WO2016107552A1 - 气体净化装置 - Google Patents

气体净化装置 Download PDF

Info

Publication number
WO2016107552A1
WO2016107552A1 PCT/CN2015/099465 CN2015099465W WO2016107552A1 WO 2016107552 A1 WO2016107552 A1 WO 2016107552A1 CN 2015099465 W CN2015099465 W CN 2015099465W WO 2016107552 A1 WO2016107552 A1 WO 2016107552A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
gas
casing
rotating shaft
gas purifying
Prior art date
Application number
PCT/CN2015/099465
Other languages
English (en)
French (fr)
Inventor
韩昌报
王中林
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Priority to KR1020177021186A priority Critical patent/KR101938414B1/ko
Priority to JP2017534588A priority patent/JP6359776B2/ja
Publication of WO2016107552A1 publication Critical patent/WO2016107552A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages

Definitions

  • the invention relates to the field of air smog prevention and, in particular, to a gas purification device.
  • the current methods of managing smog are mainly in the following categories: reducing emissions of industrial waste gas and automobile exhaust, improving the quality of fuel and coal, and artificial rainfall.
  • the government has also taken a series of measures to respond to the management of smog, such as shutting down polluting enterprises, eliminating unqualified motor vehicles, restricting motor vehicle licenses, restricting vehicles to single and double numbers, strictly monitoring fuel quality, and spraying water mist into the sky.
  • the problem with these methods of governance is that social costs are high, and the closure of a large number of enterprises has caused large-scale population unemployment and caused incalculable losses to the country's economic growth. From the current point of view, it is a more operable path to identify the source of pollution and absorb it. However, there are still technical difficulties in the treatment of pollutants.
  • the present invention provides a gas purifying apparatus comprising: an outer casing; a first air inlet and a first air outlet provided on the outer casing; a rotating shaft disposed in the outer casing; and being fixed on the rotating shaft a purifying unit, the purifying unit comprising: a housing having a first side wall with a through hole and a second side wall having a second air outlet; an electrode plate fixed inside the housing; Filling a vibrating particle that is freely movable in the housing, the vibrating particle having a different electronegativity from a material of the electrode plate; after the gas enters the outer casing from the first air inlet, from the belt a first side wall having a through hole enters the housing, and flows out from the second air outlet to drive the cleaning unit to rotate around the rotating shaft, so that the vibrating particles and the electrode plate are separated from each other by mutual contact Electric field, particles in a gas are adsorbed to vibration due to electric field adsorption Particles and / or electrode plates.
  • the beneficial effects of the gas purifying device of the present invention are:
  • the design of the vibrating particles colliding with the electrode plates can generate a high electric field, and the adsorption efficiency of the purifying device is high.
  • the energy of the gas itself causes the purification unit to rotate around the axis for gas purification without additional energy consumption;
  • the detachable structure of the gas purifying device enables the purifying device to be recycled, which is installed on the vehicle, and can cause fogging of PM1.0, PM2.5, PM5.0 and PM10.0 in the exhaust gas of the automobile.
  • the particulate matter is effectively absorbed and filtered;
  • the gas purifying device of the present invention has a simple structure, and the materials used are non-polluting and cheap, and the device preparation cost is low.
  • Figure 1 is a schematic cross-sectional view of a gas purifying device along a rotating shaft
  • Figure 2 is a schematic cross-sectional structural view of a vertical rotating shaft of the gas purifying device
  • Figure 3 is a schematic cross-sectional view of the purification unit along the vertical axis of rotation
  • FIG. 5 is a schematic view showing a positional relationship between a rotating shaft and a first side wall, a second side wall, an upper side wall and a lower side wall of the purifying unit in the gas purifying device;
  • Figure 6 is a schematic view showing another structure in which adjacent purification units are connected to each other;
  • FIG. 7 is a schematic view showing another positional relationship between the rotating shaft and the first side wall and the second side wall of the purifying unit in the gas purifying device;
  • Fig. 8 is a schematic view showing the working principle of the purification unit in the gas purifying device.
  • the orientation words used are as “upper and lower", unless otherwise stated. It is the direction in the indication figure; “inner” refers to the inside of the corresponding structure, and “outer” refers to the exterior of the corresponding structure; the filling degree is defined as the sum of the area formed by the close arrangement of the vibrating particles and the area of the upper and lower electrode plates divided by 2 ( That is, the ratio of the average of the area of the upper and lower electrode plates is ⁇ 100%, that is, the filling degree of the vibrating particles when the surface of the electrode plate is covered with a certain thickness is 100%. In the present invention, the definition of the vibration particle filling degree is also applicable to the case where only one electrode plate is included.
  • FIG. 1 is a schematic view of a longitudinal section (along the direction of the rotating shaft) of the gas purifying device, comprising: a casing 1, a first air inlet 11 and a first outlet disposed on the casing 1. a port 12; a rotating shaft 2 disposed in the outer casing; and one or more purifying units 3 fixed to the rotating shaft 2.
  • 2 is a schematic view of a cross section (vertical rotation axis) of the gas purification device, and FIG.
  • the purification unit includes: a housing 31 having a first side wall 35 with a through hole and having a second side wall 36 of the second air outlet; electrode plates 32 and 33 fixed inside the outer casing 1; vibrating particles 34 filled in the housing 31 to be freely movable, the vibrating particles 34 being different from the material of the electrode plate 32 or 33 Electronetivity.
  • the second air outlet can also adopt a way that the second side wall 36 has a through hole, and the second air outlet is not limited to the present invention.
  • the first side wall 35 and the second side wall 36 may each have a mesh structure.
  • FIGS. 6 and 7 are only schematic representations of the structure of the housing 31 of the purification unit 3, in practice, in some cases, the first side wall 35 and the second side wall 36 of the housing are in cross-sectional view. It cannot occur at the same time, or the first side wall 35 is coplanarly connected to the second side wall 36, as shown in FIGS. 6 and 7.
  • the purifying unit 3 is rotated about the rotating shaft 2 to form an electric field by separating the vibrating particles 34 and the electrode plates 32 or 33 by mutual contact; the gas is from the first side wall. 35 enters the housing 31 and flows out of the second side wall 36.
  • the tangential direction of the part or the entire surface of the surface of the side wall (referred to as the upper side wall) of the casing 31 facing the first intake port is not the direction of the rotating shaft 2
  • the gas acts on the surface of the purification unit to rotate the purification unit 3 around the rotation shaft 2.
  • the side wall of the casing opposite to the upper side wall of the casing in the direction of the rotating shaft is a lower side wall, and preferably the lower side wall is disposed substantially in parallel with the upper side wall.
  • the first side wall 35, the upper side wall 37, the second side wall 36 and the lower side wall 38 are joined together to form a frame, and one end of the rotating shaft 2 and one end away from the rotating shaft 2 respectively pass through the casing 31.
  • the third side wall and the fourth side wall form a box-shaped casing 31.
  • the third side wall and the fourth side wall are preferably A portion of the cylindrical casing coaxial with the rotating shaft 2, that is, the third side wall and the fourth side wall are arcuate structures.
  • the gas purifying apparatus of the present embodiment includes a plurality of purifying units 3, and the plurality of purifying units 3 can be connected to each other around the rotating shaft 2, as shown in Fig. 4, among the two adjacent purifying units, the upper and lower sides of the first purifying unit 3a
