WO2016110110A1 - Procédé de préparation de pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone - Google Patents

Procédé de préparation de pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone Download PDF

Info

Publication number
WO2016110110A1
WO2016110110A1 PCT/CN2015/088133 CN2015088133W WO2016110110A1 WO 2016110110 A1 WO2016110110 A1 WO 2016110110A1 CN 2015088133 W CN2015088133 W CN 2015088133W WO 2016110110 A1 WO2016110110 A1 WO 2016110110A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
silicon
lithium ion
ion battery
carbon
Prior art date
Application number
PCT/CN2015/088133
Other languages
English (en)
Chinese (zh)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016110110A1 publication Critical patent/WO2016110110A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing a negative electrode pole piece of a silicon carbon composite lithium ion battery. Specifically, the invention relates to a composite negative electrode pole piece formed by carbon fiber cloth and nano silicon.
  • lithium-ion batteries have developed rapidly.
  • the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
  • its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
  • SEI solid electrolyte membrane
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
  • the second is that the electrolyte is easily embedded in the lithium ion intercalation process.
  • the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
  • the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
  • the stability is degraded.
  • the amorphous carbon formed by pyrolysis of the resin-based polymer has a low degree of order and a loose structure, and lithium ions can be relatively freely embedded and extracted therein without a large influence on the structure thereof.
  • silicon is one of the most promising anode materials for carbon materials because silicon has a maximum capacity of up to 4200 mAh/g; and has a smooth discharge platform similar to graphite.
  • silicon has very poor cycle performance and cannot perform normal charge and discharge cycles.
  • silicon is used as a negative electrode material, the reversible formation and decomposition of Li2Si alloy is accompanied by a large volume change during the charge-discharge cycle, which causes mechanical splitting (cracking and chalking) of the alloy, resulting in collapse of the material structure and electrode material. The peeling off causes the electrode material to lose electrical contact, resulting in a sharp drop in the cycle performance of the electrode.
  • silicon/carbon composites prepared by combining the stability of carbon materials and the high specific capacity of silicon have shown great application. prospect.
  • the preparation process of the existing silicon/carbon composite materials mainly has the following aspects:
  • Mechanical ball milling This method is a method in which silicon powder is mixed with carbon or silicon carbide and directly ball-milled into a nanocomposite material. After high-efficiency mechanical ball milling, silica fume and carbon materials can be evenly dispersed at the nanometer scale. Since the nano-sized silicon powder is surrounded by the carbon material, the volume change due to lithium insertion and delithiation can be suppressed, and the cycle performance of the silicon material is improved to some extent. As the silicon content increases, the specific capacity of the silicon/carbon composite increases, but the cycle stability deteriorates. At the same time, the crystal structure, size and compatibility of the two components in the composite determine the final properties of the material. The main problem of the composite material prepared by this method is that the first irreversible capacity is large due to the large specific surface area and the inability to completely prevent the micro-oxidation during the ball milling process;
  • Asphalt as a binder to bond silicon powder and graphite to carbonize Asphalt can not only uniformly bond graphite and silicon as a binder, but also acts as a surface coating after carbonization. However, the low-temperature carbonization product of asphalt is also an amorphous structure, and the bonding effect of the asphalt as a binder on carbon and silicon is limited, so the performance of the prepared material needs to be further improved;
  • the present invention provides a method for preparing a negative electrode tab of a silicon-carbon composite lithium ion battery, which is composed of a carbon fiber cloth and a nano silicon composite.
