon atoms is more preferable.

およびbは各々独立に0〜3の整数である。溶媒への可溶性と低線膨張性の両立という点で好ましくは1または2である。さらに、低線膨張性の点でRおよびRはポリマー主鎖に対してオルソ位に結合していることが好ましい。b 1 and b 2 are each independently an integer of 0 to 3. It is preferably 1 or 2 from the viewpoint of compatibility with the solvent and low linear expansion. Furthermore, R 6 and R 7 are preferably bonded to the ortho position with respect to the polymer main chain from the viewpoint of low linear expansion.

一般式(3)中、低線膨張特性の点で好ましくはベンゼン環がパラ結合で連結されていることである。具体的には下記に示す構造のものが挙げられるが、これらに限定されない。   In general formula (3), the benzene rings are preferably linked by a para bond from the viewpoint of low linear expansion characteristics. Specific examples include the structures shown below, but are not limited thereto.

Figure 2017099172
Figure 2017099172

溶媒への可溶性と低線膨張性の両立の点でRおよびRは、各々独立して、その50モル%以上が一般式(3)で表される構造であることが好ましく、70モル%以上が有することがより好ましい。From the standpoint of both solubility in a solvent and low linear expansion, each of R 1 and R 4 is preferably independently a structure in which 50 mol% or more thereof is represented by the general formula (3). % Or more is more preferable.

一般式(4)中、Rは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。樹脂の線膨張係数が低減できるという点で、好ましくはフッ素原子、炭素数1〜3のアルキル基またはフルオロアルキル基、より好ましくは炭素数1〜3のアルキル基またはフルオロアルキル基である。bは0〜4の整数である。溶媒への可溶性と低線膨張性の両立という点で好ましくは1または2である。さらに、低線膨張性の点でRはポリマー主鎖に対してオルソ位に結合していることが最も好ましい。In General Formula (4), each R 8 independently represents a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint that the linear expansion coefficient of the resin can be reduced, a fluorine atom, an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group is preferable, and an alkyl group or fluoroalkyl group having 1 to 3 carbon atoms is more preferable. b 3 is an integer of 0 to 4. It is preferably 1 or 2 from the viewpoint of compatibility with the solvent and low linear expansion. Further, from the viewpoint of low linear expansion, it is most preferable that R 8 is bonded to the ortho position with respect to the polymer main chain.

一般式(4)中、溶媒への可溶性と低線膨張性の両立の点でベンゼン環がメタ結合で連結されていることが好ましい。具体的には下記に示す構造のものが挙げられるが、これらに限定されない。   In general formula (4), it is preferable that the benzene ring is connected by the meta bond from the viewpoint of compatibility with the solvent and low linear expansion. Specific examples include the structures shown below, but are not limited thereto.

Figure 2017099172
Figure 2017099172

溶媒への可溶性と低線膨張性の両立の点でRおよびRは、各々独立して、その10〜40モル%が一般式(4)で表される構造であることが好ましく、より好ましくは25〜35モル%である。R 1 and R 4 are each independently preferably 10 to 40 mol% of a structure represented by the general formula (4) in terms of both solubility in a solvent and low linear expansion. Preferably it is 25-35 mol%.

ジアミン残基は、一般式(3)、(4)で表される構造以外のジアミン残基を含んでいてもよい。そのようなジアミン残基を与えるアミン成分としては、3,5−ジアミノ安息香酸、3−カルボキシ−4,4’−ジアミノジフェニルエーテルなどのカルボキシル基含有ジアミン、3−スルホン酸−4,4’−ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジチオヒドロキシフェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼンあるいはこれらの芳香族環の水素原子の一部をアルキル基やハロゲン原子で置換した化合物や、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂肪族ジアミンなどを挙げることができるがこれらに限定されない。   The diamine residue may contain a diamine residue other than the structure represented by the general formulas (3) and (4). Examples of the amine component that gives such a diamine residue include 3,5-diaminobenzoic acid, carboxyl group-containing diamines such as 3-carboxy-4,4′-diaminodiphenyl ether, and 3-sulfonic acid-4,4′-diamino. Sulfonic acid-containing diamines such as diphenyl ether, dithiohydroxyphenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'- Diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,5-naphthalenediamine 2,6- Phthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl} ether, 1,4 -Bis (4-aminophenoxy) benzene or a compound in which a part of hydrogen atoms of these aromatic rings are substituted with an alkyl group or a halogen atom, or an aliphatic diamine such as cyclohexyldiamine or methylenebiscyclohexylamine. Although it can, it is not limited to these.

これらのジアミン残基を与える原料としては、ジアミンの他に、ジアミン残基の構造にアミノ基の代わりにイソシアネート基が結合したジイソシアネート化合物や、ジアミンのアミノ基の2つの水素原子がトリメチルシリル基に置換されたテトラトリメチルシリル化ジアミンを使用することもできる。   In addition to the diamine, the raw materials that give these diamine residues include diisocyanate compounds in which an isocyanate group is bonded to the structure of the diamine residue instead of an amino group, and two hydrogen atoms of the amino group of the diamine are substituted with a trimethylsilyl group. Tetratrimethylsilylated diamines made can also be used.

一般式(2)で表される構造単位を主成分とする樹脂である場合、副生される水分がないという点でジイソシアネート化合物が好ましく用いられる。   In the case of a resin having the structural unit represented by the general formula (2) as a main component, a diisocyanate compound is preferably used in that there is no by-product water.

一般式(1)および(2)中、RおよびRはトリ−またはテトラ−カルボン酸残基(以下、「酸残基」という)を表す。In general formulas (1) and (2), R 2 and R 5 represent a tri- or tetra-carboxylic acid residue (hereinafter referred to as “acid residue”).

酸残基を与える好ましいトリカルボン酸の例として、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などを挙げることができる。   Examples of preferable tricarboxylic acid that gives an acid residue include trimellitic acid, trimesic acid, diphenyl ether tricarboxylic acid, and biphenyl tricarboxylic acid.

酸残基を与える好ましいテトラカルボン酸の例として、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,2’,3,3’−ベンゾフェノンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス(2,3−ジカルボキシフェニル)ヘキサフルオロプロパン、1,1−ビス(3,4−ジカルボキシフェニル)エタン、1,1−ビス(2,3−ジカルボキシフェニル)エタン、ビス(3,4−ジカルボキシフェニル)メタン、ビス(2,3−ジカルボキシフェニル)メタン、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)エーテル、1,2,5,6−ナフタレンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、2,3,5,6−ピリジンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸、ビシクロ[3.3.1.]テトラカルボン酸、ビシクロ[3.1.1.]ヘプト−2−エンテトラカルボン酸、ビシクロ[2.2.2.]オクタンテトラカルボン酸、アダマタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができる。これらの酸は、単独又は2種以上を組み合わせて使用できる。   Examples of preferred tetracarboxylic acids that give acid residues include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ', 3,3'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 2,2 ', 3,3'-benzophenone tetracarboxylic acid, 2,2-bis (3 4-dicarboxyphenyl) hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis ( 2,3-dicarboxyphenyl) ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicarboxyphenyl) methane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, 1,2,5,6-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6- Aromatic tetracarboxylic acids such as pyridinetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, Bicyclo [2.2.1. ] Heptanetetracarboxylic acid, bicyclo [3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic acid, bicyclo [2.2.2. An aliphatic tetracarboxylic acid such as octanetetracarboxylic acid or adamatanetetracarboxylic acid can be used. These acids can be used alone or in combination of two or more.

樹脂の低線膨張性の観点から、RおよびRは、各々独立して、その65モル%以上が一般式(5)、(6)のうち少なくとも1つから選ばれる構造であることが好ましい。From the viewpoint of low linear expansion of the resin, R 2 and R 5 each independently have a structure in which 65 mol% or more thereof is selected from at least one of the general formulas (5) and (6). preferable.

Figure 2017099172
Figure 2017099172

一般式(5)、(6)中、R、R10は各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。樹脂の線膨張係数が低減できるという点で、好ましくはフッ素原子、炭素数1〜3のアルキル基またはフルオロアルキル基、より好ましくは炭素数1〜3のアルキル基またはフルオロアルキル基である。b、bは0〜4の整数である。低線膨張性という点で好ましくは0である。具体的には下記に示す構造のものが挙げられるが、これらに限定されない。In general formulas (5) and (6), R 9 and R 10 each independently represent a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint that the linear expansion coefficient of the resin can be reduced, a fluorine atom, an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group is preferable, and an alkyl group or fluoroalkyl group having 1 to 3 carbon atoms is more preferable. b 4 and b 5 are integers of 0 to 4. From the viewpoint of low linear expansion, it is preferably 0. Specific examples include the structures shown below, but are not limited thereto.

Figure 2017099172
また本発明の樹脂は、さらに、高強度、高弾性とするために、下記一般式(7)で表される構造単位を5〜30モル%含むことが好ましい。
Figure 2017099172
The resin of the present invention preferably further contains 5 to 30 mol% of a structural unit represented by the following general formula (7) in order to obtain high strength and high elasticity.

Figure 2017099172
Figure 2017099172

一般式(7)中、R11はジアミン残基を表し、炭素数2〜50の価の有機基を示す。ジアミン残基を与えるアミン成分としては、3,5−ジアミノ安息香酸、3−カルボキシ−4,4’−ジアミノジフェニルエーテルなどのカルボキシル基含有ジアミン、3−スルホン酸−4,4’−ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジチオヒドロキシフェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、1,4−ビス(4−アミノフェノキシ)ベンゼン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、ビス(4−アミノフェノキシフェニル)スルホン、ビス(3−アミノフェノキシフェニル)スルホン、ビス(4−アミノフェノキシ)ビフェニル、ビス{4−(4−アミノフェノキシ)フェニル}エーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジエチル−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジエチル−4,4’−ジアミノビフェニル、2,2’,3,3’−テトラメチル−4,4’−ジアミノビフェニル、3,3’,4,4’−テトラメチル−4,4’−ジアミノビフェニル、2,2’−ジ(トリフルオロメチル)−4,4’−ジアミノビフェニル、あるいはこれらの芳香族環の水素原子の一部をアルキル基やハロゲン原子で置換した化合物や、一般式(3)、(4)で表される構造、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂肪族ジアミンなどを挙げることができるがこれらに限定されない。In the general formula (7), R 11 represents a diamine residue and represents a C 2-50 valent organic group. Examples of amine components that give diamine residues include carboxyl group-containing diamines such as 3,5-diaminobenzoic acid and 3-carboxy-4,4′-diaminodiphenyl ether, and 3-sulfonic acid-4,4′-diaminodiphenyl ether. Sulfonic acid-containing diamine, dithiohydroxyphenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, m-phenylenediamine, p-phenylenediamine 1,5-naphth Talenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis (4-aminophenoxy) biphenyl, bis {4- (4-aminophenoxy) phenyl } Ether, 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, 3,3 ′ -Dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2 ', 3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3 ', 4,4'-tetramethyl-4,4'-diaminobiphenyl, 2,2'-di (trifluoromethyl) -4,4'-diaminobiphenyl, Compounds in which part of the hydrogen atoms of the aromatic ring are substituted with alkyl groups or halogen atoms, structures represented by the general formulas (3) and (4), aliphatic diamines such as cyclohexyl diamine and methylene bis cyclohexyl amine, etc. It can mention, but it is not limited to these.

これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物やトリメチルシリル化ジアミンとして使用することもできる。副生される水分がないという点でジイソシアネート化合物が好ましく用いられる。   These diamines can be used as they are or as corresponding diisocyanate compounds or trimethylsilylated diamines. A diisocyanate compound is preferably used in that there is no water generated as a by-product.

12は各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。樹脂の線膨張係数が低減できるという点で、好ましくはフッ素原子、炭素数1〜3のアルキル基またはフルオロアルキル基、より好ましくは炭素数1〜3のアルキル基またはフルオロアルキル基である。bは0〜4の整数である。低線膨張性という点で好ましくは0である。R 12 each independently represents a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. From the viewpoint that the linear expansion coefficient of the resin can be reduced, a fluorine atom, an alkyl group having 1 to 3 carbon atoms or a fluoroalkyl group is preferable, and an alkyl group or fluoroalkyl group having 1 to 3 carbon atoms is more preferable. b 6 is an integer of 0 to 4. From the viewpoint of low linear expansion, it is preferably 0.

一般式(7)中、低線膨張特性の点で好ましくはベンゼン環がパラ結合で連結されていることである。   In general formula (7), the benzene rings are preferably linked by a para bond from the viewpoint of low linear expansion characteristics.

一般式(1)、(2)、(7)において、加熱処理後の被膜のシリコン系基板、ガラス基板との接着性を向上させるため、または洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めるために、耐熱性を低下させない範囲で、R、R、R11、R、Rにシロキサン構造を共重合してもよい。具体的なR、R、R11の例としてはビス(3−アミノプロピル)テトラメチルジシロキサン、ビス(p−アミノ−フェニル)オクタメチルペンタシロキサンなどの残基などが挙げられる。これらはR、R、R11全体の1〜10モル%共重合されていることが好ましい。具体的なR、Rの例としてはジメチルシランジフタル酸二無水物、1,3−ビス(フタル酸)テトラメチルジシロキサン二無水物、1−(p−カルボキシフェニル)3−フタル酸−1,1,3,3−テトラメチルジシロキサンなどの残基などが挙げられる。これらは単独で又は2種以上を組み合わせて使用され、R、R全体の1〜10モル%共重合されていることが好ましい。In general formulas (1), (2), and (7), resistance to oxygen plasma and UV ozone treatment for improving the adhesion of the heat-treated film to the silicon-based substrate and glass substrate or for cleaning. In order to increase the heat resistance, a siloxane structure may be copolymerized with R 1 , R 4 , R 11 , R 2 , and R 5 within a range that does not decrease the heat resistance. Specific examples of R 1 , R 4 and R 11 include residues such as bis (3-aminopropyl) tetramethyldisiloxane and bis (p-amino-phenyl) octamethylpentasiloxane. These are preferably copolymerized in an amount of 1 to 10 mol% of R 1 , R 4 and R 11 as a whole. Specific examples of R 2 and R 5 include dimethylsilane diphthalic dianhydride, 1,3-bis (phthalic acid) tetramethyldisiloxane dianhydride, 1- (p-carboxyphenyl) 3-phthalic acid. Examples include residues such as -1,1,3,3-tetramethyldisiloxane. These may be used alone or in combination of two or more, and are preferably copolymerized in an amount of 1 to 10 mol% of R 2 and R 5 as a whole.

一般式(1)、(2)、(7)において、加熱処理後の被膜の金属基板との接着性を向上させるため、耐熱性を低下させない範囲で、R、R、R11にポリアルキレンオキサイド基を有する脂肪族構造を共重合してもよい。具体的な構造として、“ジェファーミン”(登録商標)KH−511、ジェファーミンED−600、ジェファーミンED−900、ジェファーミンED−2003、ジェファーミンEDR−148、ジェファーミンEDR−176、ジェファーミンD−200、ジェファーミンD−400、ジェファーミンD−2000、ジェファーミンD−4000(以上商品名。HUNTSMAN(株)製)などの残基があげられる。これらは単独で又は2種以上を組み合わせて使用され、R、R、R11全体の1〜30モル%共重合されていることが好ましい。In the general formulas (1), (2), and (7), in order to improve the adhesion of the heat-treated film to the metal substrate, R 1 , R 4 , and R 11 may be made of poly in the range that does not decrease the heat resistance. An aliphatic structure having an alkylene oxide group may be copolymerized. As specific structures, “Jeffamine” (registered trademark) KH-511, Jeffamine ED-600, Jeffamine ED-900, Jeffamine ED-2003, Jeffamine EDR-148, Jeffamine EDR-176, Jeffamine Residues such as D-200, Jeffamine D-400, Jeffamine D-2000, and Jeffamine D-4000 (trade name, manufactured by HUNTSMAN Co., Ltd.) can be mentioned. These may be used alone or in combination of two or more, and are preferably copolymerized in an amount of 1 to 30 mol% of R 1 , R 4 and R 11 as a whole.