  • the walls are planar structures that are parallel to each other, and the outer surfaces of the upper and lower side walls are not perpendicular to the rotating shaft 2.
  • the first side wall 35 having the through hole is an intake port of the first purification unit 3a, and preferably the first side wall 35 and the second side wall 36 extend in the radial direction of the rotation shaft 2,
  • the upper side wall connects the first side wall 35 and the second side wall 36 such that the projection positions of the first side wall and the second side wall in the direction of the rotation axis are different.
  • the first side wall and the second side wall may be planar or curved, and the preferred first side wall outer surface is a curved concave surface.
  • the plane extending along the radial direction of the rotating shaft 2 does not limit the plane or curved surface where the first side wall and the second side wall are located, and the axis of the rotating shaft 2 is strictly parallel, and may be parallel or may have a certain angle with the axis. .
  • the upper side wall and the lower side wall are arranged parallel to each other, that is, the lower side wall is not perpendicular to the air flow direction, so that after the gas enters the purification unit 3a from the first side wall 35, the lower side wall can be further applied to further purify and purify.
  • the unit 3a is rotated and then flows out from the second air outlet on the second side wall.
  • the number of the purifying units may be one or more, and preferably an even number.
  • 5 and 7 are schematic structural views of the first side wall 35, the second side wall 36, the upper side wall 37, and the lower side wall 38 including only the rotating shaft and the purifying unit, and the first side wall 35 and the second side wall 36 may be Both are arranged in parallel with the axial direction of the rotary shaft 2, see Figs. 6 and 7.
  • the first side wall 35 may be parallel to the rotating shaft 2
  • the second side wall 36 may also be disposed perpendicular to the axis of the rotating shaft 2, see FIGS. 4 and 5.
  • a plurality of purification units are connected to each other around the rotating shaft 2, and among the two adjacent purification units 3a and 3b, the first side wall 35 of the first purification unit 3a and the upper side of the second purification unit 3b
  • the walls 37 are connected to each other, and the second side wall 36 is perpendicular to the axis of the rotating shaft 2, and the second side walls 36 of the plurality of purifying units are connected into a plane such that the through holes of the first side wall 35 of each of the purifying units are The second air outlets of the second side wall 36 are exposed.
  • first side wall 35 of the first purification unit 3a and the second side wall 36 of the second purification unit 3b are connected to each other, and the through hole and the second side wall of the first side wall are connected to each other.
  • the air outlets are not overlapped, so that the first side wall 35 of the first purification unit 3a and the second side wall 36 of the second purification unit 3b are coplanarly connected, such that the first side wall 35 and the second side of the first purification unit 3a are
  • the upper side walls 37 of the purification unit 3b are connected to each other to form a space for obstruction of gas.
  • the second side walls 36 may also not be directly connected together, that is, they are not offset from each other in the same plane.
  • the purification device includes a plurality of purification units, and preferably the purification unit has the same structure, and the plurality of purification units are axially symmetric or centrally symmetrically distributed.
  • the gas After the gas enters from the first intake port 11 of the outer casing, it acts on the upper side wall 37 of the second purification unit 3b, pushing the purification units 3a and 3b to rotate around the rotary shaft 2, and at the same time, since the upper side wall of the second purification unit 3b is The gas is blocked by the gas flow from the through hole of the first side wall 35 of the first purification unit 3a into the first purification unit 3a, and the gas is purified by the electric field between the electrode plate and the vibration particles in the first purification unit 3a.
  • the first purification unit 3a flows out from the second air outlet of the second side wall 36.
  • the lower side wall 38 of the first purification unit 3a is parallel to the upper side wall 37, and the gas entering the first purification unit 3a also acts on the lower side wall 38, further pushing the purification unit 3a to rotate.
  • the number of the electrode plates in the purification unit 3 may be one or more. Since the purification unit in the gas purifying device rotates along with the rotating shaft, it can be disposed on other side walls except the upper and lower side walls. Preferably, two face-to-face electrode plates are disposed in the purification unit, as shown in FIGS. 1-3, the two electrode plates 32 and 33 are radially spaced apart from the rotating shaft 2, and the vibrating particles are disposed on the two electrode plates 32 and 33. Between the vibrating particles can move freely between the two electrode plates.
  • the electrode plates 32 and 33 may be disposed on a cylindrical surface (ie, a third side wall and a third side wall) coaxial with the rotating shaft 2, and the electrode plate may be a part of a cylindrical surface coaxial with the rotating shaft 2, during the rotation,
  • the radius of the cylindrical surface of the electrode plate 32 is larger than the radius of the cylindrical surface where the electrode plate 33 is located.
  • the outer casing may be a casing having a fan-shaped cross section, and the cylindrical surfaces of the two curved side walls are coaxial with the rotating shaft 2, and the curved side wall with a small radius may be fixed on the rotating shaft 2.
  • the electrode plates are disposed on two arcuate side walls. The electrode plate material may be placed on the arc-shaped side wall by deposition or pasting to form a cylindrical electrode plate.
  • the gas purifying device of the present invention utilizes this principle, and the purification principle of the purifying unit 3 for gas is shown in Fig. 8.
  • the rotating shaft as a horizontal setting as an example, with the rotation of the purifying unit 3, the two electrode plates 32 and 33
  • the position of the vibrating particles 34 continuously collides with the two electrode plates 32 and 33 due to gravity, and a large amount of negative charges are generated on the surface of the vibrating particles 34, leaving a large amount of positive charges on the electrode plates, and an electric field is formed in the space. .
  • the particles in the gas are adsorbed to the vibration particles 34, the electrode plate 32, and the electrode plate 33 due to the electrostatic field adsorption, the cleaning gas
  • the second air outlet of the second side wall 36 flows out.
  • the gas which can be purified in the embodiment in particular, relates to automobile exhaust gas, and the corresponding particulate matter mainly includes particles such as PM1.0, PM2.5, PM5.0 and PM10.0 in the automobile exhaust gas, but is not limited to these. Particulate matter, other particulate matter causing air haze is also within the scope of the present invention.
  • the material of the electrode plate is made of a conductive metal material, an organic material or an oxide material, and the surface material of the vibration particles 34 is an insulating material or a semiconductor material having different electronegativity from the material of the electrode plate.
  • Commonly used conductive materials can be used to form the electrode plates, preferably metal or alloy materials, including alloys of any ratio of one or more of aluminum, copper, gold and silver, preferably aluminum.
  • the surface material of the vibrating particles 34 is composed of an electron-acquisitive material (a material having high electronegativity), and an insulating material, particularly a polymer polymer material, may be selected and selected from the following materials: amine formaldehyde resin, polyoxymethylene, Ethyl cellulose, polyamide nylon 11, polyamide nylon 66, wool and its fabric, silk and its fabric, paper, polyethylene glycol succinate, cellulose, cellulose acetate, polyethylene glycol Acid ester, diallyl polyphthalate, regenerated cellulose sponge, cotton and fabric thereof, polyurethane elastomer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, wood, hard rubber, acetic acid Ester, rayon, polymethyl methacrylate, polyvinyl alcohol, polyester, polyisobutylene, polyurethane elastic sponge, polyethylene terephthalate, polyvinyl butyral, butadiene-acrylonitrile
  • the vibrating particles 34 may be a uniform material as a whole, or may be a core-shell structure in which the surface layer covers the inner core, for example, a core-shell structure in which the PTFE material is a surface layer coated with a core of a ceramic material.
  • the quality of the vibrating particles 5 should be large, and the structure may be a uniform structure or a core-shell structure.
  • the vibrating particles may be adjusted by adjusting the core material, for example, using a metal core.
  • the casing 31 of the purification unit 3 may be made of an insulating material such as acrylic, resin, PMMA, etc., and other parts of the material are not limited.
  • the housing 31 is of a detachable structure for cleaning the vibrating particles 34 or the electrode plates.
  • the size of the through hole or the second air outlet is smaller than the size of the vibrating particles 34, preferably the first side wall and the second side. Part or all of the walls are meshed.
  • the shape, material, and size of the vibrating particles 34 may be variable, such as a spherical shape, an ellipsoidal shape, a polyhedron (such as a cube), or the like.
  • the size of the vibrating particles is defined as the maximum value of the length, width, and height in the smallest rectangular space occupied when the vibrating particles are placed in the rectangular space.
  • the microstructure may be provided in whole or in part on the surface of the vibrating particles 34 and/or the surface of the electrode plate to increase the effective contact area of the vibrating particles 34 and the electrode plates, and to increase the surface charge density of the two. .
  • the microstructures are preferably nanowires, nanotubes, nanoparticles, nanorods, nanoflowers, nanochannels, microchannels, nanocones, microcones, nanospheres, and microspheres, and arrays formed from the foregoing structures, particularly
  • the surface of the vibrating particles 34 and/or the electrode plate may be chemically modified to further increase the amount of charge transfer at the moment of contact, thereby improving the adsorption capacity of the particles in the gas, and the chemical modification is further divided into the following two types. : introducing a more electron-acceptable functional group (strong electron withdrawing group) on the surface of the vibrating particle 34, or an anion on the surface of the vibrating particle 34; and/or introducing a more electron-releasing functional group on the surface of the electrode plate (ie, a strong electron donating group) ), or on the electrode plate
  • the surface is modified with a cation.
  • the strong electron donating group may include: an amino group, a hydroxyl group, an alkoxy group and the like
  • the strong electron withdrawing group may include an acyl group, a carboxyl group, a nitro group, a sulfonic acid group and the like.
  • the introduction of the functional group may be carried out by a conventional method such as plasma surface modification, for example, a mixture of oxygen and nitrogen may be generated at a certain power to introduce an amino group on the surface of the electrode plate material. Modification of ions on the surface of the material can be achieved by chemical bonding.
  • the surface of the vibrating particles using polydimethylsiloxane can be modified with a sol-gel method (English abbreviated as sol-gel) to modify the ethyl orthosilicate (in English abbreviated as TEOS). It is negatively charged. It is also possible to modify the gold nanoparticles containing cetyltrimethylammonium bromide (CTAB) on the upper surface by gold-sulfur bonding on the electrode plate metal gold, since cetyltrimethylammonium bromide is a cation. Therefore, the entire electrode plate becomes positively charged.
  • a suitable modifying material to bond with the material of the vibrating particles and the electrode plate to achieve the object of the present invention.
  • the embodiment does not limit the surface of the vibrating particles 34 and the electrode plate must be a hard material, and a flexible material may also be selected, and the hardness of the material does not affect the contact friction effect between the two.
  • the filling degree of the vibrating particles 34 may be 40% to 500%, preferably 100% to 200%.
  • the number of vibrating particles can be flexibly determined according to the size and shape of the outer casing and the distance between the two electrode plates, and at least one vibrating particle can be included.
  • the size of the spherical sphere is the diameter of the sphere, and the size of the vibrating particles may be uniform in size or inconsistent in size; the cross-sectional area S of the single largest spherical vibrating particle is much smaller than the S- electrode of the electrode plate area, which satisfies S electrode > 30S particles .
  • the distance between the two electrode plates is greater than 2 times the size of the vibrating particle ball, preferably greater than or equal to 2-8 times the vibrating particle size.
  • the first air inlet 11 and the first air outlet 12 of the outer casing 1 may be composed of a common air guiding tube, and the air guiding material may be a metal or a high temperature resistant polymer material.
  • the positions of the first air inlet 11 and the first air outlet 12 at the outer casing 1 may be set according to actual application conditions, may be disposed on the same side of the outer casing 1, or may be disposed on both sides of the outer casing 1.
  • a drying device or a condensing device 3 may be disposed on the gas inlet 1, the drying device 3 being a sealed box containing desiccant particles therein, and the desiccant particles may be physically adsorbed.
  • Type desiccant such as silica gel, molecular sieve desiccant, etc.
  • the filter may be installed at the first air inlet 11, or may also be at the first air inlet 11 and the purification unit. Install a filter between the 3s.
  • the filter screen may be a metal mesh or a non-metallic material.
  • a preferred embodiment of the purification unit in the gas purifying apparatus of the present embodiment is given below, but the manufacture of the purification unit is not limited thereto.
  • a fan-shaped box-shaped casing is formed by selecting an acrylic plate having a thickness of 2 mm, and the casing is a cylindrical shell having a cross-section as shown in FIG. 3, and a mesh diameter on the first side wall 35 and the second side wall 36. 1.5 mm; the two electrode plates are fixed face to face on the two arc-shaped side walls of the fan-shaped box, the two electrode plates 32 and 33 are both part of a cylindrical surface coaxial with the rotating shaft 2, and the outer electrode plate (electrode plate) 32)
  • the diameter of the circumference is 16 cm, the diameter of the circumference of the inner electrode plate (electrode plate 33) is 8 cm, and the vibrating particles 34 are solid balls of PTFE material and 2 mm in diameter.
  • the assembled four purification units are fixed on the acrylic rotating shaft according to the structure shown in Fig. 4, and the rotating shaft and the purifying unit are disposed together in the outer casing.
  • the outer casing material is made of metal aluminum foil with a thickness of 0.5 mm, the first air inlet on the outer casing and The diameter of the first air outlet is 8 cm, and the first air inlet and the first air outlet are respectively disposed at two ends of the rotating shaft.
  • the automobile exhaust pipe is connected to the first air inlet, and when the exhaust gas blows the purification unit to rotate, the voltage between the inner and outer electrode plates can reach 500V or more, and the exhaust gas enters the purification unit through the first side wall, and PM2.5 and PM5 in the exhaust gas.
  • the other purification devices provided by this embodiment have an average filtration efficiency of more than 80% for PM2.5, PM5.0, PM10.0 and other particulate matter of automobile exhaust gas, and have very good effects on sulfur dioxide, nitrogen oxides and respirable particulate matter dust. obvious.
  • Each part of the gas purifying device of the invention adopts commonly used materials, has a simple structure, has the advantages of low cost, no pollution, high adsorption efficiency and recyclability, and is applied to a motor vehicle, and can be used for PM1 in automobile exhaust.
  • PM2.5, PM5.0 and PM10.0, such as smog particles are effectively absorbed and filtered.

