WO2016110189A1 - 一种移除土壤重金属污染的磁选净化治理工艺 - Google Patents

一种移除土壤重金属污染的磁选净化治理工艺 Download PDF

Info

Publication number
WO2016110189A1
WO2016110189A1 PCT/CN2015/098358 CN2015098358W WO2016110189A1 WO 2016110189 A1 WO2016110189 A1 WO 2016110189A1 CN 2015098358 W CN2015098358 W CN 2015098358W WO 2016110189 A1 WO2016110189 A1 WO 2016110189A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
soil
heavy metal
separation
magnetic carrier
Prior art date
Application number
PCT/CN2015/098358
Other languages
English (en)
French (fr)
Inventor
范力仁
周洋
范羽仪
郑曼洁
宋吉青
张引
周小丹
刘路
Original Assignee
范力仁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 范力仁 filed Critical 范力仁
Publication of WO2016110189A1 publication Critical patent/WO2016110189A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil

Definitions

  • the invention relates to a magnetic separation separation purification treatment process for removing heavy metal pollution of soil, belonging to the field of environmental materials and resources and environment.
  • the method comprises the following steps: sampling test: immersing in water for 3 to 5 days; fully activating the soil and the diluent with a rotary tiller, using The magnetic displacer is replaced and magnetically magnetized by the magnetic separator: separation treatment: the heavy metal adsorbed on the surface of the magnet of the magnetic separator is detached in the collecting basin, and the heavy metal in the soil is separated to make it a non-toxic soil. Finally, the separated harmful metals are taken out from the collecting basin or used comprehensively.
  • the polymerization displacer itself is non-magnetic, and harmful heavy metals with magnetic properties are rare, and the separation of non-magnetic heavy metals by magnetic separation is not effective, resulting in a great limitation of the application of the method.
  • a method for separating harmful heavy metals in paddy soil uses a disintegrating agent and a polymerization displacer to form a flowable colloid and then a high polymerization.
  • the molecular material replaces the adsorption, and then separates it with a magnet or an electromagnet, and finally achieves the purpose of separating lead, cadmium, arsenic, chromium, and mercury from the soil.
  • the technical problem to be solved by the present invention is to provide a magnetic separation separation and purification treatment process for removing heavy metal pollution of soil based on magnetic carrier particulate material in view of the above-mentioned deficiencies of the prior art, and capable of reducing heavy metal removal in large, medium and small scale contaminated soils. Repair, the whole process does not cause secondary pollution or pollution in different places, and can recover heavy metals, magnetic carrier materials can be recycled and recycled, and the method is simple.
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil which adopts reactive or adsorptive magnetic carrier particle material to adsorb and capture heavy metals in soil, and then performs magnetic separation and soil separation as characteristics, including: 1 site Or the step of preparing the mud and preparing the mud in the farmland; 2 the step of collecting the heavy metal by the magnetic carrier; 3 the step of separating the magnetic separation; 4 the step of regenerating the material; 5 the step of collecting the concentrated treatment of the heavy metal.
  • 1 site Or the step of preparing the mud and preparing the mud in the farmland 2 the step of collecting the heavy metal by the magnetic carrier
  • 3 the step of separating the magnetic separation
  • 4 the step of regenerating the material
  • 5 the step of collecting the concentrated treatment of the heavy metal.
  • the step of preparing and preparing the mud in the site or farmland soil comprises the following steps: removing impurities from the soil, crushing, grinding, and adding water to make mud.
  • the soil removal includes sieving off crop plant stems, crushed stones, etc., magnetically removing magnetic substances such as iron wire nails, etc., to obtain soil after removing impurities; and pulverizing and grinding using a pulverizer and a mill
  • the soil particles after the decontamination are about 60-100 mesh; the water-added slurry is added with water according to the soil quality 1-4 times to form a slurry having liquid fluidity.
  • the magnetic carrier captures the heavy metal by adding the magnetic carrier to the slurry obtained in the step 1, and thoroughly mixing the mixture for 1-10 hours to obtain a mixed slurry of the magnetic carrier and the soil slurry, wherein the magnetic carrier is added in an amount of The dry soil mass is 0.05-1.5 wt%.
  • the sufficient mixing means that the magnetic carrier is sufficiently contacted with the heavy metal in the slurry by stirring for 1-10 hours with the aid of the stirring machine, thereby achieving the purpose of adsorbing and collecting heavy metals.
  • the magnetic separation step is to magnetically separate the mixed mud obtained in the step 2 by means of a magnet or a magnetic separation machine to obtain a magnetic carrier loaded with heavy metals and a soil slurry after removing heavy metals, respectively.
  • the magnetic separation machine includes a permanent magnetic separation machine and an electromagnetic separation machine for continuous magnetic separation and intermittent magnetic separation.
  • the magnetic carrier material is regenerated by eluting the magnetic carrier loaded with the heavy metal obtained in the step 3 to obtain a heavy metal solution and a magnetic carrier after eluting the heavy metal.
  • the magnetic carrier after eluting the heavy metal can be regenerated and reused after washing.
  • the elution refers to a magnetic carrier loaded with heavy metals obtained by immersing or rinsing step 3 with an eluent, and the eluent is an inorganic strong acid solution such as an aqueous solution of sulfuric acid, hydrochloric acid or phosphoric acid having a pH of 1-3.
  • the step of collectively treating the recovered heavy metal is to precipitate the heavy metal in the heavy metal solution obtained in the step 4, and recover by filtration: the obtained filtrate is adjusted to the discharge standard.
  • the magnetic carrier is a natural or artificial magnetic particle material, which is used as a reactive magnetic carrier or an adsorbent magnetic carrier (Fig. 1) to selectively react or adsorb heavy metals in the soil, thereby realizing heavy metals. Adsorption trapping And separated from the soil.
  • the magnetic carrier can directly select magnetic mineral powder as magnetic particle material (indicated by F), such as magnetite powder (Fe 3 O 4 ).
  • the surface is grafted with an organic adsorption group (represented by AG, such as an aminocarboxy group, an organic sulfur group, etc.) as an adsorptive magnetic carrier (represented by F@-AG); or an inorganic substance (represented by S, such as SiO) 2, etc.)
  • an organic adsorption group represented by AG, such as an aminocarboxy group, an organic sulfur group, etc.
  • F@-AG an adsorptive magnetic carrier
  • S such as SiO 2
  • the present invention provides a magnetic solid ammonia carboxy sorbent particulate material which is used as a magnetic carrier in the present invention.
  • the magnetic solid ammonia carboxy sorbent particle material is a magnetic core powder (FS) coated with an inorganic material as a core-shell structure matrix, and an amino group is introduced on the surface of the shell layer by surface modification reaction, and then carboxymethylation reaction is carried out on the amino group.
  • FS magnetic core powder
  • a core-shell structured magnetic carrier having a surface coated with an aminocarboxyl adsorption group represented by FS@-[aminocarboxylate AG], as shown in FIG.
  • the magnetic particulate material F is selected from one of Fe 3 O 4 powder, iron powder or other magnetic powder material, and the particle diameters of the magnetic particle materials F and FS are preferably 0.10-40.0 ⁇ m.
  • the preparation method of the core-shell structure magnetic solid ammonia carboxy sorbent particle material FS@-[Aminocarboxylate AG] specifically includes the following steps:
  • the organic solvent in the step 1) may be a lower aliphatic alcohol, such as methanol, ethanol, propanol or the like, or may be acetone; in the step 1), when the surface is coated with an inorganic magnetic powder
  • the amount of the body (FS) is 5-10 g
  • the amount of the organic solvent is 100-200 ml
  • the amount of the silane coupling agent is 1-8 g
  • the reaction temperature is 20-100 ° C, and the reaction is stirred for 1-8 h
  • the step 2) Wherein, when the amount of the aminated particles is 5-10 g, the amount of water is 100-200 ml, the amount of the haloacetic acid or the sodium salt thereof is 3-10 g, the reaction temperature is 20-100 ° C, and the reaction is stirred for 1-8 h;
  • the haloacetic acid or its sodium salt is formulated as a 1% to 5% solution.
  • the main raw material of the carboxymethylation reaction is haloacetic acid or a sodium salt thereof, such as chloroacetic acid, sodium chloroacetate, bromoacetic acid, sodium bromoacetate, etc.;
  • the surface modification uses an amino group-containing silane A coupling agent is used as a modifier, and the amino group-containing silane coupling agent is selected from the group consisting of -aminopropyltriethoxysilane (WD-50) or -aminopropyltrimethoxysilane.
  • the method for preparing the non-core-shell magnetic solid ammonia carboxy sorbent particle material F@-[Aminocarboxylate AG] comprises the following steps:
  • step (2) Surface carboxymethylation: take the surface aminated magnetic particle material F@-[NH 2 ] obtained in step (1), stir it with distilled water to form a suspension, and then add a solution of haloacetic acid or its sodium salt to stir. After the reaction, the magnetic particulate material is separated by a magnet, washed with distilled water, and dried to obtain a magnetic solid ammonia carboxy sorbent particulate material F@-[Aminocarboxylate AG] having a non-core-shell structure.
  • the organic solvent in the step 1) may be a lower aliphatic alcohol, such as methanol, ethanol, propanol or the like, or may be acetone; in the step 1), when the amount of the magnetic particulate material F is 5- When 10 g, the amount of the organic solvent is 100-200 ml, the amount of the silane coupling agent is 1-8 g, the reaction temperature is 20-100 ° C, and the reaction is stirred for 1-8 h; in the step 2), when the magnetic particle material F@- When the amount of [NH 2 ] is 5-10 g, the amount of water is 100-200 ml, the amount of haloacetic acid or its sodium salt is 3-10 g, the reaction temperature is 20-100 ° C, and the reaction is stirred for 1-8 h; Preferably, the acetic acid or its sodium salt is formulated as a 1% to 5% solution.
  • the main raw material of the carboxymethylation reaction is haloacetic acid or a sodium salt thereof, such as chloroacetic acid, sodium chloroacetate, bromoacetic acid, sodium bromoacetate, etc.;
  • the surface modification uses an amino group-containing silane A coupling agent is used as a modifier, and the amino group-containing silane coupling agent is selected from the group consisting of -aminopropyltriethoxysilane (WD-50) or -aminopropyltrimethoxysilane.
  • the invention also provides a magnetic solid organic sulfur adsorbent particle material containing an organic sulfur adsorption group, which is used as a magnetic carrier in the invention, and the organic sulfur adsorption group may be a mercapto group, a sulfide group, an ammonia acid group. Wait.
  • the organic sulfur adsorption group is a thioether group
  • the magnetic solid organic sulfur adsorbent particle material is coated with an inorganic magnetic powder (FS) as a core-shell structure matrix, and the surface modification reaction is performed on the shell layer.
  • FS inorganic magnetic powder
  • the sulfhydryl group is introduced and then thioetherified on the sulfhydryl group to obtain a magnetic solid organic sulfur adsorbent particle material containing an organic sulfur adsorption group (represented by FS@-[S-AG]), as shown in FIG. It is also possible to directly introduce a sulfhydryl group on the surface of the magnetic particulate material (F), and then carry out a thioetherification reaction on the sulfhydryl group to obtain a magnetic solid organic sulfur adsorbent particle material containing a non-core-shell structure containing an organic sulfur-adsorbing group (using F@- [S-AG] indicates), as shown in Figure 6.
  • the magnetic particulate material F is selected from one of Fe 3 O 4 powder, iron powder or other magnetic powder material, and the magnetic particle material F has a particle diameter of 0.010 to 100.0 ⁇ m, preferably 0.10 to 40.0 ⁇ m.
  • the preparation method of the above-mentioned core-shell structure magnetic solid organic sulfur adsorbent particle material FS@-[S-AG] comprises the following steps (Fig. 7):
  • the organic solvent in the step 1) may be a lower aliphatic alcohol, such as methanol, ethanol, propanol or the like, or may be acetone; in the step 1), when the amount of FS is 100 g, the organic solvent The dosage is 500-1500ml, the amount of the silane coupling agent is 1-4g, the reaction temperature is 20-70 ° C, and the reaction is stirred for 1-6h; in the step 2), when the dosage of FS@-[SH] is 100g , the amount of water is 500-1500ml, the amount of sodium halocarboxylate is 1.0-4.0g, the reaction temperature is 20-70 ° C, the reaction is stirred for 1-6h; the sodium halocarboxylate is formulated to be 5-10wt% by mass.
  • a lower aliphatic alcohol such as methanol, ethanol, propanol or the like, or may be acetone
  • the surface modification uses a silane coupling agent containing a thiol group as a modifier, and the thiol group-containing silane coupling agent is selected from the group consisting of r-mercaptopropyltrimethoxysilane or r-isopropylpropyltriethoxysilane;
  • the main raw material of the thioetherification reaction is sodium halocarboxylate (sodium halocarboxylate can be represented by XR-COONa, wherein R is -CH 2 -, -CH 2 CH 2 -, etc., X is Cl, Br,
  • the halogenated sodium carboxylate may be specifically selected from the group consisting of sodium chloroacetate, sodium bromoacetate, sodium iodoacetate, sodium chloropropionate, sodium bromopropionate, sodium iodate, and the like.
  • the preparation method of the above non-core-shell magnetic solid organic sulfur adsorbent particle material F@-[S-AG] comprises the following steps:
  • the organic solvent in the step 1) may be a lower aliphatic alcohol, such as methanol, ethanol, propanol or the like, or may be acetone; in the step 1), when the amount of the magnetic particulate material F is 100 g The amount of the organic solvent is 500-1500 ml, the amount of the silane coupling agent is 1-4 g, the reaction temperature is 20-70 ° C, and the reaction is stirred for 1-6 h; in the step 2), when the amount of F@-[SH] is used When it is 100g, the amount of water is 500-1500ml, the amount of sodium halocarboxylate is 1.0-4.0g, the reaction temperature is 20-70 ° C, the reaction is stirred for 1-6h; the sodium halocarboxylate is formulated into 5-10wt A solution of % mass fraction is preferred.
  • a lower aliphatic alcohol such as methanol, ethanol, propanol or the like, or may be acetone
  • the surface modification uses a thiol group-containing silane coupling agent as a modifier, and the thiol group-containing silane coupling agent is selected from the group consisting of r-mercaptopropyltrimethoxysilane or r-isopropylpropyltriethoxysilane;
  • the main raw material for the thioetherification reaction is sodium halocarboxylate (sodium halocarboxylate can be represented by XR-COONa, wherein R is -CH 2 -, -CH 2 CH 2 -, etc., X is Cl, Br, I
  • the halogenated sodium carboxylate is specifically selected from the group consisting of sodium chloroacetate, sodium bromoacetate, sodium iodoacetate, sodium chloropropionate, sodium bromopropionate, sodium iodate, and the like.
  • the magnetic solid organic sulfur adsorbent particle material containing the organic sulfur adsorption group further includes a surface-thiolated core-shell structure magnetic solid organic sulfur adsorbent particle material FS@R'-SH, and a surface-based non-core-shell magnetic solid.
  • the surface thiolated core-shell magnetic solid organic sulfur adsorbent particle material FS@R'-SH is coated with an inorganic magnetic powder (FS) as a core-shell structure matrix, and is surface-modified on the shell layer.
  • FS inorganic magnetic powder
  • a sulfhydryl group which is a surface thiolated core-shell structure magnetic solid organic sulfur sorbent particulate material (represented by FS@R'-SH); the surface thiolated non-core-shell magnetic solid organic sulfur sorbent particulate material,
  • the surface of the magnetic particulate material (F) is directly introduced into the sulfhydryl group, which is a surface-thiolated non-core-shell structured magnetic solid organic sulfur adsorbent particulate material (represented by FS@R'-SH).
  • the magnetic solid organic sulfur adsorbent particle material containing the organic sulfur adsorption group further comprises a core-shell structure magnetic solid organic sulfur adsorbent particle coated with an ammonia acid (dithiocarbamic acid) or ammonia salt structure.
  • the material, and the non-core-shell magnetic solid organic sulfur adsorbent particle material coated with an ammonia acid or ammonia salt structure are examples of the magnetic solid organic sulfur adsorbent particle material containing the organic sulfur adsorption group.
  • other synthetic magnetic solid adsorbent particle materials can also be used as reactive magnetic carriers or adsorptive magnetic carriers, including magnetic expansion adsorption resins and magnetic expansion adsorption composite materials disclosed in the prior art, such as in the invention patent CN201210045128.0
  • the magnetic expansion adsorption resin described in the above; the magnetic expansion adsorption composite material described in the invention patent CN201210045129.5 can be applied to the present invention as a magnetic carrier.
  • the invention adopts a reactive or adsorbing magnetic carrier to adsorb and capture non-magnetic heavy metals in the soil, and separates heavy metals from the soil by magnetic separation technology to make up for the repair of soil heavy metals by existing guest soil method, chemical method, physical method and biological method.
  • the shortcomings exist the method is simple, the magnetic carrier granular material can be recycled and recycled, the treatment cost is low, the advantages of beneficiation technology and mineral processing machinery can be exerted, and heavy metal removal and reduction of large, medium and small scale contaminated soil can be carried out, and no pollution is caused in the whole process. (Waste) water is produced, does not cause secondary pollution or pollution in different places, and can recover heavy metals. It is suitable for purification and repair of farmland soil and site soil contaminated by heavy metals. It can also be used for municipal sludge, industrial sludge, river sediment, Treatment and disposal of lake silt, etc.
  • FIG. 1 is a flow chart of a magnetic separation separation purification treatment process for removing heavy metal pollution in soil according to the present invention.
  • FIG. 2 is a schematic view showing the structure of an adsorbent or reactive magnetic carrier.
  • FIG. 3 is a schematic view showing the structure of a magnetic solid ammonia carboxy sorbent particle material FS@-[Aminocarboxylate AG] having a core-shell structure.
  • FIG. 4 is a schematic view showing the structure of a magnetic solid ammonia carboxy sorbent particulate material F@-[Aminocarboxylate AG] which is a non-core-shell structure.
  • Fig. 5 is a schematic view showing the structure of a magnetic solid organic sulfur adsorbent particulate material FS@-[S-AG] having a core-shell structure.
  • Fig. 6 is a schematic view showing the structure of a magnetic solid organic sulfur adsorbent particulate material F@-[S-AG] of a non-core-shell structure.
  • Fig. 7 is a preparation flow of a magnetic solid organic sulfur adsorbent particulate material FS@-[S-AG] having a core-shell structure.
  • Figure 8 is a view showing the molecular structure of a magnetic solid aminocarboxylate adsorbent particulate material of the core-shell structure of Example 1.
  • Figure 9 is a flow chart showing the preparation of a magnetic solid ammonia carboxy sorbent particulate material of the core-shell structure of Example 1.
  • Figure 10 is an electron micrograph of a magnetic solid ammonia carboxy sorbent particulate material of the core-shell structure of Example 1.
  • Figure 11 is an infrared spectrum of the magnetic solid ammonia carboxy sorbent particle material (FS@-[Aminocarboxylate AG]) of the core-shell structure Fe 3 O 4 /SiO 2 (ie FS) and the core-shell structure in Example 1, respectively I, III said.
  • Figure 12 is a hysteresis loop of the magnetic solid ammonia carboxy sorbent particulate material of the core-shell structure of Example 1.
  • Figure 13 is an electron micrograph of the surface-germinated core-shell structured magnetic solid organic sulfur adsorbent particulate material FS@R'-SH in Example 5.
  • Figure 14 is an electron micrograph of the non-core-shell structured magnetic solid organic sulfur adsorbent particulate material F@-[SH] in Example 6.
  • SiO 2 in FIGS. 2, 3, 5, 7, and 9 is an inorganic coating layer
  • a magnetic powder (FS) whose surface is coated with an inorganic material is taken as an example of a coating layer of SiO 2 .
  • Core-shell structure matrix is taken as an example of a coating layer of SiO 2 .
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil the core-shell magnetic solid ammonia carboxy sorbent particle material FS@-[aminocarboxylate AG] is used as a magnetic carrier to adsorb and capture heavy metals in the soil, and then carry out Magnetic separation and soil separation, in turn, include the following steps:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Cd in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; then using a pulverizer and a mill Grind the soil to about 60-100 mesh, add water to make the soil a mud with a mud content of 20% (mass percent);
  • magnetic carrier trapping heavy metal step adding 10g of FS@-[aminocarboxylate AG] particulate material to the slurry obtained in step 1, and thoroughly mixing for 5 hours to obtain a mixed slurry of magnetic carrier + soil slurry loaded with heavy metal cadmium;
  • step 3 the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metal Cd and a soil slurry after removing heavy metal Cd by a continuous permanent magnet separator, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The acid solution of the heavy metal Cd obtained in the step 4 is adjusted to pH 9 with calcium hydroxide to precipitate heavy metals, and the filtered precipitate is collected and collected; the obtained filtrate is neutralized with hydrochloric acid to reach the discharge standard and discharged.
  • the cadmium in the weak acid dissolved state and the iron-manganese oxide-bound state and the partially organically bound cadmium in the soil can be removed from the soil, and the removal rate of cadmium can reach more than 75%.
  • the magnetic carrier used in this embodiment is a core-shell structured magnetic solid ammonia carboxylate adsorbent particle material FS@-[Aminocarboxylate AG] having a surface grafted with an aminocarboxyl adsorption group, and the structure thereof can be represented as FIG. 8 , and the preparation method thereof As follows (as shown in Figure 9):
  • the structure of the core-shell structure magnetic solid ammonia carboxy sorbent particle material FS@-[Aminocarboxylate AG] grafted with an aminocarboxyl adsorption group on the surface obtained in this embodiment is shown in Fig. 9, and the aminocarboxylate chelate adsorption group- CH 2 CH 2 -N-(CH 2 COO - ) 2 , directly bonded to the surface of SiO 2 particles by -O-Si-CH 2 - covalent bond; the above magnetic carrier FS@-[Aminocarboxylate AG] in transmission electron microscope
  • the morphology under (TEM) observation is shown in Fig.
  • the dark gray core is covered with a light gray SiO 2 shell, which is a core-shell structure; the infrared spectrum of the core-shell structure FS and FS@-[Aminocarboxylate AG]
  • the spectral line III has a plane stretching vibration peak of Si-O-Si at about 500 cm -1 , and has a bending vibration peak of Si-O-Si at about 1000 cm -1 , and a carboxyl group at about 1420 cm -1 .
  • the vibration peak indicates that the silane coupling agent is successfully modified on the surface of the core-shell Fe 3 O 4 /SiO 2 particles, so the plane stretching vibration peak and bending vibration peak of Si-O-Si can be observed, while the vibration peak of the carboxyl group is observed. It is indicated that a carboxymethylation reaction occurs on the surface-aminated magnetic particle material FS@-[NH 2 ] amino group to form FS@-[aminocarboxylate AG].
  • the magnetic solid ammonia carboxy sorbent particle material FS@-[Aminocarboxylate AG] of the above-mentioned core-shell structure is subjected to nitrogen element analysis by a Kjeldahl method, and the nitrogen content thereof is 0.0250-0.0500 mmol/g, indicating that the surface thereof has an approximate 0.0250-0.500mmol/g aminocarboxy group; magnetic analysis of FS@-[Aminocarboxylate AG], as shown in Figure 12, its saturation magnetization is 25.00-38.00emu/g, and shows the characteristics of soft magnetic material, suitable for Used as a magnetic separation material.
  • the difference between the second embodiment and the first embodiment is that the magnetic carrier is a regenerated magnetic carrier, and the regenerated magnetic carrier is the reactive magnetic carrier after the heavy metal is eluted in the step 4 of the first embodiment.
  • the cadmium in the weak acid dissolved state and the iron-manganese oxide-bound state and the partially organically bound cadmium in the soil can be removed from the soil, and the removal rate of cadmium can reach more than 74%.
  • Steps of preparing and preparing mud for soil taking 1000g of contaminated farmland soil by cadmium and arsenic in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; then using a pulverizer and The mill grinds the soil to about 60-100 mesh, and adds water to make the soil a mud with a mud content of 30% (mass percent);
  • magnetic carrier trapping heavy metal step adding 10 g of natural magnetic mineral powder to the slurry obtained in step 1, and thoroughly mixing for 10 hours to obtain a mixed slurry of magnetic carrier and soil slurry loaded with cadmium and arsenic;
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metal cadmium and arsenic by using a batch electromagnetic separator and a soil slurry after removing heavy metal, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The acid solution of the heavy metal cadmium arsenic obtained in the step 4 is adjusted to pH 9 with calcium hydroxide to precipitate heavy metals, and the precipitate is collected and collected in a concentrated manner; the filtrate obtained is neutralized with hydrochloric acid to reach the discharge standard and discharged.
  • the cadmium and arsenic in the weak acid dissolved state and the iron-manganese oxide combined state and the partially combined organic lead in the soil can be removed from the soil, and the removal rate of cadmium can reach 25% or more.
  • the removal rate of arsenic can reach more than 20%.
  • the natural magnetic mineral powder used in the present embodiment is taken from a magnetite ore, and is pulverized and ground to a powder of 325-1000 mesh, and purified by a magnet to make the magnetite content greater than 90%.
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil using magnetic non-core-shell magnetic solid ammonia sorbent granule material F@-[aminocarboxylate AG] as magnetic carrier for adsorption and capture of heavy metals in soil, and then Perform magnetic separation and soil separation.
  • the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Pb in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; then using a pulverizer and a mill Grind the soil to 60-100 To the left or right, add water to make the soil a mud with a mud content of 25% (mass percent);
  • magnetic carrier trapping heavy metal step adding the magnetic carrier F@-[aminocarboxylate AG] powder 5g to the slurry obtained in step 1, and thoroughly mixing for 1 hour to obtain a mixed slurry of magnetic carrier and soil slurry loaded with heavy metal lead. ;
  • step 3 the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metal Pb and a soil slurry after removing heavy metal Pb by a batch electromagnetic separator, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The acid solution of the heavy metal Pb obtained in the step 4 is adjusted to pH 9 with calcium hydroxide to precipitate heavy metals, and the filtered precipitate is collected and collected; the obtained filtrate is neutralized with hydrochloric acid to reach the discharge standard and discharged.