これら樹脂は下記に挙げた方法で合成されるが、これらに限定されない。
すなわち、一般式(1)で表されるポリアミド酸の場合、ジアミンをN−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、ガンマブチロラクトン(GBL)、ジメチルスルホキシド(DMSO)などの溶媒に溶解し、テトラカルボン酸二無水物を添加して反応させる方法が一般的である。反応温度は−20℃〜100℃が一般的であり、0℃〜50℃が好ましい。反応時間は1分間〜100時間が一般的であり、2時間〜24時間が好ましい。反応中は窒素を流すなどして水分が系内に入らないようにすることが好ましい。
Although these resin is synthesize | combined by the method quoted below, it is not limited to these.
That is, in the case of the polyamic acid represented by the general formula (1), the diamine is N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), gamma butyrolactone (GBL). ), A solvent such as dimethyl sulfoxide (DMSO), etc., and a method of adding tetracarboxylic dianhydride to react is generally used. The reaction temperature is generally -20 ° C to 100 ° C, preferably 0 ° C to 50 ° C. The reaction time is generally 1 minute to 100 hours, preferably 2 hours to 24 hours. It is preferable to prevent moisture from entering the system by flowing nitrogen during the reaction.

一般式(1)で表されるポリアミド酸エステルの場合、テトラカルボン酸二無水物をエタノール、プロパノール、ブタノールなどのアルコールとピリジンやトリエチルアミンなどの塩基触媒と混合し、室温〜100℃で数分間〜10時間程度反応させ、ジカルボン酸ジエステル化合物を得る。また、テトラカルボン酸二無水物を直接アルコールに分散させてもよいし、テトラカルボン酸二無水物をNMP、DMAC、DMF、DMSO、GBLなどの溶媒に溶解させ、アルコールと塩基触媒を作用させてもよい。得られたジカルボン酸ジエステルを、チオニルクロリド中で加熱処理したり、オキザロジクロリドを作用させたりしてジカルボン酸クロリドジエステルにする。得られたジカルボン酸クロリドジエステルを蒸留などの手法で回収し、ピリジンやトリエチルアミンの存在下、ジアミンをNMP、DMAC、DMF、DMSO、GBLなどの溶媒に溶解した溶液に滴下する。滴下は−20℃〜30℃で実施することが好ましい。滴下終了後、−20℃〜50℃で1時間〜100時間反応させてポリアミド酸エステルを得る。なお、ジカルボン酸ジクロリドジエステルを用いると副生成物として塩酸塩ができるため、ジカルボン酸ジエステルを、チオニルクロリド中で加熱処理したり、オキザロジクロリドを作用させたりする代わりに、ジシクロヘキシルカルボジイミドなどのペプチドの縮合試薬によりジアミンと反応させることが好ましい。また、先に説明したポリアミド酸にジメチルホルムアミドジアルキルアセタールなどのアセタール化合物を反応させることによってもポリアミド酸エステルを得ることができる。アセタール化合物の添加量により、エステル化率を調整することができる。   In the case of the polyamic acid ester represented by the general formula (1), a tetracarboxylic dianhydride is mixed with an alcohol such as ethanol, propanol or butanol and a base catalyst such as pyridine or triethylamine, and from room temperature to 100 ° C. for several minutes to The reaction is carried out for about 10 hours to obtain a dicarboxylic acid diester compound. Tetracarboxylic dianhydride may be directly dispersed in alcohol, or tetracarboxylic dianhydride is dissolved in a solvent such as NMP, DMAC, DMF, DMSO, GBL, and alcohol and a base catalyst are allowed to act. Also good. The obtained dicarboxylic acid diester is subjected to heat treatment in thionyl chloride or oxalodichloride is reacted to form dicarboxylic acid chloride diester. The obtained dicarboxylic acid chloride diester is recovered by a technique such as distillation and added dropwise to a solution in which diamine is dissolved in a solvent such as NMP, DMAC, DMF, DMSO, GBL in the presence of pyridine or triethylamine. The dropping is preferably performed at -20 ° C to 30 ° C. After completion of the dropwise addition, a polyamic acid ester is obtained by reacting at -20 ° C to 50 ° C for 1 hour to 100 hours. Since dicarboxylic acid dichloride diester can be converted into hydrochloride as a by-product, instead of heat treating dicarboxylic acid diester in thionyl chloride or reacting with oxalodichloride, condensation of peptides such as dicyclohexylcarbodiimide It is preferable to react with diamine with a reagent. The polyamic acid ester can also be obtained by reacting the polyamic acid described above with an acetal compound such as dimethylformamide dialkyl acetal. The esterification rate can be adjusted by the amount of the acetal compound added.

一般式(2)で表されるポリイミドの場合、上記ポリイミド前駆体を加熱処理や化学処理によりイミド閉環することにより得ることができる。化学処理としては、無水酢酸とピリジンによる処理、トリエチルアミン、ドデシルウンデセンなどの塩基処理、無水酢酸、無水コハク酸などの酸無水物処理などが挙げられる。   In the case of the polyimide represented by the general formula (2), the polyimide precursor can be obtained by imide ring closure by heat treatment or chemical treatment. Examples of the chemical treatment include treatment with acetic anhydride and pyridine, base treatment such as triethylamine and dodecylundecene, and acid anhydride treatment such as acetic anhydride and succinic anhydride.

一般式(2)で表されるポリアミドイミドの場合、ジアミンをNMP、DMF、DMAC、GBL、DMSOなどの溶媒に溶解し、トリカルボン酸を添加して反応させる方法が一般的である。反応温度は−20℃〜100℃が一般的であり、0℃〜50℃が好ましい。反応時間は1分間〜100時間が一般的であり、2時間〜24時間が好ましい。反応中は窒素を流すなどして水分が系内に入らないようにすることが好ましい。一般的な反応としては、ジアミン溶液にトリカルボン酸クロリドを作用させ、その後、100℃〜300℃の加熱処理を1分〜24時間行い、ポリアミドイミドを得るような方法がある。この場合、イミド化のために無水酢酸などの酸無水物やトリエチルアミン、ピリジン、ピコリンなどの塩基を触媒としてポリマー量に対して0.l〜10重量%添加して反応を促進することもできる。また、ジアミンと無水トリメリット酸クロリドをピリジン、トリエチルアミンなどの存在下、ポリアミド酸アミドを重合し、このポリマーを固体で取り出し、その後、固体を100〜300℃の温度で1分〜24時間加熱してポリアミドイミドを得ることもできる。   In the case of the polyamideimide represented by the general formula (2), a method is generally used in which a diamine is dissolved in a solvent such as NMP, DMF, DMAC, GBL, DMSO, and a reaction is performed by adding a tricarboxylic acid. The reaction temperature is generally -20 ° C to 100 ° C, preferably 0 ° C to 50 ° C. The reaction time is generally 1 minute to 100 hours, preferably 2 hours to 24 hours. It is preferable to prevent moisture from entering the system by flowing nitrogen during the reaction. As a general reaction, there is a method in which tricarboxylic acid chloride is allowed to act on a diamine solution, and then a heat treatment at 100 ° C. to 300 ° C. is performed for 1 minute to 24 hours to obtain polyamideimide. In this case, an acid anhydride such as acetic anhydride or a base such as triethylamine, pyridine or picoline is used as a catalyst for imidization to a polymer amount of 0. The reaction can be promoted by adding 1 to 10% by weight. Also, polyamic acid amide is polymerized with diamine and trimellitic anhydride chloride in the presence of pyridine, triethylamine, etc., this polymer is taken out as a solid, and then the solid is heated at a temperature of 100 to 300 ° C. for 1 minute to 24 hours. Thus, polyamideimide can be obtained.

一般式(2)で表されるポリイミド、ポリアミドイミドの場合、さらにジアミン化合物のアミノ基をイソシアネートに変え、テトラカルボン酸二無水物、トリカルボン酸無水物等の二価以上の酸と、場合によってはスズ系触媒や塩基触媒の存在下に、室温〜200℃の温度範囲で1分〜24時間反応させることで得ることも出来る。この方法は副生される水分がないという点でより好ましい方法と言える。   In the case of the polyimide and polyamideimide represented by the general formula (2), the amino group of the diamine compound is further changed to isocyanate, and a divalent or higher acid such as tetracarboxylic dianhydride or tricarboxylic anhydride, and in some cases It can also be obtained by reacting in the temperature range of room temperature to 200 ° C. for 1 minute to 24 hours in the presence of a tin-based catalyst or a base catalyst. This method can be said to be a more preferable method in that there is no by-produced water.

これら樹脂の重合反応において酸成分のジアミンもしくはジイソシアネートに対するモル比率は、ジアミンもしくはジイソシアネート100モル%に対して100モル%以下、好ましくは95モル%以下、さらに好ましくは90モル%以下、最も好ましくは85モル%以下である。ジアミンもしくはジイソシアネートのほうが多いと末端アミン、イソシアネート基が樹脂とフィラー、導電性基材、導電性配線との接着性を高めるという効果がある。   In the polymerization reaction of these resins, the molar ratio of the acid component to the diamine or diisocyanate is 100 mol% or less, preferably 95 mol% or less, more preferably 90 mol% or less, most preferably 85 mol based on 100 mol% of the diamine or diisocyanate. It is less than mol%. When there are more diamines or diisocyanates, terminal amines and isocyanate groups have the effect of enhancing the adhesion between the resin and filler, the conductive substrate, and the conductive wiring.

また、本発明に用いられる樹脂は、重合終了後にメタノールや水など、樹脂に対する貧溶媒中にて沈殿化した後、洗浄、乾燥して得ても良い。再沈することで、重合時に用いたエステル化剤、縮合剤、および、酸クロライドによる副生成物や、樹脂前駆体の低分子量成分などが除去できるため、耐熱性が向上する利点がある。   The resin used in the present invention may be obtained by precipitating in a poor solvent for the resin such as methanol or water after completion of polymerization, and then washing and drying. By reprecipitation, the esterification agent, condensing agent, and by-product produced by acid chloride, the low molecular weight component of the resin precursor, and the like can be removed, which has the advantage of improving heat resistance.

本発明の樹脂は樹脂末端が下記一般式(8)で表される構造を含むことが好ましい。   The resin of the present invention preferably includes a structure in which the resin terminal is represented by the following general formula (8).

Figure 2017099172
Figure 2017099172

一般式(8)中、R13〜R16は各々独立にハロゲン原子または炭素数1〜5の1価の有機基を示す。In general formula (8), R < 13 > -R < 16 > shows a halogen atom or a C1-C5 monovalent organic group each independently.

これらの末端構造が含まれていると、熱処理時に保護基が脱離してイソシアネート基が再生する。この官能基、およびこの官能基が加水分解されてできたアミノ基は樹脂とフィラー、導電性基材、導電性配線との接着性を高めるという効果がある。   When these terminal structures are included, the protecting group is eliminated during the heat treatment to regenerate the isocyanate group. This functional group and the amino group formed by hydrolyzing this functional group have the effect of enhancing the adhesion between the resin and the filler, the conductive substrate, and the conductive wiring.

末端封止剤を有する樹脂は、上記した種々の公知の合成方法において、ジアミン、ジアソシアネートと酸成分を選択的に組み合わせて反応を行う際に、先にジアミン、ジイソシアネート、または酸と反応させてから、重合反応を開始しても良いし、ジアミン、ジイソシアネート、酸と同時にあるいはそれらより少し遅らせて末端封止剤を添加することによって得ることができる。   The resin having an end-capping agent is reacted with diamine, diisocyanate, or acid in advance in the various known synthesis methods described above when the diamine, diisocyanate and acid component are selectively combined. Then, the polymerization reaction may be started, or it can be obtained by adding the end-capping agent simultaneously with diamine, diisocyanate, acid or slightly delayed from them.

前記一般式(1)、(2)のいずれかで表される構造を少なくとも1つ含む樹脂は溶剤に溶解した樹脂溶液として使用することができる。   A resin containing at least one structure represented by any one of the general formulas (1) and (2) can be used as a resin solution dissolved in a solvent.

本発明の樹脂溶液に好ましく用いられる溶剤としては、具体的にはエチレングリゴールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエール、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2−ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ−ル、4−メチル−2−ペンタノール、3−メチル−2−ブタノール、3−メチル−3−メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、N−メチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトンなどが挙げられる。これらは単独あるいは混合して用いることができる。   Specific examples of the solvent preferably used in the resin solution of the present invention include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene Glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, ethers such as diethylene glycol methyl ethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3- Methyl-3-methoxy Acetates such as butyl acetate, methyl lactate, ethyl lactate and butyl lactate, ketones such as acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone and 2-heptanone, butyl alcohol, isobutyl alcohol, pentano , 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, alcohols such as diacetone alcohol, aromatic hydrocarbons such as toluene and xylene, N-methyl -2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone and the like. These can be used alone or in combination.

樹脂溶液の濃度と粘度の範囲は、濃度1〜50重量%で粘度1mPa・秒〜1000Pa・秒の範囲が好ましく、より好ましくは濃度5〜30重量%で粘度100mPa・秒〜100Pa・秒である。この範囲であることで、ムラのない均一な膜が製膜できる。
本発明の樹脂溶液はさらにc)下記一般式(9)で表されるシラン化合物を含むことが好ましい。
The range of the concentration and viscosity of the resin solution is preferably 1 mPa · sec to 1000 Pa · sec at a concentration of 1 to 50 wt%, more preferably 100 mPa · sec to 100 Pa · sec at a concentration of 5 to 30 wt%. . By being in this range, a uniform film without unevenness can be formed.
The resin solution of the present invention preferably further includes c) a silane compound represented by the following general formula (9).

Figure 2017099172
Figure 2017099172

一般式(9)中、R17は炭素数1〜4のアルコキシル基を表す。R18は炭素数1〜4のアルコキシル基または、アルキル基、R19は炭素数1〜4の2価の有機基を表す。好ましいアルコキシ基の具体例としてはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などが挙げられるがこれらに限定されない。好ましいアルキル基の具体例としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基などが挙げられるがこれらに限定されない。Zはイソシアネート基と反応性のある官能基を表す。好ましい具体例としては水酸基、アミノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、チオール基、カルボキシル基、酸無水物基、イソシアネート基などが挙げられるがこれらに限定されない。In the general formula (9), R 17 represents an alkoxyl group having 1 to 4 carbon atoms. R 18 represents an alkoxyl group having 1 to 4 carbon atoms or an alkyl group, and R 19 represents a divalent organic group having 1 to 4 carbon atoms. Specific examples of preferred alkoxy groups include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group and the like. Specific examples of preferable alkyl groups include, but are not limited to, methyl group, ethyl group, propyl group, isopropyl group, and butyl group. Z represents a functional group reactive with an isocyanate group. Preferable specific examples include, but are not limited to, a hydroxyl group, amino group, epoxy group, acrylic group, methacryl group, maleimide group, thiol group, carboxyl group, acid anhydride group, and isocyanate group.

