WO2016110058A1 - 光路调节单元和显示装置 - Google Patents

光路调节单元和显示装置 Download PDF

Info

Publication number
WO2016110058A1
WO2016110058A1 PCT/CN2015/081731 CN2015081731W WO2016110058A1 WO 2016110058 A1 WO2016110058 A1 WO 2016110058A1 CN 2015081731 W CN2015081731 W CN 2015081731W WO 2016110058 A1 WO2016110058 A1 WO 2016110058A1
Authority
WO
WIPO (PCT)
Prior art keywords
astigmatism
concentrating
light
reflecting
optical path
Prior art date
Application number
PCT/CN2015/081731
Other languages
English (en)
French (fr)
Inventor
孙艳六
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2016574122A priority Critical patent/JP6644716B2/ja
Priority to KR1020167031503A priority patent/KR101880839B1/ko
Priority to EP15839055.9A priority patent/EP3244251B1/en
Priority to US14/894,883 priority patent/US9759406B2/en
Publication of WO2016110058A1 publication Critical patent/WO2016110058A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/009Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with infrared radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • G02B26/0891Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism forming an optical wedge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to an optical path adjusting unit and a display device.
  • the flat panel display device mainly includes a liquid crystal display device (LCD) and an organic light emitting device (OLED).
  • LCD liquid crystal display device
  • OLED organic light emitting device
  • AMOLED Active Matrix Organic Light Emission Display
  • the technical problem to be solved by the present invention is to provide an optical path adjusting unit and a display device capable of adjusting light incident in different directions to emit in approximately the same direction, in view of the above-mentioned deficiencies in the prior art.
  • the display panel using the optical path adjusting unit has a good splicing effect, and the display image is continuous, and the visual effect is better.
  • a An optical path adjusting unit configured to adjust light incident in different directions to emit in approximately the same direction, comprising a concentrating portion, a reflecting portion and an astigmatism portion, wherein the concentrating portion and the astigmatism portion enclose a hollow space
  • the reflecting portion is disposed inside the hollow space and respectively meets a middle portion of the concentrating portion and a middle portion of the astigmatism portion to divide the hollow space into two, wherein: the concentrating portion is used for concentrating Light rays incident thereon in different directions, the reflecting portion for reflecting light concentrated by the concentrating portion to the astigmatism portion, the astigmatism portion for reflecting a light ray along the reflecting portion Shoot in approximately the same direction.
  • the concentrating portion includes two arc-shaped structures symmetrically disposed, the astigmatism portion is a symmetrical arc structure, and the concentrating portion and the astigmatism portion enclose the symmetrical hollow space,
  • the reflecting portion is disposed on the symmetry plane of the symmetrical hollow space, and the light reflected to the astigmatism portion is emitted in a direction approximately parallel to the symmetry plane of the hollow space.
  • the concentrating portion comprises two curved concentrating sheets which are identical in shape and size and are arranged in mirror symmetry; two ends of the concentrating sheet are connected to each other, and the other end is respectively connected to the astigmatism portion.
  • the two ends are connected to each other;
  • the reflecting portion is disposed on the mirror symmetry planes of the two concentrating sheets, one end of which is connected to the mutually connected end portions of the two concentrating sheets, and the other end is connected to the astigmatism portion
  • the middle portion is connected, and a central portion of the astigmatism portion is located at a symmetry plane of the astigmatism portion.
  • each of the concentrating sheets is a convex lens structure, and an arc of the louver near the hollow space is greater than an arc of the arc surface away from the hollow space.
  • the astigmatism portion is a concave lens structure.
  • the reflecting portion is a symmetric wedge-shaped structure, and a larger one end of the symmetric wedge-shaped structure is connected to the mutually connected end portions of the two concentrating sheets, and the smaller one end and the middle portion of the astigmatism portion Connecting, and a central portion of the astigmatism portion is located at a symmetry plane of the astigmatism portion; and a reflective film is respectively disposed on both side surfaces of the symmetrical wedge-shaped structure toward the two sheets of the condensing sheet.
  • the angle of the symmetric wedge structure ranges from 3° to 7°.
  • the concentrating portion, the reflecting portion and the astigmatism portion are integrally formed;
  • the concentrating portion and the astigmatism portion are formed in an integrally formed manner, and the reflecting portion is separately formed, and then the separately formed reflecting portion and the condensing portion and the astigmatism portion integrally formed are formed Combine into one.
  • the concentrating portion, the reflecting portion, and the astigmatism portion are formed of a colorless and transparent material.
  • the concentrating portion, the reflecting portion, and the astigmatism portion are formed of a glass material or a resin material.
  • a display device includes at least two splicable display screens with adjacent splicing gaps between the display screens, wherein the splicing Any of the above-described optical path adjusting units is provided in the gap.
  • the edge portion of the display screen is bent inwardly to form a bent portion, and the splicing gap is formed between the bent portions of the adjacent display screen; the optical path adjusting unit is disposed on the In the splicing gap, the lengths of the concentrating portion, the reflecting portion and the astigmatism portion are respectively the same as the length of the splicing gap of the display screen.
  • the bent portion of the display screen includes a flat portion and a curved surface portion, and an arc of the louver away from the hollow space and an arc of the curved portion in the concentrating portion
  • the curved surface portion includes a black matrix and a light emitting unit, and light emitted from the light emitting unit is incident to the light collecting portion from different directions and is emitted from the light diffusing portion in a direction approximately parallel to the planar portion.
  • the invention has the beneficial effects that the light path adjusting unit can adjust the light incident in different directions to be emitted in approximately the same direction, and has a simple structure and is convenient for processing.
  • the display device of the optical path adjusting unit realizes a frameless and large-sized flexible display screen structure formed by splicing, and the display panel has good splicing effect, continuous display image and better visual effect.
  • FIG. 1 is a schematic structural diagram of an optical path adjusting unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of the concentrating portion of FIG. 1;
  • Figure 3 is a schematic structural view of the reflecting portion of Figure 1;