  • the lead in the weak acid dissolved state and the iron-manganese oxide combined state and the lead in the partially organically bound state can be removed from the soil, and the lead removal rate can reach more than 75%.
  • the magnetic solid non-core-shell structure magnetic solid ammonia carboxy sorbent particle material F@-[Aminocarboxylate AG] used in the present embodiment is prepared by taking a magnetite ore and pulverizing and grinding into a powder of 325-1000 mesh.
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil the surface thiolated core-shell magnetic solid organic sulfur adsorbent particle material FS@R'-SH is used as a magnetic carrier to adsorb and trap heavy metals in soil. Then magnetic separation of heavy metals, the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Pb, Cd, Ni and Cu in a certain place, screening crop stalks, gravel, etc., and removing magnetic substances such as iron wire nails by a universal magnetic separator; Then, the soil is ground to about 60-100 mesh by a pulverizer and a mill, and water is added to make the soil a mud having a mud content of 25% by mass;
  • Magnetic carrier trapping heavy metal Add 15g of FS@R'-SH magnetic carrier to the slurry obtained in step 1, and mix well for 10 hours to obtain FS@R'-SH loaded with Pb, Cd, Ni and Cu. Mixed mud with soil slurry;
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metals Pb, Cd, Ni, Cu and a soil slurry after removing heavy metals Pb, Cd, Ni, Cu by a batch electromagnetic separator. Return the soil slurry to the farmland;
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • Pb, Cd, Ni, Cu and some organically bound Pb, Cd, Ni, Cu in the weak acid dissolved state and iron-manganese oxide combined state in the soil can be removed from the soil.
  • the removal rate of Pb and Cd can reach more than 75%, and the removal rate of Ni and Cu can reach more than 50%.
  • the core-shell magnetic solid organic sulfur adsorbent particle material FS@R'-SH used as the magnetic carrier used in this embodiment is described as follows:
  • the magnetic material Fe 3 O 4 in FS powder is from natural magnetite, coated with SiO 2 according to the method provided by Applied Chemicals, 2012, 41 (12), to prepare the core.
  • the shell structure Fe 3 O 4 /SiO 2 powder was added to the reaction flask, 500 mL of methanol was added, stirred to form a uniform suspension, 4.0 g of a silane coupling agent WD-80 was added, and the reaction was stirred at 70 ° C for 1.0 h; The powder was separated by a magnet, washed with methanol, and dried at 70 ° C for 12 h to obtain a surface-densified core-shell structure FS@R'-SH magnetic solid organic sulfur adsorbent particulate material.
  • the morphology of the surface thiolated core-shell structure FS@R'-SH obtained in this example was observed by transmission electron microscopy (TEM), as shown in Fig. 13, and the dark gray core was covered with a layer of light gray.
  • Elemental analysis method for sulfur element analysis its sulfur content is 0.0396-0.150%, its magnetic analysis, its saturation magnetization is 25.00-38.00emu / g, and shows the characteristics of soft magnetic material, suitable for magnetic separation material.
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil using a non-core-shell magnetic solid organic sulfur adsorbent particle material F@R'-SH coated with a ruthenium-based surface as a magnetic carrier for adsorbing heavy metals in soil Set, the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Ni and Cu in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; Grinding the soil to about 60-100 mesh with a mill, adding water to make the soil a mud with a mud content of 25% (mass percent);
  • magnetic carrier trapping heavy metal step adding the magnetic carrier F@R'-SH 15g to the slurry obtained in step 1, and thoroughly mixing for 10 hours to obtain magnetic carrier F@R'-SH magnetic carrier loaded with Ni and Cu Mixed mud with soil slurry;
  • step 3 the mixed mud obtained in step 2 is separated from the loaded heavy metal by a batch electromagnetic separator
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • Ni, Cu and some organically bound Ni and Cu in a weak acid dissolved state and an iron-manganese oxide-bound state in the soil can be removed from the soil, wherein the removal rates of Ni and Cu are removed. Can reach more than 50%.
  • non-core-shell magnetic solid organic sulfur adsorbent particle material F@R'-SH used as the magnetic carrier used in this embodiment is described as follows:
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil using a core-shell structure of a magnetic solid organic sulfur adsorbent particle material FS@-[S-AG] containing an organic sulfur adsorption group as a magnetic carrier in the soil
  • the heavy metal is adsorbed and captured, and the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of contaminated farmland soil of Pb and Cd in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; Grinding the soil to about 60-100 mesh with a mill, adding water to make the soil a mud with a mud content of 25% (mass percent);
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metals Pb, Cd, Ni, Cu and a soil slurry after removing heavy metals Pb and Cd by a batch electromagnetic separator, and the soil slurry is placed.
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • the Pb, Cd, Ni, Cu and some organically bound Pb and Cd in the weak acid dissolved state and the iron-manganese oxide combined state in the soil can be removed from the soil, Pb,
  • the Cd removal rate can reach more than 75%.
  • the magnetic carrier FS@-[S-AG] used in this embodiment is a core-shell structured magnetic solid organic sulfur adsorbent particle material with surface grafted thioether, and the preparation method thereof is as follows:
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil using magnetic non-core-shell structure of magnetic solid organic sulfur adsorbent particle material F@-[s-AG] containing organic sulfur adsorption group as magnetic carrier (ie containing machine Sulfur magnetic carrier) adsorption and capture of heavy metals in the soil, the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Pb, Cd, Ni and Cu in a certain place, screening crop stalks, gravel, etc., and removing magnetic substances such as iron wire nails by a universal magnetic separator; Then, the soil is ground to about 60-100 days by a pulverizer and a mill, and water is added to make the soil a mud having a mud content of 25% (mass percent);
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into the magnetic carrier of heavy metals Pb, Cd, Ni, Cu and the soil slurry after removing heavy metals Cd and Ni by using a batch electromagnetic separator, and the soil slurry is placed.
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • the Cd, Ni and the partially organically bound Cd and Ni in the weak acid dissolved state and the iron-manganese oxide combined state in the soil can be removed from the soil, wherein the Cd removal rate can be reached. Above 75%, the Ni removal rate can reach more than 50%.
  • the magnetic carrier used in this embodiment is a non-core-shell magnetic solid organic sulfur adsorbent particle material F@-[S-AG], The preparation method is described as follows:
  • a magnetic separation separation and purification treatment process for removing heavy metal pollution in soil the magnetic solid organic sulfur adsorbent particle material containing organic sulfur is used as a magnetic carrier to adsorb and capture heavy metals in the soil, and the specific steps are as follows:
  • Steps of preparing and preparing mud for soil taking 1000g of contaminated farmland soil of Pb and Cd in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; Grinding the soil to about 60-100 mesh with a mill, adding water to make the soil a mud with a mud content of 25% (mass percent);
  • step 2 magnetic carrier to capture heavy metals: the slurry obtained in step 1 is added to 15g containing organic sulfur carrier, fully mixed for 10 hours, to obtain Pb, Cd loaded with organic sulfur carrier and soil slurry mixed mud;
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into the magnetic carrier loaded with heavy metals Pb, Cd and the soil slurry after removing heavy metals Pb, Cd by a batch electromagnetic separator, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • the Pb and Cd of the weak acid dissolved state and the iron-manganese oxide combined state and the Pb and Cd of the partially organically bound state can be removed from the soil, wherein the removal rate of Pb and Cd is obtained. It can reach more than 80% respectively.
  • the organic sulfur-containing magnetic carrier used in the embodiment is a non-core-shell magnetic solid organic sulfur adsorbent particle material having a surface layer grafted with an ammonia acid (dithiocarbamic acid) or an ammonia salt acid salt structure, and the preparation thereof
  • ammonia acid dithiocarbamic acid
  • ammonia salt acid salt structure ammonia salt acid salt structure
  • Steps of preparing and preparing mud for soil taking 1000g of contaminated farmland soil of Pb and Cd in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; Grinding the soil to about 60-100 mesh with a mill, adding water to make the soil a mud with a mud content of 25% (mass percent);
  • step 2 magnetic carrier trapping heavy metal step: the slurry obtained in step 1 is added to 15g containing organic sulfur carrier, and thoroughly mixed for 10 hours to obtain a mixed slurry containing Pb, Cd containing organic magnetic carrier and soil slurry;
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into the magnetic carrier loaded with heavy metals Pb, Cd and the soil slurry after removing heavy metals Pb, Cd by a batch electromagnetic separator, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The phosphate precipitate obtained in step 4 is collected and collected by filtration; the obtained filtrate is neutralized with calcium hydroxide to reach the discharge standard and discharged.
  • the Pb and Cd of the weak acid dissolved state and the iron-manganese oxide combined state and the Pb and Cd of the partially organically bound state can be removed from the soil, wherein the removal rate of Pb and Cd is obtained. It can reach more than 80% respectively.
  • the magnetic carrier used in this embodiment is a core-shell magnetic solid organic sulfur adsorbent particle material having a surface grafted with an ammonia acid or an ammonia salt acid salt structure, and the preparation method thereof is as follows:
  • a magnetic separation separation purification treatment process for removing heavy metal pollution in soil the magnetic expansion adsorption resin particle material described in the invention patent CN201210045128.0 is used as a magnetic carrier to adsorb and capture heavy metals in the soil, and then magnetically Separation from soil is followed by the following steps:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Cd in a certain place, screening crop stalks, gravel, etc., using a universal magnetic separator to remove magnetic substances such as iron wire nails; then using a pulverizer and a mill Grind the soil to about 60-100 mesh, add water to make the soil a mud with a mud content of 2% (mass percent);
  • step 2 magnetic carrier to capture heavy metals: the slurry obtained in step 1 is added to the slurry of 20-80 mesh magnetically expanded adsorption resin particles, and thoroughly mixed for 10 hours to obtain a mixed slurry of magnetic carrier and soil slurry loaded with heavy metal cadmium;
  • step 3 the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metal Cd and a soil slurry after removing heavy metal Cd by a continuous permanent magnet separator, and the soil slurry is returned to the farmland;
  • Step of recovering heavy metal concentrated treatment The acid solution of the heavy metal Cd obtained in the step 4 is adjusted to pH 9 with calcium hydroxide to precipitate heavy metals, and the filtered precipitate is collected and collected; the obtained filtrate is neutralized with hydrochloric acid to reach the discharge standard and discharged.
  • the cadmium in the weak acid dissolved state and the iron-manganese oxide-bound state and the partially organically bound cadmium in the soil can be removed from the soil, and the removal rate of cadmium can reach more than 80%.
  • a magnetic separation separation purification treatment process for removing heavy metal pollution in soil the magnetic expansion adsorption composite material described in the invention patent CN201210045129.5 is used as a magnetic carrier to adsorb and capture heavy metals in the soil, and then magnetic separation and soil separation , in turn, includes the following steps:
  • Steps of preparing and preparing mud for soil taking 1000g of soil contaminated with Pb, Cd, Ni and Cu in a certain place, screening crop stalks, gravel, etc., and removing magnetic substances such as iron wire nails by a universal magnetic separator; Then, the soil is ground to about 60-100 mesh by a pulverizer and a mill, and water is added to make the soil a mud having a mud content of 2% (mass percent);
  • step 2 magnetic carrier to capture heavy metals: the slurry obtained in step 1 is added to the magnetic expansion adsorption composite 1g, fully mixed for 10 hours, to obtain a mixed slurry of magnetic carrier + soil slurry loaded with Pb, Cd, Ni, Cu;
  • step 3 magnetic separation step the mixed mud obtained in step 2 is separated into a magnetic carrier loaded with heavy metals Pb, Cd, Ni, Cu and a soil slurry after removing heavy metals Pb, Cd, Ni, Cu by a batch electromagnetic separator. Return the soil slurry to the farmland;
  • Step of recovering heavy metal concentrated treatment The acid solution of the heavy metal Cd obtained in the step 4 is adjusted to pH 9 with calcium hydroxide to precipitate heavy metals, and the filtered precipitate is collected and collected; the obtained filtrate is neutralized with hydrochloric acid to reach the discharge standard and discharged.
  • Pb, Cd, Ni, Cu and some organically bound Pb, Cd, Ni, Cu in the weak acid dissolved state and iron-manganese oxide combined state in the soil can be removed from the soil.
  • the removal rate of Pb and Cd can reach more than 75%, and the removal rate of Ni and Cu can reach more than 50%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种移除土壤重金属污染的磁选分离净化治理工艺,其以反应性或吸附性磁载体颗粒材料对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,依次包括:①土壤准备并制泥浆的步骤;②磁载体吸附捕集重金属的步骤;③磁选分离的步骤;④材料再生的步骤;⑤回收重金属集中处置的步骤。本发明具有方法简单,磁载体颗粒材料可以再生循环利用,治理成本低,能够发挥选矿技术和选矿机械的优势,可开展大中小多种规模污染土壤重金属移除减量净化修复,全过程无大量污水产生,不造成二次污染或异地污染,而且能够回收重金属。

Description

一种移除土壤重金属污染的磁选净化治理工艺 技术领域
本发明涉及一种移除土壤重金属污染的磁选分离净化治理工艺,属环境材料及资源环境领域。
背景技术
目前对土壤重金属污染治理方法主要有五类,一类是工程措施:包括换土和深耕翻土等措施;第二类是传统化学反应治理方法,如沉淀法等;第三类物理修复法,对重金属浓缩和分离,包括反渗透法、蒸发浓缩等;第四类为生物法修复,如植物微生物修复技术等。除了上述方法外,也进行着第五类方法——“环境材料修复法”的研究。其中一部分技术以对土壤重金属吸附固定为特点,如多种矿物材料吸附固定重金属;另外,基于具有吸附性能的磁载体颗粒材料对重金属进行吸附捕集,以磁选分离方法分离场地或农田土壤中有害重金属的方法并不多见。
在申请号CN201410287253中国发明专利申请中,公开了“一种原位分离土壤有害重金属的方法”,先通过旋耕机制备泥浆,再用磁选分离机将其重金属从泥浆状土壤中分离,然后用集料盆收集分离出的有害重金属,最后综合利用分离出的有害重金属;其方法包括以下步骤:取样试验:放水浸泡3~5天;用旋耕机将土壤和稀释剂进行充分活化,用聚合置换剂置换并用磁选分离机的磁体磁吸:分离处理:让磁选分离机的磁体表面吸附的重金属脱落在集料盆内,使土壤中的重金属分离出来,使之成为无毒土壤,最后将分离出的有害金属从集料盆中取出处理或进行综合利用。很显然,聚合置换剂本身无磁性,具有磁性的有害重金属并不多见,而用磁选方法分离非磁性重金属效果不好,导致该法应用面受到极大局限。在申请号CN2014102854637中国发明专利申请中,公开了“一种分离水田土壤中有害重金属的方法”,该方法采用添加解胶剂和聚合置换剂,先将土壤形成可以流动的胶体,再用聚合高分子材料使之置换吸附,然后用磁铁或电磁铁了将其分离,最后达到分离土壤中铅、镉、砷、铬、汞的目的。很显然,聚合高分子材料和铅、镉、砷、铬、汞本身并不具有磁性,也很难被磁体磁化,导致该磁选法应用面收到极大局限。在申请号CN2014102852595中国发明专利申请中,公开了“一种分离水田土壤中镉、铅、铬、砷、汞的方法”,该方法采用添加解胶剂和聚合置换剂,其分离方法包括如下步骤:一、对田中土壤取样;二、分析土样实;三、除草浸泡;四、活化;五、置换吸附;六、搅拌磁吸;最后经过集中收集,达到分离解毒的目的。很显然,解胶剂和聚合置换剂及铅、镉、砷、铬、汞本身并不具有磁性,导致该磁选法应用面受到极大局限。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种基于磁载体颗粒材料移除土壤重金属污染的磁选分离净化治理工艺,能够开展大中小规模污染土壤重金属移除减量修复,全过程不造成二次污染或异地污染,而且能够回收重金属,磁载体材料可以再生循环利用,方法简单。
本发明为解决上述提出的问题所采用的技术方案为:
一种移除土壤重金属污染的磁选分离净化治理工艺,以反应性或吸附性磁载体颗粒材料对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离为特征,依次包括:①场地或农田土壤准备并制泥浆的步骤;②磁载体捕集重金属的步骤;③磁选分离的步骤;④材料再生的步骤;⑤回收重金属集中处置的步骤。如图1所示。
按上述方案,所述场地或农田土壤准备并制泥浆的步骤依次包括如下步骤:土壤除杂、粉碎、磨细、加水制泥浆。其中,所述土壤除杂包括过筛除作物植物茎秆、碎石等,磁选去除磁性物质如铁丝铁钉等,得到除杂后的土壤;所述粉碎、磨细采用粉碎机和磨机完成,使除杂后的土壤颗粒达60-100目左右;所述加水制泥浆是按照于土壤质量1-4倍加入水,形成具有液态流动性的泥浆。
按上述方案,所述磁载体捕集重金属的步骤是:在步骤①所得泥浆中加入磁载体,充分拌混1-10小时,得到磁载体和土壤泥浆的混合泥浆,其中磁载体的加入量为干土壤质量的0.05-1.5wt%。所述充分拌混是指在搅拌机械辅助下,通过1-10小时搅拌使磁载体与泥浆中的重金属充分接触,从而达到吸附捕集重金属的目的。
按上述方案,所述磁选分离的步骤是借助磁铁或磁选机械对步骤②所得混合泥浆进行磁分离,分别得到已负载重金属的磁载体和移除重金属后的土壤泥浆。所述磁选机械,包括连续式磁分离和间断式磁分离的永磁分离机械和电磁分离机械。
按上述方案,所述磁载体材料再生的步骤是将步骤③所得已负载重金属的磁载体进行洗脱,从而得到重金属溶液和洗脱重金属后的磁载体。其中,洗脱重金属后的磁载体经洗涤后即可再生并重复使用。所述洗脱是指采用洗脱剂浸泡或者淋洗步骤③所得已负载重金属的磁载体,所述洗脱剂为无机强酸溶液,如pH为1-3的硫酸、盐酸、磷酸的水溶液。
按上述方案,所述回收重金属集中处置的步骤是将步骤④所得重金属溶液中的重金属沉淀出来,并过滤回收:所得滤液调pH至达到排放标准。
本发明中,所述磁载体为天然或人工合成的磁性颗粒材料,其作为反应性磁载体或吸附性磁载体(图1)对土壤中的重金属进行选择性反应或吸附,从而实现对重金属的吸附捕集 并与土壤分离。
为达到用磁选分离方法移除土壤非磁性重金属污染目的,磁载体可以直接选择磁性矿物粉体作为磁性颗粒材料(用F表示),如磁铁矿粉体(Fe3O4),在其表面接枝有机吸附基团(用AG表示,如氨羧基团、有机硫基团等)后作为吸附性磁载体(用F@-AG表示);也可以用无机物(用S表示,如SiO2等,)对磁性颗粒材料(F)进行表面包覆,生成核壳结构(用FS表示,如Fe3O4@SiO2等),再在FS表面接枝有机吸附基团(AG)后作为吸附性磁载体(用FS@-AG表示]),如图2所示。
本发明提供了磁性固体氨羧吸附剂颗粒材料,其作为磁载体应用于本发明中。该磁性固体氨羧吸附剂颗粒材料,以表面包覆无机物的磁性粉体(FS)作为核壳结构基体,通过表面修饰反应在壳层表面引入氨基,再在氨基上进行羧甲基化反应,得到表面包覆氨羧吸附基团的核壳结构磁载体(用FS@-[氨羧AG]表示,如图3所示),即为核壳结构的磁性固体氨羧吸附剂颗粒材料;也可以直接在磁性颗粒材料(F)表面直接引入氨基,再在氨基上进行羧甲基化,得到表面包覆氨羧吸附基团的非核壳结构磁载体(用F@-[氨羧AG]表示,如图4所示。其中,所述磁性颗粒材料F选自Fe3O4粉体、铁粉或其它磁性粉体材料中的一种,所述磁性颗粒材料F和FS的粒径优选0.10-40.0μm。
上述核壳结构的磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]的制备方法,具体包括如下步骤:
1)表面氨基化:取表面包覆有无机物的磁性粉体(FS)作为核壳结构基体,加入有机溶剂搅拌形成均匀悬浮液后,加入含氨基的硅烷偶联剂进行搅拌反应,然后用磁铁分离出粉体,用有机溶剂洗涤后干燥,得表面氨基化的磁性颗粒材料FS@-[NH2];
2)表面羧甲基化:取步骤(1)得到的表面氨基化的磁性颗粒材料FS@-[NH2],加蒸馏水搅拌成悬浮液,再加入卤代乙酸或其钠盐的溶液进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用蒸馏水洗涤后干燥,得到核壳结构的磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]。其中,所述步骤1)中的有机溶剂可以是低级脂肪醇,如:甲醇,乙醇,丙醇等,也可以是丙酮等;所述步骤1)中,当表面包覆有无机物的磁性粉体(FS)的用量为5-10g时,有机溶剂的用量100-200ml,硅烷偶联剂的用量1-8g,反应温度为20-100℃下,搅拌反应1-8h;所述步骤2)中,当氨基化颗粒的用量为5-10g时,水的用量100-200ml,卤代乙酸或其钠盐的用量3-10g,反应温度为20-100℃下,搅拌反应1-8h;所述卤代乙酸或其钠盐配制成1%-5%的溶液为宜。其中,所述羧甲基化反应的主要原料为卤代乙酸或其钠盐,如氯代乙酸、氯代乙酸钠、溴代乙酸、溴代乙酸钠等;所述表面修饰采用含氨基的硅烷偶联 剂作为修饰剂,所述含氨基的硅烷偶联剂选自-氨丙基三乙氧基硅烷(WD-50)或-氨丙基三甲氧基硅烷等。
上述非核壳结构的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG]的制备方法,具体包括如下步骤:
1)表面氨基化:取磁性颗粒材料(F),加入有机溶剂搅拌形成均匀悬浮液后,加入含氨基的硅烷偶联剂进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用有机溶剂洗涤后干燥,得表面氨基化的磁性颗粒材料F@-[NH2];
2)表面羧甲基化:取步骤(1)得到的表面氨基化的磁性颗粒材料F@-[NH2],加蒸馏水搅拌成悬浮液,再加入卤代乙酸或其钠盐的溶液进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用蒸馏水洗涤后干燥,得到非核壳结构的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG]。其中,所述步骤1)中的有机溶剂可以是低级脂肪醇,如:甲醇,乙醇,丙醇等,也可以是丙酮等;所述步骤1)中,当磁性颗粒材料F的用量为5-10g时,有机溶剂的用量100-200ml,硅烷偶联剂的用量1-8g,反应温度为20-100℃下,搅拌反应1-8h;所述步骤2)中,当磁性颗粒材料F@-[NH2]的用量为5-10g时,水的用量100-200ml,卤代乙酸或其钠盐的用量3-10g,反应温度为20-100℃下,搅拌反应1-8h;所述卤代乙酸或其钠盐配制成1%-5%的溶液为宜。其中,所述羧甲基化反应的主要原料为卤代乙酸或其钠盐,如氯代乙酸、氯代乙酸钠、溴代乙酸、溴代乙酸钠等;所述表面修饰采用含氨基的硅烷偶联剂作为修饰剂,所述含氨基的硅烷偶联剂选自-氨丙基三乙氧基硅烷(WD-50)或-氨丙基三甲氧基硅烷等。
本发明还提供了含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料,其作为磁载体应用于本发明中,有机硫吸附基团可以为巯基、硫醚基团、氨荒酸基团等。当有机硫吸附基团为硫醚基团时,该磁性固体有机硫吸附剂颗粒材料,以表面包覆无机物的磁性粉体(FS)作为核壳结构基体,通过表面修饰反应在壳层上引入巯基,再在巯基上进行硫醚化,得到核壳结构的含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料(用FS@-[S-AG]表示),如图5所示;也可以在磁性颗粒材料(F)表面直接引入巯基,再在巯基上进行硫醚化反应,得到非核壳结构的含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料(用F@-[S-AG]表示),如图6所示。其中,所述磁性颗粒材料F选自Fe3O4粉体、铁粉或其它磁性粉体材料中的一种,所述磁性颗粒材料F的粒径0.010-100.0μm,优选0.10-40.0μm。
上述核壳结构的磁性固体有机硫吸附剂颗粒材料FS@-[S-AG]的制备方法,包括如下步骤(图7):
1)表面疏基化:取表面包覆有无机物的磁性粉体(FS)作为核壳结构基体,加入有机溶剂搅拌形成均匀悬浮液后,加入含巯基的硅烷偶联剂进行搅拌反应,然后用磁铁分离出粉体,用有机溶剂洗涤后干燥,得表面疏基化的磁性固体有机硫吸附剂颗粒材料FS@-[SH];
2)表面硫醚化:取步骤(1)得到的磁性固体有机硫吸附剂FS@-[SH],加蒸馏水搅拌成悬浮液,再加入卤代羧酸钠的溶液进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用蒸馏水洗涤后干燥,得到核壳结构的磁性固体有机硫吸附剂颗粒材料FS@-[S-AG]。其中,所述步骤1)中的有机溶剂可以是低级脂肪醇,如:甲醇,乙醇,丙醇等,也可以是丙酮等;所述步骤1)中,当FS的用量为100g时,有机溶剂的用量500-1500ml,硅烷偶联剂的用量1-4g,反应温度为20-70℃下,搅拌反应1-6h;所述步骤2)中,当FS@-[SH]的用量为100g时,水的用量500-1500ml,卤代羧酸钠的用量1.0-4.0g,反应温度为20-70℃下,搅拌反应1-6h;所述卤代羧酸钠配制成5-10wt%质量分数的溶液为宜。其中,所述表面修饰采用含疏基的硅烷偶联剂作为修饰剂,含巯基的硅烷偶联剂选自r-巯丙基三甲氧基硅烷或r-疏丙基三乙氧基硅烷等;所述硫醚化反应的主要原料为卤代羧酸钠(卤代羧酸钠可以用X-R-COONa表示,其中R为-CH2-、-CH2CH2-等,X为Cl、Br、I等卤素),卤代羧酸钠可以具体选自氯代乙酸钠、溴代乙酸钠、碘代乙酸钠、氯代丙酸钠、溴代丙酸钠、碘代并酸钠等。
上述非核壳结构的磁性固体有机硫吸附剂颗粒材料F@-[S-AG]的制备方法,包括如下步骤:
1)表面疏基化:取磁性颗粒材料(F),加入有机溶剂搅拌形成均匀悬浮液后,加入含疏基的硅烷偶联剂进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用有机溶剂洗涤后干燥,得表面疏基化的磁性固体有机硫吸附剂颗粒材料F@-[SH];
2)表面硫醚化:取步骤(1)得到的F@-[SH],加蒸馏水搅拌成悬浮液,再加入卤代羧酸钠的溶液进行搅拌反应,然后用磁铁分离出磁性颗粒材料,用蒸馏水洗涤后干燥,得到非核壳结构的磁性固体有机硫吸附剂颗粒材料F@-[S-AG]。其中,所述步骤1)中的有机溶剂可以是低级脂肪醇,如:甲醇,乙醇,丙醇等,也可以是丙酮等;所述步骤1)中,当磁性颗粒材料F的用量为100g时,有机溶剂的用量500-1500ml,硅烷偶联剂的用量1-4g,反应温度为20-70℃下,搅拌反应1-6h;所述步骤2)中,当F@-[SH]的用量为100g时,水的用量500-1500ml,卤代羧酸钠的用量1.0-4.0g,反应温度为20-70℃下,搅拌反应1-6h;所述卤代羧酸钠配制成5-10wt%质量分数的溶液为宜。其中,所述表面修饰采用含巯基的硅烷偶联剂作为修饰剂,含巯基的硅烷偶联剂选自r-巯丙基三甲氧基硅烷或r-疏丙基三乙氧基硅烷等;所述硫醚化反应的主要原料为卤代羧酸钠(卤代羧酸钠可以用X-R-COONa表示,其中 R为-CH2-、-CH2CH2-等,X为Cl、Br、I等卤素),卤代羧酸钠具体选自氯代乙酸钠、溴代乙酸钠、碘代乙酸钠、氯代丙酸钠、溴代丙酸钠、碘代并酸钠等。