特に好ましい化合物の例としては下記に挙げたものが挙げられるがこれらに限定されない。
3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルフェニルジエトキシシラン、3−アミノプロピルフェニルジメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルメチルジエトキシシラン、3−ヒドロキシプロピルジメチルエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルメチルジメトキシシラン、3−ヒドロキシプロピルジメチルメトキシシラン、3−ヒドロキシプロピルフェニルジエトキシシラン、3−ヒドロキシプロピルフェニルジメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルメチルジエトキシシラン、3−メルカプトプロピルジメチルエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルジメチルメトキシシラン、3−メルカプトプロピルフェニルジエトキシシラン、3−メルカプトプロピルフェニルジメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルメチルジエトキシシラン、3−アクリロキシプロピルジメチルエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルジメチルメトキシシラン、3−アクリロキシプロピルフェニルジエトキシシラン、3−アクリロキシプロピルフェニルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルジメチルエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルジメチルメトキシシラン、3−メタクリロキシプロピルフェニルジエトキシシラン、3−メタクリロキシプロピルフェニルジメトキシシラン、N−フェニルアミノエチルトリメトキシシラン、N−フェニルアミノエチルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−フェニルアミノプロピルトリエトキシシラン、N−フェニルアミノブチルトリメトキシシラン、N−フェニルアミノブチルトリエトキシシランなどが挙げられるがこれらに限定されない。
これらシラン化合物の含有量は、樹脂100重量部に対して、0.01〜15重量部が好ましい。
Examples of particularly preferred compounds include, but are not limited to, those listed below.
3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyldimethylmethoxysilane, 3 -Aminopropylphenyldiethoxysilane, 3-aminopropylphenyldimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-hydroxypropylmethyldiethoxysilane, 3-hydroxypropyldimethylethoxysilane, 3-hydroxypropyltrimethoxysilane, 3 -Hydroxypropylmethyldimethoxysilane, 3-hydroxypropyldimethylmethoxysilane, 3-hydroxypropylphenyldiethoxysilane, 3-hydroxypro Ruphenyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-mercaptopropyldimethylethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyl Dimethylmethoxysilane, 3-mercaptopropylphenyldiethoxysilane, 3-mercaptopropylphenyldimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-acryloxypropyldimethylethoxysilane, 3 -Acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyldimethylmethoxy Lan, 3-acryloxypropylphenyldiethoxysilane, 3-acryloxypropylphenyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyldimethylethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyldimethylmethoxysilane, 3-methacryloxypropylphenyldiethoxysilane, 3-methacryloxypropylphenyldimethoxysilane, N-phenylaminoethyl Trimethoxysilane, N-phenylaminoethyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, N-phenylaminopropyltri Examples include, but are not limited to, ethoxysilane, N-phenylaminobutyltrimethoxysilane, N-phenylaminobutyltriethoxysilane, and the like.
The content of these silane compounds is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the resin.

これらのシラン化合物が含まれていると、シリコン、チタン、ジルコニウムとの接着性が向上する利点があり、シリコン、チタンが含まれた負極のバインダーとして好適に用いることができる。特にジイソシアネートとそれと反応する2価以上の酸の反応から樹脂が合成される場合は、ポリマーの末端に存在するイソシアネートと反応して、末端に接着改良成分が結合したポリマーとなり、より接着改善効果が増すという利点がある。   When these silane compounds are contained, there is an advantage that adhesion with silicon, titanium, and zirconium is improved, and it can be suitably used as a binder for a negative electrode containing silicon and titanium. In particular, when a resin is synthesized from the reaction of a diisocyanate and a divalent or higher acid that reacts with it, it reacts with the isocyanate present at the end of the polymer to form a polymer having an adhesion improving component bonded to the end, resulting in a better adhesion improving effect. There is an advantage of increasing.

本発明の樹脂溶液は機能化のための添加剤を含んだ樹脂組成物であっても良い。
本発明の樹脂組成物は光酸発生剤を含有してもよく、ポジ型の感光性を付与することができる。光酸発生剤は、キノンジアジド化合物、スルホニウム塩化合物、ホスホニウム塩化合物、ジアゾニウム塩化合物、ヨードニウム塩化合物などが挙げられるが、キノンジアジド化合物であることが好ましく、特にo−キノンジアジド化合物であることが好ましい。キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくても良いが、官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。50モル%以上がキノンジアジドで置換されていることでアルカリ現像液に対する溶解性が良好となり、未露光部とのコントラストの高い精細なパターンを得ることができるという利点がある。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(365nm)、h線(405nm)、g線(436nm)に感光するポジ型の感光性を有する樹脂組成物を得ることができる。
The resin solution of the present invention may be a resin composition containing an additive for functionalization.
The resin composition of the present invention may contain a photoacid generator, and can impart positive photosensitivity. Examples of the photoacid generator include a quinonediazide compound, a sulfonium salt compound, a phosphonium salt compound, a diazonium salt compound, an iodonium salt compound, and the like. A quinonediazide compound is preferable, and an o-quinonediazide compound is particularly preferable. The quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, and a sulfonic acid of quinonediazide in an ester bond and / or sulfone. Examples include amide-bonded ones. Although all the functional groups of these polyhydroxy compounds and polyamino compounds may not be substituted with quinonediazide, it is preferable that 50 mol% or more of the entire functional groups are substituted with quinonediazide. When 50 mol% or more is substituted with quinonediazide, there is an advantage that the solubility in an alkali developer is improved and a fine pattern having a high contrast with the unexposed portion can be obtained. By using such a quinonediazide compound, a positive photosensitive resin composition sensitive to i-line (365 nm), h-line (405 nm), and g-line (436 nm) of a mercury lamp which is a general ultraviolet ray is obtained. be able to.

ポリヒドロキシ化合物は、Bis−Z、BisP−EZ、TekP−4HBPA、TrisP−HAP、TrisP−PA、TrisP−SA、TrisOCR−PA、BisOCHP−Z、BisP−MZ、BisP−PZ、BisP−IPZ、BisOCP−IPZ、BisP−CP、BisRS−2P、BisRS−3P、BisP−OCHP、メチレントリス−FR−CR、BisRS−26X、DML−MBPC、DML−MBOC、DML−OCHP、DML−PCHP、DML−PC、DML−PTBP、DML−34X、DML−EP,DML−POP、ジメチロール−BisOC−P、DML−PFP、DML−PSBP、DML−MTrisPC、TriML−P、TriML−35XL、TML−B P、TML−HQ、TML−pp−BPF、TML−BPA、TMOM−BP、HML−TPPHBA、HML−TPHAP(以上、商品名、本州化学工業(株)製)、BIR−OC、BIP−PC、BIR−PC、BIR−PTBP、BIR−PCHP、BIP−BIOC−F、4PC、BIR−BIPC−F、TEP−BIP−A、46DMOC、46DMOEP、TM−BIP−A(以上、商品名、旭有機材工業(株)製)、2,6−ジメトキシメチル−4−t−ブチルフェノール、2,6−ジメトキシメチル−p−クレゾール、2 ,6−ジアセトキシメチル−p−クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA 、ビスフェノールE、メチレンビスフェノール、BisP−AP(商品名、本州化学工業(株)製) などが挙げられるが、これらに限定されない。   Polyhydroxy compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP -IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML-HQ , TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR -PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A, 46DMOC, 46DMOEP, TM-BIP-A (above, trade name, manufactured by Asahi Organic Materials Co., Ltd.) ), 2,6-dimethoxymethyl-4-t-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, naphthol, tetrahydroxybenzophenone, gallic acid methyl ester, bisphenol A, bisphenol E, methylene bisphenol, BisP-AP (trade name, book Chemical Industries Co.), and the like, but not limited to.

ポリアミノ化合物は、1,4−フェニレンジアミン、1,3−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルヒド等が挙げられるが、これらに限定されない。   Polyamino compounds are 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl. Examples thereof include, but are not limited to, sulfhydrides.

また、ポリヒドロキシポリアミノ化合物は、2,2−ビス(3−アミノ−4− ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’−ジヒドロキシベンジジン等が挙げられるが、これらに限定されない。   Examples of the polyhydroxypolyamino compound include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and 3,3'-dihydroxybenzidine, but are not limited thereto.

本発明において、キノンジアジドは5−ナフトキノンジアジドスルホニル基、4−ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5−ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収を持ってが伸びており、g線露光に適している。本発明においては、露光する波長によって4−ナフトキノンジアジドスルホニルエステル化合物、5−ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4−ナフトキノンジアジドスルホニル基および、5−ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を得ることもできるし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物とを併用することもできる。   In the present invention, quinonediazide is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group. The 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. The 5-naphthoquinone diazide sulfonyl ester compound has absorption up to the g-line region of a mercury lamp and is suitable for g-line exposure. In the present invention, it is preferable to select a 4-naphthoquinone diazide sulfonyl ester compound or a 5-naphthoquinone diazide sulfonyl ester compound depending on the wavelength to be exposed. Further, a naphthoquinone diazide sulfonyl ester compound in which a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group are used in the same molecule can be obtained, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester can be obtained. A compound can also be used in combination.

また、キノンジアジド化合物の分子量は300以上が好ましく、350以上がより好ましい。また、1500以下が好ましく、1200以下がより好ましい。分子量が300以上であると露光感度が高くなり、1500以下であると加熱処理後の被膜の機械特性が向上するという利点がある。   Further, the molecular weight of the quinonediazide compound is preferably 300 or more, and more preferably 350 or more. Moreover, 1500 or less is preferable and 1200 or less is more preferable. When the molecular weight is 300 or more, the exposure sensitivity is high, and when it is 1500 or less, there is an advantage that the mechanical properties of the film after the heat treatment are improved.

光酸発生剤の含有量は全体として樹脂100重量部に対して1重量部以上が好ましく、3重量部以上がより好ましい。また、50重量部以下が好ましく、40重量部以下がより好ましい。また、キノンジアジド化合物の場合の含有量は、樹脂100重量部に対して1重量部以上が好ましく、3重量部以上がより好ましい。また、50重量部以下が好ましく、40重量部以下がより好ましい。この範囲にあると硬化膜の機械特性が良好となる利点がある。   As a whole, the content of the photoacid generator is preferably 1 part by weight or more, more preferably 3 parts by weight or more with respect to 100 parts by weight of the resin. Moreover, 50 weight part or less is preferable and 40 weight part or less is more preferable. In addition, the content in the case of the quinonediazide compound is preferably 1 part by weight or more and more preferably 3 parts by weight or more with respect to 100 parts by weight of the resin. Moreover, 50 weight part or less is preferable and 40 weight part or less is more preferable. Within this range, there is an advantage that the mechanical properties of the cured film are improved.

本発明に用いられるキノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成される。例えば5−ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法などがある。フェノール化合物の合成方法は、酸触媒下で、α−(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などがある。   The quinonediazide compound used in the present invention is synthesized from a specific phenol compound by the following method. For example, there is a method of reacting 5-naphthoquinonediazide sulfonyl chloride and a phenol compound in the presence of triethylamine. Examples of the method for synthesizing a phenol compound include a method in which an α- (hydroxyphenyl) styrene derivative is reacted with a polyhydric phenol compound under an acid catalyst.

光酸発生剤のうち、スルホニウム塩化合物、ホスホニウム塩化合物、ジアゾニウム塩化合物としては、本発明の感光性樹脂組成物から得られる加熱処理後の被膜は永久膜として使用するため、リン等が残存することは環境上好ましくなく、また膜の色調も考慮する必要があることから、これらの中ではスルホニウム塩が好ましく用いられる。特に好ましいものとして、トリアリールスルホニウム塩が挙げられる。   Among the photoacid generators, as the sulfonium salt compound, phosphonium salt compound, and diazonium salt compound, the heat-treated film obtained from the photosensitive resin composition of the present invention is used as a permanent film, so that phosphorus or the like remains. This is unfavorable for the environment, and it is necessary to consider the color tone of the membrane. Among these, a sulfonium salt is preferably used. Particularly preferred is a triarylsulfonium salt.

また、本発明の樹脂組成物は、ネガ型の感光性を付与するために、一般式(1)中のRとしてメタクリル酸エチル基、アクリル酸エチル基、メタクリル酸プロピル基、アクリル酸プロピル基、エチルメタクリルアミド基、プロピルメタクリルアミド基、エチルアクリルアミド基、プロピルアクリルアミド基などのエチレン性不飽和二重結合を有する基を用いることができる。また、樹脂組成物の感光性能を上げるために、光重合性化合物を含んでもよい。光重合性化合物としては、2−ヒドロキシエチルメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、メチレンビスメタクリルアミド、メチレンビスアクリルアミドなどが挙げられるが、これらに限定されない。光重合性化合物は樹脂100重量部に対して1〜30重量部の範囲で含有することが好ましい。この範囲内であると感度が高く、熱硬化後の膜の機械特性も良好な組成物となる。これらの光重合性化合物は、単独であるいは2種以上用いることができる。The resin composition of the present invention has an ethyl methacrylate group, an ethyl acrylate group, a propyl methacrylate group, a propyl acrylate group as R 3 in the general formula (1) in order to impart negative photosensitivity. , A group having an ethylenically unsaturated double bond such as an ethyl methacrylamide group, a propyl methacrylamide group, an ethyl acrylamide group, or a propyl acrylamide group can be used. Moreover, in order to improve the photosensitive performance of the resin composition, a photopolymerizable compound may be included. As photopolymerizable compounds, 2-hydroxyethyl methacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, propylene glycol dimethacrylate , Methylene bismethacrylamide, methylene bisacrylamide and the like, but are not limited thereto. The photopolymerizable compound is preferably contained in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the resin. Within this range, the sensitivity is high, and the film has a good mechanical property after thermosetting. These photopolymerizable compounds can be used alone or in combination of two or more.

さらに、本発明の樹脂組成物にネガ型の感光性を付与する場合、光重合開始剤を含有してもよい。本発明に適した光重合開始剤としては、N−フェニルジエタノールアミン、N−フェニルグリシンなどの芳香族アミン類、ミヒラーズケトンなどの芳香族ケトン類、3−フェニル−5−イソオキサゾロンに代表される環状オキシム化合物、1−フェニルプロパンジオン−2−(o−エトキシカルボニル)オキシムに代表される鎖状オキシム化合物、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ジベンジルケトン、フルオレノンなどのベンゾフェノン誘導体、チオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントンなどのチオキサントン誘導体などが挙げられるが、これらに限定されない。   Furthermore, when giving negative photosensitivity to the resin composition of this invention, you may contain a photoinitiator. Suitable photopolymerization initiators for the present invention include aromatic amines such as N-phenyldiethanolamine and N-phenylglycine, aromatic ketones such as Michler's ketone, and cyclic oximes represented by 3-phenyl-5-isoxazolone. Compounds, chain oxime compounds typified by 1-phenylpropanedione-2- (o-ethoxycarbonyl) oxime, benzophenone, benzophenone derivatives such as methyl o-benzoylbenzoate, dibenzylketone, fluorenone, thioxanthone, 2-methyl Examples thereof include, but are not limited to, thioxanthone derivatives such as thioxanthone and 2-isopropylthioxanthone.