  • Figure 4 is a schematic structural view of the astigmatism portion of Figure 1;
  • FIG. 5 is a schematic diagram of an optical simulation model of the optical path adjusting unit of FIG. 1;
  • FIG. 6 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of an optical simulation model of the display device of FIG. 6;
  • Figure 8 is an illuminance table of the adjacent two display screens in Figure 7;
  • FIG. 9 is a spatial chromaticity grid table of the adjacent two display screens in FIG. 7 in a display state.
  • optical path adjusting unit and the display device provided by the present invention are further described in detail below with reference to the accompanying drawings and specific embodiments.
  • the embodiment provides an optical path adjusting unit for adjusting light incident in different directions to be emitted in approximately the same direction.
  • the optical path adjusting unit includes a concentrating portion 11, a reflecting portion 12, and an astigmatism portion 13.
  • the concentrating portion 11 and the astigmatism portion 13 enclose a hollow space, and the reflecting portion 12 is disposed inside the hollow space and respectively condensed
  • the middle portion of the portion 11 is in contact with the central portion of the astigmatism portion 13 to divide the hollow space into two.
  • the concentrating portion 11 is for collecting light rays incident thereon in different directions
  • the reflecting portion 12 is for reflecting the light condensed by the condensing portion 11 to the astigmatism portion 13, and the astigmatism portion 13 is for reflecting the reflecting portion 12 thereon.
  • Light rays are emitted in approximately the same direction, for example, in an approximately parallel direction to the front view.
  • the reflecting portion 12 is respectively connected to the central portion of the concentrating portion 11 and the central portion of the astigmatism portion 13 to divide the hollow space into two, passing through the concentrating portion 11 and the reflecting portion. 12 and the shape and size of the astigmatism portion 13 are matched, and it is possible to adjust the light incident in different directions to be emitted in approximately the same direction.
  • the "face” here is relatively “right”, which is relative to people.
  • the direction of the eye vision is defined.
  • the light incident on the concentrating portion 11 of the optical path adjusting unit is emitted from the astigmatism portion 13 of the optical path adjusting unit, the light is substantially equal in the outgoing direction, and the outgoing direction of the light and the incident direction of the light may not be parallel.
  • the substantially uniform exit direction can be the "front view” direction of the human eye.
  • the concentrating portion 11 includes two concentrating sheets 110 symmetrically disposed (the condensing sheets 110 are symmetric with respect to the symmetry plane of the concentrating portion 11 ), and the concentrating sheet 110 is as shown in FIG. 2 .
  • the curved structure includes a concentrated inner curved surface 111 and a concentrated outer curved surface 112, and the concentrated inner curved surface 111 is relatively far from the hollow space, and the concentrated outer curved surface 112 is relatively close to the hollow space, and is concentrated outside the light.
  • the arc of the curved surface 112 is greater than the arc of the concentrated inner arc surface 111.
  • the astigmatism portion 13 adopts a symmetrical arc structure as shown in FIG.
  • the symmetrical arc structure includes an astigmatic inner arc surface 131 and an astigmatism outer arc surface 132, both of which are symmetrical with respect to the symmetry plane of the astigmatism portion 13, and the astigmatism inner arc surface 131 is relatively close to the hollow space, and the astigmatic outer arc surface 132 is relatively far from the hollow space.
  • the concentrating portion 11 and the astigmatism portion 13 enclose a symmetrical hollow space.
  • the reflection portion 12 shown in FIG. 3 is disposed on the symmetry plane of the symmetrical hollow space, and is respectively connected to the central portion of the concentrating portion 11 and the middle portion of the astigmatism portion 13, and the central portion of the concentrating portion 11 is located at the concentrating portion 11.
  • the symmetry plane, the central portion of the astigmatism portion 13 is located on the symmetry plane of the astigmatism portion 13, thereby dividing the hollow space into two sub-hollow spaces of the same shape and size.
  • the light reflected to the astigmatism portion 13 is emitted in a direction approximately parallel to the plane of symmetry of the hollow space.
  • the concentrating portion 11 includes two curved concentrating sheets 110 having the same shape and size and arranged in mirror symmetry. One ends of the two concentrating sheets 110 are connected to each other, and the other ends are respectively connected to the two ends of the astigmatism portion 13. connection.
  • the reflection portion 12 is disposed on the mirror symmetry plane of the two concentrating sheets 110, and one end thereof is connected to the mutually connected end portions of the two concentrating sheets 110, the other end is connected to the middle portion of the astigmatism portion 13, and the middle portion of the astigmatism portion 13 is provided.
  • the symmetry plane of the astigmatism portion 13 is divided into two sub-hollow spaces having the same shape and the same size.
  • the mirror symmetry plane of the two concentrating sheets 110 that is, the symmetry plane of the concentrating portion 11
  • the symmetry plane of the astigmatism portion 13 coincide with the symmetry plane of the hollow space.
  • Each of the condensing sheets 110 has a convex lens structure.
  • the concentrating sheet 110 may adopt irregularities having different refractive curvatures.
  • the convex lens structure is such that light incident along the lateral direction can converge as much as possible in the front view direction.
  • the concentrating sheet 110 shown in FIG. 2 has an arc structure, and the curvature of the condensing inner arc surface 111 is preferably consistent with the bending curvature of the bent illuminating portion, so that the condensing inner arc surface 111 can follow the concentrating sheet.
  • the angle of curvature of the bent light-emitting portion of the incident light is gradually increased, and the radius of curvature is gradually increased, so that the light path adjusting unit and the bent light-emitting portion can be better combined to ensure that more light incident along the lateral direction can be more Concentrate evenly into the interior of the light path adjustment unit.
  • the reflecting portion 12 adopts a symmetrical wedge structure, and the larger end of the symmetrical wedge structure is connected to the mutually connected ends of the two concentrating sheets 110, that is, to the middle of the concentrating portion 11,
  • the small end is connected to the central portion of the astigmatism portion 13, and the central portion of the astigmatism portion 13 is located at the symmetry plane of the astigmatism portion. That is, the two sides of the reflecting portion 12 facing the two concentrating sheets 110 are symmetrical with respect to the symmetry plane thereof, and the symmetry plane of the reflecting portion 12 and the mirror symmetry plane of the two concentrating sheets 110 and the symmetry of the hollow space