当然,含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料还包括表面巯基化的核壳结构磁性固体有机硫吸附剂颗粒材料FS@R’-SH、表面巯基化的非核壳结构磁性固体有机硫吸附剂颗粒材料F@R’-SH。该表面巯基化的核壳结构磁性固体有机硫吸附剂颗粒材料FS@R’-SH,以表面包覆无机物的磁性粉体(FS)作为核壳结构基体,通过表面修饰反应在壳层上引入巯基,即为表面巯基化的核壳结构磁性固体有机硫吸附剂颗粒材料(用FS@R’-SH表示);该表面巯基化的非核壳结构磁性固体有机硫吸附剂颗粒材料,即在磁性颗粒材料(F)表面直接引入巯基,即为表面巯基化的非核壳结构磁性固体有机硫吸附剂颗粒材料(用FS@R’-SH表示)。
同时,含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料还包括表面包覆有氨荒酸(二硫代氨基甲酸)或氨荒酸盐结构的核壳结构磁性固体有机硫吸附剂颗粒材料,以及表面包覆有氨荒酸或氨荒酸盐结构的非核壳结构磁性固体有机硫吸附剂颗粒材料。
同时,其他人工合成的磁性固体吸附剂颗粒材料也可以作为反应性磁载体或吸附性磁载体,包括现有技术中公开的磁性膨胀吸附树脂和磁性膨胀吸附复合材料,如在发明专利CN201210045128.0中所记载的磁性膨胀吸附树脂;在发明专利CN201210045129.5中所记载的磁性膨胀吸附复合材料,均能作为磁载体应用于本发明中。
与现有技术相比,本发明的有益效果是:
本发明采用反应性或吸附性磁载体对土壤中非磁性重金属进行吸附捕集,通过磁选技术将重金属与土壤分离,弥补现有客土法、化学法、物理法、生物法进行土壤重金属修复存在的不足,具有方法简单、磁载体颗粒材料可以再生循环利用,治理成本低,能够发挥选矿技术和选矿机械的优势,可开展大中小规模污染土壤重金属移除减量修复,全过程无大量污(废)水产生,不造成二次污染或异地污染,而且能够回收重金属,适用于受重金属污染的农田土壤、场地土壤的净化修复,也可用于市政污泥、工业污泥、河道底泥、湖泊淤泥等的处理处置。
附图说明
图1为本发明所述移除土壤重金属污染的磁选分离净化治理工艺的流程图。
图2为吸附性或反应性磁载体的结构示意图。
图3为核壳结构的磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]的结构示意图。
图4为非核壳结构的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG]的结构示意图。
图5为核壳结构的磁性固体有机硫吸附剂颗粒材料FS@-[S-AG]的结构示意图。
图6为非核壳结构的磁性固体有机硫吸附剂颗粒材料F@-[S-AG]的结构示意图。
图7为核壳结构的磁性固体有机硫吸附剂颗粒材料FS@-[S-AG]的制备流程。
图8是实施例1中核壳结构的磁性固体氨羧吸附剂颗粒材料的分子结构。
图9是实施例1中核壳结构的磁性固体氨羧吸附剂颗粒材料的制备流程。
图10是实施例1中核壳结构的磁性固体氨羧吸附剂颗粒材料的电镜图。
图11是实施例1中核壳结构Fe3O4/SiO2(即FS)和核壳结构的磁性固体氨羧吸附剂颗粒材料(FS@-[氨羧AG])的红外光谱图,分别用I、III表示。
图12是实施例1中和核壳结构的磁性固体氨羧吸附剂颗粒材料的磁滞回线。
图13是实施例5中表面巯基化的核壳结构磁性固体有机硫吸附剂颗粒材料FS@R’-SH的电镜图。
图14是实施例6中非核壳结构磁性固体有机硫吸附剂颗粒材料F@-[SH]的电镜图。
其中,图2、3、5、7、9中的SiO2为无机物包覆层,附图中以包覆层为SiO2为例代表表面包覆有无机物的磁性粉体(FS)作为核壳结构基体。
具体实施方式
为了更好地理解本发明,下面结合实例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
实施例1
一种移除土壤重金属污染的磁选分离净化治理工艺,以核壳结构磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]作为磁载体对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,依次包括如下步骤:
①土壤准备并制泥浆的步骤:取某地Cd污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为20%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入FS@-[氨羧AG]颗粒材料10g,充分拌混5小时,得到已负载重金属镉的磁载体+土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用连续式永磁分离机分离出已负载重金属Cd的磁载体和移除重金属Cd后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Cd的磁载体侵泡于20g pH=1的盐酸溶液中,搅拌1小时进行洗脱,用磁铁分离出洗脱重金属后的再生磁载体,自然水洗涤后供下次 使用;同时还得到重金属Cd的酸溶液;
⑤回收重金属集中处置的步骤:将步骤④所得重金属Cd的酸溶液用氢氧化钙将pH值调至9使重金属沉淀,过滤沉淀集中回收;所得滤液用盐酸中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的镉以及部分有机结合态的镉从土壤中移除,镉的去除率可达到75%以上。
本实施例所采用的磁载体为表面接枝有氨羧吸附基团的核壳结构磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG],其结构可以表示为图8,其制备方法如下(如图9所示):
(1)表面氨基化:称取5g粒径为0.10-10.0μm核壳结构Fe3O4/SiO2粉(FS)于三口烧瓶中,加入150mL甲醇,搅拌形成均匀悬浮液后,加入4.0g硅烷偶联剂WD-50,80℃下搅拌反应5.0h;反应完全后,用磁铁分离出粉体,用有机溶剂洗涤,70℃下干燥12h,得表面氨基化的磁性颗粒材料FS@-NH2
(2)表面羧甲基化:称取氯乙酸钠3.0g,用150ml蒸馏水溶解,得氯乙酸钠溶液;称取5g由步骤(1)获得的表面氨基化的磁性颗粒材料FS@-NH2,加蒸馏水160mL,搅拌悬浮液,然后加入上述配好的氯乙酸钠溶液,于50℃水溶搅拌反应20h;反应完全后冷却,磁铁分离出粉体,用蒸馏水洗涤后70℃下干燥6h,获得核壳结构的磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]。
本实施例获得的表面接枝有氨羧吸附基团的核壳结构磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]的结构如图9所示,氨羧螯合吸附基团-CH2CH2-N-(CH2COO-)2,以-O-Si-CH2-共价键直接连在SiO2颗粒表面;上述磁载体FS@-[氨羧AG]在透射电子显微镜(TEM)观察下的形貌如图10所示:深灰色核心外包覆了一层浅灰色SiO2外壳,为核壳结构;核壳结构FS和FS@-[氨羧AG]的红外光谱如图11所示:谱线III在500cm-1左右有Si-O-Si的平面伸缩振动峰,在1000cm-1左右有Si-O-Si的弯曲振动峰,在1420cm-1左右可见羧基的振动峰,表明硅烷偶联剂成功修饰在核壳结构Fe3O4/SiO2颗粒表面上,故可以观察到Si-O-Si的平面伸缩振动峰和弯曲振动峰,而羧基的振动峰则说明在表面氨基化的磁性颗粒材料FS@-[NH2]氨基上发生了羧甲基化反应,形成了FS@-[氨羧AG]。
上述核壳结构的磁性固体氨羧吸附剂颗粒材料FS@-[氨羧AG]采用凯式定氮法对样品进行氮元素分析,其氮含量为0.0250-0.0500mmol/g,说明其表面具有约0.0250-0.500mmol/g氨羧基团;对该FS@-[氨羧AG]进行磁性分析,如图12所示,其饱和磁化强度为25.00-38.00emu/g,并显示软磁材料特点,适合用做磁分离材料。
实施例2
实施例2与实施例1的不同之处在于:磁载体为再生磁载体,此处再生磁载体为实施例1步骤④所得洗脱重金属后的反应性磁载体。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的镉以及部分有机结合态的镉从土壤中移除,镉的去除率可达到74%以上。
实施例3
一种移除土壤重金属污染的磁选分离净化治理工艺,以天然磁性矿物粉体为磁载体对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地镉砷复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为30%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入天然磁性矿物粉体10g,充分拌混10小时,得到已负载镉砷的磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属镉砷的磁载体和移除重金属后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属镉砷的磁载体侵泡于20g pH=3.5的醋酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属镉砷的酸溶液;
⑤回收重金属集中处置的步骤:将步骤④所得重金属镉砷的酸溶液用氢氧化钙将pH值调至9使重金属沉淀,过滤沉淀集中回收;所得滤液用盐酸中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的镉砷以及部分有机结合态的铅从土壤中移除,镉的去除率可达到25%以上,砷的去除率可达20%以上。
本实施例所采用的天然磁性矿物粉体的取自某地磁铁矿,经过粉碎磨细成为325-1000目的粉体,用磁铁纯化使磁铁矿含量大于90%。
实施例4
一种移除土壤重金属污染的磁选分离净化治理工艺,以非核壳结构的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG]作为磁载体对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100 目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入磁载体F@-[氨羧AG]粉体5g,充分拌混1小时,得到已负载重金属铅的磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb的磁载体和移除重金属Pb后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将5g已负载重金属Pb的磁载体侵泡于20g pH=2的盐酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb的酸溶液;
⑤回收重金属集中处置的步骤:将步骤④所得重金属Pb的酸溶液用氢氧化钙将pH值调至9使重金属沉淀,过滤沉淀集中回收;所得滤液用盐酸中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的铅以及部分有机结合态的铅从土壤中移除,铅的去除率可达到75%以上。
本实施例所采用的磁载体非核壳结构的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG],其制备方法为:取某地磁铁矿,经过粉碎磨细成为325-1000目的粉体,用磁铁纯化使磁铁矿含量大于90%;然后按照实施例1中记载的磁性氨羧螯合吸附颗粒材料的制备方法,以纯化后的天然磁铁矿代替核壳结构FS粉,对天然磁铁矿进行表面氨基化和颗粒表面羧甲基化反应,从而获得表面包覆有氨羧吸附基团的磁性固体氨羧吸附剂颗粒材料F@-[氨羧AG]。
实施例5
一种移除土壤重金属污染的磁选分离净化治理工艺,以表面巯基化的核壳结构磁性固体有机硫吸附剂颗粒材料FS@R’-SH作为磁载体,对土壤中的重金属进行吸附捕集,然后磁选分离重金属,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb、Cd、Ni、Cu复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入FS@R’-SH磁载体15g,充分拌混10小时,得到已负载了Pb、Cd、Ni、Cu的FS@R’-SH和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd、Ni、Cu的磁载体和移除重金属Pb、Cd、Ni、Cu后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Pb、Cd、Ni、Cu的磁载体侵泡于20g pH=2 的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb、Cd、Ni、Cu的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Pb、Cd、Ni、Cu以及部分有机结合态的Pb、Cd、Ni、Cu从土壤中移除,其中Pb、Cd去除率可达到75%以上,Ni、Cu去除率可达到50%以上。
本实施例所采用的作为磁载体的核壳结构磁性固体有机硫吸附剂颗粒材料FS@R’-SH,其制备方法叙述如下:
取100g粒径为0.10-40.0μm FS粉(FS粉中磁性材料Fe3O4来自于天然磁铁矿,按《应用化工》2012年41(12)提供的方法包覆SiO2,制备得到核壳结构Fe3O4/SiO2粉)于反应瓶中,加入500mL甲醇,搅拌形成均匀悬浮液后,加入4.0g硅烷偶联剂WD-80,70℃下搅拌反应1.0h;反应完全后,用磁铁分离出粉体,用甲醇洗涤,70℃下干燥12h,得表面巯基化的核壳结构FS@R’-SH磁性固体有机硫吸附剂颗粒材料。