光重合開始剤の含有量は、樹脂100重量部に対して0.01重量部以上が好ましく、0.1重量部以上がより好ましい。また、30重量部以下が好ましく、20重量部以下がより好ましい。この範囲内であると感度も高く、熱硬化後の膜の機械特性も良好な組成物となる。これらの光開始剤は、単独で、あるいは2種以上用いることができる。   The content of the photopolymerization initiator is preferably 0.01 parts by weight or more and more preferably 0.1 parts by weight or more with respect to 100 parts by weight of the resin. Moreover, 30 weight part or less is preferable and 20 weight part or less is more preferable. Within this range, the sensitivity is high, and the film has a good mechanical property after thermosetting. These photoinitiators can be used alone or in combination of two or more.

さらにネガ型の感光特性を向上させるために光増感剤を含むことがより好ましい。本発明に適した光増感剤としては、アジドアントラキノン、アジドベンザルアセトフェノンなどの芳香族モノアジド、7−ジエチルアミノベンゾイルクマリン、3,3’−カルボニルビス(ジエチルアミノクマリン)などのアミノクマリン類、ベンズアントロン、フェナントレンキノンなどの芳香族ケトン類など、一般に光硬化性樹脂に使用されるようなものが挙げられる。その他電子写真感光体の電荷移動剤として使用されるものであれば好ましく使用できることもある。   Furthermore, it is more preferable to contain a photosensitizer in order to improve the negative photosensitive characteristics. Examples of photosensitizers suitable for the present invention include aromatic monoazides such as azidoanthraquinone and azidobenzalacetophenone, aminocoumarins such as 7-diethylaminobenzoylcoumarin, 3,3′-carbonylbis (diethylaminocoumarin), and benzanthrone. And aromatic ketones such as phenanthrenequinone, which are generally used for photocurable resins. In addition, it may be preferably used as long as it is used as a charge transfer agent for an electrophotographic photoreceptor.

光増感剤の含有量は、樹脂100重量部に対して0.01重量部が好ましく、0.1重量部以上がより好ましい。また、30重量部以下が好ましく、20重量部以下がより好ましい。この範囲内であると感度も高く、加熱処理後の被膜の機械特性も良好な組成物となる。これらの光増感剤は、単独で、あるいは2種以上用いることができる。   The content of the photosensitizer is preferably 0.01 parts by weight and more preferably 0.1 parts by weight or more with respect to 100 parts by weight of the resin. Moreover, 30 weight part or less is preferable and 20 weight part or less is more preferable. Within this range, the sensitivity is high, and the film has a good mechanical property after the heat treatment. These photosensitizers can be used alone or in combination of two or more.

本発明の樹脂組成物は、樹脂組成物から形成される樹脂膜のアルカリ現像性を制御する目的で、フェノール性水酸基を有する化合物を含有することができる。   The resin composition of the present invention can contain a compound having a phenolic hydroxyl group for the purpose of controlling the alkali developability of a resin film formed from the resin composition.

本発明で使用することができるフェノール性水酸基を有する化合物としては、たとえば、Bis−Z、BisOC−Z、BisOPP−Z、BisP−CP、Bis26X−Z、BisOTBP−Z、BisOCHP−Z、BisOCR−CP、BisP−MZ、BisP−EZ、Bis26X−CP、BisP−PZ、BisP−IPZ、BisCR−IPZ、BisOCP−IPZ、BisOIPP−CP、Bis26X−IPZ、BisOTBP−CP、TekP−4HBPA(テトラキスP−DO−BPA)、TrisP−HAP、TrisP−PA、BisOFP−Z、BisRS−2P、BisPG−26X、BisRS−3P、BisOC−OCHP、BisPC−OCHP、Bis25X−OCHP、Bis26X−OCHP、BisOCHP−OC、Bis236T−OCHP、メチレントリス−FR−CR、BisRS−26X、BisRS−OCHP(以上、商品名、本州化学工業(株)製)、BIR−OC、BIP−PC、BIR−PC、BIR−PTBP、BIR−PCHP、BIP−BIOC−F、4PC、BIR−BIPC−F、TEP−BIP−A(以上、商品名、旭有機材工業(株)製)が挙げられる。   Examples of the compound having a phenolic hydroxyl group that can be used in the present invention include Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, and BisOCR-CP. , BisP-MZ, BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO- BPA), TrisP-HAP, TrisP-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCH , BisOCHP-OC, Bis236T-OCHP, Methylenetris-FR-CR, BisRS-26X, BisRS-OCHP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (above, trade name, manufactured by Asahi Organic Materials Co., Ltd.) can be mentioned.

これらのうち、好ましいフェノール性水酸基を有する化合物としては、たとえば、Bis−Z、BisP−EZ、TekP−4HBPA、TrisP−HAP、TrisP−PA、BisOCHP−Z、BisP−MZ、BisP−PZ、BisP−IPZ、BisOCP−IPZ、BisP−CP、BisRS−2P、BisRS−3P、BisP−OCHP、メチレントリス−FR−CR、BisRS−26X、BIP−PC、BIR−PC、BIR−PTBP、BIR−BIPC−Fなどが挙げられる。これらのうち、特に好ましいフェノール性水酸基を有する化合物としては、たとえば、Bis−Z、TekP−4HBPA、TrisP−HAP、TrisP−PA、BisRS−2P、BisRS−3P、BIR−PC、BIR−PTBP、BIR−BIPC−Fである。このフェノール性水酸基を有する化合物を含有することで、得られる樹脂組成物は、露光前はアルカリ現像液に容易に溶解し、露光するとアルカリ現像液に難溶になり、かつ、現像による膜減りが少なく、短時間で現像が容易になる。   Among these, preferred compounds having a phenolic hydroxyl group include, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP- IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR-CR, BisRS-26X, BIP-PC, BIR-PC, BIR-PTBP, BIR-BIPC-F Etc. Among these, particularly preferable compounds having a phenolic hydroxyl group include, for example, Bis-Z, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisRS-2P, BisRS-3P, BIR-PC, BIR-PTBP, BIR. -BIPC-F. By containing this compound having a phenolic hydroxyl group, the resulting resin composition is easily dissolved in an alkali developer before exposure, becomes insoluble in an alkali developer upon exposure, and film loss due to development is reduced. Less development and easy development in a short time.

このようなフェノール性水酸基を有する化合物の含有量は、樹脂100重量部に対して、好ましくは1〜60重量部であり、より好ましくは3〜50重量部の範囲である。   The content of such a compound having a phenolic hydroxyl group is preferably 1 to 60 parts by weight and more preferably 3 to 50 parts by weight with respect to 100 parts by weight of the resin.

本発明の樹脂組成物は、加熱処理後の被膜のシリコン、窒化シリコン、酸化シリコン、およびリンシリケートガラスなどのシリコン系基板、ITO基板との接着性をより高めたり、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めるために、一般式(8)で表されるシラン化合物以外のシランカップリング剤、チタンキレート剤、アルミキレート剤などを含有することもできる。好ましいシランカップリング剤の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β−メトキシエトキシ)シラン、などが挙げられる。
これら接着改良剤の含有量は、樹脂100重量部に対して、0.01〜15重量部が好ましい。
The resin composition of the present invention can be applied to a silicon-based substrate such as silicon, silicon nitride, silicon oxide, and phosphorous silicate glass of the heat-treated film, oxygen plasma used for further enhancement of adhesion to an ITO substrate, cleaning, etc. In order to enhance the resistance to UV ozone treatment, a silane coupling agent other than the silane compound represented by the general formula (8), a titanium chelating agent, an aluminum chelating agent, and the like can also be contained. Specific examples of preferable silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, and the like.
The content of these adhesion improvers is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the resin.

また、樹脂組成物を塗布する基板表面をあらかじめ前処理することによって、さらに接着性を向上させることも可能である。前処理の方法としては、例えば次のような方法が挙げられる。上記で述べた接着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5〜20重量部溶解させた溶液をスピンコート、浸漬、スプレー塗布、蒸気処理などで表面処理をする。また、ヘキサメチルジシラザン蒸気を直接噴霧して処理してもよい。その後、必要に応じて減圧乾燥処理を施し、50〜300℃までの温度をかけることで、シリコン系材料表面と上記接着改良剤との反応を進行させる。   Moreover, it is also possible to further improve the adhesiveness by pretreating the substrate surface to which the resin composition is applied. Examples of the pretreatment method include the following methods. A solution obtained by dissolving 0.5-20 parts by weight of the above-described adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate Is subjected to surface treatment by spin coating, dipping, spray coating, steam treatment or the like. Further, hexamethyldisilazane vapor may be directly sprayed for treatment. Thereafter, a vacuum drying treatment is performed as necessary, and the reaction between the surface of the silicon-based material and the adhesion improving agent is advanced by applying a temperature of 50 to 300 ° C.

本発明の樹脂組成物は、界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。
界面活性剤としては、“フロラード”(登録商標)(商品名、住友3M(株)製)、“メガファック”(登録商標)(商品名、DIC(株)製)、“スルフロン”(登録商標)(商品名、旭硝子(株)製)などのフッ素系界面活性剤、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、“グラノール”(登録商標)(商品名、共栄社化学(株)製)、BYK(ビック・ケミー(株)製)などの有機シロキサン界面活性剤、“ポリフロー”(登録商標)(商品名、共栄社化学(株)製)などのアクリル重合物界面活性剤などが挙げられる。
The resin composition of the present invention may contain a surfactant and can improve the wettability with the substrate.
As surfactants, "Florard" (registered trademark) (trade name, manufactured by Sumitomo 3M Co., Ltd.), "Megafuck" (registered trademark) (trade name, manufactured by DIC Corporation), "Sulfuron" (registered trademark) ) (Trade name, manufactured by Asahi Glass Co., Ltd.) and other fluorosurfactants, KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Corp.), “Granol” (registered) Trademark) (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (manufactured by Big Chemie Co., Ltd.) and other organic siloxane surfactants, “Polyflow” (registered trademark) (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) And acrylic polymer surfactants.

本発明の樹脂溶液に、フィラーを添加してスラリーとしても使用することもできる。半導体、ディスプレー、多層配線基板に用いる場合は、フィラーを添加することにより、さらなる低線膨張化、高強度化や屈折率、誘電率、透磁率の制御が期待できる。2次電池やキャパシタに用いる場合は正極、負極としての機能化が可能となる。   A filler may be added to the resin solution of the present invention to be used as a slurry. When used for semiconductors, displays, and multilayer wiring boards, the addition of fillers can be expected to further reduce linear expansion, increase strength, and control refractive index, dielectric constant, and magnetic permeability. When used for a secondary battery or a capacitor, it can be functionalized as a positive electrode and a negative electrode.

半導体、ディスプレー、多層配線基板に用いる場合の好ましいフィラーとしては、酸化シリコン、酸化チタン、アルミナ、チタン酸バリウム、窒化アルミ、酸化ジルコニウム、窒化シリコン、窒化チタンなどが挙げられるがこれらに限定されない。   Preferred fillers for use in semiconductors, displays, and multilayer wiring boards include, but are not limited to, silicon oxide, titanium oxide, alumina, barium titanate, aluminum nitride, zirconium oxide, silicon nitride, and titanium nitride.

2次電池やキャパシタに用いる場合の好ましいフィラーとしては、炭素、シリコン、スズ、ゲルマニウム、チタン、鉄、コバルト、ニッケル、マンガン、銅、銀、亜鉛、インジウム、ビスマス、アンチモンまたはクロムなどの原子を含む化合物が挙げられる。好ましくは、炭素、マンガン、コバルト、ニッケル、鉄、シリコン、チタン、スズ、およびゲルマニウムのうち少なくとも1種類の原子を含む化合物であり、より好ましくはシリコン、チタンのうち少なくとも1種類の原子を含む化合物である。   Preferred fillers for use in secondary batteries and capacitors include atoms such as carbon, silicon, tin, germanium, titanium, iron, cobalt, nickel, manganese, copper, silver, zinc, indium, bismuth, antimony or chromium. Compounds. Preferably, it is a compound containing at least one atom among carbon, manganese, cobalt, nickel, iron, silicon, titanium, tin, and germanium, and more preferably a compound containing at least one atom among silicon and titanium. It is.

これらの化合物をフィラーとして使用すると、フィラーが活物質としての役割を果たす。このため、本発明の樹脂にフィラーを添加し、スラリーとすることで、二次電池やキャパシタの電極用スラリーとして使用できる。   When these compounds are used as a filler, the filler plays a role as an active material. For this reason, it can use as a slurry for electrodes of a secondary battery or a capacitor by adding a filler to the resin of the present invention to form a slurry.

また、正極用のフィラーの例としては、リン酸鉄リチウム、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、活性炭、カーボンナノチューブなどが挙げられる。   Examples of the positive electrode filler include lithium iron phosphate, lithium cobaltate, lithium nickelate, lithium manganate, activated carbon, and carbon nanotube.

また、負極用のフィラーの例としては、チタン酸リチウム、ハードカーボン、ソフトカーボン、活性炭、カーボンナノチューブ、シリコン、スズ、ゲルマニウム原子を含む化合物などが挙げられる。特に、シリコン、スズ、ゲルマニウム原子を含む化合物をフィラーとして用いた蓄電池は、充電時に活物質の体積膨張が大きいため、本発明の樹脂のような機械強度の高い樹脂をバインダーとして用いることが活物質の劣化、しいては、充放電時の容量劣化を低減させる上で好ましい。   Examples of the negative electrode filler include lithium titanate, hard carbon, soft carbon, activated carbon, carbon nanotube, silicon, tin, and a compound containing germanium atoms. In particular, since a storage battery using a compound containing silicon, tin, and germanium atoms as a filler has a large volume expansion of the active material during charging, it is preferable to use a resin having high mechanical strength such as the resin of the present invention as a binder. This is preferable for reducing the deterioration of the capacity, that is, the capacity deterioration during charging and discharging.

ケイ素原子を含む化合物としては、例えば、(1)シリコン微粒子、(2)スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、ケイ素との合金(3)ホウ素、窒素、酸素または炭素とケイ素との化合物や、これらにさらに(2)に例示した金属を有するものなどが挙げられる。ケイ素の合金あるいは化合物の一例としては、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiOv(0<v≦2)あるいはLiSiOなどが挙げられる。Examples of the compound containing a silicon atom include (1) silicon fine particles, (2) tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony or chromium, and silicon. (3) Boron, nitrogen, oxygen, or a compound of carbon and silicon, and those having the metal exemplified in (2) above. Examples of silicon alloys or compounds include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiOv (0 <v ≦ 2), LiSiO, or the like.

スズ原子を含む化合物としては、例えば、(1)ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンまたはクロムと、スズとの合金、(2)酸素または炭素とスズとの化合物や、これらにさらに(1)に例示した金属を有するものなどが挙げられる。スズの合金あるいは化合物の一例としては、SnOw(0<w≦2)、SnSiO、LiSnOあるいはMgSnなどが挙げられる。
ゲルマニウム原子を含む化合物としては、ケイ素やスズとゲルマニウムとの合金などが挙げられる。
Examples of the compound containing a tin atom include (1) an alloy of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony or chromium and tin, (2) Examples thereof include compounds of oxygen or carbon and tin, and those having the metal exemplified in (1). Examples of tin alloys or compounds include SnOw (0 <w ≦ 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
Examples of the compound containing a germanium atom include an alloy of silicon, tin, and germanium.