  • a preparation method of a negative electrode pole piece of a silicon carbon composite lithium ion battery the preparation steps are as follows:
  • the asphalt fiber raw yarn is heated in the air to a temperature higher than the softening point of the asphalt by 10 to 50 ° C for 3 to 24 hours, and subjected to oxidation treatment;
  • the pre-oxidized wire cloth is heated under the protection of an inert gas to a temperature increase rate of 1 to 20 ° C / min to 700 ° C to 1300 ° C, maintained at a high temperature for 0.5 to 5 hours, and then cooled to room temperature to obtain a carbon fiber cloth. ;
  • the softening point of the carbon fiber spinnable asphalt is 150 to 300 ° C
  • the amount of residual carbon is ⁇ 60%
  • the quinoline insoluble matter (QI) is ⁇ 3.0%. If the amount of residual carbon in the asphalt is too high, the production cost of the asphalt will increase, and the amount of residual carbon will be too low, indicating that the volatile content in the asphalt is high, which will reduce the strength and yield of the carbon fiber produced.
  • the average particle diameter of the silicon powder is ⁇ 100 nm.
  • the diameter of the asphalt fiber strand is between 4 and 30 ⁇ m, and the diameter is too small, which increases the difficulty of spinning, and the spun yarn is easily broken, resulting in the fiber cloth produced in the later stage having too low strength and too large diameter, which will increase.
  • the heating rate of the pre-oxidation of the raw silk is controlled to 0.5 to 5 ° C / min, and the heating rate is too high, which will cause the raw silk to melt, and the temperature is too low to achieve the effect of oxidation. If the temperature is too high, the carbonization treatment will be reduced. rate.
  • the thickness of the pre-oxidized silk cloth is 50 to 200 ⁇ m, and the thickness is too small, which causes the unit volume capacity of the negative electrode sheet to decrease, and the thickness is too large, which may affect the transfer of the later battery core.
  • the size of the slit into small pieces is determined according to different lithium ion battery models, specifically Process requirements are well known to those skilled in the art and will not be described herein.
  • the commonly used method of tab welding is to directly solder the nickel tab of the metal material to the base of the negative electrode-copper foil by ultrasonic or laser.
  • the negative electrode sheet of the present invention is a non-metal material, and the conventional soldering method cannot be used.
  • the present invention bonds nickel tabs and carbon fiber cloth by means of conductive adhesive or soldering having adhesive properties. At the same time, the position of the tab can be bonded to any position of the pole piece according to the actual process requirements.
  • the negative electrode sheet of the invention has the function of increasing the specific capacity by adding silicon powder, because the carbon fiber itself has more microporous structure, can ensure the absorption and retention of the electrolyte, and satisfies the rapid in and out of lithium ions, Excellent cycle performance, while the micropores also play a role in buffering the volume expansion of the silicon powder during charging and discharging;
  • the negative electrode sheet prepared by the invention has better flexibility and toughness than the conventional negative electrode sheet because the whole negative electrode sheet is a whole, and the safety performance of the battery is improved;
  • the negative electrode sheet of the invention is intricately interlaced with carbon fiber filaments to form a good conductive network, and has excellent electrical conductivity, can greatly reduce the internal resistance of the final finished battery, and meet the requirements of large current charge and discharge of the lithium ion power battery.
  • FIG. 1 is a schematic view showing the structure of a silicon carbon composite negative electrode tab of the present invention.
  • Example 2 is a graph showing the cycle performance of Example 1.
  • Fig. 3 is a graph showing the capacity retention ratio of the first embodiment.
  • Spinning machine spinneret collecting asbestos fiber strand with diameter of 26 ⁇ 1 ⁇ m, heating the raw silk in air at a heating rate of 2°C/min, heating to 230°C, oxidation treatment for 5 hours, oxidation treatment completed
  • the raw silk is obtained by drawing the strip and spinning the fabric to obtain the pre-oxidized silk cloth, and the thickness is controlled at 140 ⁇ 3 ⁇ m.