Abstract

一种气体净化装置,该气体净化装置包括:外壳(1);设置在外壳(1)上的第一进气口(11)和第一出气口(12);设置在外壳(1)内的转轴(2);固定在转轴(2)上的净化单元(3),其中,净化单元(3)包括:壳体(31),壳体(31)上具有带有通孔的第一侧壁(35)和具有第二出气口的第二侧壁(36);固定在壳体(31)内部的电极板(32,33);填充在壳体(31)中的振动颗粒(34),振动颗粒(34)与电极板(32,33)的材料具有不同电负性;气体从第一进气口(11)进入外壳(1)后,带动净化单元(3)围绕转轴(2)转动,以使振动颗粒(34)与电极板(32,33)通过相互接触分离的方式形成电场;气体从带有通孔的第一侧壁(35)进入壳体(31),从第二出气口流出,气体净化装置结构简单、成本低、无污染、吸附效率高及可循环使用等优点,能够将汽车尾气中的PM2.5等造成雾霾的颗粒物进行有效的吸收和过滤。

Description

气体净化装置 技术领域
本发明涉及空气雾霾防治领域,具体地,涉及一种气体净化装置。
背景技术
随着现代化工业的迅猛发展,空气污染日趋严重,尤其是工业废气、汽车尾气的直接排放造成了重度雾霾天气频频出现。雾霾主要是由二氧化硫、氮氧化物和可吸入颗粒物粉尘造成的,它使得大气浑浊、能见度恶化而影响出行安全,会导致人的呼吸道感染和心血管疾病的发生,因而雾霾严重危及到人类的健康和生活。
当前治理雾霾的方式主要以下几类:减少工业废气和汽车尾气的排放、提高燃油和煤的质量以及人工降雨等。政府也采取了一系列的举措来响应雾霾的治理,如关闭污染企业、淘汰不合格的机动车、限制机动车牌照、车辆单双号限行、严格监测燃油质量、向天空喷洒水雾等。这些治理的方法存在的问题是社会成本大,大量的企业关闭造成大面积人口失业并给国家经济增长造成了无法估量的损失。从目前来看,找准污染源对其进行吸收处理才是可操作性更强的一条道路,但是目前对污染物吸收处理还存在技术上的困难。
发明内容
本发明的目的是提供一种气体净化装置,用于解决空气中颗粒物的吸收和过滤的问题。
为了实现上述目的,本发明提供一种气体净化装置,包括:外壳;设置在所述外壳上的第一进气口和第一出气口;设置在外壳内的转轴;固定在所述转轴上的净化单元,所述净化单元包括:壳体,所述壳体上具有带有通孔的第一侧壁和具有第二出气口的第二侧壁;固定在所述壳体内部的电极板;填充在所述壳体中可自由移动的振动颗粒,所述振动颗粒与所述电极板的材料具有不同电负性;气体从所述第一进气口进入所述外壳后,从所述带有通孔的第一侧壁进入壳体,从所述第二出气口流出,带动所述净化单元围绕所述转轴转动,以使所述振动颗粒与所述电极板通过相互接触分离的方式形成电场,气体中的颗粒由于电场吸附作用而被吸附到振动 颗粒和/或电极板上。
通过上述技术方案,本发明气体净化装置的有益效果是:
(1)气体净化装置工作时,振动颗粒与电极板互相碰撞的设计,可以产生高电场,净化装置的吸附效率高。另外,气体自身的能量使净化单元绕轴旋转进行气体净化,不需要额外耗能;
(2)气体净化装置的可拆卸式结构,使净化装置可循环使用,其安装在车辆上,能够将汽车尾气中的PM1.0、PM2.5、PM5.0及PM10.0等造成雾霾的颗粒物进行有效的吸收和过滤;
(3)本发明的气体净化装置结构简单,采用的材料无污染廉价易得,装置制备成本低。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为气体净化装置沿着转轴的截面结构示意图;
图2气体净化装置垂直转轴的横截面结构示意图;
图3为净化单元沿着垂直转轴的截面结构示意图;
图4为相邻净化单元互相连接的结构示意图;
图5为气体净化装置中转轴与净化单元的第一侧壁、第二侧壁、上侧壁和下侧壁的一种位置关系示意图;
图6为相邻净化单元互相连接的另一种结构示意图;
图7为气体净化装置中转轴与净化单元的第一侧壁、第二侧壁的另一种位置关系示意图;
图8为气体净化装置中净化单元的工作原理示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下” 是指示图中的方向;“内”指朝向相应结构内部,“外”指朝向相应结构外部;填充度定义为振动颗粒密排后形成的面积与上、下电极板面积之和除以2(即上、下电极板面积的平均值)的比值×100%,即振动颗粒在电极板表面铺满一定厚度时的填充度为100%。本发明中,振动颗粒填充度的定义也适用于仅包括一个电极板的情况。
本实施方式给出了一种气体净化装置,图1为气体净化装置的纵截面(沿着转轴方向)示意图,包括:外壳1,设置在外壳1上的第一进气口11和第一出气口12;设置在外壳内的转轴2;固定在转轴2上的1个或多个净化单元3。图2为气体净化装置的横截面(垂直转轴)示意图,图3为净化单元3的放大图形,净化单元包括:壳体31,壳体31上具有带有通孔的第一侧壁35和具有第二出气口的第二侧壁36;固定在外壳1内部的电极板32和33;填充在壳体31中可自由移动的振动颗粒34,振动颗粒34与电极板32或33的材料具有不同电负性。本实施方式中,见图2和图3,第二出气口也可以采用第二侧壁36带有通孔的方式,第二出气口的方式不作为对本发明的限制。为了使气流通畅,并且将振动颗粒34限制在壳体31内部,第一侧壁35和第二侧壁36均可以为网状结构。图2和图3中只是示意性的给出净化单元3的壳体31的结构,实际中,在某些情况下,壳体的第一侧壁35和第二侧壁36在横截面图中不能同时出现,或者第一侧壁35与第二侧壁36共面连接,如图6和图7中所示。
气体从第一进气口11进入外壳1后,带动净化单元3以转轴2为轴转动,以使振动颗粒34与电极板32或33通过相互接触分离的方式形成电场;气体从第一侧壁35进入壳体31,从第二侧壁36流出。为了保证气体流动带动净化单元3旋转,优选地,净化单元3面向第一进气口的壳体31侧壁(称为上侧壁)表面的部分或者全部表面的切线方向与转轴2的方向不垂直,使气体与净化单元的表面作用使净化单元3围绕转轴2转动。净化单元中,在转轴方向上与壳体上侧壁相对的外壳侧壁为下侧壁,优选下侧壁与上侧壁基本平行设置。
如图5和图7所示,第一侧壁35、上侧壁37、第二侧壁36和下侧壁38连接在一起形成框架,靠近转轴2一端和远离转轴2一端分别通过壳体31的第三侧壁和第四侧壁形成盒状壳体31。第三侧壁和第四侧壁优选为 与所述转轴2共轴的圆柱壳的一部分,即第三侧壁和第四侧壁为弧形结构。