フィラーの粒度分布におけるメディアン径(d50)は0.01〜20μmが好ましい。また、フィラーの表面には、シランカップリング剤などによる処理が施されていてもよい。
ここで、メディアン径は堀場製作所製レーザー回折/散乱式粒度分布測定装置 LA−920を用いて測定した。測定前に、適量の試料をヘキサメタリン酸Na水溶液に添加し、超音波洗浄機で10分程度分散させ、その後測定を行った。これにより、粉体が凝集した試料では凝集をとき、また粒径の大きな粉体の沈殿などを抑制し、正確な粒度分布の測定が可能となる。
The median diameter (d50) in the particle size distribution of the filler is preferably 0.01 to 20 μm. Further, the surface of the filler may be treated with a silane coupling agent or the like.
Here, the median diameter was measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA-920 manufactured by Horiba. Prior to the measurement, an appropriate amount of the sample was added to the aqueous solution of sodium hexametaphosphate and dispersed with an ultrasonic cleaner for about 10 minutes, and then the measurement was performed. This makes it possible to accurately measure the particle size distribution by agglomerating a sample in which the powder is agglomerated and suppressing the precipitation of powder having a large particle size.

本発明のスラリーにおいて、樹脂(添加剤が加えられている場合は樹脂+添加剤)の含有量は、フィラー100重量部に対して1重量部以上が好ましく、接着性をより向上させることができる。3重量部以上がより好ましく、5重量部以上がさらに好ましい。
2次電池やキャパシタの電極に用いる場合、電気抵抗を低減し、フィラーの充填量を増加させるためには20重量部以下が好ましく、15重量部以下がより好ましく、12重量部以下が最も好ましい。
In the slurry of the present invention, the content of the resin (in the case where an additive is added, resin + additive) is preferably 1 part by weight or more with respect to 100 parts by weight of the filler, and the adhesiveness can be further improved. . 3 parts by weight or more is more preferable, and 5 parts by weight or more is more preferable.
When used for an electrode of a secondary battery or a capacitor, it is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and most preferably 12 parts by weight or less in order to reduce the electrical resistance and increase the filling amount of the filler.

2次電池やキャパシタの電極に用いる場合、電気抵抗を低下させるために、本発明の負極用ペーストに、グラファイト、ケッチェンブラック、カーボンナノチューブ、アセチレンブラックなどの導電性粒子を含有してもよい。これらの含有量は、負極活物質100重量部に対して0.1重量部以上20重量部以下が好ましい。   When used for an electrode of a secondary battery or a capacitor, the negative electrode paste of the present invention may contain conductive particles such as graphite, ketjen black, carbon nanotube, and acetylene black in order to reduce electric resistance. These contents are preferably 0.1 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the negative electrode active material.

本発明の樹脂溶液、樹脂組成物、スラリーは、樹脂、必要に応じて溶剤およびその他添加剤を、混合・混練することにより得ることができる。混合の場合はガラス製のフラスコやステンレス製の容器等に入れて、メカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられ、混練の場合はプラネタリーミキサー、三本ロール、ボールミル、ホモジナイザーなどを用いた方法が挙げられる。混合・混練の条件については特に限定されない。   The resin solution, resin composition, and slurry of the present invention can be obtained by mixing and kneading a resin, and optionally a solvent and other additives. In the case of mixing, put in a glass flask or stainless steel container, etc., a method of stirring and dissolving with a mechanical stirrer, etc., a method of dissolving with ultrasonic waves, a method of stirring and dissolving with a planetary stirring deaerator, etc. In the case of kneading, a method using a planetary mixer, three rolls, a ball mill, a homogenizer and the like can be mentioned. The mixing / kneading conditions are not particularly limited.

また、異物を除去するために混合、混練後の樹脂溶液、樹脂組成物、スラリーを0.01μm〜100μmのポアサイズのフィルターで濾過してもよい。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。また、樹脂組成物中にフィラー、有機顔料を含有する場合、これらの粒子径より大きな孔径の濾過フィルターを用いることが好ましい。   Further, in order to remove foreign matters, the resin solution, resin composition, and slurry after mixing and kneading may be filtered through a filter having a pore size of 0.01 μm to 100 μm. Examples of the material for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferable. Moreover, when a resin composition contains a filler and an organic pigment, it is preferable to use a filtration filter having a pore size larger than these particle sizes.

本発明の樹脂溶液、樹脂組成物、またはスラリーを基材の片面または両面に塗布し、乾燥させることで積層体を作ることもできる。   A laminate can also be made by applying the resin solution, resin composition, or slurry of the present invention to one or both sides of a substrate and drying.

基材には導電性基材や、導電性の配線が形成された絶縁基材が用いられる。導電性基材、配線として好ましいのは銅、アルミニウム、ステンレス、ニッケル、金、銀やそれらの合金、カーボンなどであるがこれらに限定されない。特に銅、アルミニウム、金、ニッケルとそれらを含んだ合金がより好ましい。絶縁基材としてはPET、ポリイミド、ポリベンゾオキサゾール、ポリアミド、ポリアミドイミド、エポキシといった有機基材や、酸化シリコン、窒化シリコン、窒化チタン、酸化チタンおよび、それらが塗布面に形成された基材などが挙げられるがこれらに限定されない。   As the base material, a conductive base material or an insulating base material on which conductive wiring is formed is used. Preferred examples of the conductive substrate and wiring include copper, aluminum, stainless steel, nickel, gold, silver, alloys thereof, and carbon, but are not limited thereto. In particular, copper, aluminum, gold, nickel and alloys containing them are more preferable. Insulating base materials include organic base materials such as PET, polyimide, polybenzoxazole, polyamide, polyamideimide, and epoxy, silicon oxide, silicon nitride, titanium nitride, titanium oxide, and base materials on which they are formed. Although it is mentioned, it is not limited to these.

本発明の積層体の製造方法について説明する。
まず、本発明の樹脂溶液、樹脂組成物、またはスラリーを基材上に塗布する。
塗布方法としてはロールコーター、スリットダイコーター、バーコーター、コンマコーター、スピンコーターなどを用いる方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1〜150μmであることが好ましい。
The manufacturing method of the laminated body of this invention is demonstrated.
First, the resin solution, resin composition, or slurry of the present invention is applied on a substrate.
Examples of the coating method include a method using a roll coater, a slit die coater, a bar coater, a comma coater, a spin coater and the like. Moreover, although a coating film thickness changes with application methods, the solid content concentration of a composition, a viscosity, etc., it is preferable that the film thickness after drying is 0.1-150 micrometers normally.

次に塗布した基板を乾燥して、樹脂組成物被膜を得る。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃〜200℃の範囲で1分間〜数時間行うことが好ましい。   Next, the coated substrate is dried to obtain a resin composition film. Drying is preferably performed using an oven, a hot plate, infrared rays, or the like in the range of 50 ° C. to 200 ° C. for 1 minute to several hours.

樹脂溶液、樹脂組成物、またはスラリーが感光性の場合は被膜に所望のパターンを有するマスクを通して化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では波長350nm以上450nm以下の光が好ましく、水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)を用いることが好ましい。   When the resin solution, resin composition, or slurry is photosensitive, the film is exposed to actinic radiation through a mask having a desired pattern. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, light having a wavelength of 350 nm or more and 450 nm or less is preferable, i-ray (wavelength 365 nm), h-ray (wavelength 405 nm) of a mercury lamp. ), G-line (wavelength 436 nm) is preferably used.

また、感光性でない樹脂溶液、樹脂組成物、またはスラリーを露光する場合は、樹脂被膜の上にさらにもう1層フォトレジスト被膜を形成させる必要がある。このフォトレジストにはOFPR−800(東京応化(株)製)などの一般的なノボラック系レジストが好ましく用いられる。フォトレジスト被膜の形成は樹脂組成物被膜の形成と同様の方法で行われる。   Further, when exposing a non-photosensitive resin solution, resin composition, or slurry, it is necessary to form another layer of a photoresist film on the resin film. For this photoresist, a general novolak resist such as OFPR-800 (manufactured by Tokyo Ohka Co., Ltd.) is preferably used. The formation of the photoresist film is performed by the same method as the formation of the resin composition film.

現像時のパターンの解像度が向上する場合、現像条件の許容幅が増大する場合には、現像前にベーク処理をする工程を取り入れても差し支えない。この温度としては50〜180℃の範囲が好ましく、特に60〜150℃の範囲がより好ましい。時間は10秒〜数時間が好ましい。この範囲内であると反応が良好に進行し、現像時間も短くて済むという利点がある。   When the resolution of the pattern at the time of development is improved or when the allowable range of development conditions is increased, a step of performing a baking process before development may be incorporated. As this temperature, the range of 50-180 degreeC is preferable, and the range of 60-150 degreeC is especially more preferable. The time is preferably 10 seconds to several hours. Within this range, there are advantages that the reaction proceeds satisfactorily and the development time can be shortened.

樹脂溶液、樹脂組成物、またはスラリーのパターンを形成するには、現像処理を行う。樹脂溶液、樹脂組成物、またはスラリーがネガ型感光性を有する場合、未露光部を現像液で除去することにより、ポジ型感光性を有する場合、露光部を現像液で除去することによりレリーフ・パターンが得られる。   In order to form a pattern of the resin solution, the resin composition, or the slurry, development processing is performed. When the resin solution, resin composition, or slurry has negative photosensitivity, the unexposed area is removed with a developer. When the resin solution has positive photosensitivity, the exposed area is removed with a developer. A pattern is obtained.

現像液は樹脂の構造に合わせて適当なものを選択することができるが、アンモニア、水酸化テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液を好ましく使用することができる。場合によっては、これらのアルカリ水溶液にN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを1種以上添加してもよい。   A suitable developer can be selected according to the resin structure. Ammonia, tetramethylammonium hydroxide aqueous solution, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine An aqueous solution of an alkaline compound such as diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, and hexamethylenediamine can be preferably used. In some cases, polar aqueous solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, dimethylacrylamide, methanol, ethanol, isopropanol are used in these alkaline aqueous solutions. One or more kinds of alcohols such as ethyl lactate, esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added.

また、現像液として本発明の樹脂の良溶媒であるN−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミドなどや、樹脂の貧溶媒であるメタノール、エタノール、イソプロピルアルコール、水、メチルカルビトール、エチルカルビトール、トルエン、キシレン、乳酸エチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル−3−メトキシプロピオネート、エチル−3−エトキシプロピオネート、2−ヘプタノン、シクロペンタノン、シクロヘキサノン、酢酸エチルなどを単独あるいは数種類で上記良溶媒と組み合わせた混合液も好ましく使用することができる。   Further, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphospho, which are good solvents for the resin of the present invention, are used as a developer. Rutriamide, etc., and the poor solvents for resins such as methanol, ethanol, isopropyl alcohol, water, methyl carbitol, ethyl carbitol, toluene, xylene, ethyl lactate, ethyl pyruvate, propylene glycol monomethyl ether acetate, methyl-3-methoxy A liquid mixture of propionate, ethyl-3-ethoxypropionate, 2-heptanone, cyclopentanone, cyclohexanone, ethyl acetate or the like alone or in combination with the above-mentioned good solvent can also be preferably used.

現像は上記の現像液を塗膜面にそのまま、あるいは、霧状にして放射する、現像液中に浸漬する、あるいは浸漬しながら超音波をかけるなどの方法によって行うことができる。   The development can be performed by a method such as irradiating the developer on the coating film as it is or in the form of a mist, immersing in the developer, or applying ultrasonic waves while immersing.

ついでリンス液により、現像によって形成したレリーフ・パターンを洗浄することが好ましい。リンス液としては、現像液にアルカリ水溶液を用いた場合、水を好ましく使用できる。このとき、エタノール、イソプロピルアルコール類、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、炭酸ガス、塩酸、酢酸などの酸などを水に加えてリンス処理をしてもよい。   Then, it is preferable to wash the relief pattern formed by development with a rinse solution. As the rinse solution, water can be preferably used when an alkaline aqueous solution is used as the developer. At this time, rinse treatment may be performed by adding an ester such as ethanol, isopropyl alcohol, propylene glycol monomethyl ether acetate, an acid such as carbon dioxide, hydrochloric acid, or acetic acid to water.

有機溶媒でリンスをする場合、現像液との混和性の良いメタノール、エタノール、イソプロピルアルコール、乳酸エチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル−3−メトキシプロピオネート、エチル−3−エトキシプロピオネート、2−ヘプタノン、酢酸エチルなどが好ましく用いられる。   When rinsing with an organic solvent, methanol, ethanol, isopropyl alcohol, ethyl lactate, ethyl pyruvate, propylene glycol monomethyl ether acetate, methyl-3-methoxypropionate, ethyl-3-ethoxy, which are miscible with the developer Propionate, 2-heptanone, ethyl acetate and the like are preferably used.

樹脂溶液、樹脂組成物、またはスラリーに感光性が付与されていない場合は、現像後に樹脂膜上に形成されたフォトレジスト被膜の除去を行わなければならない。この除去はドライエッチングによる除去、ないしは剥離溶剤によるウェットエッチングなどで行われることが多い。上記剥離溶剤としては、アセトン、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル−3−メトキシプロピオネート、エチル−3−エトキシプロピオネート、2−ヘプタノン、酢酸エチルなどの有機溶剤や、水酸化ナトリウム、水酸化カリウムの水溶液などが用いられるがこれらに限定されない。   When photosensitivity is not imparted to the resin solution, resin composition, or slurry, the photoresist film formed on the resin film after development must be removed. This removal is often performed by dry etching or wet etching with a stripping solvent. As the peeling solvent, organic solvents such as acetone, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, 2-heptanone, ethyl acetate, An aqueous solution of sodium hydroxide or potassium hydroxide is used, but not limited thereto.

耐熱性をさらに向上させるため、現像後に150℃〜500℃の温度でキュアしても良い。を加えて耐熱性被膜に変換する。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間〜5時間実施することが好ましい。一例としては、130℃、200℃、350℃で各30分間ずつ熱処理する方法、室温より320℃まで2時間かけて直線的に昇温する方法などが挙げられる。また、高温の加熱やその繰り返しにより、素子の電気特性が変化する恐れや、基板の反りが大きくなる恐れがあるため、加熱処理は250℃以下で行われることが好ましい。特に一般式(2)で表される樹脂は既に環状構造を有しているため、加熱処理温度を高温にして脱水閉環する必要がないので200℃以下の低温処理が可能となることが最大の利点である。   In order to further improve the heat resistance, the film may be cured at a temperature of 150 ° C. to 500 ° C. after development. To convert to a heat resistant coating. This heat treatment is preferably carried out for 5 minutes to 5 hours by selecting the temperature and raising the temperature stepwise, or selecting a certain temperature range and continuously raising the temperature. As an example, a method of performing heat treatment at 130 ° C., 200 ° C., and 350 ° C. for 30 minutes each, a method of linearly raising the temperature from room temperature to 320 ° C. over 2 hours, and the like can be mentioned. Further, the heat treatment is preferably performed at 250 ° C. or lower because there is a fear that the electrical characteristics of the element may change due to high-temperature heating or repetition thereof, and the warpage of the substrate may increase. In particular, since the resin represented by the general formula (2) already has a cyclic structure, it is not necessary to perform dehydration and ring closure at a high heat treatment temperature. Is an advantage.