  • the symmetry planes of the face and the astigmatism portion 13 coincide.
  • the symmetric wedge structure adopted by the reflecting portion 12 has a small angle, and the angular range thereof is preferably 3°-7°, further preferably 5°, and the angle of the symmetric wedge structure is 5°, which not only ensures the wedge structure. Strength, and easy to process.
  • the reflecting portion 12 having the wedge-shaped structure having a small angle allows the light concentrated by the condensing portion 11 to be reflected by both side surfaces of the reflecting portion 12 because the larger end of the wedge-shaped structure is connected to the central portion of the concentrating portion 11.
  • the central portion of the concentrating portion 11 is located on the symmetry plane of the concentrating portion 11, and the smaller end is connected to the central portion of the astigmatism portion 13, and the central portion of the astigmatism portion 13 is located on the symmetry plane of the astigmatism portion 13, thereby enabling the concentrating portion 11
  • the concentrated light is directed more toward the astigmatism portion 13, maximally changing the traveling path of the light incident along the lateral direction.
  • the top of the reflecting portion 12 that is in contact with the middle portion of the astigmatism portion 13 may have a pointed shape, and the reflecting portion 12 may also be an isosceles having a curved upper bottom surface that cuts the top sharp corner.
  • the reflective film 120 is disposed on both sides of the wedge-shaped structure of the reflective portion 12 facing the two concentrating sheets 110, and the reflective film 120 can be any The coating which can reflect light is not limited here.
  • the reflection film 120 is respectively plated on both sides of the reflection portion 12, so that the loss of light energy can be reduced, so that the light concentrated by the concentrating portion 11 propagates in the air 30 inside the hollow space to reach both side surfaces of the reflection portion 12, respectively.
  • both side surfaces of the reflecting portion 12 Reflected by both side surfaces of the reflecting portion 12, thereby maximally changing the traveling path of the light incident along the lateral direction, since both side surfaces of the reflecting portion 12 coated with the reflecting film 120 are at an angle with respect to the plane of symmetry of the hollow space, Therefore, the concentrated light can be more reflected in the front view direction, and the light can be prevented from being reflected in the laterally opposite direction.
  • the astigmatism portion 13 adopts a symmetrical concave lens structure. Since the astigmatism portion 13 has a regular concave lens structure, the light reflected by the reflection portion 12 can be scattered by the astigmatism portion 13 and then emitted in the front view direction. Since the symmetry plane of the astigmatism portion 13 coincides with the symmetry plane of the hollow space of the optical path adjusting unit, it is ensured that the light propagating inside the hollow space can have the same optical performance in the front view direction, so that the light emitted from the astigmatism portion 13 can be uniform. The ground is shot in the direction of the front view.
  • the concentrating portion 11, the reflecting portion 12, and the astigmatism portion 13 may be integrally molded.
  • the concentrating portion 11, the reflecting portion 12, and the astigmatism portion 13 as a whole are printed by a 3D printing method.
  • the concentrating portion 11, the astigmatism portion 13, and the reflecting portion 12 are respectively formed, and then the condensing portion 11, the astigmatism portion 13, and the reflecting portion 12 are combined into one body.
  • the concentrating portion 11 and the astigmatism portion 13 are integrally formed, and the reflecting portion 12 is separately formed, and then the separately formed reflecting portion 12 is integrated with the integrally formed condensing portion 11 and the astigmatism portion 13.
  • both side surfaces of the reflecting portion 12 coated with the reflecting film 120 are respectively directed toward the two concentrating sheets 110, and the hollow space is divided by the reflecting portion 12 into two sub-hollow spaces having the same shape and the same size.
  • the concentrating portion 11, the reflecting portion 12, and the astigmatism portion 13 are all formed of a colorless and transparent material.
  • the concentrating portion 11, the reflecting portion 12, and the astigmatism portion 13 may be formed of a glass material (such as BK7 or the like) or a resin material (such as PMMA (polymethyl methacrylate) or the like).
  • the concentrating portion 11 and the reflection are The material of the portion 12 and the astigmatism portion 13 is not limited as long as the optical adjustment unit can be ensured to be colorless and transparent.
  • FIG. 5 is a schematic diagram of an optical simulation model of the optical path adjusting unit.
  • the surface light source 40 is disposed obliquely with respect to the optical path adjusting unit 10, and the light emitting surface of the surface light source 40 faces the condensing portion 11 of the optical path adjusting unit 10.
  • Receiver_5 is the center position of the simulated light convergence.
  • the light emitted from the surface light source 40 is incident on the condensing portion 11, is condensed by the condensing portion 11, and is reflected by the reflecting portion 12, and finally emitted from the astigmatism portion 13 in a direction approximately parallel to the symmetry plane of the hollow space (see Y in FIG. 5).
  • Direction so as to achieve the lack of light transmission, to avoid the loss of light energy.
  • the optical path adjusting unit in this embodiment adopts a regular shape concentrating portion, a reflecting portion, and a astigmatism portion.
  • the optical path adjusting unit is not limited thereto, as long as the condensing portion and the astigmatizing portion can be hollow.
  • the space may be such that the reflecting portion provided inside the hollow space can reflect the light concentrated by the collecting portion to the astigmatism portion.
  • the specific shape of the condensing sheet constituting the concentrating portion may be adjusted according to the shape of the bent illuminating portion that emits the incident ray to be adjusted; the shape of the reflecting portion for reflecting the ray may be a wedge structure or a curved surface shape Other shapes; the shape of the astigmatism portion for scattering the light incident thereon and ejecting in approximately the same direction can be adjusted according to the light emission requirement, which is not limited in the present invention.
  • the concentrating portion having the symmetrical structure, the reflecting portion, and the astigmatizing portion are provided, and the symmetry plane of the concentrating portion, the symmetry plane of the astigmatism portion, and the symmetry plane of the reflecting portion are both aggregated.
  • the symmetry planes of the hollow space enclosed by the light portion and the astigmatism portion are coincident, so that the light incident in different directions is adjusted to be emitted in approximately the same direction, and the structure is simple and convenient for processing.
  • the embodiment provides a display device including the optical path adjusting unit in Embodiment 1.