本实施方式的气体净化装置包括多个净化单元3,多个净化单元3可以围绕转轴2互相连接设置,如图4所示,相邻的两个净化单元中,第一净化单元3a的上下侧壁为互相平行的平面结构,并且上下侧壁的外表面与转轴2不垂直。第一净化单元3a中,具有通孔的第一侧壁35为第一净化单元3a的进气口,优选第一侧壁35和第二侧壁36沿着转轴2径向方向延伸,所述上侧壁连接第一侧壁35和第二侧壁36,使第一侧壁和第二侧壁在转轴方向上的投影位置不同。第一侧壁和第二侧壁可以为平面或者曲面,优选的第一侧壁外表面为弧形凹面。这里所述的沿着转轴2径向方向延伸,并不限定第一侧壁和第二侧壁所在的平面或者曲面与转轴2的轴线严格平行,可以平行,也可以与轴线有一定的夹角。
优选地,上侧壁与下侧壁互相平行设置,即下侧壁与气流方向不垂直,使气体从第一侧壁35进入净化单元3a后,还可以再次与下侧壁作用,进一步推动净化单元3a转动,之后从第二侧壁上的第二出气口流出。
气体净化装置中,净化单元的个数可以为1个或者多个,优选为偶数个。图5和图7是仅包括转轴和净化单元的第一侧壁35、第二侧壁36、上侧壁37和下侧壁38的结构示意图,第一侧壁35和第二侧壁36可以均与转轴2的轴线方向平行设置,参见图6和图7。在其他实施方式中,第一侧壁35可以与转轴2平行,第二侧壁36也可以与转轴2的轴线垂直设置,参见图4和图5。
参见图4和图5,多个净化单元围绕转轴2互相连接设置,相邻的两个净化单元3a和3b中,第一净化单元3a的第一侧壁35与第二净化单元3b的上侧壁37互相连接在一起,第二侧壁36垂直于转轴2的轴线,将多个净化单元的第二侧壁36连接成一个平面,使每个净化单元的第一侧壁35的通孔和第二侧壁36的第二出气口均露出。也可以如图6和图7所示,第一净化单元3a的第一侧壁35与第二净化单元3b第二侧壁36互相连接在一起,第一侧壁的通孔与第二侧壁的出气口无重叠,使第一净化单元3a的第一侧壁35和第二净化单元3b的第二侧壁36共面连接,这样使第一净化单元3a的第一侧壁35与第二净化单元3b的上侧壁37相交连接,形成对气体的阻碍空间。第一净化单元3a的第一侧壁35和第二净化单元3b 的第二侧壁36也可以不直接连着一起,即互相错开不在同一平面。这两种结构使第一净化单元3a的第一侧壁35与第二净化单元3b的上侧壁37表面相交,第二净化单元3b的第二侧壁36与第一净化单元3a的下侧壁38表面相交,如图6和图7所示。
净化装置中包括多个净化单元的,优选净化单元结构相同,多个净化单元呈轴对称或者中心对称分布。气体从外壳的第一进气口11进入后,对第二净化单元3b的上侧壁37作用,推动净化单元3a和3b围绕转轴2转动,同时,由于第二净化单元3b的上侧壁对于气流的阻碍作用,气体从第一净化单元3a的第一侧壁35的通孔进入第一净化单元3a,在第一净化单元3a中电极板与振动颗粒之间的电场作用下气体被净化,从第二侧壁36的第二出气口流出第一净化单元3a。在此过程中,第一净化单元3a的下侧壁38平行于上侧壁37,进入第一净化单元3a的气体同样会对下侧壁38作用,进一步推动净化单元3a转动。
本实施方式中,净化单元3中,电极板的个数可以为1个或者多个。由于气体净化装置中净化单元会随着转轴旋转,可以设置在除上下侧壁外的其他侧壁上。优选为在净化单元中设置两个面对面的电极板,如图1-3中所示,两个电极板32和33在转轴2的径向分隔设置,振动颗粒设置在两个电极板32和33之间,振动颗粒可以在两个电极板之间自由移动。电极板32和33可以设置在与转轴2共轴的圆柱面(即第三侧壁和第三侧壁)上,电极板可以为与转轴2共轴的圆柱面的一部分,在转动过程中,电极板32所在的圆柱面半径大于电极板33所在的圆柱面半径,转轴横向设置时,两个电极板上下交替,振动颗粒34可以与两个电极板交替碰撞。
为了使净化单元3的体积最小,外壳可以是截面为扇环的壳体,两个弧形侧壁所在圆柱面与转轴2共轴,可以将半径较小的弧形侧壁固定在转轴2上;电极板设置在两个圆弧形侧壁上。可以采用沉积或者粘贴方式将电极板材料设置在圆弧形侧壁上,形成圆柱面电极板。
两种具有不同电负性的材料互相接触,可以在两种材料的表面分别形成相反的表面电荷,两种材料互相分离时,表面电荷将被保留。本发明的气体净化装置就是利用了这一原理,净化单元3对气体的净化原理参见图8,以转轴为水平设置为例,随着净化单元3的旋转,两个电极板32和33 不断上下互换位置,中间的振动颗粒34由于重力作用不断与两个电极板32和33相撞、摩擦,在振动颗粒34表面产生大量负电荷,在电极板留下大量正电荷,空间形成电场。当气体从净化单元3具有通孔的第一侧壁35进入净化单元3中,气体中的颗粒将由于静电场吸附作用而被吸附到振动颗粒34、电极板32和电极板33上,清洁气体从第二侧壁36的第二出气口流出。
本实施方式中可以净化的气体,特别涉及汽车尾气,相应的颗粒物主要包括汽车尾气中的PM1.0、PM2.5、PM5.0及PM10.0等造成雾霾的颗粒物,但不限制于这些颗粒物,其他引起空气雾霾的颗粒物也在本发明的保护范围内。
本实施方式中,所述电极板的材料采用可导电的金属材料、有机物材料或者氧化物材料,振动颗粒34的表面材料采用与所述电极板的材料呈不同电负性的绝缘材料或者半导体材料。常用的导电材料均可以用于制作电极板,优选采用金属或者合金材料,包括铝、铜、金和银中的一者或者多者的任意比例合金,优选为铝。
振动颗粒34的表面材料由易得电子的材料(高电负性的材料)组成,可以选择绝缘材料,特别是聚合物高分子材料,可以从下列材料中任意选择:胺甲醛树脂、聚甲醛、乙基纤维素、聚酰胺尼龙11、聚酰胺尼龙66、羊毛及其织物、蚕丝及其织物、纸、聚乙二醇丁二酸酯、纤维素、纤维素醋酸酯、聚乙二醇己二酸酯、聚邻苯二甲酸二烯丙酯、再生纤维素海绵、棉及其织物、聚氨酯弹性体、苯乙烯-丙烯腈共聚物、苯乙烯-丁二烯共聚物、木头、硬橡胶、醋酸酯、人造纤维、聚甲基丙烯酸甲酯、聚乙烯醇、聚酯、聚异丁烯、聚氨酯弹性海绵、聚对苯二甲酸乙二醇酯、聚乙烯醇缩丁醛、丁二烯-丙烯腈共聚物、氯丁橡胶、天然橡胶、聚丙烯腈、聚(偏氯乙烯-co-丙烯腈)、聚双酚A碳酸酯、聚氯醚、聚偏二氯乙烯、聚(2,6-二甲基聚亚苯基氧化物)、聚苯乙烯、聚乙烯、聚丙烯、聚二苯基丙烷碳酸酯、聚对苯二甲酸乙二醇酯、聚酰亚胺、聚氯乙烯、聚二甲基硅氧烷、聚三氟氯乙烯、聚四氟乙烯和派瑞林。
本实施方式中,仅振动颗粒34的表面与电极板4接触产生表面电荷,因此,只需要满足振动颗粒34的表面材料与电极板的材料具有不同电负 性的条件即可,振动颗粒34可以整体为均一材料,也可以为表面层包覆内核的核壳结构,例如为PTFE材料为表面层包覆陶瓷材料内核的核壳结构。