  • the pre-oxidized wire cloth was heated under the protection of an inert gas at a heating rate of 10 ° C / min to 900 ° C, maintained at a high temperature for 2 hours, and then cooled to room temperature.
  • the carbonized pre-oxidized silk cloth is further graphitized at a high temperature, and the finally obtained carbon fiber cloth has a thickness of 130 ⁇ 3 ⁇ m and an areal density of 18.8 ⁇ 0.5 mg/cm 2 .
  • the current density is charged and discharged.
  • the cycle performance of the electrode material is shown in Figure 2, and the capacity retention rate is shown in Figure 3. It can be seen that the composite has an initial discharge capacity of 825 mAh/g, and the capacity after 100 cycles is still 660 mAh/g, and the retention rate is 80%.
  • the raw silk is obtained by drawing the strip and spinning the fabric to obtain the pre-oxidized silk cloth, the thickness is controlled at 105 ⁇ 3 ⁇ m, the areal density is controlled at 23.5 ⁇ 0.5mg/cm2, and the pre-oxidized silk cloth is under the protection of the inert gas to 5
  • the temperature increase rate of ° C/min was raised to 850 ° C, maintained at high temperature for 1 hour, and then cooled to room temperature.
  • the carbonized pre-oxidized silk cloth was further graphitized at a high temperature, and the finally obtained carbon fiber cloth had a thickness of 98 ⁇ 3 ⁇ m and an areal density of 13.4 ⁇ 0.5 mg/cm 2 .
  • the negative electrode tab test conditions were as described in Example 1, charged and discharged at a current density of 50 mA/g.
  • the electrode material has an initial discharge capacity of 478 mAh/g, and the capacity after 100 cycles is still 372 mAh/g, and the retention rate is 78%.
  • Spinning machine spinneret collecting asbestos fiber strand with diameter of 15 ⁇ 1 ⁇ m, heating the raw silk to 180°C in air at a heating rate of 3°C/min, oxidizing for 22 hours, and oxidizing finished
  • the raw silk is obtained by drawing the strip and spinning the fabric to obtain a pre-oxidized silk cloth, the thickness is controlled at 180 ⁇ 3 ⁇ m, the areal density is controlled at 29.5 ⁇ 0.5 mg/cm 2 , and the pre-oxidized silk cloth is under the protection of inert gas to 10 Temperature rise of °C/min The temperature was raised to 1000 ° C, the temperature was maintained for 2 hours, and then cooled to room temperature.
  • the carbonized pre-oxidized silk cloth was further graphitized at a high temperature, and the carbon fiber cloth finally obtained had a thickness of 161 ⁇ 3 ⁇ m and an areal density of 27.4 ⁇ 0.5 mg/cm 2 .
  • the negative electrode tab test conditions were as described in Example 1, charged and discharged at a current density of 50 mA/g.
  • the electrode material has an initial discharge capacity of 454 mAh/g, and the capacity after 100 cycles is still 362 mAh/g, and the retention rate is 79%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de préparation d'une pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone, le procédé comprenant : l'utilisation d'un pas filable de fibre de carbone en tant que matière première ; l'ajout d'une poudre de silicium nanométrique ; et l'acquisition d'un tissu de fibre pré-oxydée par préparation d'un protofilament, pré-oxydation du protofilament, craquage pour produire des fibres, filage et tissage ; et enfin, la carbonisation, le refendage et le soudage d'une languette pour obtenir la pièce d'électrode négative de batterie au lithium-ion entièrement différente de celles acquises à partir du processus de préparation de l'état de la technique. La pièce d'électrode négative préparée en utilisant le procédé présente des fibres de carbone entrelacées pour former un réseau conducteur satisfaisant, et une excellente conductivité pour réduire considérablement une résistance interne de la batterie finale et répondre aux exigences de courant élevée pour la charge et la décharge de la batterie d'alimentation au lithium-ion ; l'ajout de la poudre de silicium augmente la capacité spécifique en gramme, et les fibres de carbone présentent une pluralité de structures à micro-pores, ce qui permet de garantir l'absorption et le maintien d'un électrolyte et le passage rapide des ions lithium avec une excellente performance de cycle.
PCT/CN2015/088133 2015-01-08 2015-08-26 Procédé de préparation de pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone WO2016110110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010088.X 2015-01-08
CN201510010088.XA CN104577053B (zh) 2015-01-08 2015-01-08 一种硅碳复合锂离子电池负极极片的制备方法