  • the display device includes at least two splicable display screens 20, and adjacent display screens 20 to be spliced have a splicing gap 31 therebetween.
  • the splicing gap 31 is provided with the optical path provided in Embodiment 1.
  • Optical path adjustment unit 10 The adjusted outgoing light is emitted in a front view direction, where the "front view direction" refers to a normal direction of a large display screen having a large size formed by a plurality of splicable display screens.
  • the display screen 20 includes a substrate and a black matrix (BM) and a light emitting unit (not specifically shown in FIG. 6) which are sequentially stacked on the substrate.
  • the edge portion of the display screen 20 is bent inwardly (ie, in a direction opposite to the direction in which the light emitted from the light emitting unit is emitted from the display screen 20) to form a bent portion, adjacent to the display screen 20 to be spliced.
  • a splicing gap 31 is formed between the bent portions.
  • the optical path adjusting unit 10 is disposed in the splicing gap 31, and the lengths of the concentrating portion 11, the reflecting portion 12, and the astigmatism portion 13 are respectively the same as the length of the splicing gap 31 of the display screen 20.
  • the curved portion of the display screen 20 includes a flat portion 21 and a curved surface portion 22.
  • the curvature of the concentrated inner curved surface 111 of the concentrating sheet 110 away from the hollow space in the concentrating portion 11 coincides with the curvature of the curved portion 22, and the flat portion 21 and The middle portion of the display screen 20 can be vertically arranged. Since the light emitted from the light emitting unit in the planar portion 21 is difficult to reach the optical adjustment unit 10, the planar portion 21 may include both the black matrix and the light emitting unit, or may include only the black matrix without including the light emitting unit, thereby saving cost.
  • the curved surface portion 22 includes a black matrix (BM) and a light-emitting unit, and light emitted from the light-emitting unit of the curved surface portion 22 is incident on the light collecting portion 11 from different directions, is concentrated by the light collecting portion 11, and is reflected by the reflecting portion 12, and finally The astigmatism portion 13 is emitted in a direction approximately parallel to the plane portion 21.
  • BM black matrix
  • the astigmatism portion 13 is emitted in a direction approximately parallel to the plane portion 21.
  • a portion including a light-emitting unit in the bent portion is referred to as a bent light-emitting portion. It is to be understood that the bent light emitting portion may include only the curved surface portion 22, or may include part or all of the flat portion 21 and the curved surface portion 22.
  • the illumination unit in the display screen may be an Organic Light Emission Display (OLED).
  • OLED Organic Light Emission Display
  • the BM portions of the two flexible AMOLED display screens are respectively bent downward (ie, opposite to the direction in which the light emitted from the light emitting unit is emitted from the display screen 20), and then spliced to leave a certain splicing gap 31.
  • the optical path adjusting unit 10 is placed.
  • the concentrating portion 11 may be configured as an irregular convex lens structure having different refractive curvatures, and the concentrating inner curved surface 111 is preferably maintained with the bending curvature of the bent illuminating portion.
  • the optical path adjusting unit 10 and the flexible AMOLED display to be spliced are more A good combination allows the light that was originally emitted in the lateral direction to converge as much as possible in the frontal direction.
  • the two adjacent AMOLED display screens to be spliced are symmetric about the symmetry plane of the astigmatism portion 13, so that the astigmatism portion 13 can cause the light emitted from the light-emitting unit of the curved surface portion 22 to be reflected by the reflection portion 12 and uniformly emitted in the front view direction.
  • the bent light-emitting portion of the AMOLED display screen to be spliced can have the same optical performance in the front view direction, and realizes seamless and borderless display of the spliced flexible display screen.
  • the light source mainly includes the light-emitting unit in the curved portion 22 of the display screen 20; and the Receiver_14 is the center position of the simulated light convergence.
  • the light emitted from the light-emitting unit of the curved portion 22 enters the concentrating portion 11 of the optical path adjusting unit 10 from different directions, and the light condensed by the condensing portion 11 is reflected inside the optical path adjusting unit 10, and finally
  • the light exiting from the astigmatism portion 13 of the optical path adjusting unit 10 (as in the Y direction in Fig. 7) has a light exiting direction substantially coincident with the unbent portion of the display screen 20, thereby achieving uniform light emission of the bent light emitting portion in the front view direction.
  • the illuminance analysis and the spatial chromaticity analysis are performed on the adjacent spliced display screen 20, and an Illuminance Chart as shown in FIG. 8 is obtained.
  • the unit 10 modulates the light emitted by the bent light-emitting portion of the display screen 20
  • the illuminance of the light emitted by the bent light-emitting portion and the non-bent light-emitting portion is uniform, and the display image is continuous.
  • FIG. 9 there is no color mixing phenomenon between the bent light-emitting portion and the non-bent light-emitting portion (the color mixing interface between the left yellow Y and the right green G does not appear), and the bending of the adjacent two flexible display screens to be spliced is realized.
  • the display device provided in this embodiment is configured by arranging the edge portions of the two flexible AMOLED display screens downwardly and splicing them, and arranging the optical path adjusting unit in the splicing gaps, so that the original bent portion can be along the front view.
  • the direction of illumination ensures that the displayed portion that is bent can also be displayed well, thereby achieving a borderless and seamless display of the flexible display screen formed by the splicing method.
  • the display device is mainly suitable for outdoor or indoor display with large display requirements, of course, it can also be: liquid crystal panel, electronic paper, OLED panel, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator Any product or part that has a display function.
  • the display device in this embodiment realizes a frameless and large-sized flexible display screen structure formed by using a splicing method by using the optical path adjusting unit in Embodiment 1, and the display panel of the display device has good splicing effect and display The image is continuous and the visual effect is better.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种光路调节单元及使用其的显示装置。该光路调节单元用于将沿不同方向入射的光线调节为沿近似相同的方向射出,包括聚光部(11)、反射部(12)和散光部(13)。所述聚光部(11)和所述散光部(13)围成中空空间,所述反射部(12)设置于所述中空空间内部且分别与所述聚光部(11)的中部和所述散光部(13)的中部相接以将所述中空空间一分为二。所述聚光部(11)用于会聚沿不同方向入射至其上的光线,所述反射部(12)用于将所述聚光部(11)会聚的光线反射至所述散光部(13),所述散光部(13)用于将所述反射部(12)反射至其上的光线沿近似相同的方向射出。该光路调节单元能将沿不同方向入射的光线调节为沿近似相同的方向射出。