为了在旋转过程中振动颗粒34与电极板可以碰撞后分离,振动颗粒5的质量应较大,可以为均匀结构,也可以为核壳结构,通过调整内核材料,例如采用金属内核,调整振动颗粒34的密度或增加重量。
为了保证两电极板之间不短路,净化单元3的壳体31可以由绝缘材料制成,如亚克力、树脂、PMMA等组成,其它部分材料不限。并且,壳体31为可拆卸结构,以便进行振动颗粒34或者电极板的清洗。为防止振动颗粒34由壳体第一侧壁的通孔或者第二出气口流出外壳,需使通孔或者第二出气口的尺寸小于振动颗粒34的尺寸,优选第一侧壁和第二侧壁部分或者全部采用网状结构。
振动颗粒34的形状、材质和尺寸可变,如形状可以为球形、椭球形、多面体(如立方体)等。在本实施方式中,振动颗粒的尺寸定义为振动颗粒放置在长方形空间中时,所占据最小长方形空间中长、宽、高中的最大值。
为了提高净化单元中的电场,可以在振动颗粒34的表面和/或电极板表面,全部或部分地设置微结构,以增加振动颗粒34和电极板的有效接触面积,提高二者的表面电荷密度。该微结构优选为纳米线、纳米管、纳米颗粒、纳米棒、纳米花、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球和微米球状结构,以及由前述结构形成的阵列,特别是由纳米线、纳米管或纳米棒组成的纳米阵列,可以是通过光刻蚀、等离子刻蚀等方法制备的线状、立方体、或者四棱锥形状的阵列,阵列中每个阵列单元的尺寸在纳米到微米量级,具体微纳米结构的单元尺寸、形状不应该限制本发明的范围。
另外,也可以对振动颗粒34和/或电极板的表面进行化学改性,能够进一步提高电荷在接触瞬间的转移量,从而提高气体中颗粒物的吸附能力,化学改性又分为如下两种类型:在振动颗粒34的表面引入更易得电子的官能团(强吸电子团),或者在振动颗粒34表面修饰上阴离子;和/或,在电极板表面引入更易失电子的官能团(即强给电子团),或者在电极板表 面修饰上阳离子。
强给电子团可以包括:氨基、羟基、烷氧基等,强吸电子团可以包括:酰基、羧基、硝基、磺酸基等。官能团的引入可以采用等离子体表面改性等常规方法,例如可以使氧气和氮气的混合气在一定功率下产生等离子体,从而在电极板材料表面引入氨基。在材料表面修饰离子,可以通过化学键合的方式实现。例如,可以在采用聚二甲基硅氧烷(PDMS)的振动颗粒表面利用溶胶-凝胶(英文简写为sol-gel)的方法修饰上正硅酸乙酯(英文简写为TEOS),而使其带负电。也可以在电极板金属金上利用金-硫的键结修饰上表面含十六烷基三甲基溴化铵(CTAB)的金纳米粒子,由于十六烷基三甲基溴化铵为阳离子,故会使整个电极板变成带正电性。本领域的技术人员可以根据振动颗粒和电极板的材料选择合适的修饰材料与其键合,以达到本发明的目的。
本实施方式并不限定振动颗粒34表面和电极板必须是硬质材料,也可以选择柔性材料,材料的硬度并不影响二者之间的接触摩擦效果。
本实施方式的气体净化装置中,振动颗粒34的填充度可以为40%-500%,优选为100%-200%。实际中,振动颗粒的数量可以根据外壳的尺寸、形状以及两个电极板之间的距离灵活确定,最少可以为仅包括一个振动颗粒。
以振动颗粒34采用球形为例,颗粒球尺寸为球的直径,振动颗粒的尺寸可以大小均匀,也可以大小不一致;单个最大尺寸球形振动颗粒横截面积S颗粒远小于电极板面积S电极,满足S电极>30S颗粒。另外,两个电极板间的距离要大于2倍振动颗粒球的尺寸,优选大于或等于2-8倍振动颗粒球尺寸。
外壳1的第一进气口11和第一出气口12可由普通导气管组成,导气管材料可以为金属或耐高温聚合物材料。第一进气口11和第一出气口12在外壳1的位置可根据实际应用情况进行设置,可设置在外壳1的同一侧,也可设置在外壳1的两侧。为滤除气流中的水分,还可在所述进气口1上设置干燥装置或冷凝装置3,该干燥装置3为内部装有干燥剂颗粒的密封盒子,所述干燥剂颗粒可以为物理吸附型干燥剂,如硅胶、分子筛干燥剂等,也可为化学吸附型干燥剂,如氯化钙或硫酸钙等;所述冷凝装置为通 常的冷凝管。
考虑到可以在气流进入外壳1或者净化单元3之前,需要滤除气流中体积较大的颗粒物,可在第一进气口11安装滤网,或者也可以在第一进气口11与净化单元3之间安装滤网。所述滤网可以是金属滤网,也可以由非金属材料制成。
下面给出制造本实施方式所述的气体净化装置中净化单元的一个优选方案,但该净化单元的制造并不限制于此。
该优选方案中:选择厚度为2mm的亚克力板制作扇形盒子状壳体,壳体为截面如图3所示扇环的柱壳,第一侧壁35和第二侧壁36上的网孔直径为1.5mm;将两个电极板面对面固定在扇形盒子的两个圆弧形侧壁上,两个电极板32和33均为与转轴2共轴的圆柱面的一部分,外侧电极板(电极板32)所在圆周的直径为16cm,内侧电极板(电极板33)所在圆周的直径为8cm,振动颗粒34为PTFE材料、直径为2mm的实心球。将组装好的4个净化单元按照图4所示的结构固定在亚克力转轴上,将转轴和净化单元一起设置在外壳内,外壳材料采用厚度0.5mm的金属铝箔,外壳上第一进气口和第一出气口的直径为8cm,第一进气口和第一出气口分别设置在转轴的两端。汽车尾气管道连接在第一进气口,尾气吹动净化单元使其转动时,内外电极板间电压可达500V以上,尾气通过第一侧壁进入净化单元,尾气中的PM2.5、PM5.0、PM10.0等颗粒物被电极板和转动颗粒吸附,形成对尾气的过滤作用,被净化的气体从第二出气口(第二侧壁36)流出净化单元,再从第一出气口流出气体净化装置。经过实验,该实施例提供的其他净化装置对汽车尾气的PM2.5、PM5.0、PM10.0等颗粒物的平均过滤效率超过80%,对二氧化硫、氮氧化物和可吸入颗粒物粉尘效果均非常明显。
本发明的气体净化装置各部分均采用常用的材料,结构简单,具有成本低、无污染、吸附效率高及可循环使用等优点,将其应用在机动车上,能够将汽车尾气中的PM1.0、PM2.5、PM5.0及PM10.0等造成雾霾的颗粒物进行有效的吸收和过滤。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本 发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。例如,各部件的形状、材质和尺寸的变化。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (24)

  1. 一种气体净化装置,其特征在于,包括:
    外壳;
    设置在所述外壳上的第一进气口和第一出气口;
    设置在外壳内的转轴;
    固定在所述转轴上的净化单元,所述净化单元包括:
    壳体,所述壳体上具有带有通孔的第一侧壁和具有第二出气口的第二侧壁;
    固定在所述壳体内部的电极板;
    填充在所述壳体中可自由移动的振动颗粒,所述振动颗粒与所述电极板的材料具有不同电负性;
    气体从所述第一进气口进入所述外壳后,从所述带有通孔的第一侧壁进入壳体,从所述第二出气口流出,带动所述净化单元围绕所述转轴转动,以使所述振动颗粒与所述电极板通过相互接触分离的方式形成电场,气体中的颗粒被吸附到振动颗粒和/或电极板上。
  2. 根据权利要求1所述的气体净化装置,其特征在于,所述净化单元面向所述第一进气口的壳体侧壁为上侧壁,上侧壁表面的部分或者全部表面的切线方向与所述转轴的方向不垂直,气体与所述净化单元的表面作用使所述净化单元围绕所述转轴转动。
  3. 根据权利要求2所述的气体净化装置,其特征在于,所述壳体的第一侧壁外表面为平面;或者,所述壳体的第一侧壁外表面为弧形凹面。
  4. 根据权利要求2或3所述的气体净化装置,其特征在于,所述壳体的第一侧壁沿着所述转轴径向方向延伸,所述上侧壁与所述第一侧壁连接。
  5. 根据权利要求2至4中任意一项所述的气体净化装置,其特征在于,所述净化单元中,在转轴方向上与壳体上侧壁相对的壳体侧壁为下侧壁,所述下侧壁与上侧壁基本平行设置。
  6. 根据权利要求5所述的气体净化装置,其特征在于,所述净化单元的电极板设置在与所述转轴共轴的圆柱面上。
  7. 根据权利要求6所述的气体净化装置,其特征在于,所述净化单 元中包括两个面对面设置的电极板,两个电极板和在所述转轴的径向分隔设置。
  8. 根据权利要求2至7中任意一项所述的气体净化装置,其特征在于,所述第二侧壁沿着所述转轴径向方向延伸,所述上侧壁连接在所述第一侧壁和第二侧壁之间;或者,所述第二侧壁基本垂直所述转轴。
  9. 根据权利要求2至8中任意一项所述的气体净化装置,其特征在于,所述第一侧壁、上侧壁、第二侧壁和下侧壁连接在一起形成框架,靠近所述转轴一端和远离所述转轴一端分别通过所述壳体的第三侧壁和第四侧壁形成盒状壳体。
  10. 根据权利要求2至9中任意一项所述的气体净化装置,其特征在于,所述第三侧壁和第四侧壁为弧形侧壁,两个弧形侧壁所在圆柱壳与所述转轴共轴;所述电极板设置在所述弧形侧壁上。
  11. 根据权利要求2至10中任意一项所述的气体净化装置,其特征在于,包括多个所述净化单元,多个净化单元围绕所述转轴互相连接设置,相邻的两个净化单元中,第一净化单元的第一侧壁与第二净化单元的上侧壁互相连接。
  12. 根据权利要求11所述的气体净化装置,其特征在于,多个所述净化单元的第二侧壁垂直于所述转轴的轴线,多个净化单元的第二侧壁连接成一个平面。
  13. 根据权利要求11所述的气体净化装置,其特征在于,所述第一侧壁和第二侧壁沿着所述转轴的径向方向延伸,第一净化单元的第一侧壁与第二净化单元的第二侧壁互相连接在一起,第一侧壁的通孔与第二侧壁的第二出气口无重叠。
  14. 根据权利要求1至13中任意一项所述的气体净化装置,其特征在于,多个所述净化单元结构相同,多个净化单元呈轴对称或者中心对称分布。
  15. 根据权利要求1至14中任意一项所述的气体净化装置,其特征在于,所述电极板的材料采用可导电的金属材料、有机物材料或者氧化物材料。
  16. 根据权利要求1至15中任意一项所述的气体净化装置,其特征 在于,所述振动颗粒整体为均一材料,或者为表面层包覆内核的核壳结构;所述振动颗粒表面的材料为绝缘材料。
  17. 根据权利要求16所述的气体净化装置,其特征在于,所述绝缘材料选自下列材料中的一种或者几种:胺甲醛树脂、聚甲醛、乙基纤维素、聚酰胺尼龙11、聚酰胺尼龙66、羊毛及其织物、蚕丝及其织物、纸、聚乙二醇丁二酸酯、纤维素、纤维素醋酸酯、聚乙二醇己二酸酯、聚邻苯二甲酸二烯丙酯、再生纤维素海绵、棉及其织物、聚氨酯弹性体、苯乙烯-丙烯腈共聚物、苯乙烯-丁二烯共聚物、木头、硬橡胶、醋酸酯、人造纤维、聚甲基丙烯酸甲酯、聚乙烯醇、聚酯、聚异丁烯、聚氨酯弹性海绵、聚对苯二甲酸乙二醇酯、聚乙烯醇缩丁醛、丁二烯-丙烯腈共聚物、氯丁橡胶、天然橡胶、聚丙烯腈、聚(偏氯乙烯-co-丙烯腈)、聚双酚A碳酸酯、聚氯醚、聚偏二氯乙烯、聚(2,6-二甲基聚亚苯基氧化物)、聚苯乙烯、聚乙烯、聚丙烯、聚二苯基丙烷碳酸酯、聚对苯二甲酸乙二醇酯、聚酰亚胺、聚氯乙烯、聚二甲基硅氧烷、聚三氟氯乙烯、聚四氟乙烯和派瑞林。
  18. 根据权利要求1至17中任意一项所述的气体净化装置,其特征在于,所述振动颗粒和/或所述电极板的表面设置有微结构。
  19. 根据权利要求18所述的气体净化装置,其特征在于,所述微结构包括纳米线、纳米管、纳米颗粒、纳米棒、纳米花、纳米沟槽、微米沟槽、纳米锥、微米锥、纳米球和微米球状结构中的任一者或者多者形成的阵列。
  20. 根据权利要求1至19中任意一项所述的气体净化装置,其特征在于,所述壳体的第一侧壁和/或第二侧壁为网状结构。
  21. 根据权利要求1至20中任意一项所述的气体净化装置,其特征在于,所述净化单元的壳体由绝缘体材料制成。
  22. 根据权利要求1至21中任意一项所述的气体净化装置,其特征在于,所述外壳与所述净化单元的壳体为可拆卸结构。
  23. 根据权利要求1至22中任意一项所述的气体净化装置,其特征在于,所述振动颗粒在净化单元中的填充度为40%-500%。
  24. 根据权利要求1至23中任意一项所述的气体净化装置,其特征在于,所述振动颗粒的形状为球形、椭球形或多面体。
PCT/CN2015/099465 2014-12-31 2015-12-29 气体净化装置 WO2016107552A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177021186A KR101938414B1 (ko) 2014-12-31 2015-12-29 기체 정화 장치
JP2017534588A JP6359776B2 (ja) 2014-12-31 2015-12-29 ガス浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410852969.1 2014-12-31
CN201410852969.1A CN105797855B (zh) 2014-12-31 2014-12-31 一种气体净化装置

Publications (1)

Publication Number Publication Date
WO2016107552A1 true WO2016107552A1 (zh) 2016-07-07

Family

ID=56284287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099465 WO2016107552A1 (zh) 2014-12-31 2015-12-29 气体净化装置

Country Status (4)

Country Link
JP (1) JP6359776B2 (zh)
KR (1) KR101938414B1 (zh)
CN (1) CN105797855B (zh)
WO (1) WO2016107552A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107780995A (zh) * 2017-12-01 2018-03-09 江西元亿实业发展有限公司 一种新型的尾气净化器
CN107956544A (zh) * 2017-12-01 2018-04-24 江西元亿实业发展有限公司 一种尾气净化装置
CN117298808A (zh) * 2023-09-28 2023-12-29 致一环境(江苏)有限公司 一种基于甲醇制备工艺的二氧化碳捕集再利用装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198216A1 (zh) * 2016-05-19 2017-11-23 北京中科纳清科技股份有限公司 一种除尘模块和气体除尘装置
CN108071448A (zh) * 2016-11-10 2018-05-25 福特环球技术公司 用于车辆排气系统的颗粒捕集器及其再生方法
CN106881198B (zh) * 2017-02-20 2018-11-06 潍坊学院 一种带电绝缘颗粒过滤气体的方法
CN108525428A (zh) * 2017-03-05 2018-09-14 高雪真 搅流器
CN107670445B (zh) * 2017-09-30 2019-05-24 宁波源生针织有限公司 纺织机除尘装置
CN108222998A (zh) * 2018-01-02 2018-06-29 海宁善能制冷科技有限公司 一种煤矿通风设备
KR102134609B1 (ko) * 2018-02-26 2020-07-16 엘지전자 주식회사 플라즈마 살균 모듈 및 이를 구비하는 공기청정기
CN109833977B (zh) * 2019-03-01 2024-03-15 北京航空航天大学 一种空气净化方法和空气净化器
CN109780649B (zh) * 2019-03-06 2020-12-29 杭州弗迪沃斯电气有限公司 一种恒温型双向流除霾除湿机
CN110193253A (zh) * 2019-05-27 2019-09-03 长安大学 一种除霾装置、制备方法及其除霾方法
CN112316607B (zh) * 2020-10-19 2022-05-17 中科南京绿色制造产业创新研究院 一种颗粒物循环脱除装置及脱除方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852349A (en) * 1987-04-03 1989-08-01 Daimler-Benz Aktiengesellschaft Arrangement for the removal of soot particles from the exhaust gas stream of a diesel internal combustion engine
CN2317432Y (zh) * 1997-11-07 1999-05-05 中国科学院等离子体物理研究所 室内空气净化消毒器
CN2589865Y (zh) * 2002-12-12 2003-12-03 詹海兴 空气净化装置
JP2006337024A (ja) * 2005-05-31 2006-12-14 Kazuyuki Fukui 空気イオン濃度測定器の清浄装置
CN203240668U (zh) * 2013-03-01 2013-10-16 巫国谊 空气净化器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334329A (ja) * 1999-05-31 2000-12-05 Haruo Kojima 有害排気の処理方法及び装置
JP2002122049A (ja) * 2000-08-10 2002-04-26 Akinari Ito 内燃機関による空気汚染防止システム、空気汚染防止システムを含む内燃機関、燃料処理方法及び燃料処理装置
EP1546515B1 (en) * 2002-07-25 2008-02-27 Refaat A. Kammel Exhaust after-treatment system for the reduction of pollutants from diesel engine exhaust and related method
JP2006280698A (ja) 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd 空気浄化装置
CN103331210B (zh) * 2011-01-21 2015-12-02 有利创新科技有限公司 管式空气净化系统
CN203532024U (zh) * 2013-09-09 2014-04-09 国家纳米科学中心 汽车尾气净化器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852349A (en) * 1987-04-03 1989-08-01 Daimler-Benz Aktiengesellschaft Arrangement for the removal of soot particles from the exhaust gas stream of a diesel internal combustion engine
CN2317432Y (zh) * 1997-11-07 1999-05-05 中国科学院等离子体物理研究所 室内空气净化消毒器
CN2589865Y (zh) * 2002-12-12 2003-12-03 詹海兴 空气净化装置
JP2006337024A (ja) * 2005-05-31 2006-12-14 Kazuyuki Fukui 空気イオン濃度測定器の清浄装置
CN203240668U (zh) * 2013-03-01 2013-10-16 巫国谊 空气净化器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107780995A (zh) * 2017-12-01 2018-03-09 江西元亿实业发展有限公司 一种新型的尾气净化器
CN107956544A (zh) * 2017-12-01 2018-04-24 江西元亿实业发展有限公司 一种尾气净化装置
CN117298808A (zh) * 2023-09-28 2023-12-29 致一环境(江苏)有限公司 一种基于甲醇制备工艺的二氧化碳捕集再利用装置
CN117298808B (zh) * 2023-09-28 2024-03-19 致一环境(江苏)有限公司 一种基于甲醇制备工艺的二氧化碳捕集再利用装置

Also Published As

Publication number Publication date
KR101938414B1 (ko) 2019-01-14
KR20170102910A (ko) 2017-09-12
CN105797855B (zh) 2017-06-23
CN105797855A (zh) 2016-07-27
JP2018508682A (ja) 2018-03-29
JP6359776B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
WO2016107552A1 (zh) 气体净化装置
CN105618266B (zh) 一种气体除尘装置、方法及机动车排气装置
CN106560252B (zh) 一种摩擦电除尘装置、除尘系统和除尘方法
CN106563570B (zh) 具有搅动部件的气体除尘装置、除尘系统和除尘方法
CN205599337U (zh) 具有搅动部件的气体除尘装置和除尘系统
CN106552713B (zh) 一种摩擦电除尘装置、除尘系统和除尘方法
CN105756750A (zh) 一种气体净化装置
CN205965369U (zh) 一种摩擦电除尘装置和除尘系统
WO2020083149A1 (zh) 一种发动机进气除尘系统及方法
WO2017088584A1 (zh) 一种摩擦电除尘装置、除尘系统和除尘方法
CN103917297A (zh) 一种空气净化装置及方法
CN106140476B (zh) 一种转动式气体净化装置和净化方法
CN102434924A (zh) 一种空调净化器的改进方法
CN205887166U (zh) 一种滚筒式气体除尘装置
CN106560251B (zh) 一种除尘模块及筒式气体除尘装置
CN107149981A (zh) 一种运动型摩擦电气体除尘装置、除尘系统和除尘方法
CN107961900A (zh) 一种摩擦电除尘装置
CN205867873U (zh) 一种摩擦电除尘装置和除尘系统
CN106440087A (zh) 一种消除空气中超微悬浮物的净化装置
CN205887180U (zh) 一种除尘模块及筒式气体除尘装置
CN106560249B (zh) 一种滚筒式气体除尘装置
CN104888961B (zh) 车载式仿生静电除尘空气净化器
CN216677634U (zh) 一种活性炭净化装置
CN106582165B (zh) 一种摩擦电除尘装置、除尘系统和除尘方法
WO2018148948A1 (zh) 空气颗粒沉积吸附装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177021186

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15875228

Country of ref document: EP

Kind code of ref document: A1