本实施例获得的表面巯基化的核壳结构FS@R’-SH颗粒材料在透射电子显微镜(TEM)观察下的形貌,如图13所示,深灰色核心外包覆了一层浅灰色SiO2外壳,为核壳结构;红外光谱(IR)分析,FS@R’-SH颗粒材料在2500-2600cm-1之间有巯基弱吸收峰,在2880-2910cm-1有亚甲基吸收峰,采用元素分析法其进行硫元素分析,其硫含量为0.0396-0.150%,对其进行磁性分析,其饱和磁化强度为25.00-38.00emu/g,并显示软磁材料特点,适合用做磁分离材料。
实施例6
一种移除土壤重金属污染的磁选分离净化治理工艺,以表面层包覆巯基的非核壳结构磁性固体有机硫吸附剂颗粒材料F@R’-SH为磁载体对土壤中的重金属进行吸附捕集,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Ni、Cu复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入磁载体F@R’-SH 15g,充分拌混10小时,得到已负载了Ni、Cu的磁载体F@R’-SH磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属 Ni、Cu的磁载体和移除重金属Ni、Cu后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Ni、Cu的磁载体侵泡于20g pH=2的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Ni、Cu的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Ni、Cu以及部分有机结合态的Ni、Cu从土壤中移除,其中Ni和Cu去除率分别可达到50%以上。
本实施例所采用的作为磁载体的非核壳结构磁性固体有机硫吸附剂颗粒材料F@R’-SH,其制备方法叙述如下:
取100g粒径为0.10-40.0μm磁性颗粒材料F于反应瓶中,加入500mL甲醇,搅拌形成均匀悬浮液后,加入4.0g硅烷偶联剂WD-80,70℃下搅拌反应1.0h;反应完全后,用磁铁分离出粉体,用甲醇洗涤,70℃下干燥12h,得表面巯基化的磁性颗粒材料F@R’-SH。
实施例7
一种移除土壤重金属污染的磁选分离净化治理工艺,以核壳结构的含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料FS@-[S-AG]作为磁载体,对土壤中的重金属进行吸附捕集,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb、Cd复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入磁载体FS@-[S-AG]15g,充分拌混10小时,得到已负载了Pb、Cd的含有机硫磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd、Ni、Cu的磁载体和移除重金属Pb、Cd后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Pb、Cd的磁载体侵泡于20g pH=2的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb、Cd的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Pb、Cd、Ni、Cu以及部分有机结合态的Pb、Cd从土壤中移除,Pb、Cd去除率可达到75%以上。
本实施例所采用的磁载体FS@-[S-AG]为表面接枝硫醚的核壳结构磁性固体有机硫吸附剂颗粒材料,其制备方法叙述如下:
称取氯乙酸钠100.0g,用1000ml蒸馏水溶解,得10%氯乙酸钠溶液;取100g实施例5中的FS@R’-SH颗粒,加蒸馏水500mL,搅拌悬浮液,然后加入上述配好的10%氯乙酸钠溶液10ml,装上回流冷凝管,于50℃水浴搅拌反应6h;反应完全后,磁铁分离出粉体,用蒸馏水洗涤后70℃下干燥6h,获得表面接枝硫醚的核壳结构磁性固体有机硫吸附剂颗粒材料FS@-[s-AG]。
实施例8
一种移除土壤重金属污染的磁选分离净化治理工艺,以非核壳结构的含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料F@-[s-AG]作为磁载体(即含有机硫磁载体)对土壤中的重金属进行吸附捕集,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb、Cd、Ni、Cu复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100日左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入F@-[s-AG]磁载体15g,充分拌混10小时,得到已负载了Pb、Cd、Ni、Cu的F@-[S-AG]磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd、Ni、Cu的磁载体和移除重金属Cd、Ni后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Cd、Ni的磁载体侵泡于20g pH=2的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Cd、Ni的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Cd、Ni以及部分有机结合态的Cd、Ni从土壤中移除,其中Cd去除率可达到75%以上,Ni去除率可达到50%以上。
本实施例所采用的磁载体为非核壳结构的磁性固体有机硫吸附剂颗粒材料F@-[S-AG], 其制备方法叙述如下:
称取氯乙酸钠100.0g,用1000ml蒸馏水溶解,得10%氯乙酸钠溶液;取100g由实施例6获得的F@R’-SH颗粒,加蒸馏水500mL,搅拌悬浮液,然后加入上述配好的10%氯乙酸钠溶液10ml,装上回流冷凝管,于40℃水浴搅拌反应6h;反应完全后,磁铁分离出粉体,用蒸馏水洗涤后70℃下干燥6h,获得表面接枝硫醚的非核壳结构磁性固体有机硫吸附剂颗粒材料F@-[S-AG]。
实施例9
一种移除土壤重金属污染的磁选分离净化治理工艺,以含有机硫的磁性固体有机硫吸附剂颗粒材料作为磁载体,对土壤中的重金属进行吸附捕集,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb、Cd复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入含有机硫磁载体15g,充分拌混10小时,得到已负载了Pb、Cd的含有机硫磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd的磁载体和移除重金属Pb、Cd后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Pb、Cd的磁载体侵泡于20g pH=2的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb、Cd的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Pb、Cd以及部分有机结合态的Pb、Cd从土壤中移除,其中Pb、Cd去除率分别可达到80%以上。
本实施例所采用的含有机硫的磁载体,为表面层接枝有氨荒酸(二硫代氨基甲酸)或氨荒酸盐结构的非核壳结构磁性固体有机硫吸附剂颗粒材料,其制备方法叙述如下:
称取氯乙酸钠100.0g,用1000ml蒸馏水溶解,得10%氯乙酸钠溶液;取100g由实施例1获得的F@-NH2颗粒,加蒸馏水160mL,搅拌悬浮液,然后加入上述配好的3%氯乙酸钠溶液,装上回流冷凝管,于20℃水浴搅拌反应2h后,加入100克二硫化碳再反应6小时;磁铁分离出粉体,用蒸馏水洗涤后70℃下干燥6h,获得最终产物表面接枝有氨荒酸 或氨荒酸盐结构的非核壳结构磁性固体有机硫吸附剂颗粒材料。
实施例10
一种移除土壤重金属污染的磁选分离净化治理工艺,以表面接枝有氨荒酸或氨荒酸盐结构的核壳结构磁性固体有机硫吸附剂颗粒材料作为磁载体,对土壤中的重金属进行吸附捕集,具体步骤如下:
①土壤准备并制泥浆的步骤:取某地Pb、Cd复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为25%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入含有机硫磁载体15g,充分拌混10小时,得到已负载了Pb、Cd的含有机疏磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd的磁载体和移除重金属Pb、Cd后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将10g已负载重金属Pb、Cd的磁载体侵泡于20g pH=2的磷酸溶液中,搅拌2小时进行洗脱,用磁铁分离出洗脱重金属后的磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb、Cd的磷酸盐沉淀;
⑤回收重金属集中处置的步骤:将步骤④所得磷酸盐沉淀过滤集中回收;所得滤液用氢氧化钙中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Pb、Cd以及部分有机结合态的Pb、Cd从土壤中移除,其中Pb、Cd去除率分别可达到80%以上。
本实施例所采用的磁载体为表面接枝有氨荒酸或氨荒酸盐结构的核壳结构磁性固体有机硫吸附剂颗粒材料,其制备方法叙述如下:
称取氯乙酸钠100.0g,用1000ml蒸馏水溶解,得10%氯乙酸钠溶液:取100g由实施例1获得的FS@-NH2颗粒,加蒸馏水160mL,搅拌悬浮液,然后加入上述配好的3%氯乙酸钠溶液,装上回流冷凝管,于20℃水浴搅拌反应2h后,加入100克二硫化碳再反应6小时;反应完全后冷却,磁铁分离出粉体,用蒸馏水洗涤后70℃下干燥6h,获得最终产物表面接枝有氨荒酸结构的核壳结构磁性固体有机硫吸附剂颗粒材料。
实施例11
一种移除土壤重金属污染的磁选分离净化治理工艺,以发明专利CN201210045128.0中所记载的磁性膨胀吸附树脂颗粒材料为磁载体对土壤中的重金属进行吸附捕集,然后进行磁 选与土壤分离,依次包括如下步骤:
①土壤准备并制泥浆的步骤:取某地Cd污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为2%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入20-80目磁性膨胀吸附树脂颗粒材料0.5g,充分拌混10小时,得到已负载重金属镉的磁载体和土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用连续式永磁分离机分离出已负载重金属Cd的磁载体和移除重金属Cd后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将0.5g已负载重金属Cd的磁载体侵泡于20g pH=1的盐酸溶液中,搅拌5小时进行洗脱,用磁铁分离出洗脱重金属后的再生磁载体,自然水洗涤后供下次使用;同时还得到重金属Cd的酸溶液;
⑤回收重金属集中处置的步骤:将步骤④所得重金属Cd的酸溶液用氢氧化钙将pH值调至9使重金属沉淀,过滤沉淀集中回收;所得滤液用盐酸中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的镉以及部分有机结合态的镉从土壤中移除,镉的去除率可达到80%以上。
实施例12
一种移除土壤重金属污染的磁选分离净化治理工艺,以发明专利CN201210045129.5中所记载的磁性膨胀吸附复合材料为磁载体对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,依次包括如下步骤:
①土壤准备并制泥浆的步骤:取某地Pb、Cd、Ni、Cu复合污染农田土壤1000g,筛除作物植物茎秆、碎石等,用通用磁选机去除磁性物质如铁丝铁钉等;然后用粉碎机和磨机将土壤磨到60-100目左右,加水使土壤成为含泥率为2%(质量百分数)的泥浆;
②磁载体捕集重金属的步骤:将步骤①所得泥浆中加入磁性膨胀吸附复合材料1g,充分拌混10小时,得到已负载了Pb、Cd、Ni、Cu的磁载体+土壤泥浆的混合泥浆;
③磁选分离的步骤:将步骤②所得混合泥浆用间歇式电磁分离机分离出已负载重金属Pb、Cd、Ni、Cu的磁载体和移除重金属Pb、Cd、Ni、Cu后的土壤泥浆,将土壤泥浆放归农田;
④材料再生的步骤:将1g已负载重金属Pb、Cd、Ni、Cu的磁载体侵泡于20g pH=1的盐酸溶液中,搅拌10小时进行洗脱,用磁铁分离出洗脱重金属后的再生磁载体,自然水洗涤后供下次使用;同时还得到重金属Pb、Cd、Ni、Cu的酸溶液;
⑤回收重金属集中处置的步骤:将步骤④所得重金属Cd的酸溶液用氢氧化钙将pH值调至9使重金属沉淀,过滤沉淀集中回收;所得滤液用盐酸中和达到排放标准后排放。
按照本实施例磁选分离净化治理工艺,可以将土壤中弱酸溶解态和铁锰氧化物结合态的Pb、Cd、Ni、Cu以及部分有机结合态的Pb、Cd、Ni、Cu从土壤中移除,其中Pb、Cd去除率可达到75%以上,Ni、Cu去除率可达到50%以上。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (14)