Description

光路调节单元和显示装置 技术领域
本发明属于显示技术领域,具体涉及一种光路调节单元和一种显示装置。
背景技术
平板显示技术在近十年内飞速地发展,从屏幕的尺寸到显示的质量都取得了很大进步,已经成为目前的主流显示技术。目前,平板显示装置主要包括液晶显示装置(Liquid Crystal Display,简称LCD)和有机电致发光显示装置(Organic Light Emission Display,简称OLED)。随着AMOLED(Active Matrix Organic Light Emission Display,有源矩阵有机电致发光显示)技术的发展,柔性显示屏的应用领域越来越宽,尺寸也越来越大。而对于尺寸较大的显示屏,一般会采用将多块小尺寸显示屏拼接在一起的方式来形成。采用拼接方式形成的大尺寸显示屏的拼接区域会不可避免地出现黑条,导致显示影像不连续,严重影响大尺寸显示屏的显示效果。
因此,设计一种拼接效果好,显示影像连续的显示装置成为目前亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种光路调节单元和一种显示装置,该光路调节单元能将沿不同方向入射的光线调节为沿近似相同的方向射出;采用该光路调节单元的显示装置的显示面板拼接效果好,显示影像连续,视觉效果更佳。
为解决本发明技术问题,根据本发明的一个方面,提供一种 光路调节单元,用于将沿不同方向入射的光线调节为沿近似相同的方向射出,其包括聚光部、反射部和散光部,所述聚光部和所述散光部围成中空空间,所述反射部设置于所述中空空间内部且分别与所述聚光部的中部和所述散光部的中部相接以将所述中空空间一分为二,其中:所述聚光部用于会聚沿不同方向入射至其上的光线,所述反射部用于将所述聚光部会聚的光线反射至所述散光部,所述散光部用于将所述反射部反射至其上的光线沿近似相同的方向射出。
优选的是,所述聚光部包括对称设置的两个弧形结构,所述散光部为对称弧形结构,所述聚光部和所述散光部围成对称的所述中空空间,所述反射部设置于对称的所述中空空间的对称面上,反射至所述散光部的光线沿近似平行于所述中空空间的对称面的方向射出。
优选的是,所述聚光部包括形状与尺寸均相同、呈镜像对称设置的两片弧形聚光片;两片所述聚光片的一端部互相连接,另一端分别与所述散光部的两端连接;所述反射部设置于两片所述聚光片的镜像对称面上,其一端与两片所述聚光片的互相连接的端部连接,另一端与所述散光部的中部连接,且所述散光部的中部位于所述散光部的对称面。
优选的是,每一所述聚光片为凸透镜结构,所述聚光片的靠近所述中空空间的弧面的弧度大于远离所述中空空间的弧面的弧度。
优选的是,所述散光部为凹透镜结构。
优选的是,所述反射部为对称楔形结构,所述对称楔形结构中较大的一端与两片所述聚光片的相互连接的端部连接,较小的一端与所述散光部的中部连接,且所述散光部的中部位于所述散光部的对称面;以及,所述对称楔形结构的分别朝向两片所述聚光片的两侧表面分别设置有反射膜。
优选的是,所述对称楔形结构的角度范围为3°-7°。
优选的是,所述聚光部、所述反射部和所述散光部一体成型;
或者,分别形成所述聚光部、所述散光部和所述反射部,然后将所述反射部、所述聚光部和所述散光部组合为一体;
或者,采用一体成型的方式形成所述聚光部和所述散光部,以及单独形成所述反射部,然后将单独形成的所述反射部与一体成型的所述聚光部和所述散光部组合为一体。
优选的是,所述聚光部、所述反射部和所述散光部采用无色、透明的材料形成。
优选的是,所述聚光部、所述反射部和所述散光部采用玻璃材料或树脂材料形成。
为解决本发明技术问题,根据本发明的另一方面,提供了一种显示装置,包括至少两个可拼接的显示屏,相邻的所述显示屏之间具有拼接空隙,其中,所述拼接空隙内设置有上述任意一种光路调节单元。
优选的是,所述显示屏的边缘部分向内弯折形成弯折部,相邻的所述显示屏的所述弯折部之间形成所述拼接空隙;所述光路调节单元设置于所述拼接空隙内,所述聚光部、所述反射部和所述散光部的长度分别与所述显示屏的所述拼接空隙的长度相同。
优选的是,所述显示屏的所述弯折部包括平面部和曲面部,所述聚光部中所述聚光片的远离所述中空空间的弧面的弧度与所述曲面部的弧度一致;所述曲面部包括黑矩阵和发光单元,所述发光单元发出的光线从不同方向入射至所述聚光部并从所述散光部沿近似平行于所述平面部的方向射出。
本发明的有益效果是:该光路调节单元能将沿不同方向入射的光线调节为沿近似相同的方向射出,而且结构简单,便于加工制作。
相应地,采用该光路调节单元的显示装置,实现了一种采用拼接方式形成的无边框、大尺寸柔性显示屏结构,该显示装置的显示面板拼接效果好,显示影像连续,视觉效果更佳。
附图说明
图1为本发明实施例1提供的光路调节单元的结构示意图;
图2为图1中的聚光部的结构示意图;
图3为图1中的反射部的结构示意图;
图4为图1中的散光部的结构示意图;
图5为图1中光路调节单元的光学仿真模型示意图;
图6为本发明实施例2中显示装置的结构示意图;
图7为图6中显示装置的光学仿真模型示意图;
图8为图7中相邻两个显示屏在显示状态的照度表;以及
图9为图7中相邻两个显示屏在显示状态的空间色度网格表。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明提供的光路调节单元和显示装置作进一步详细描述。
实施例1:
本实施例提供一种光路调节单元,用于将沿不同方向入射的光线调节为沿近似相同方向射出。
如图1所示,该光路调节单元包括聚光部11、反射部12和散光部13,聚光部11和散光部13围成中空空间,反射部12设置于中空空间内部且分别与聚光部11的中部和散光部13的中部相接以将中空空间一分为二。聚光部11用于会聚沿不同方向入射至其上的光线,反射部12用于将聚光部11会聚的光线反射至散光部13,散光部13用于将反射部12反射至其上的光线沿近似相同的方向射出,比如,沿近似平行于正视方向射出。由于聚光部11和散光部13围成中空空间,反射部12分别与聚光部11的中部和散光部13的中部相接以将中空空间一分为二,通过聚光部11、反射部12和散光部13的形状、尺寸相配合,能够实现将沿不同方向入射的光线调节为沿近似相同的方向射出的效果。
应该理解的是,这里的“正视”为相对“正视”,其是相对于人 眼视觉方向来定义的。入射至光路调节单元的聚光部11的光线从光路调节单元的散光部13射出时,被调节为出射方向基本一致的光线,且光线的出射方向与光线的入射方向可以不平行,该光线的基本一致的出射方向可以为人眼的“正视”方向。
如图1所示,聚光部11包括对称设置的两个聚光片110(两个聚光片110相对于聚光部11的对称面对称),聚光片110采用如图2所示的弧形结构,该弧形结构包括聚光内弧面111和聚光外弧面112,且聚光内弧面111相对远离中空空间,聚光外弧面112相对靠近中空空间,聚光外弧面112的弧度大于聚光内弧面111的弧度。散光部13采用如图4所示的对称弧形结构,该对称弧形结构包括散光内弧面131和散光外弧面132,均相对于散光部13的对称面对称,且散光内弧面131相对靠近中空空间,散光外弧面132相对远离中空空间。聚光部11和散光部13围成对称的中空空间。如图3所示的反射部12设置于对称的中空空间的对称面上,并分别与聚光部11的中部和散光部13的中部相接,聚光部11的中部位于聚光部11的对称面,散光部13的中部位于散光部13的对称面,从而将中空空间分成两个形状、尺寸均相同的子中空空间。反射到散光部13的光线沿近似平行于中空空间的对称面的方向射出。
具体地,聚光部11包括形状与尺寸均相同、呈镜像对称设置的两片弧形聚光片110,其中两片聚光片110的一端互相连接,另一端分别与散光部13的两端连接。反射部12设置于两片聚光片110的镜像对称面上,其一端与两片聚光片110的互相连接的端部连接,另一端与散光部13的中部连接,且散光部13的中部位于散光部13的对称面,以将中空空间分成两个形状、尺寸均相同的子中空空间。其中,两片聚光片110的镜像对称面(即,聚光部11的对称面)、散光部13的对称面与中空空间的对称面均重合。