次に、本発明のリチウムイオン電池電極、電気2重層キャパシタ電極の製造方法について例を挙げて説明する。   Next, an example is given and demonstrated about the manufacturing method of the lithium ion battery electrode of this invention, and an electric double layer capacitor electrode.

リチウムイオン電池負極(以下、負極と称する場合がある)の場合、本発明のスラリーを金属箔上に1〜100μmの厚みで塗布する。金属箔としては、銅箔が一般的に用いられる。塗布には、スクリーン印刷、ロールコート、スリットコートなどの方法を用いることができる。   In the case of a lithium ion battery negative electrode (hereinafter sometimes referred to as a negative electrode), the slurry of the present invention is applied on a metal foil with a thickness of 1 to 100 μm. A copper foil is generally used as the metal foil. For the application, methods such as screen printing, roll coating, and slit coating can be used.

バインダーとしてポリイミド前駆体を用いる場合、塗布後、100〜500℃で1分間〜24時間熱処理することにより、ポリイミド前駆体をポリイミドに変換し、信頼性のある負極を得ることができる。好ましくは200℃以上〜450℃で以下の温度で30分間〜以上20時間以下処理することである。また、水分の混入を抑えるために窒素ガスなどの不活性ガスの中、あるいは真空中で加熱することが好ましい。また、バインダーとしてポリイミドを用いる場合、塗布後、80℃〜500℃で1分間〜24時間加熱処理することにより、溶媒を除去することが好ましい。く、特にイミド化する必要がないため、に100℃〜250℃で10分間〜24時間が処理することがより好ましい。いずれの場合においてもまた、水分の混入を抑えるために、窒素ガスなどの不活性ガスの中、または真空中で加熱することが好ましい。   When a polyimide precursor is used as a binder, the polyimide precursor is converted into polyimide by heat treatment at 100 to 500 ° C. for 1 minute to 24 hours after coating, and a reliable negative electrode can be obtained. Preferably, the treatment is performed at 200 ° C. to 450 ° C. at the following temperature for 30 minutes to 20 hours. Further, it is preferable to heat in an inert gas such as nitrogen gas or in vacuum in order to suppress the mixing of moisture. Moreover, when using a polyimide as a binder, after application | coating, it is preferable to remove a solvent by heat-processing at 80 to 500 degreeC for 1 minute-24 hours. In particular, since it is not necessary to imidize, it is more preferable to treat at 100 ° C. to 250 ° C. for 10 minutes to 24 hours. In any case, it is preferable to heat in an inert gas such as nitrogen gas or in a vacuum in order to suppress the mixing of moisture.

バインダーに低温分解樹脂を含む場合、熱処理により低温分解樹脂を分解することで、気孔が内部にある負極を得ることができる。この場合、低温分解樹脂の分解温度より高く、バインダーの分解温度より低い温度で熱処理することが好ましい。このような温度範囲としては300℃〜450℃で30分間から〜20時間処理することが好ましい。また、このような熱分解性の樹脂としてはポリエチレングリコール、ポリプロピレングリコールなどがある。   When the binder contains a low-temperature decomposition resin, a negative electrode having pores inside can be obtained by decomposing the low-temperature decomposition resin by heat treatment. In this case, heat treatment is preferably performed at a temperature higher than the decomposition temperature of the low-temperature decomposition resin and lower than the decomposition temperature of the binder. As such a temperature range, it is preferable to perform the treatment at 300 to 450 ° C. for 30 minutes to ˜20 hours. Examples of such thermally decomposable resins include polyethylene glycol and polypropylene glycol.

リチウム電池正極(以下、正極と称する場合がある)、電気2重層キャパシタ正負極の場合、本発明のスラリーを金属箔上に1〜500μmの厚みで塗布する。金属箔としては、アルミ箔、ニッケル箔、チタン箔、銅箔などが挙げられ、アルミ箔が一般的に用いられる。塗布方法、熱処理方法はリチウム電池負極と同様である。   In the case of a lithium battery positive electrode (hereinafter sometimes referred to as a positive electrode) and an electric double layer capacitor positive and negative electrode, the slurry of the present invention is applied on a metal foil in a thickness of 1 to 500 μm. Examples of the metal foil include aluminum foil, nickel foil, titanium foil, and copper foil, and aluminum foil is generally used. The application method and heat treatment method are the same as those for the lithium battery negative electrode.

次に、本発明の正極および負極を用いたリチウムイオン電池、電気2重層キャパシタについて説明する。
本発明の正極と負極について、セパレーターを介して複数積層させたものを、電解液と共に金属ケースなどの外装材に入れ、密封することで、2次電池や電気2重層キャパシタを得ることが出来る。
Next, a lithium ion battery and an electric double layer capacitor using the positive electrode and the negative electrode of the present invention will be described.
About the positive electrode and negative electrode of this invention, what was laminated | stacked via the separator is put into exterior materials, such as a metal case, with an electrolyte solution, A secondary battery and an electric double layer capacitor can be obtained.

セパレーターの例としては、ポリエチレン、ポリプロピレンなどのポリオレフィンや、セルロース、ポリフェニレンスルフィド、アラミド、ポリイミドなどの微多孔フィルムや不織布などが挙げられる。
耐熱性を上げるために、セパレーターの表面にセラミックなどのコーティングをしてもよい。
Examples of the separator include polyolefins such as polyethylene and polypropylene, microporous films such as cellulose, polyphenylene sulfide, aramid, and polyimide, and nonwoven fabrics.
In order to increase the heat resistance, the surface of the separator may be coated with ceramic or the like.

電解液に用いる溶媒は、電池の電気化学的反応に関与するイオンが移動することができる媒質の役割を果たす。好ましい溶媒としては、カーボネート系、エステル系、エーテル系、ケトン系、アルコール系、非陽子性溶媒を挙げることができる。前記カーボネート系溶媒としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、メチルエチルカーボネート(MEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などを挙げることができる。前記エステル系溶媒としては、メチルアセテート、エチルアセテート、n−プロピルアセテート、メチルプロピオン酸塩、エチルプロピオン酸塩、γ−ブチロラクトン、テカノライド、バレロラクトン、メバロノラクトン、カプロラクトンなどを挙げることができる。前記エーテル系溶媒としては、ジブチルエーテル、テトラグライム、ジグライム、ジメトキシエタン、2−メチルテトラヒドロフラン、テトラヒドロフランなどを挙げることができる。前記ケトン系溶媒としては、シクロヘキサノンなどを挙げることができる。前記アルコール系溶媒としては、エチルアルコール、イソプロピルアルコールなどを挙げることができる。前記非陽子性溶媒としては、トリル類、ジメチルホルムアミドなどのアミド類、1,3−ジオキソランなどのジオキソラン類、スルホラン類などを挙げることができる。これらを2種以上用いてもよく、含有量比は目的とする電池の性能に応じて適宜選択できる。例えば、前記カーボネート系溶媒の場合、環状カーボネートと鎖状カーボネートを1:1〜1:9の体積比で組み合わせて使用することが好ましく、電解液の性能を向上させることができる。   The solvent used for the electrolytic solution serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Preferred solvents include carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and non-protonic solvents. Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethyl methyl carbonate. (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like. Examples of the ester solvent include methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, tecanolide, valerolactone, mevalonolactone, caprolactone, and the like. Examples of the ether solvent include dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, and tetrahydrofuran. Examples of the ketone solvent include cyclohexanone. Examples of the alcohol solvent include ethyl alcohol and isopropyl alcohol. Examples of the non-protonic solvent include tolyls, amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, and sulfolanes. Two or more of these may be used, and the content ratio can be appropriately selected according to the intended battery performance. For example, in the case of the carbonate-based solvent, it is preferable to use a combination of a cyclic carbonate and a chain carbonate in a volume ratio of 1: 1 to 1: 9, and the performance of the electrolytic solution can be improved.

電解液に用いる電解質の例としては、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、過塩素酸リチウムなどのリチウム塩、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレートなどのアンモニウム塩などが挙げられる。   Examples of the electrolyte used for the electrolyte include lithium salts such as lithium hexafluorophosphate, lithium borofluoride, and lithium perchlorate, and ammonium salts such as tetraethylammonium tetrafluoroborate and triethylmethylammonium tetrafluoroborate.

本発明の樹脂、樹脂組成物、スラリーにより形成した被膜、積層体は、半導体パッケージや多層配線板等の電子部品に使用することができる。具体的には、半導体のパッシベーション膜、半導体素子の表面保護膜、層間絶縁膜、高密度実装用多層配線の層間絶縁膜、有機電界発光素子の絶縁層などの用途に好適に用いられるが、これに制限されず、様々な構造をとることができる。また、樹脂組成物が導電性フィラーを含有する場合には、配線材料として使用することもできる。   The resin, the resin composition, the coating film formed from the slurry, and the laminate of the present invention can be used for electronic parts such as semiconductor packages and multilayer wiring boards. Specifically, it is suitably used for applications such as a semiconductor passivation film, a semiconductor element surface protective film, an interlayer insulating film, an interlayer insulating film of a multilayer wiring for high-density mounting, and an insulating layer of an organic electroluminescent element. It is not limited to this, and various structures can be taken. Moreover, when a resin composition contains a conductive filler, it can also be used as a wiring material.

以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の組成物の評価は以下の方法により行った。   EXAMPLES Hereinafter, although an Example etc. are given and this invention is demonstrated, this invention is not limited by these examples. In addition, the evaluation of the composition in an Example was performed with the following method.

1)組成物の膜厚の測定方法
大日本スクリーン製造(株)製ラムダエースSTM−602を使用し、樹脂膜、加熱硬化後の被膜とも、屈折率を1.629として測定した。
1) Method for measuring film thickness of composition Using Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., both the resin film and the heat-cured film were measured with a refractive index of 1.629.

2)組成物の機械特性(強度(MPa)、弾性率(GPa)、伸度(%))の測定方法
組成物溶液を8インチのシリコンウエハ上に回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で3分間ベークし、樹脂膜を得た。
この樹脂膜をイナートオーブンCLH−21CD−S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で200℃まで昇温し、200℃で1時間加熱処理を行なった後、5℃/minで50℃まで冷却した。続いてフッ酸に1〜4分間浸漬して膜を基板から剥離し、風乾して加熱処理後の被膜を得た。回転塗布時の回転数は加熱処理後の樹脂膜厚が10μmになるよう調整した。
2) Measuring method of mechanical properties of composition (strength (MPa), elastic modulus (GPa), elongation (%)) The composition solution was spin-coated on an 8-inch silicon wafer, and then a hot plate at 120 ° C. Baking was performed for 3 minutes using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Ltd. to obtain a resin film.
Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the resin film was heated to 200 ° C. at an oxygen concentration of 20 ppm or less at a rate of 5 ° C./min, and then heat-treated at 200 ° C. for 1 hour. Then, it was cooled to 50 ° C. at 5 ° C./min. Subsequently, it was immersed in hydrofluoric acid for 1 to 4 minutes to peel the film from the substrate and air-dried to obtain a heat-treated film. The number of rotations during spin coating was adjusted so that the resin film thickness after the heat treatment was 10 μm.

加熱処理後の被膜について、幅1cm、長さ約9cmの短冊状にカットしたものを、測定用試料とした。測定には“テンシロン”(RTM−100;オリエンテック製)を用い、測定結果から上位5点の平均値を求めた。   About the film after heat processing, what was cut into the strip shape of width 1cm and length about 9cm was used as the sample for a measurement. “Tensilon” (RTM-100; manufactured by Orientec) was used for the measurement, and the average value of the top 5 points was determined from the measurement results.

3)組成物の熱線膨張係数(CTE)の測定方法
組成物溶液を8インチのシリコンウエハ上に回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で3分間ベークし、樹脂膜を得た。
3) Method of measuring coefficient of thermal expansion (CTE) of composition The composition solution was spin-coated on an 8-inch silicon wafer, and then a 120 ° C hot plate (Coating and developing apparatus Act-8 manufactured by Tokyo Electron Ltd.) Use) for 3 minutes to obtain a resin film.

この樹脂膜をイナートオーブンCLH−21CD−S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で200℃まで昇温し、200℃で1時間加熱処理を行なった後、5℃/minで50℃まで冷却した。続いてフッ酸に1〜4分間浸漬して膜を基板から剥離し、風乾して加熱処理後の被膜を得た。回転塗布時の回転数は加熱処理後の樹脂膜厚が10μmになるよう調整した。   Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the resin film was heated to 200 ° C. at an oxygen concentration of 20 ppm or less at a rate of 5 ° C./min, and then heat-treated at 200 ° C. for 1 hour. Then, it was cooled to 50 ° C. at 5 ° C./min. Subsequently, it was immersed in hydrofluoric acid for 1 to 4 minutes to peel the film from the substrate and air-dried to obtain a heat-treated film. The number of rotations during spin coating was adjusted so that the resin film thickness after the heat treatment was 10 μm.

加熱処理後の被膜について、熱機械分析装置(エスアイアイ・ナノテクノロジー(株)製 EXSTAR6000 TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で昇温レート5℃/minで200℃まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、50℃〜200℃の熱線膨張係数の平均値を求めた。   About the film after heat processing, it measured in nitrogen stream using the thermomechanical analyzer (SII nanotechnology Co., Ltd. product EXSTAR6000TMA / SS6000). The temperature raising method was performed under the following conditions. In the first stage, the temperature was raised to 200 ° C. at a temperature rising rate of 5 ° C./min to remove adsorbed water from the sample, and in the second stage, air cooling was performed to a room temperature at a temperature lowering rate of 5 ° C./min. In the third stage, the main measurement was performed at a temperature rising rate of 5 ° C./min, and the average value of the thermal linear expansion coefficients from 50 ° C. to 200 ° C. was obtained.

4)銅との接着性
8インチのシリコンウエハ上に500nm厚みで形成された銅基板を用意した。この基板上に組成物を回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で3分間ベークし、樹脂膜を得た。
4) Adhesiveness with copper A copper substrate formed with a thickness of 500 nm on an 8-inch silicon wafer was prepared. The composition was spin-coated on this substrate, and then baked on a 120 ° C. hot plate (using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Co., Ltd.) for 3 minutes to obtain a resin film.

この樹脂膜をイナートオーブンCLH−21CD−S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で200℃まで昇温し、200℃で1時間加熱処理を行なった後、5℃/minで50℃まで冷却した。回転塗布時の回転数は加熱処理後の樹脂膜厚が10μmになるよう調整した。   Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the resin film was heated to 200 ° C. at an oxygen concentration of 20 ppm or less at a rate of 5 ° C./min, and then heat-treated at 200 ° C. for 1 hour. Then, it was cooled to 50 ° C. at 5 ° C./min. The number of rotations during spin coating was adjusted so that the resin film thickness after the heat treatment was 10 μm.