  1. 一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于它以反应性或吸附性磁载体颗粒材料对土壤中的重金属进行吸附捕集,然后进行磁选与土壤分离,其包括:①土壤准备并制泥浆;②磁载体吸附捕集重金属;③磁选分离。
  2. 根据权利要求1所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为天然的磁性矿物粉体或人工合成的磁性固体吸附剂颗粒材料,其作为反应性磁载体或吸附性磁载体对土壤中的重金属进行选择性反应或吸附。
  3. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为天然的磁性矿物粉体或人工合成的磁性固体吸附剂颗粒材料,其粒径范围为0.005-5000μm,优选0.50-1000μm。
  4. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为表面包覆氨羧吸附基团的磁性固体氨羧吸附剂颗粒材料。
  5. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为人工合成的磁性固体吸附剂颗粒材料,包括磁性膨胀吸附树脂和磁性膨胀吸附复合材料。
  6. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为含有机硫吸附基团的磁性固体有机疏吸附剂颗粒材料。
  7. 根据权利要求6所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述有机硫吸附基团为巯基或者硫醚基团或者氨荒酸基团。
  8. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体为表面包覆多氨基吸附基团的磁性固体多氨基吸附剂颗粒材料。
  9. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述场地或农田土壤准备并制泥浆的步骤依次包括如下步骤:土壤除杂、粉碎、磨细、加水制泥浆。
  10. 根据权利要求1或2或9所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体捕集重金属的步骤是:将步骤①所得泥浆中加入磁载体,充分拌混1-10小时,得到磁载体和土壤泥浆的混合泥浆,其中磁载体的加入量为干土壤质量的0.05-5.0wt%。
  11. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁选分离的步骤是借助磁选机械对步骤②所得混合泥浆进行磁分离,分别得到已负载重金属的磁载体和移除重金属后的土壤泥浆。
  12. 根据权利要求1或2所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于还包括以下步骤④磁载体材料再生;⑤回收重金属集中处置。
  13. 根据权利要求12所述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述磁载体材料再生是将步骤③所得已负载重金属的磁载体进行洗脱,从而得到重金属溶液和洗脱重金属后的再生磁载体材料。
  14. 根据权利要求12述的一种移除土壤重金属污染的磁选分离净化治理工艺,其特征在于所述回收重金属集中处置的步骤是将步骤④所得重金属溶液中的重金属沉淀出来,并过滤回收;所得滤液调pH至达到排放标准。
PCT/CN2015/098358 2015-01-09 2015-12-23 一种移除土壤重金属污染的磁选净化治理工艺 WO2016110189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010306.XA CN105817469A (zh) 2015-01-09 2015-01-09 一种移除土壤重金属污染的磁选净化治理工艺
CN201510010306.X 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016110189A1 true WO2016110189A1 (zh) 2016-07-14

Family

ID=56355500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098358 WO2016110189A1 (zh) 2015-01-09 2015-12-23 一种移除土壤重金属污染的磁选净化治理工艺

Country Status (2)

Country Link
CN (1) CN105817469A (zh)
WO (1) WO2016110189A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456530A (zh) * 2018-03-26 2018-08-28 郑州轻工业学院 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
CN108568448A (zh) * 2017-03-08 2018-09-25 武汉中地金盾环境科技有限公司 一种车载重金属污染土壤移动式磁富集净化成套装备
CN113244893A (zh) * 2021-04-19 2021-08-13 北京师范大学 一种原位净化湖泊内源有机污染的可见光响应型固废基吸附-光催化模块及应用
CN114345549A (zh) * 2022-01-28 2022-04-15 生态环境部土壤与农业农村生态环境监管技术中心 污染土壤热脱附烟气中重金属Cr去除方法和装置
CN115301719A (zh) * 2022-08-26 2022-11-08 南京大学 一种基于生物磁性树脂的有机污染场地修复方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399697B (zh) * 2016-11-04 2018-11-20 中钢集团鞍山热能研究院有限公司 一种土壤复合重金属污染治理及资源化方法
CN107010805B (zh) * 2017-04-18 2020-08-18 武汉中地金盾环境科技有限公司 一种去除禽畜粪便中重金属的工艺
CN108480393B (zh) * 2018-03-26 2020-09-04 郑州轻工业学院 一种磁性氨基化空心微球土壤修复剂、其制备方法及应用
CN113072207B (zh) * 2021-03-27 2023-05-26 中设设计集团中原建设工程有限公司 一种城市河道生态治理系统及方法
CN113231456A (zh) * 2021-03-31 2021-08-10 四川轻化工大学 一种基于磁性复合粒子的重金属污染土壤修复方法
CN113306015B (zh) * 2021-05-10 2022-05-06 三峡大学 一种用磁性砂浆制备植被土层的装置及方法
CN114535281A (zh) * 2022-01-27 2022-05-27 北京大学 利用可再生磁性矿物复合材料修复污染土壤并原位回收六价铬的方法
CN115430699B (zh) * 2022-08-26 2023-08-29 上海化工院环境工程有限公司 一种重金属污染水田原位淋洗系统及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060148933A1 (en) * 2003-09-03 2006-07-06 George Sutherland Treatment of aqueous compositions containing contaminants
WO2007001309A2 (en) * 2004-06-30 2007-01-04 Auburn University Preparation and applications of stabilized metal nanoparticles for dechlorination of chlorinated hydrocarbons in soils, sediments and groundwater
CN102319725A (zh) * 2011-05-26 2012-01-18 中国矿业大学(北京) 去除土壤中重金属的方法
CN102921713A (zh) * 2012-10-30 2013-02-13 中国科学院武汉岩土力学研究所 一种重金属污染土固化稳定化处理工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155643A1 (en) * 2008-06-23 2009-12-30 The University Of Queensland Soil remediation process
JP2010247047A (ja) * 2009-04-14 2010-11-04 Ribaasu:Kk 汚染土壌の浄化処理方法および装置
CN103623782A (zh) * 2012-08-21 2014-03-12 北京有色金属研究总院 复合磁性吸附材料的制备和去除废水中重金属离子的方法
CN104043642A (zh) * 2014-06-25 2014-09-17 柏连阳 一种原位分离土壤有害重金属的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060148933A1 (en) * 2003-09-03 2006-07-06 George Sutherland Treatment of aqueous compositions containing contaminants
WO2007001309A2 (en) * 2004-06-30 2007-01-04 Auburn University Preparation and applications of stabilized metal nanoparticles for dechlorination of chlorinated hydrocarbons in soils, sediments and groundwater
CN102319725A (zh) * 2011-05-26 2012-01-18 中国矿业大学(北京) 去除土壤中重金属的方法
CN102921713A (zh) * 2012-10-30 2013-02-13 中国科学院武汉岩土力学研究所 一种重金属污染土固化稳定化处理工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568448A (zh) * 2017-03-08 2018-09-25 武汉中地金盾环境科技有限公司 一种车载重金属污染土壤移动式磁富集净化成套装备
CN108456530A (zh) * 2018-03-26 2018-08-28 郑州轻工业学院 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
CN108456530B (zh) * 2018-03-26 2020-09-25 郑州轻工业学院 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
CN113244893A (zh) * 2021-04-19 2021-08-13 北京师范大学 一种原位净化湖泊内源有机污染的可见光响应型固废基吸附-光催化模块及应用
CN114345549A (zh) * 2022-01-28 2022-04-15 生态环境部土壤与农业农村生态环境监管技术中心 污染土壤热脱附烟气中重金属Cr去除方法和装置
CN115301719A (zh) * 2022-08-26 2022-11-08 南京大学 一种基于生物磁性树脂的有机污染场地修复方法
CN115301719B (zh) * 2022-08-26 2023-10-20 南京大学 一种基于生物磁性树脂的有机污染场地修复方法

Also Published As

Publication number Publication date
CN105817469A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2016110189A1 (zh) 一种移除土壤重金属污染的磁选净化治理工艺
Chen et al. Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms
Zhang et al. Enhanced aqueous Cr (VI) removal using chitosan-modified magnetic biochars derived from bamboo residues
Su et al. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil
CN105709699B (zh) 一种土壤重金属吸附剂及其制备方法
Fan et al. Selective and effective adsorption of Hg (II) from aqueous solution over wide pH range by thiol functionalized magnetic carbon nanotubes
Zeng et al. As (V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals
Ghoneim et al. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca
WO2017088216A1 (zh) 磁性固体多氨基吸附剂颗粒材料、制备方法及其应用
Xu et al. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents
Mousavi et al. Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni (II)
Qu et al. Cyclodextrin-functionalized magnetic alginate microspheres for synchronous removal of lead and bisphenol a from contaminated soil
WO2016124047A1 (zh) 含有机硫吸附基团的磁性固体有机硫吸附剂颗粒材料及其制备方法
CN106076261B (zh) 一种重金属离子吸附剂及制备方法和应用
Huang et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars
CN103623782A (zh) 复合磁性吸附材料的制备和去除废水中重金属离子的方法
CN108480393B (zh) 一种磁性氨基化空心微球土壤修复剂、其制备方法及应用
Zhao et al. Immobilization of cadmium in river sediment using phosphate solubilizing bacteria coupled with biochar-supported nano-hydroxyapatite
Sun et al. Biosorption of antimony (V) by freshwater cyanobacteria Microcystis from Lake Taihu, China: effects of pH and competitive ions
Sun et al. Removal of cadmium from a citrate-bearing solution by floatable microsized garlic peel
Liu et al. Simultaneous removal of lead, manganese, and copper released from the copper tailings by a novel magnetic modified biosorbent
Mahamadi Will nano-biosorbents break the Achilles’ heel of biosorption technology?
Yuan et al. Immobilization of Cd and Pb in soils by polymeric hydroxyl ferric phosphate
CN113667485B (zh) 一种含有改性β环糊精的复合土壤淋洗剂及采用其淋洗修复复合污染土壤的方法
CN114535281A (zh) 利用可再生磁性矿物复合材料修复污染土壤并原位回收六价铬的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876689

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15876689

Country of ref document: EP

Kind code of ref document: A1