Publications (1)

Publication Number Publication Date
WO2016110110A1 true WO2016110110A1 (fr) 2016-07-14

Family

ID=53092632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088133 WO2016110110A1 (fr) 2015-01-08 2015-08-26 Procédé de préparation de pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone

Country Status (2)

Country Link
CN (1) CN104577053B (fr)
WO (1) WO2016110110A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134052A (zh) * 2016-12-01 2018-06-08 内蒙古欣源石墨烯科技有限公司 一种动力电池所用高容量硅碳负极材料及其制备方法
CN109935888A (zh) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN112938940A (zh) * 2021-03-01 2021-06-11 浙江清华柔性电子技术研究院 硅-碳纳米管及硅-碳纳米管复合膜的制备方法、设备、硅-碳纳米管复合膜及锂电池
CN113493943A (zh) * 2020-03-18 2021-10-12 中国科学院山西煤炭化学研究所 一种Si/C复合纤维材料及其制备方法和应用
CN113644252A (zh) * 2021-08-04 2021-11-12 西北工业大学 一种硅碳负极材料及制备方法
CN115816086A (zh) * 2022-12-08 2023-03-21 陕西红马科技有限公司 机械式锂电池正极材料用分块装置及分块方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577053B (zh) * 2015-01-08 2016-11-16 江西盛创新能源科技有限公司 一种硅碳复合锂离子电池负极极片的制备方法
CN104900910A (zh) * 2015-06-29 2015-09-09 北京理工大学 基于碳纤维布阻挡层的硅负极的锂离子电池
CN106450157A (zh) * 2016-11-14 2017-02-22 深圳拓邦股份有限公司 极片组件、电芯及电池
CN106531965A (zh) * 2016-11-30 2017-03-22 深圳拓邦股份有限公司 极片组件、电芯及电池
CN110010860A (zh) * 2019-03-01 2019-07-12 深圳鸿鹏新能源科技有限公司 用于锂离子电池的复合负极材料和锂离子电池
CN112430868A (zh) * 2020-11-24 2021-03-02 王立勇 避免截面结构劈裂的中间相沥青基石墨纤维的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709536A (zh) * 2012-06-28 2012-10-03 东华大学 一种硅碳复合材料及其制备方法
CN103296255A (zh) * 2013-06-09 2013-09-11 东莞市比比克电子科技有限公司 一种锂离子电池负极材料制造工艺
CN103562447A (zh) * 2012-04-18 2014-02-05 太克万株式会社 碳纤维材料、碳纤维材料制造方法、具有所述碳纤维材料的材料
CN104577053A (zh) * 2015-01-08 2015-04-29 田东 一种硅碳复合锂离子电池负极极片的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045115A1 (fr) * 2003-11-10 2005-05-19 Teijin Limited Tissu non tisse de fibre de carbone et ses procedes de production et d'utilisation
JP2007128724A (ja) * 2005-11-02 2007-05-24 Sony Corp 負極および電池
CN104109946B (zh) * 2010-01-21 2017-01-04 太克万株式会社 碳纤维制无纺布及其制造方法
CN102013487A (zh) * 2010-10-29 2011-04-13 济南大学 碳/硅复合锂离子电池负极材料及其制备方法
CN102560744B (zh) * 2011-12-21 2013-10-23 鞍山塞诺达碳纤维有限公司 一种通用级沥青基碳纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562447A (zh) * 2012-04-18 2014-02-05 太克万株式会社 碳纤维材料、碳纤维材料制造方法、具有所述碳纤维材料的材料
CN102709536A (zh) * 2012-06-28 2012-10-03 东华大学 一种硅碳复合材料及其制备方法
CN103296255A (zh) * 2013-06-09 2013-09-11 东莞市比比克电子科技有限公司 一种锂离子电池负极材料制造工艺
CN104577053A (zh) * 2015-01-08 2015-04-29 田东 一种硅碳复合锂离子电池负极极片的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134052A (zh) * 2016-12-01 2018-06-08 内蒙古欣源石墨烯科技有限公司 一种动力电池所用高容量硅碳负极材料及其制备方法
CN108134052B (zh) * 2016-12-01 2023-06-06 内蒙古欣源石墨烯科技股份有限公司 一种动力电池所用高容量硅碳负极材料及其制备方法
CN109935888A (zh) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN113493943A (zh) * 2020-03-18 2021-10-12 中国科学院山西煤炭化学研究所 一种Si/C复合纤维材料及其制备方法和应用
CN112938940A (zh) * 2021-03-01 2021-06-11 浙江清华柔性电子技术研究院 硅-碳纳米管及硅-碳纳米管复合膜的制备方法、设备、硅-碳纳米管复合膜及锂电池
CN112938940B (zh) * 2021-03-01 2023-06-13 浙江清华柔性电子技术研究院 硅-碳纳米管及硅-碳纳米管复合膜的制备方法、设备、硅-碳纳米管复合膜及锂电池
CN113644252A (zh) * 2021-08-04 2021-11-12 西北工业大学 一种硅碳负极材料及制备方法
CN115816086A (zh) * 2022-12-08 2023-03-21 陕西红马科技有限公司 机械式锂电池正极材料用分块装置及分块方法