加熱処理後の被膜について、121℃、2気圧の飽和条件にて400時間加熱加湿処理した後に、2mm間隔で10行10列の碁盤目状の切り込みをいれ、セロテープ(登録商標)による引き剥がしによって100マスのうち何マス残ったかで銅との接着性の評価を行った。   The heat-treated film was heated and humidified at 121 ° C. and 2 atm for 400 hours, then cut into 10 rows and 10 columns at 2 mm intervals, and peeled off with cello tape (registered trademark). The adhesiveness with copper was evaluated by how many squares remained in 100 squares.

5)シリコンとの接着性
8インチのシリコンウエハ上に組成物を回転塗布し、次いで、120℃のホットプレート(東京エレクトロン(株)製の塗布現像装置Act−8使用)で3分間ベークし、樹脂膜を得た。
この樹脂膜をイナートオーブンCLH−21CD−S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で5℃/分で200℃まで昇温し、200℃で1時間加熱処理を行なった後、5℃/minで50℃まで冷却した。回転塗布時の回転数は加熱処理後の樹脂膜厚が10μmになるよう調整した。
加熱処理後の被膜について、121℃、2気圧の飽和条件にて400時間加熱加湿処理した後に、2mm間隔で10行10列の碁盤目状の切り込みをいれ、セロテープ(登録商標)による引き剥がしによって100マスのうち何マス残ったかでシリコンとの接着性の評価を行った。
5) Adhesiveness with silicon The composition was spin-coated on an 8-inch silicon wafer, and then baked for 3 minutes on a 120 ° C. hot plate (using a coating and developing apparatus Act-8 manufactured by Tokyo Electron Ltd.). A resin film was obtained.
Using an inert oven CLH-21CD-S (manufactured by Koyo Thermo System Co., Ltd.), the resin film was heated to 200 ° C. at an oxygen concentration of 20 ppm or less at a rate of 5 ° C./min, and then heat-treated at 200 ° C. for 1 hour. Then, it was cooled to 50 ° C. at 5 ° C./min. The number of rotations during spin coating was adjusted so that the resin film thickness after the heat treatment was 10 μm.
The heat-treated film was heated and humidified at 121 ° C. and 2 atm for 400 hours, then cut into 10 rows and 10 columns at 2 mm intervals, and peeled off with cello tape (registered trademark). The adhesion with silicon was evaluated based on how many of the 100 cells remained.

6)容量維持率
本発明の組成物を用いて以下の手順に従い行った。
a)負極の作製
合成例1で得た負極活物質80重量部と、固形分濃度20%の組成物75重量部と、導電助剤としてアセチレンブラック5重量部を、適量のNMPに溶解させ攪拌した後、スラリー状のペーストを得た。得られたペーストを、電解銅箔上にドクターブレードを用いて塗布し、110℃ で30分間乾燥させ、ロールプレス機によりプレスして電極とした。さらに、この電極の塗布部を直径16mmの円形に打ち抜き、200℃、24時間の真空乾燥を行い、負極を作製した。
6) Capacity maintenance rate It carried out according to the following procedures using the composition of this invention.
a) Preparation of Negative Electrode 80 parts by weight of the negative electrode active material obtained in Synthesis Example 1, 75 parts by weight of a composition having a solid content concentration of 20%, and 5 parts by weight of acetylene black as a conductive assistant were dissolved in an appropriate amount of NMP and stirred. After that, a slurry-like paste was obtained. The obtained paste was applied onto an electrolytic copper foil using a doctor blade, dried at 110 ° C. for 30 minutes, and pressed with a roll press to obtain an electrode. Further, the coated part of this electrode was punched out into a circle having a diameter of 16 mm and vacuum-dried at 200 ° C. for 24 hours to produce a negative electrode.

b)電極特性評価
充放電特性を測定する上では、HSセル(宝泉(株)製)を用い、リチウムイオン電池の組み立ては窒素雰囲気下でおこなった。セル内に作成した負極を直径16mm の円形に打ち抜いたもの、セパレーターとなる多孔質フィルム(宝泉(株)製)を直径24mmに打ち抜いたもの、正極は、コバルト酸リチウム製の活物質をアルミ箔に焼成したもの(宝泉(株)製)を直径16mmに打ち抜いたものを順に重ね、電解液としてMIRET1(三井化学(株)製)1mLを注入した上で封入して、リチウムイオン電池を得た。
b) Electrode characteristic evaluation In measuring the charge / discharge characteristics, an HS cell (manufactured by Hosen Co., Ltd.) was used, and the lithium ion battery was assembled in a nitrogen atmosphere. The negative electrode made in the cell is punched into a circle with a diameter of 16 mm, the separator porous film (made by Hosen Co., Ltd.) is punched into a diameter of 24 mm, and the positive electrode is made of an active material made of lithium cobalt oxide. The ones fired into foil (made by Hosen Co., Ltd.) and punched out to a diameter of 16 mm are stacked one after the other, and 1 mL of MIRET1 (made by Mitsui Chemicals Co., Ltd.) is injected and sealed, and a lithium ion battery is inserted. Obtained.

上記のようにして作成したリチウムイオン電池を、6mAの定電流で電池電圧が4.2 Vになるまで充電し、さらに4.2Vの定電圧で充電開始から計2時間30分に達するまで充電させた後、30分間休止させ、6mAの定電流で電池電圧が2.7Vになるまで放電させて、1サイクル目の充放電をおこなった。また、このあと19回同様の条件で充放電を繰り返し、計20サイクルについて、各サイクルの充電容量および放電容量を測定した。
以下の式に従って、容量維持率を算出した。
容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
The lithium-ion battery prepared as described above is charged with a constant current of 6 mA until the battery voltage reaches 4.2 V, and further charged with a constant voltage of 4.2 V until reaching a total of 2 hours 30 minutes from the start of charging. Then, the battery was paused for 30 minutes, and discharged at a constant current of 6 mA until the battery voltage reached 2.7 V, and charge / discharge of the first cycle was performed. Moreover, after that, charging / discharging was repeated 19 times under the same conditions, and the charging capacity and discharging capacity of each cycle were measured for a total of 20 cycles.
The capacity retention rate was calculated according to the following formula.
Capacity maintenance ratio (%) = (discharge capacity at 20th cycle / discharge capacity at 1st cycle) × 100

実施例1
乾燥窒素気流下、アミン成分としてo−トリジンジイソシアネート10.6g(0.04モル:40モル%)、2,4−トリレンジイソシアネート3.48g(0.02モル:20モル%)、及び4,4´−ジフェニルメタンジイソシアネート10.0g(0.04モル:40モル%)をN−メチル−2−ピロリドン(NMP)120gに溶解させた。ここに酸成分として無水トリメリット酸19.2g(0.1モル:100モル%)をNMP17.9gとともに加えて、120℃で2時間、140℃で2時間反応させ樹脂濃度20%の組成物1を得た。
Example 1
Under a dry nitrogen stream, 10.6 g (0.04 mol: 40 mol%) of o-tolidine diisocyanate as an amine component, 3.48 g (0.02 mol: 20 mol%) of 2,4-tolylene diisocyanate, and 4, 10.0 g (0.04 mol: 40 mol%) of 4′-diphenylmethane diisocyanate was dissolved in 120 g of N-methyl-2-pyrrolidone (NMP). To this, 19.2 g (0.1 mol: 100 mol%) of trimellitic anhydride was added as an acid component together with 17.9 g of NMP and reacted at 120 ° C. for 2 hours and at 140 ° C. for 2 hours to give a resin concentration of 20%. 1 was obtained.

実施例2〜9、14、比較例1及び2
表1に示したアミン成分、酸成分を用いて実施例1と同様の方法で樹脂濃度20%の組成物2〜9、及び14〜16を得た。
Examples 2 to 9, 14 and Comparative Examples 1 and 2
Compositions 2-9 and 14-16 with a resin concentration of 20% were obtained in the same manner as in Example 1 using the amine component and acid component shown in Table 1.

実施例10
乾燥窒素気流下、アミン成分としてo−トリジンジイソシアネート18.5g(0.07モル:70モル%)、2,4−トリレンジイソシアネート5.22g(0.03モル:30モル%)をNMP120gに溶解させた。ここに末端封止剤として2−ブタノンオキシム0.871g(0.01モル:10モル%)をNMP10gとともに加えて、70℃で2時間反応させ、さらに、酸成分として無水トリメリット酸18.3g(0.095モル:95モル%)をNMP8.12gとともに加えて、120℃で2時間、140℃で2時間反応させ樹脂濃度20%の組成物10を得た。
Example 10
Under a dry nitrogen stream, 18.5 g (0.07 mol: 70 mol%) of o-tolidine diisocyanate and 5.22 g (0.03 mol: 30 mol%) of 2,4-tolylene diisocyanate are dissolved in 120 g of NMP as amine components. I let you. To this, 0.871 g (0.01 mol: 10 mol%) of 2-butanone oxime as an end-capping agent was added together with 10 g of NMP, reacted at 70 ° C. for 2 hours, and further 18.3 g of trimellitic anhydride as an acid component. (0.095 mol: 95 mol%) was added together with 8.12 g of NMP and reacted at 120 ° C. for 2 hours and at 140 ° C. for 2 hours to obtain a composition 10 having a resin concentration of 20%.

実施例11
表1に示したアミン成分、酸成分及び末端封止材を用いて実施例10と同様の方法で樹脂濃度20%の組成物11を得た。
Example 11
A composition 11 having a resin concentration of 20% was obtained in the same manner as in Example 10 using the amine component, acid component, and terminal blocker shown in Table 1.

実施例12
乾燥窒素気流下、アミン成分としてo−トリジンジイソシアネート18.5g(0.07モル:70モル%)、2,4−トリレンジイソシアネート5.22g(0.03モル:30モル%)をNMP120gに溶解させた。ここに末端封止剤として2−ブタノンオキシム0.871g(0.01モル:10モル%)をNMP10gとともに加えて、70℃で2時間反応させ、さらに、酸成分として無水トリメリット酸18.3g(0.095モル:95モル%)をNMP15.0gとともに加えて、120℃で2時間、140℃で2時間反応させた。その後液温を60℃に降温し、3−アミノプロピルトリメトキシシラン1.73g(樹脂100重量に対して5重量)を加えてさらに60℃で3時間攪拌し、樹脂とシラン化合物の合計が20%の濃度になる組成物12を得た。
Example 12
Under a dry nitrogen stream, 18.5 g (0.07 mol: 70 mol%) of o-tolidine diisocyanate and 5.22 g (0.03 mol: 30 mol%) of 2,4-tolylene diisocyanate are dissolved in 120 g of NMP as amine components. I let you. To this, 0.871 g (0.01 mol: 10 mol%) of 2-butanone oxime as an end-capping agent was added together with 10 g of NMP, reacted at 70 ° C. for 2 hours, and further 18.3 g of trimellitic anhydride as an acid component. (0.095 mol: 95 mol%) was added together with 15.0 g of NMP and reacted at 120 ° C. for 2 hours and at 140 ° C. for 2 hours. Thereafter, the temperature of the solution is lowered to 60 ° C., 1.73 g of 3-aminopropyltrimethoxysilane (5 wt. Relative to 100 wt. Of resin) is added, and the mixture is further stirred at 60 ° C. for 3 hours. A composition 12 having a concentration of% was obtained.

実施例13
表1に示したアミン成分、酸成分、末端封止材及びシラン化合物を用いて実施例12と同様の方法で樹脂とシラン化合物の合計が20%の濃度になる組成物13を得た。
Example 13
Using the amine component, acid component, end-capping material and silane compound shown in Table 1, composition 13 having a total concentration of resin and silane compound of 20% was obtained in the same manner as in Example 12.

比較例3
乾燥窒素気流下、アミン成分として4,4’−ジアミノジフェニルエーテル20.0g(0.1モル:100モル%)をNMP150gに溶解させた。ここに酸成分として無水ピロメリット酸20.7g(0.095モル:95モル%)をNMP12.9gとともに加えて、40℃で6時間反応させ樹脂濃度20%の組成物17を得た。
Comparative Example 3
Under a dry nitrogen stream, 20.0 g (0.1 mol: 100 mol%) of 4,4′-diaminodiphenyl ether as an amine component was dissolved in 150 g of NMP. Here, 20.7 g (0.095 mol: 95 mol%) of pyromellitic anhydride as an acid component was added together with 12.9 g of NMP, and reacted at 40 ° C. for 6 hours to obtain a composition 17 having a resin concentration of 20%.

比較例4
乾燥窒素気流下、アミン成分として4,4’−ジアミノジフェニルスルホン24.8g(0.1モル:100モル%)をNMP180gに溶解させた。ここに酸成分としてオキシジフタル酸二無水物30.4g(0.98モル:98モル%)をNMP26.4gとともに加えて、200℃で6時間反応させ樹脂濃度20%の組成物18を得た。
Comparative Example 4
In a dry nitrogen stream, 24.8 g (0.1 mol: 100 mol%) of 4,4′-diaminodiphenylsulfone as an amine component was dissolved in 180 g of NMP. Here, 30.4 g (0.98 mol: 98 mol%) of oxydiphthalic acid dianhydride as an acid component was added together with 26.4 g of NMP, and reacted at 200 ° C. for 6 hours to obtain a composition 18 having a resin concentration of 20%.

合成例1 負極活物質の合成
メディアン径10μmの天然黒鉛50g(富士黒鉛(株)製、CBF1)とナノシリコン粉末60g(アルドリッチ社製)と、カーボンブラック10g(三菱化学(株)製、3050)を混合し、ボールミル中600回転で12時間よく分散させ、その後、80℃で12時間真空乾燥してSi−C系の負極活物質を得た。このメディアン径は10μmであった。
組成物1〜18の組成および評価結果について、実施例1〜14、比較例1〜4として表1に示す。
Synthesis Example 1 Synthesis of negative electrode active material 50 g of natural graphite having a median diameter of 10 μm (manufactured by Fuji Graphite Co., Ltd., CBF1), 60 g of nanosilicon powder (manufactured by Aldrich), and 10 g of carbon black (manufactured by Mitsubishi Chemical Co., Ltd., 3050) Were mixed well in a ball mill at 600 rotations for 12 hours, and then vacuum dried at 80 ° C. for 12 hours to obtain a Si—C-based negative electrode active material. The median diameter was 10 μm.
It shows in Table 1 as Examples 1-14 and Comparative Examples 1-4 about the composition and evaluation result of the compositions 1-18.

Figure 2017099172
Figure 2017099172

Claims (18)

下記一般式(1)で表される構造単位および/または下記一般式(2)で表される構造単位を有する樹脂であって、樹脂中に含まれるRおよびRは、各々独立して、少なくとも一部に下記一般式(3)で表される構造および下記一般式(4)で表される構造を含む樹脂。
Figure 2017099172
(一般式(1)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。Rは水素原子または炭素数1〜10の有機基を示す。mは1または2の整数である。)
Figure 2017099172
(一般式(2)中、Rは炭素数2〜50の2価の有機基を示す。Rは炭素数2〜50の3価または4価の有機基を示す。mは0または1の整数、cは0または1の整数であり、m=0のときc=1、m=1のときc=0である。)
Figure 2017099172
(一般式(3)中、RおよびRは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bおよびbは各々独立に0〜3の整数である。)
Figure 2017099172
(一般式(4)中、Rは各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bは0〜4の整数である。)
A resin having a structural unit represented by the following general formula (1) and / or a structural unit represented by the following general formula (2), wherein R 1 and R 4 contained in the resin are each independently A resin containing at least a structure represented by the following general formula (3) and a structure represented by the following general formula (4).
Figure 2017099172
(In General Formula (1), R 1 represents a divalent organic group having 2 to 50 carbon atoms. R 2 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. R 3 represents a hydrogen atom. Or an organic group having 1 to 10 carbon atoms, m 1 is an integer of 1 or 2.)
Figure 2017099172
(In General Formula (2), R 4 represents a divalent organic group having 2 to 50 carbon atoms. R 5 represents a trivalent or tetravalent organic group having 2 to 50 carbon atoms. M 2 is 0 or 1 integer, c 1 is an integer of 0 or 1, and c 1 = 0 when c 1 = 1, m 2 = 1 when m 2 = 0.)
Figure 2017099172
(In General Formula (3), R 6 and R 7 each independently represent a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 1 and b 2 are each independently an integer of 0 to 3. .)
Figure 2017099172
(In General Formula (4), each R 8 independently represents a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 3 is an integer of 0 to 4.)
およびRは、各々独立して、その50モル%以上が一般式(3)で表される構造である、請求項1に記載の樹脂。2. The resin according to claim 1, wherein R 1 and R 4 are each independently a structure in which 50 mol% or more thereof is represented by the general formula (3). およびRは、各々独立して、その10〜40モル%が一般式(4)で表される構造である、請求項1または2に記載の樹脂。The resin according to claim 1 or 2, wherein R 1 and R 4 are each independently a structure represented by 10 to 40 mol% of the general formula (4). およびRは、各々独立して、その65モル%以上が下記一般式(5)または下記一般式(6)で表される構造である、請求項1〜3のいずれかに記載の樹脂。
Figure 2017099172
(一般式(5)〜(6)中、RおよびR10は各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bおよびbは0〜4の整数である。)
R 2 and R 5 are each independently any one of claims 1 to 3, wherein 65 mol% or more thereof is a structure represented by the following general formula (5) or the following general formula (6). resin.
Figure 2017099172
(In the general formulas (5) to (6), R 9 and R 10 each independently represent a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 4 and b 5 are integers of 0 to 4. is there.)
さらに下記一般式(7)で表される構造単位を5〜30モル%含む、請求項1〜4のいずれかに記載の樹脂。
Figure 2017099172
(一般式(7)中、R11は炭素数2〜50の2価の有機基を示す。R12は各々独立にハロゲン原子または炭素数1〜3の1価の有機基を示す。bは0〜4の整数である。)
Furthermore, resin in any one of Claims 1-4 which contains 5-30 mol% of structural units represented by following General formula (7).
Figure 2017099172
(In General Formula (7), R 11 represents a divalent organic group having 2 to 50 carbon atoms. R 12 each independently represents a halogen atom or a monovalent organic group having 1 to 3 carbon atoms. B 6 Is an integer from 0 to 4.)
末端構造が下記一般式(8)で表される構造を有する、請求項1〜5のいずれかに記載の樹脂。
Figure 2017099172
(一般式(8)中、R13〜R16は各々独立にハロゲン原子または炭素数1〜5の1価の有機基を示す。
The resin according to any one of claims 1 to 5, wherein the terminal structure has a structure represented by the following general formula (8).
Figure 2017099172
(In General formula (8), R < 13 > -R < 16 > shows a halogen atom or a C1-C5 monovalent organic group each independently.
請求項1〜6のいずれかに記載の樹脂を製造する方法であって、ジイソシアネートとそれと反応する2価以上の酸を反応させて一般式(2)で表される構造単位を有する樹脂を製造する際に、イソシアネート100モル%に対して95モル%以下の2価以上の酸を反応させる、製造方法。 A method for producing the resin according to claim 1, wherein a resin having a structural unit represented by the general formula (2) is produced by reacting a diisocyanate and a divalent or higher acid that reacts with the diisocyanate. A production method in which a divalent or higher acid of 95 mol% or less is reacted with respect to 100 mol% of the isocyanate. a)請求項1〜6のいずれかに記載の樹脂、およびb)溶媒を含む、樹脂溶液。   A resin solution comprising a) the resin according to claim 1 and b) a solvent. さらにc)下記一般式(9)で表されるシラン化合物を含む、請求項8記載の樹脂溶液。
Figure 2017099172
(上記一般式(9)中、R17は炭素数1〜4のアルコキシル基、R18は炭素数1〜4のアルコキシル基またはアルキル基、R19は炭素数1〜4の2価の有機基、Zはイソシアネート基と反応性のある官能基を示す。)
Furthermore, c) The resin solution of Claim 8 containing the silane compound represented by following General formula (9).
Figure 2017099172
(In the general formula (9), R 17 is an alkoxyl group having 1 to 4 carbon atoms, R 18 is an alkoxyl group or alkyl group having 1 to 4 carbon atoms, and R 19 is a divalent organic group having 1 to 4 carbon atoms. Z represents a functional group reactive with an isocyanate group.)
請求項8記載の樹脂溶液にフィラーを含有させてなるスラリー。   The slurry formed by making the resin solution of Claim 8 contain a filler. 前記フィラーが、炭素、マンガン、コバルト、ニッケル、鉄、シリコン、チタン、スズ、およびゲルマニウムからなる群より選ばれる少なくとも1種類の原子を含む、請求項10に記載のスラリー。   The slurry according to claim 10, wherein the filler contains at least one atom selected from the group consisting of carbon, manganese, cobalt, nickel, iron, silicon, titanium, tin, and germanium. 前記フィラーが、シリコン、酸化シリコンおよびチタン酸リチウムからなる群より選ばれる少なくとも1種の元素又は化合物を含む、請求項10または11に記載のスラリー。   The slurry according to claim 10 or 11, wherein the filler contains at least one element or compound selected from the group consisting of silicon, silicon oxide, and lithium titanate. 導電性基材または導電性の配線を有する絶縁基材の少なくとも片面に、請求項1〜8のいずれかに記載の樹脂を含む層を有する積層体。   The laminated body which has a layer containing the resin in any one of Claims 1-8 in the at least single side | surface of the insulating base material which has a conductive base material or conductive wiring. 請求項8または9に記載の樹脂溶液、または請求項10〜12のいずれかに記載のスラリーを、基材の片面または両面に塗布して塗布膜を形成する工程、および、前記塗布膜を乾燥する工程を含む積層体の製造方法。   Applying the resin solution according to claim 8 or 9 or the slurry according to any of claims 10 to 12 to one or both sides of a substrate to form a coating film, and drying the coating film The manufacturing method of the laminated body including the process to do. 請求項13に記載の積層体を有する高次加工品。   A high-order processed product comprising the laminate according to claim 13. 多層配線基板、ディスプレー、半導体パッケージ、2次電池用電極または電気2重層キャパシタ用電極である、請求項15に記載の高次加工品。   The high-order processed product according to claim 15, which is a multilayer wiring board, a display, a semiconductor package, an electrode for a secondary battery, or an electrode for an electric double layer capacitor. 請求項16に記載の2次電池用電極を有する2次電池。   A secondary battery comprising the secondary battery electrode according to claim 16. 請求項16に記載の電気2重層キャパシタ用電極を有する電気2重層キャパシタ。   The electric double layer capacitor which has an electrode for electric double layer capacitors of Claim 16.
JP2016572603A 2015-12-09 2016-12-08 Resin, slurry, laminate using them, and manufacturing method thereof Active JP7135272B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015239871 2015-12-09
JP2015239871 2015-12-09
PCT/JP2016/086530 WO2017099172A1 (en) 2015-12-09 2016-12-08 Resin, slurry, laminate using same, and production method for laminate

Publications (2)

Publication Number Publication Date
JPWO2017099172A1 true JPWO2017099172A1 (en) 2018-11-01
JP7135272B2 JP7135272B2 (en) 2022-09-13

Family

ID=59014226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016572603A Active JP7135272B2 (en) 2015-12-09 2016-12-08 Resin, slurry, laminate using them, and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP7135272B2 (en)
KR (1) KR102358212B1 (en)
CN (1) CN108368263B (en)
TW (1) TWI747861B (en)
WO (1) WO2017099172A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009135A1 (en) * 2017-07-07 2019-01-10 東レ株式会社 Resin composition, laminate and manufacturing method thereof, electrode, secondary battery, and electric double layer capacitor
CN108519407B (en) * 2018-05-28 2021-06-01 湖北亿纬动力有限公司 Method for evaluating dispersibility of conductive slurry of lithium ion battery
CN110180488B (en) * 2019-05-07 2020-05-01 东北大学 High-adsorption-activity BiOI and preparation method and application thereof
CN111384209B (en) * 2019-12-12 2021-06-18 横店集团东磁股份有限公司 Method for reducing pollution and improving conversion efficiency of ALD mode PERC battery
US11637317B2 (en) * 2020-06-08 2023-04-25 Cmc Materials, Inc. Solid polymer electrolyte compositions and methods of preparing same
JP7038443B1 (en) 2021-02-10 2022-03-18 ユニチカ株式会社 Polyamide-imide solution for belt forming and method for manufacturing polyamide-imide belt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208323A (en) * 1982-05-28 1983-12-05 Hitachi Chem Co Ltd Production of polyamide-imide resin
JPH03157429A (en) * 1989-11-15 1991-07-05 Toyobo Co Ltd Polyamide imide resin
JPH07100201A (en) * 1993-10-07 1995-04-18 Toyobo Co Ltd Membrane for purifying blood
WO2010074014A1 (en) * 2008-12-25 2010-07-01 Dic株式会社 Polyimide resin, curable polyimide resin composition, and cured product
JP2012219107A (en) * 2011-04-04 2012-11-12 Hitachi Chemical Co Ltd Polyamideimide resin composition, production method therefor, curable resin composition using the same and coating
JP2014181332A (en) * 2013-03-21 2014-09-29 Toyobo Co Ltd Polyamideimide resin solution having an excellent storage stability
WO2016111130A1 (en) * 2015-01-09 2016-07-14 東洋紡株式会社 Polymer blend composition, flexible metal laminate, and flexible printed wiring board

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968108A (en) * 1982-10-08 1984-04-18 日立化成工業株式会社 Insulated wire
JPH02283762A (en) 1989-04-24 1990-11-21 Nippon Steel Chem Co Ltd Lowly elastic and lowly thermally expandable resin composition
JP3157429B2 (en) 1995-07-11 2001-04-16 三洋電機株式会社 Washing machine
JPH08253584A (en) 1995-10-02 1996-10-01 Toray Ind Inc Polyimide composition
JP3820767B2 (en) 1997-09-12 2006-09-13 宇部興産株式会社 NOVEL POLYIMIDE, ITS MANUFACTURING METHOD, AND LAMINATED SUBSTRATE
JP2002363283A (en) 2001-06-06 2002-12-18 Nitto Denko Corp Polyamide acid, polyimide resin obtained from the same and utilization of them for circuit substrate
CN101611076B (en) * 2007-02-23 2012-06-20 东丽株式会社 Binder resin for electrode of lithium ion secondary battery, composition and paste containing the resin, and electrode of lithium ion secondary battery using the resin
KR101108639B1 (en) * 2007-04-25 2012-01-31 히다치 가세고교 가부시끼가이샤 Adhesive sheet
JP5207282B2 (en) 2008-01-21 2013-06-12 Necエナジーデバイス株式会社 Lithium secondary battery
JP5374885B2 (en) 2008-02-19 2013-12-25 日産自動車株式会社 Lithium ion battery
JP5361233B2 (en) 2008-03-31 2013-12-04 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP5129066B2 (en) 2008-09-04 2013-01-23 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and method for producing the same
WO2011161837A1 (en) * 2010-06-25 2011-12-29 東レ株式会社 Composite porous membrane, method for producing composite porous membrane and battery separator using same
JP5820825B2 (en) * 2011-01-18 2015-11-24 旭化成イーマテリアルズ株式会社 Resin composition, cured product, resin film and wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208323A (en) * 1982-05-28 1983-12-05 Hitachi Chem Co Ltd Production of polyamide-imide resin
JPH03157429A (en) * 1989-11-15 1991-07-05 Toyobo Co Ltd Polyamide imide resin
JPH07100201A (en) * 1993-10-07 1995-04-18 Toyobo Co Ltd Membrane for purifying blood
WO2010074014A1 (en) * 2008-12-25 2010-07-01 Dic株式会社 Polyimide resin, curable polyimide resin composition, and cured product
JP2012219107A (en) * 2011-04-04 2012-11-12 Hitachi Chemical Co Ltd Polyamideimide resin composition, production method therefor, curable resin composition using the same and coating
JP2014181332A (en) * 2013-03-21 2014-09-29 Toyobo Co Ltd Polyamideimide resin solution having an excellent storage stability
WO2016111130A1 (en) * 2015-01-09 2016-07-14 東洋紡株式会社 Polymer blend composition, flexible metal laminate, and flexible printed wiring board

Also Published As

Publication number Publication date
CN108368263A (en) 2018-08-03
CN108368263B (en) 2021-03-12
TWI747861B (en) 2021-12-01
KR102358212B1 (en) 2022-02-04
TW201734089A (en) 2017-10-01
KR20180090787A (en) 2018-08-13
JP7135272B2 (en) 2022-09-13
WO2017099172A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP7135272B2 (en) Resin, slurry, laminate using them, and manufacturing method thereof
JP6787123B2 (en) Photosensitive resin composition, method for manufacturing resin cured film, and semiconductor device
TWI756783B (en) Negative photosensitive resin composition, polyimide using the same, and method for producing a cured relief pattern
JP4925732B2 (en) Positive photosensitive resin composition
JP5246607B2 (en) Positive photosensitive resin composition, cured film, protective film and insulating film, and semiconductor device and display device using the same
TWI803627B (en) Negative photosensitive resin composition and production method thereof
JP7542102B2 (en) Negative-type photosensitive resin composition and method for producing cured relief pattern
JP7393491B2 (en) Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern
JP2020024374A (en) Photosensitive resin composition, and method for producing cured relief pattern
JP2021120703A (en) Photosensitive resin composition, cured relief pattern and method for producing the same
TWI753387B (en) Negative photosensitive resin composition, method for producing polyimide, and method for producing hardened relief pattern
JP2011215283A (en) Method of forming cured relief pattern
JP4396143B2 (en) Heat-resistant resin precursor composition
JP2022140356A (en) Resin, resin composition and electronic component, display device, flexible substrate and binder for battery electrode including these
JP4836607B2 (en) Positive photosensitive resin composition
CN117055293A (en) Photosensitive polyimide composition, method for producing pattern, and electronic component
TW202340310A (en) Photosensitive resin composition, photosensitive resin composition film, cured product, and electronic component using same
TW202402952A (en) Negative photosensitive resin composition, producing method thereof, and method for producing cured relief pattern in which the photosensitive resin composition exhibits good copper adhesion and does not generate cloudiness during coating
CN117055292A (en) Negative photosensitive polyimide composition, method for producing pattern, and electronic component
TW202413469A (en) Negative photosensitive resin composition and method of producing hardened protruded pattern using the same wherein the negative photosensitive resin composition includes a polyimide precursor, a plasticizer, and a photopolymerization initiator
JP2022091355A (en) Negative photosensitive resin composition and method for manufacturing cured relief pattern using the same
JP2010045091A (en) Laminate of protective film and die attach film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151