每一聚光片110采用凸透镜结构。根据该光路调节单元应用场合的不同,例如:根据向聚光部11入射光线的弯折发光部的弯折程度不同,该聚光片110可以采用具有不同折射曲率的不规则 的凸透镜结构,以使沿侧向入射的光线能够尽可能地向正视方向会聚。图2所示的聚光片110具有弧形结构,其聚光内弧面111的弧度优选与弯折发光部的弯折弧度保持一致,使得聚光内弧面111能随着向聚光片110入射光线的弯折发光部的弯折程度的增加而逐渐增大其曲率半径,以便光路调节单元与弯折发光部能更好地结合,保证更多的沿侧向入射的光线能被更均匀地会聚至光路调节单元的内部。
如图3所示,反射部12采用对称楔形结构,该对称楔形结构中较大的一端与两片聚光片110的互相连接的端部连接,即,与聚光部11的中部连接,较小的一端与散光部13的中部连接,散光部13的中部位于散光部的对称面。也即,反射部12的分别朝向两片聚光片110的两侧表面相对于其对称面对称,且反射部12的对称面与两片聚光片110的镜像对称面、中空空间的对称面和散光部13的对称面均重合。
优选的是,反射部12所采用的对称楔形结构具有较小角度,其角度范围优选为3°-7°,进一步优选为5°,对称楔形结构的角度为5°时不仅能保证楔形结构的强度,而且便于加工制作。采用该具有较小角度的楔形结构的反射部12可以使聚光部11会聚的光线被反射部12的两侧表面反射,因为其采用的楔形结构的较大端与聚光部11的中部连接,且聚光部11的中部位于聚光部11的对称面,而较小端与散光部13的中部连接,且散光部13的中部位于散光部13的对称面,因此能使聚光部11会聚的光线更多地射向散光部13,最大程度地改变沿侧向入射的光线的行进路径。这里应该理解的是,根据光源情况,反射部12的与散光部13的中部相接的顶部可以为尖角形状,反射部12也可以为裁除顶部尖角的具有弧形上底面的等腰梯形形状,且根据散光部13的弧度范围,优选地,该等腰梯形形状的弧形上底面与散光部13的散光内弧面131相匹配。
而且,反射部12所采用的楔形结构的分别朝向两片聚光片110的两侧表面上均设置有反射膜120,该反射膜120可采用任何 能起反射作用的镀膜,这里不做限定。在反射部12的两侧表面分别镀上反射膜120,可以减少光能的损失,使得聚光部11会聚的光线在中空空间内部的空气30中传播分别到达反射部12的两侧表面,并被反射部12的两侧表面反射,从而最大程度地改变沿侧向入射的光线的行进路径,由于反射部12的镀有反射膜120的两侧表面相对中空空间的对称面均呈一定角度,因此可以使会聚的光线更多地向正视方向反射,避免使光线沿与侧向相反的方向反射。
如图4所示,散光部13采用对称凹透镜结构。由于散光部13呈规则的凹透镜结构,故可以使通过反射部12反射的光线经散光部13散射后沿正视方向射出。由于散光部13的对称面与光路调节单元的中空空间的对称面重合,因此能保证在中空空间内部传播的光线可以在正视方向上有相同的光学性能,使得从散光部13出射的光线能够均匀地沿正视方向射出。
在本实施例中,聚光部11、反射部12和散光部13可以一体成型,例如:将上述聚光部11、反射部12和散光部13整体通过3D打印方式打印出来。或者,分别形成聚光部11、散光部13和反射部12,然后将聚光部11、散光部13和反射部12组合为一体。或者,采用一体成型的方式形成聚光部11和散光部13,以及单独形成反射部12,然后将单独形成的反射部12与一体成型的聚光部11和散光部13组合为一体。在反射部12单独形成的情况下,单独制作反射部12,然后在反射部12的两侧表面镀上增强反射效果的反射膜120,再将反射部12嵌入由聚光部11和散光部13形成的中空空间内,使得反射部12的镀有反射膜120的两侧表面分别朝向两片聚光片110,并且中空空间由反射部12分割成两个形状、尺寸相同的子中空空间。
本实施例中,聚光部11、反射部12和散光部13均采用无色、透明的材料形成。例如:聚光部11、反射部12和散光部13可采用玻璃材料(如BK7等)或树脂材料(如PMMA(聚甲基丙烯酸甲酯)等)形成。应该理解的是,本实施例中对聚光部11、反射 部12和散光部13的材料不做限定,只要能够保证该光学调节单元无色、透明即可。
如图5所示为光路调节单元的光学仿真模型示意图。如图5所示,面光源40相对光路调节单元10倾斜设置,且面光源40的发光面朝向光路调节单元10的聚光部11。Receiver_5为仿真光会聚中心位置。面光源40发出的光线入射至聚光部11,经聚光部11会聚并经反射部12反射,最终从散光部13沿近似平行于中空空间的对称面的方向射出(如图5中的Y方向),从而实现光线的不遗漏传播,避免光能的损失。
应该理解的是,本实施例中的光路调节单元中采用规则形状的聚光部、反射部和散光部,但是,该光路调节单元不局限于此,只要聚光部和散光部能够围成中空空间,并使得设置于该中空空间内部的反射部能够将聚光部会聚的光线向散光部进行反射即可。构成聚光部的聚光片的具体形状可以根据发出待进行调节的入射光线的弯折发光部的形状进行调节;用于反射光线的反射部的形状可以为楔形结构或包括曲面形状在内的其他形状;用于对入射至其上的光线进行散射并沿近似相同的方向射出的散光部的形状可以根据光线出射需求来进行调节,本发明均不作限定。
本实施例中的光路调节单元,通过设置具有对称结构的聚光部、反射部和散光部的结构,并使聚光部的对称面、散光部的对称面、反射部的对称面均与聚光部和散光部围成的中空空间的对称面重合,从而实现将沿不同方向入射的光线调节为沿近似相同的方向射出,而且结构简单,便于加工制作。
实施例2:
本实施例提供一种显示装置,该显示装置包括实施例1中的光路调节单元。
如图6所示,该显示装置包括至少两个可拼接的显示屏20,相邻的待拼接的显示屏20之间具有拼接空隙31,该拼接空隙31内设置有实施例1所提供的光路调节单元10。经光路调节单元10 调节后的出射光线沿正视方向射出,这里的“正视方向”指的是多个可拼接的显示屏形成的具有大尺寸的整体显示屏的法线方向。
可以理解的是,显示屏20包括基板以及依次层叠设置于基板上的黑矩阵(Black Matrix,简称BM)和发光单元(图6中未具体示出)。在本实施例中,显示屏20的边缘部分向内(即,与发光单元发出的光线射出显示屏20的方向相反的方向)弯折形成弯折部,相邻的待拼接的显示屏20的弯折部之间形成有拼接空隙31。光路调节单元10设置于该拼接空隙31内,聚光部11、反射部12和散光部13的长度分别与显示屏20的拼接空隙31的长度相同。
显示屏20的弯折部包括平面部21和曲面部22,聚光部11中聚光片110的远离中空空间的聚光内弧面111的弧度与曲面部22的弧度一致,平面部21与显示屏20的中间部分可以垂直设置。由于平面部21中的发光单元发出的光线难以达到光学调节单元10,因此,平面部21可以既包括黑矩阵和发光单元,也可以仅包括黑矩阵而不包括发光单元,以节约成本。曲面部22包括黑矩阵(Black Matrix,简称BM)和发光单元,曲面部22的发光单元发出的光线从不同方向入射至聚光部11,经聚光部11会聚并经反射部12反射,最终从散光部13沿近似平行于平面部21的方向射出。本文中,将弯折部中包括发光单元的部分称作弯折发光部。可以理解的是,该弯折发光部可仅包括曲面部22,或者可包括平面部21的部分或全部以及曲面部22。