Also Published As

Publication number Publication date
CN104577053A (zh) 2015-04-29
CN104577053B (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2016110110A1 (fr) Procédé de préparation de pièce d'électrode négative de batterie au lithium-ion à composite silicium-carbone
CN107681142B (zh) 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
JP5334278B1 (ja) 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材
JP5462445B2 (ja) リチウムイオン二次電池
WO2016169149A1 (fr) Procédé de recyclage de poudre fine de graphite pour agir en tant que matériau d'électrode négative de batterie au lithium-ion
CN105098138B (zh) 锂离子电池用负极片及其制备方法
WO2022121137A1 (fr) Matériau d'électrode négative composite silicium-carbone poreux unidimensionnel, son procédé de préparation et son application
WO2017024720A1 (fr) Procédé de préparation de matériau d'électrode négative de batterie au lithium-ion à haute capacité
CN103050704B (zh) 一种多孔导电添加剂及其制备方法、锂离子电池
WO2012163300A1 (fr) Batterie
WO2016206548A1 (fr) Procédé de préparation de matériau d'électrode négative modifié haute tension pour pile au lithium
CN113659104A (zh) 一种电池活性层的制备方法、电池极片和应用
WO2017008606A1 (fr) Procédé de fabrication de matériau composite d'électrode négative à base de graphite-étain
WO2019019410A1 (fr) Anode sans lithium modifiée, son procédé de préparation, et batterie au lithium-ion la comprenant
WO2016110113A1 (fr) Procédé de préparation de feuille d'électrode négative de pile lithium-ion utilisant un tissu de fibres de carbone comme matrice
WO2017206299A1 (fr) Procédé de préparation de matériau de cathode au graphite modifié destiné à des batteries lithium-ion
WO2016202164A1 (fr) Procédé de préparation pour préparer un matériau d'électrode négative de carbone/graphite/étain composite
WO2017024897A1 (fr) Procédé de préparation de matière d'électrode négative de batterie au lithium-ion modifiée
CN101355150B (zh) 锂离子电池用石墨碳纳米管复合电极材料的制备方法
CN105826561A (zh) 一种高倍率锂离子电池负极材料的制备方法
CN105226253A (zh) 一种纳米硅颗粒-石墨片-碳纳米管复合材料及其制备方法与应用
CN105529490B (zh) 一种锂硫电池的制备方法
WO2016110111A1 (fr) Procédé de fabrication de tissu en fibre de carbone utilisé en tant que feuille de cathode de batterie lithium-ion
Zhao et al. Electrospun Nanofiber Electrodes for Lithium‐Ion Batteries
CN111960410A (zh) 一种复合人造石墨负极材料的制备方法及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15876612

Country of ref document: EP

Kind code of ref document: A1