其中,显示屏中的发光单元可以为(Organic Light Emission Display,简称OLED)。如图6所示,将两块柔性AMOLED显示屏的BM部分分别向下(即,与发光单元发出的光线射出显示屏20的方向相反的方向)弯折后拼接,留出一定的拼接空隙31以放置光路调节单元10。其中,根据柔性AMOLED显示屏的弯折程度不同,聚光部11可以设置为具有不同折射曲率的不规则的凸透镜结构,其聚光内弧面111优选地与弯折发光部的弯折弧度保持一致,以便光路调节单元10与待拼接的柔性AMOLED显示屏更 好的结合,使原来沿侧向发射的光线能够尽可能地向正视方向会聚。相邻的两个待拼接的AMOLED显示屏关于散光部13的对称面对称,这样散光部13可以使曲面部22的发光单元发出的光线经反射部12反射后均匀地沿正视方向射出,以保证待拼接的AMOLED显示屏的弯折发光部可以在正视方向上具有相同光学性能,实现拼接后的柔性显示屏的无缝、无边框显示。
基于以上结构,建立该显示装置的光学仿真模型,如图7所示,其中的光源主要包括显示屏20的曲面部22中的发光单元;Receiver_14为仿真光会聚中心位置。从图7中可见,从曲面部22的发光单元发出的光线,从不同方向进入光路调节单元10的聚光部11,经聚光部11会聚的光线在光路调节单元10内部经反射后,最终从光路调节单元10的散光部13射出(如沿图7中的Y方向),具有与显示屏20未弯折部分基本一致的出光方向,从而实现弯折发光部在正视方向上的均匀出光。
进一步地,在图7所示的显示装置的显示状态下,对相邻的已拼接的显示屏20进行了照度分析和空间色度分析,得到如图8所示的照度表(Illuminance Chart)以及图9所示的空间色度网格表(Spatial CIE_Mesh)。图8中,横向方向上未出现两侧高、中间低(即对应屏幕两侧亮、中间暗)的现象,说明弯折发光部和非弯折发光部的光照度基本一致,可见采用了光路调节单元10对显示屏20的弯折发光部发出的光线进行调制后,弯折发光部与非弯折发光部发出的光线的光照度是均匀的,显示影像连续。图9中,弯折发光部与非弯折发光部之间不存在混色现象(未出现左边黄色Y与右边绿色G的混色界面),实现相邻两个待拼接的柔性显示屏的弯折发光部在正视方向上的无缝显示。
本实施例提供的显示装置,通过将两块柔性AMOLED显示屏的边缘部分分别向下弯折后拼接,并在拼接空隙中布置光路调节单元,使原有被弯折的发光部分能够沿比如正视方向发光,保证被弯折的显示部分也可以较好地进行显示,从而较好地实现了采用拼接方式形成的柔性显示屏的无边框、无缝显示。
该显示装置主要适用于户外或户内具有大型显示需求的显示场合,当然也可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例中的显示装置,通过采用实施例1中的光路调节单元,实现了一种采用拼接方式形成的无边框、大尺寸柔性显示屏结构,该显示装置的显示面板的拼接效果好,显示影像连续,视觉效果更佳。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种光路调节单元,用于将不同方向入射的光线调节为沿近似相同的方向射出,包括聚光部、反射部和散光部,所述聚光部和所述散光部围成中空空间,所述反射部设置于所述中空空间内部且分别与所述聚光部的中部和所述散光部的中部相接以将所述中空空间一分为二,其中:所述聚光部用于会聚沿不同方向入射至其上的光线,所述反射部用于将所述聚光部会聚的光线反射至所述散光部,所述散光部用于将所述反射部反射至其上的光线沿近似相同的方向射出。
  2. 根据权利要求1所述的光路调节单元,其特征在于,所述聚光部包括对称设置的两个弧形结构,所述散光部为对称弧形结构,所述聚光部和所述散光部围成对称的所述中空空间,所述反射部设置于对称的所述中空空间的对称面上,反射至所述散光部的光线沿近似平行于所述中空空间的对称面的方向射出。
  3. 根据权利要求2所述的光路调节单元,其特征在于,所述聚光部包括形状与尺寸均相同、呈镜像对称设置的两片弧形聚光片;两片所述聚光片的一端互相连接,另一端分别与所述散光部的两端连接;所述反射部设置于两片所述聚光片的镜像对称面上,其一端与两片所述聚光片的相互连接的端部连接,另一端与所述散光部的中部连接,且所述散光部的中部位于所述散光部的对称面。
  4. 根据权利要求3所述的光路调节单元,其特征在于,每一所述聚光片为凸透镜结构,所述聚光片靠近所述中空空间的弧面的弧度大于远离所述中空空间的弧面的弧度。
  5. 根据权利要求3所述的光路调节单元,其特征在于,所述 散光部为凹透镜结构。
  6. 根据权利要求3所述的光路调节单元,其特征在于,所述反射部为对称楔形结构,所述对称楔形结构中较大的一端与两片所述聚光片的相互连接的端部连接,较小的一端与所述散光部的中部连接,且所述散光部的中部位于所述散光部的对称面;以及
    所述对称楔形结构的分别朝向两片所述聚光片的两侧表面上分别设置有反射膜。
  7. 根据权利要求6所述的光路调节单元,其特征在于,所述对称楔形结构的角度范围为3°-7°。
  8. 根据权利要求1-7任一项所述的光路调节单元,其特征在于,所述聚光部、所述反射部和所述散光部一体成型;
    或者,分别形成所述聚光部、所述散光部和所述反射部,然后将所述反射部、所述聚光部和所述散光部组合为一体;
    或者,采用一体成型的方式形成所述聚光部和所述散光部,以及单独形成所述反射部,然后将单独形成的所述反射部与一体成型的所述聚光部和所述散光部组合为一体。
  9. 根据权利要求1-7任一项所述的光路调节单元,其特征在于,所述聚光部、所述反射部和所述散光部采用无色、透明的材料形成。
  10. 根据权利要求9所述的光路调节单元,其特征在于,所述聚光部、所述反射部和所述散光部采用玻璃材料或树脂材料形成。
  11. 一种显示装置,包括至少两个可拼接的显示屏,相邻的显示屏之间具有拼接空隙,其特征在于,所述拼接空隙内设置有 权利要求1-10中任一项所述的光路调节单元。
  12. 根据权利要求11所述的显示装置,其特征在于,所述显示屏的边缘部分向内弯折形成弯折部,相邻的所述显示屏的所述弯折部之间形成所述拼接空隙;所述光路调节单元设置于所述拼接空隙内,所述聚光部、所述反射部和所述散光部的长度分别与所述显示屏的所述拼接空隙的长度相同。
  13. 根据权利要求12所述的显示装置,其特征在于,所述显示屏的所述弯折部包括平面部和曲面部,所述聚光部中所述聚光片远离所述中空空间的弧面的弧度与所述曲面部的弧度一致;所述曲面部包括黑矩阵和发光单元,所述发光单元发出的光线从不同方向入射至所述聚光部并从所述散光部沿近似平行于所述平面部的方向射出。
PCT/CN2015/081731 2015-01-06 2015-06-18 光路调节单元和显示装置 WO2016110058A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016574122A JP6644716B2 (ja) 2015-01-06 2015-06-18 光路調節ユニットと表示装置
KR1020167031503A KR101880839B1 (ko) 2015-01-06 2015-06-18 광 경로 조정 유닛 및 디스플레이 디바이스
EP15839055.9A EP3244251B1 (en) 2015-01-06 2015-06-18 Light path adjustment unit and display device
US14/894,883 US9759406B2 (en) 2015-01-06 2015-06-18 Optical path adjusting unit and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510005753.6A CN104614855B (zh) 2015-01-06 2015-01-06 一种光路调节单元和显示装置
CN201510005753.6 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016110058A1 true WO2016110058A1 (zh) 2016-07-14

Family

ID=53149375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081731 WO2016110058A1 (zh) 2015-01-06 2015-06-18 光路调节单元和显示装置

Country Status (6)

Country Link
US (1) US9759406B2 (zh)
EP (1) EP3244251B1 (zh)
JP (1) JP6644716B2 (zh)
KR (1) KR101880839B1 (zh)
CN (1) CN104614855B (zh)
WO (1) WO2016110058A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262791B2 (en) * 2013-01-03 2022-03-01 Correll Electronics, Llc Electronic device combination
CN104614855B (zh) * 2015-01-06 2017-02-22 京东方科技集团股份有限公司 一种光路调节单元和显示装置
CN108399870A (zh) * 2016-01-04 2018-08-14 京东方科技集团股份有限公司 一种拼接屏及其制作方法、显示装置
GB2547250B (en) * 2016-02-12 2020-02-19 Geomerics Ltd Graphics processing systems
CN108269495A (zh) * 2017-01-04 2018-07-10 昆山国显光电有限公司 柔性显示屏
CN106647130B (zh) * 2017-03-07 2018-09-28 海信集团有限公司 背投影拼接单元、系统及背投影拼接单元调节方法
CN107468208B (zh) * 2017-09-10 2024-02-20 广州市视加医疗仪器设备有限公司 一种便携式眼部诊断专用成像系统
CN109935172B (zh) * 2019-02-28 2021-09-17 昆山国显光电有限公司 一种全面显示屏和显示装置
CN110308070A (zh) * 2019-06-18 2019-10-08 东南大学 一种采用3d打印的气体扩散室
CN110471751B (zh) * 2019-07-18 2022-06-14 深圳梧童科技有限公司 一种终端设备交互方法、装置、可读存储介质及终端设备
CN110794923B (zh) * 2019-10-21 2021-04-13 维沃移动通信有限公司 显示模组及其控制方法和装置、电子设备
CN111063265B (zh) * 2019-12-26 2021-02-02 深圳市华星光电半导体显示技术有限公司 拼接显示面板及拼接显示装置
JP6742550B1 (ja) * 2020-03-31 2020-08-19 ナガシマ工芸株式会社 表示装置、及び表示補助部材
KR20210138834A (ko) * 2020-05-12 2021-11-22 삼성디스플레이 주식회사 타일형 표시 장치
EP3944009A1 (en) 2020-07-20 2022-01-26 Nokia Technologies Oy Display
CN113301194A (zh) * 2021-05-14 2021-08-24 武汉纺织大学 一种楔形构件、屏幕拼接显示方法和智能手机
CN114488604B (zh) * 2022-03-07 2023-10-03 Tcl华星光电技术有限公司 显示模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400178A (en) * 1991-12-27 1995-03-21 Matsushita Electric Industrial Co., Ltd. Screen unit for rear projection picture display system, method for producing the same and component to be used for assembling the screen unit
CN102087814A (zh) * 2010-11-30 2011-06-08 曹嘉灿 一种无边框显示装置及大屏幕显示器
JP2011172083A (ja) * 2010-02-19 2011-09-01 Nippon Hoso Kyokai <Nhk> プロンプター装置
CN203689856U (zh) * 2014-01-26 2014-07-02 京东方科技集团股份有限公司 一种显示面板和显示装置
CN103969736A (zh) * 2014-04-24 2014-08-06 京东方科技集团股份有限公司 一种导光结构和显示装置
CN104035233A (zh) * 2014-06-13 2014-09-10 京东方科技集团股份有限公司 显示屏边框消除装置及显示设备
CN104614855A (zh) * 2015-01-06 2015-05-13 京东方科技集团股份有限公司 一种光路调节单元和显示装置
CN204360012U (zh) * 2015-01-06 2015-05-27 京东方科技集团股份有限公司 一种光路调节单元和显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979838U (ja) * 1982-11-19 1984-05-30 大日本印刷株式会社 テレビジヨンのスクリ−ン
JP3141081B2 (ja) * 1990-08-10 2001-03-05 矢崎総業株式会社 車両用表示装置
JPH04101582A (ja) * 1990-08-21 1992-04-03 Fujitsu General Ltd 電子シャッタ付cctvカメラ装置
JPH04361251A (ja) * 1991-06-07 1992-12-14 Sony Corp 背面投射型プロジェクターのスクリーン
JPH04361249A (ja) * 1991-06-07 1992-12-14 Sony Corp 背面投射型プロジェクター
JPH04369629A (ja) * 1991-06-19 1992-12-22 Sony Corp 背面投射型プロジェクター
JPH04369631A (ja) * 1991-06-19 1992-12-22 Sony Corp 背面投射型プロジェクター
JPH0519358A (ja) * 1991-07-11 1993-01-29 Dainippon Printing Co Ltd 透過型投影スクリーン
JPH05173252A (ja) * 1991-12-24 1993-07-13 Sony Corp マルチプロジェクタ
US5768025A (en) * 1995-08-21 1998-06-16 Olympus Optical Co., Ltd. Optical system and image display apparatus
JP2000162709A (ja) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp 背面投写型プロジェクター
GB0028890D0 (en) * 2000-11-27 2001-01-10 Isis Innovation Visual display screen arrangement
JP2003075863A (ja) * 2001-09-06 2003-03-12 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4741830B2 (ja) * 2004-11-19 2011-08-10 Necエンジニアリング株式会社 背面投射型プロジェクタ
JP2007127950A (ja) * 2005-11-07 2007-05-24 Victor Co Of Japan Ltd 背面型プロジェクタ装置
TWI354161B (en) * 2008-08-27 2011-12-11 Oripix Holdings Ltd Seamless display apparatus with a plurality of pan
CN201402568Y (zh) * 2009-01-07 2010-02-10 曹嘉灿 无缝拼接显示装置
CN102207567A (zh) * 2011-02-18 2011-10-05 广东威创视讯科技股份有限公司 消缝装置及无缝拼接显示装置
FR2987426B1 (fr) * 2012-02-29 2018-07-13 Saint-Gobain Placo Panneau lumineux et paroi de batiment
JP5382168B1 (ja) * 2012-06-20 2014-01-08 大日本印刷株式会社 配列型表示装置
CN103903519A (zh) * 2012-12-25 2014-07-02 鸿富锦精密工业(深圳)有限公司 电视墙及其黑框消除结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400178A (en) * 1991-12-27 1995-03-21 Matsushita Electric Industrial Co., Ltd. Screen unit for rear projection picture display system, method for producing the same and component to be used for assembling the screen unit
JP2011172083A (ja) * 2010-02-19 2011-09-01 Nippon Hoso Kyokai <Nhk> プロンプター装置
CN102087814A (zh) * 2010-11-30 2011-06-08 曹嘉灿 一种无边框显示装置及大屏幕显示器
CN203689856U (zh) * 2014-01-26 2014-07-02 京东方科技集团股份有限公司 一种显示面板和显示装置
CN103969736A (zh) * 2014-04-24 2014-08-06 京东方科技集团股份有限公司 一种导光结构和显示装置
CN104035233A (zh) * 2014-06-13 2014-09-10 京东方科技集团股份有限公司 显示屏边框消除装置及显示设备
CN104614855A (zh) * 2015-01-06 2015-05-13 京东方科技集团股份有限公司 一种光路调节单元和显示装置
CN204360012U (zh) * 2015-01-06 2015-05-27 京东方科技集团股份有限公司 一种光路调节单元和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244251A4 *

Also Published As

Publication number Publication date
JP6644716B2 (ja) 2020-02-12
CN104614855B (zh) 2017-02-22
EP3244251A1 (en) 2017-11-15
CN104614855A (zh) 2015-05-13
EP3244251A4 (en) 2018-08-29
US20160363291A1 (en) 2016-12-15
US9759406B2 (en) 2017-09-12
JP2018506729A (ja) 2018-03-08
KR101880839B1 (ko) 2018-07-20
EP3244251B1 (en) 2022-03-09
KR20160145106A (ko) 2016-12-19

Similar Documents

Publication Publication Date Title
WO2016110058A1 (zh) 光路调节单元和显示装置
CN103148449B (zh) 用于直下式液晶背光的led透镜
TWI507787B (zh) 顯示裝置、拼接式顯示器及背光模組
TWI393926B (zh) 用於液晶背光單元之光導面板以及具有該面板之液晶背光單元
RU2011102753A (ru) Дисплейное устройство и электронное устройство
WO2012073929A1 (ja) 液晶表示装置およびマルチディスプレイシステム
WO2017164117A1 (ja) 表示装置及びヘッドマウントディスプレイ
JPWO2003040784A1 (ja) プリズムシート、該プリズムシートを使用したバックライト・ユニットおよび透過型液晶表示装置
US9690034B2 (en) Illumination device and display device
TWI470319B (zh) 液晶顯示器
TWI422869B (zh) 透鏡陣列模組及投影裝置
WO2017054382A1 (zh) 光学元件、导光板、棱镜、背光模组及显示装置
KR20100024752A (ko) 프리즘 시트와 이를 구비한 액정표시장치
TW201915982A (zh) 拼接顯示裝置
TW201704824A (zh) 光源模組
TWI607262B (zh) 背光模組及液晶顯示器
TWM483445U (zh) 顯示裝置
TWI421549B (zh) 導光板及背光模組
TWI457659B (zh) 背光模組
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
JP2021148977A (ja) 表示装置及びヘッドマウントディスプレイ
TW201505005A (zh) 拼接式顯示裝置
WO2014176885A1 (zh) 直下式背光模组和液晶显示装置
CN105807487A (zh) 背光模组及显示装置
CN103148417B (zh) 用于直下式液晶背光的led背光模组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14894883

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015839055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015839055

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167031503

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016574122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE